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Abstract 

Baroque questions of set-theoretic foundations are widely assumed to be irrelevant to physics. In 
this article, I challenge this assumption. I argue that even the fundamental physical question of 
whether a theory is deterministic—whether it fixes a unique future given the present—can 
depend on one’s choice of set-theoretic axiom candidates over which there is intractable 
disagreement. Suppose, as is customary (Earman 1986), that a deterministic theory is one whose 
mathematical formulation yields a unique solution to its governing equations. Then the question 
of whether a physical theory is deterministic becomes the question of whether there exists a 
unique solution to its mathematical model—typically a system of differential equations. I argue 
that competing axiom candidates extending standard mathematics—in particular, the Axiom of 
Constructibility (V = L) and large cardinal axioms strong enough to prove Projective 
Determinacy—can diverge on all the core dimensions of physical determinism. First, they may 
disagree about whether a given physical system is well-posed, and so whether a solution exists. 
Second, even when they agree that a solution exists, they can differ on whether that solution is 
unique. Finally, even when they agree that a system has a solution, and agree that this solution is 
unique, they may still dispute what that solution is. Whether a theory is deterministic—and even 
which outcome it deterministically predicts—can depend on one’s choice of set-theoretic 
metatheory. I indicate how the conclusions extend to discrete systems and suggest directions for 
future research. One upshot of the discussion is that either physical theories must be relativized 
to set-theoretic metatheories (in which case physics itself becomes relative), or, as Quine (1951) 
controversially argued, the search for new axioms to settle undecidables may admit of empirical 
input. 

 

1. Introduction: Set-theoretic Foundations Meet Physical Reality 

Physical theories are formulated using mathematics, but the relationship between the choice of 
set-theoretic metatheory and physical content is rarely examined. This paper demonstrates that 

1 Thanks to Avner Ash for catching a mistake in my treatment of PDEs, Will Cavendish for pressing me to consider 
the discrete case, Gabriel Goldberg for helpful discussion of complexity classes and projective uniformization in L, 
and Joel David Hamkins for general exchanges about the relevance of incompleteness to determinism. This article is 
an experiment for me.  AI assistants Claude (Anthropic) and ChatGPT (OpenAI) provided important support, similar 
to that of research assistants who offer critical feedback, including suggestions for mathematical formulations and 
efficient references to known results. Needless to say, I am responsible for all errors. See Balaguer 1998; Berry 
2023, Forthcoming; Colyvan 1998; Clarke-Doane 2022, 2024, 2025; Farah & Magidor 2012; Jonas 2024; and 
Pour-El & Richards 1989 and the references to follow for cognate discussions.  
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even basic physical properties—like whether a system evolves deterministically from initial 
conditions—can depend on which new axiom candidates for set theory we embrace. 

Let ZFC denote Zermelo–Fraenkel set theory with the Axiom of Choice. It provides the standard 
foundation for most mathematics. But it must be incomplete if it is consistent, by Gödel’s 
incompleteness theorems (Gödel 1931). Moreover, subsequent work by Cohen (1963) and others 
showed that the incompleteness of ZFC goes far beyond codings of apparently paradoxical 
sentences like “I am not provable,” including Hilbert’s First Problem, the Continuum Problem: Is 
the cardinality of the set of real numbers the next greatest after that of the set of natural numbers? 
This raises the question of whether we might adopt new axioms that settle all or many “natural” 
undecidable questions. Two starkly opposed candidates for new axioms are “large cardinal” 
axioms and the Axiom of Constructibility. 

Large cardinal axioms are strong axioms of infinity. I will use LC to denote some fixed large 
cardinal axiom strong enough to imply the regularity principle known as Projective 
Determinacy (PD)—for concreteness, the axiom that there are ω many Woodin cardinals (cf. 
Kanamori 2009; Martin and Steel 1989; Woodin 1988). Projective Determinacy asserts that all 
projective sets are Lebesgue measurable, have the property of Baire, and satisfy other regularity 
conditions. I will write V = L to denote Gödel’s Axiom of Constructibility (Gödel 1940). This 
postulates that every set is constructible in a precise technical sense related to Russell’s ramified 
theory of types. It leads to a relatively minimal universe of sets and contradicts strong large 
cardinal axioms—in particular, LC. (In detail: let PDef(A) refer to the set of all subsets of A 
definable in the structure ⟨A, ∈⟩ by first-order formulas with parameters in A. Then V = L says 
that every set lies in the hierarchy obtained by transfinite recursion on the ordinals: L₀ = ∅, Lₐ₊₁ = 
PDef(Lₐ), and Lᵧ = ⋃{Lₐ : α < γ} for limit ordinals γ.) 

As Jensen writes, “[V = L] on the one hand and large cardinals and determinacy on the other 
embody two radically different conceptions of the universe of sets” (Jensen 1995, pp. 400–401).2 
According to V = L, there are simply definable sets with pathological regularity behavior (e.g., 
they are non-measurable); under LC, such sets are regular. Differences like these can be encoded 
into the data of physical models. The same formulas can then describe a well-posed, uniquely 
solvable system in one universe, and an ill-posed or non-unique system in another. In fact, the 
identity of the solution can vary between models of V = L and models of LC when it is provably 
unique in both contexts. What changes is the set-theoretic foundations, not the interpretation. 

It is instructive to contrast the foundational dependence described here with other known failures 
of determinism in classical physics, such as Norton’s Dome (Norton 2008). The Dome describes 
a physical system, governed by Newtonian mechanics, that admits a spontaneous, uncaused 
motion. While debated (cf. Malament 2008), the source of its indeterminism is located within the 
physical laws as applied to a specific (albeit idealized) configuration of matter and force. The 
form of non-uniqueness explored in this paper is of a very different kind. It is not a feature of the 
physical laws alone, but emerges through the interaction between those laws and the set-theoretic 
foundations by which they are conceptualized. This reveals a new axis of non-uniqueness in 
physics that, to my knowledge, has been overlooked. 

2 For discussion of other "restrictive" axioms, besides V=L, see Fraenkel, Bar-Hillel & Levy (1973, §6.4).  
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It is important to clarify that changes in set-theoretic axioms can alter regularity facts only when 
the problem’s data or the admissible solution space rely on definability properties that are 
independent of ZFC. Many well-posedness theorems involve only Borel coefficients or are 
otherwise provable within ZFC itself, without sensitivity to the V = L versus LC dichotomy. The 
point is that when PDEs, variational principles, or discrete dynamical systems are formulated so 
that the admissible sets, selection functions, or uniformization steps climb higher in the 
projective hierarchy, the truth of existence or uniqueness can hinge on regularity properties 
(measurability, Baire property, determinacy) that are independent of ZFC. In such cases, new 
axiom candidates like V = L (which maximizes definability but minimizes regularity) and strong 
large-cardinal hypotheses (which yield Projective Determinacy and robust regularity for 
projective sets) can enforce different outcomes for well-posedness, uniqueness, or identity of 
solutions. The thesis of this paper concerns these non-absolute, definability-sensitive instances. I 
do not claim axiom-relativity for all ordinary textbook PDEs with classical data. (See the 
Appendix for a basic review of set-theoretic definability and Projective Determinacy.) 

The arguments to follow employ the method of conceptual analysis. Just as Gettier’s (1963) 
cases need not be actual to reveal facts about the concept of knowledge, the physical theories that 
I discuss need not describe true physics to reveal facts about the concept of determinism. I argue 
that V = L versus LC classify different possible physical theories as deterministic or 
non-deterministic. This demonstrates that the concept of determinism is contested or relative in a 
way that has not been appreciated—regardless of whether physicists happen to encounter such 
theories in practice.3 That said, my examples are not far out. The mechanisms involved—weak 
formulation of PDEs, symmetry breaking in variational problems, recurrence relations—are 
standard in mathematical physics. An important question for future research is whether the 
determinism of viable physical theories is also foundationally sensitive in the way that I describe. 

2. The Mathematical Framework of Determinism 

Physicists regiment determinism through Hadamard well-posedness: for admissible initial data, 
(i) a solution exists; (ii) it is unique; and (iii) it depends continuously on the data (Hadamard 
1923; Evans 2010). This abstract template is instantiated throughout physics, from ordinary 
differential equation (ODE) models of point mechanics to partial differential equation (PDE) 
models of fluids and fields, and also in discrete models. In all cases, the verdicts rest on technical 
hypotheses. Coefficients are typically required to be measurable (or more regular), domains to 
have standard geometric properties, and function spaces to be complete (Evans 2010; Brezis 
2011). 

These hypotheses are not mere bookkeeping. In frameworks such as L²(0,T; H¹₀(Ω)) for 
parabolic equations, the weak formulation is literally undefined if basic measurability fails. The 
key observation of this article is that such regularity assumptions can turn on speculative 
extensions of standard set theory. Sets that are Δ¹₂ in the projective hierarchy are non-measurable 
in V = L but measurable under LC. When the same definable set is inserted into a model as a 
coefficient or in the data, the model’s determinism profile can change with the metatheory. The 
rest of the paper develops this point through explicit examples. 

3 See Earman 1986, 2007; Fletcher 2012; Malament (2008); Norton 2008; Fletcher 2012; Wilson 2009; Ismael 2016; 
Loewer 2001, 2020; Chen 2024;, Irndl 2009 for relevant discussion of determinism, and Butterfield 2007)for 
background. See Halvorson, Manchak, & Weatherall 2025 for a recent intervention.  
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3. The Set-Theoretic Divide: Constructibility versus Large Cardinals 

The Axiom of Constructibility (V=L) and strong large‑cardinal hypotheses (LC) yield different 
regularity facts about definable sets of reals and thereby different analytic behaviors in models 
that incorporate definability‑sensitive data.  Under V=L there is a Δ¹₂ “good” definable 
well‑order of ℝ. Fix a coding of reals into [0,1] and define:  

 W := { (x, y) ∈ [0,1]² : x ≺ y }, 

where “≺” is such a Δ¹₂ well-order. (For expositions see Kechris 1995 and Moschovakis 2009; for 
a recent discussion of definable well-orders and the “good Δ¹₂” property, see Kanovei 2022, §2.) 
Under this assumption one obtains definable non-Lebesgue-measurable sets by a classical 
Sierpiński–Fubini argument.  For each y, the horizontal section: 

 Wʸ := { x : x ≺ y } 

is countable (hence measure 0), while for each x, the vertical section: 

 Wₓ := { y : x ≺ y } 

is co-countable (hence measure 1). If χᵂ were measurable, Tonelli/Fubini would force the 
iterated integrals to agree.  Since the inner integrals are 0 and 1, respectively, this is impossible. 
Hence χᵂ is non-measurable.  By contrast, LC, and so PD, implies that any Δ¹₂ set is measurable. 

Solovay (1970) showed that (assuming an inaccessible cardinal) there is a model of ZF + the 
Axiom of Dependent Choice in which every set of reals is Lebesgue measurable. This 
underscores that the coherence phenomena we exploit are not idiosyncratic to PD.  They reflect a 
general alignment between determinacy/regularity principles and the well‑posedness of 
analytical formulations used in physics.  (See Appendix B for absoluteness facts used.) 

4. Three Types of Foundational Dependence 

The dependence of physics on set theory appears in three progressively more subtle stages, 
which I call equation coherence, solution uniqueness, and solution identity. 

(i) Equation coherence. A model’s formal specification—such as the weak form of a PDE—is 
coherent in a given functional-analytic framework only if coefficients and data satisfy minimal 
regularity requirements (e.g., measurability). If a required integral cannot be defined in the 
standard Lebesgue σ-algebra, the model is not merely unsolved; it is undefined in that 
framework. Whether such regularity holds can hinge on set-theoretic assumptions. 

(ii) Solution uniqueness. Given coherence and existence, determinism in the classical sense 
reduces to uniqueness of solution (Earman 1986, 2007). Analytic models often secure uniqueness 
via strict convexity or monotonicity. In our examples, the presence or absence of a 
symmetry-breaking term depends on the truth value of a fixed Σ¹₃ sentence, which can differ 
between V=L and large-cardinal universes—altering uniqueness without changing the formal 
functional. 
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(iii) Solution identity. Even if two backgrounds agree on coherence, existence, and uniqueness, 
they may yield different “unique” solutions when the initial data encode non-absolute 
information (e.g., Σ¹₃ membership). The models remain deterministic in each universe’s sense, 
yet the predicted evolutions differ. 

5. Continuous Systems: When PDEs Depend on Axioms 

The following examples explore how the determinism of physical systems can become sensitive 
to set-theoretic axioms when physical quantities or boundary conditions are allowed to be 
specified by their definability properties. Physical laws are often expressed in terms of functions 
(e.g., density, potential, temperature), and an important question is what constitutes an admissible 
function. While physical intuition often favors smooth or piecewise continuous functions, more 
complex functions are possible and may arise in idealized models (e.g., fractals in dynamical 
systems). I consider the case where a physical parameter is specified by a formula in the 
projective hierarchy by taking a fixed Δ¹₂ set C from Section 3 and studying physical models 
whose coefficients or data depend on its characteristic function, χ꜀. In a universe satisfying LC, 
χ꜀ is a measurable function, and standard analytic techniques apply. In the constructible universe 
(i.e., under V=L), χ꜀ is non-measurable, leading to a breakdown in the standard formulation of 
the physical problem – at the level of coherence, uniqueness, and solution identity. 

5.1. Equation coherence: The heat equation with a non-measurable potential 

Let Ω = 𝕋² (a two‑torus, i.e., [0,1]² with periodic boundary). Consider 

 ∂u/∂t − Δu + V(x)u = f on (0,T)×Ω, u(0,·) = u₀, 

in the standard weak framework X ≔ L²(0,T; H¹(Ω)) ∩ C([0,T]; L²(Ω)), with test space H¹(Ω). 
Assume u₀ ∈ L²(Ω) and f ∈ L²(0,T; H⁻¹(Ω)) (or f ∈ L²((0,T)×Ω) if preferred). The weak form 
contains 

 ∫Ω V(x) u(t,x) v(x) dx for all v ∈ H¹(Ω). 

Fix a lightface Δ¹₂ set C ⊆ Ω as in §3 and set V ≔ χ꜀.  Under LC,: χ꜀ is Lebesgue measurable and 
essentially bounded. Then u ↦ ∫Ω Vuv is a bounded bilinear form on L², and standard parabolic 
theory yields existence and uniqueness in X for the above data (equivalently: A = −Δ + V is a 
bounded perturbation of −Δ on L²(Ω), so u′ + Au = f is well‑posed).  However, under V=L, χ꜀ 
can be non‑measurable. Taking u(t,·) ≡ 1 and v ≡ 1, the term reduces to ∫Ω χ꜀, which is undefined 
in the Lebesgue sense. The universal quantification “for all v” fails already at v ≡ 1, so the weak 
formulation is not a well‑formed statement. Coherence thus depends on the set-theoretic 
metatheory (LC vs. V=L), with the same displayed PDE and data classes. 

5.2. Solution uniqueness: Symmetry breaking in a variational problem 

Let Ω = 𝕋ᵈ. Fix 0 < ε < 1 and define 

 W₀(u) ≔ (u² − 1)² + εu², E(γ)[u] ≔ ∫Ω [½ǁ∇uǁ² + W₀(u) + γu²] dx. 

Fix γ by a background‑sensitive rule using a single Σ¹₃ sentence φ(n₀): 
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 γᴹ ≔ { γ₁ if M ⊨ φ(n₀), γ₀ otherwise }, 

with 0 ≤ γ₀ < 2 − ε < γ₁, and LC‑models satisfying φ(n₀) while V = L does not. Write W_γ(u) ≔ u⁴ 
+ (ε + γ − 2)u² + 1. Then 

 W_γ″(u) = 12u² + 2(ε + γ − 2). 

Hence strict convexity holds globally when ε + γ > 2, and the functional u ↦ E(γ)[u] is strictly 
convex and coercive on H¹(Ω), so it admits a unique minimizer by the direct method. When ε + γ 
< 2, W_γ has two equal minima at u = ±a₀ with a₀ ≔ √(1 − (ε + γ)/2) > 0; since the gradient term 
vanishes on constants, the global minimizers of E(γ) are precisely u ≡ ±a₀. Thus the formal 
functional is fixed, but uniqueness toggles with γ—and hence with V=L and LC.  

5.3. Solution identity: Heat equation with Σ¹₃-coded initial data 

Fix a Σ¹₃ formula φ(n) and n₀ with LC ⊨ φ(n₀) but V = L ⊭ φ(n₀). For any background M, define 
Cᴹ ≔ { n ∈ ℕ : M ⊨ φ(n) }. Choose a smooth bump ψ ≡ 1 on B(0,½), supp(ψ) ⊆ B(0,1), and 
disjoint centers x� so that B(x�,2) are pairwise disjoint. Set ψ�(x) ≔ ψ(x − x�) and 

 u₀ᴹ(x) ≔ ∑�≥1 3⁻ⁿ χ_{Cᴹ}(n) ψ�(x), 

which converges in C^∞ by the M‑test. For the Dirichlet heat equation 

 ∂u/∂t − Δu = 0 in (0,T)×Ω, u(0,·) = u₀ᴹ, u|_{∂Ω} = 0, 

standard parabolic theory yields a unique classical solution uᴹ. Because Cᴾᴰ and Cᴸ differ at n₀, 
we have uᴾᴰ ≠ uᴸ for all t > 0. Determinism (existence + uniqueness) holds according to both 
V=L and LC.  But the deterministic evolution predicted differs.4 

6. Discrete Systems: Foundational Sensitivity Without the Continuum 
The same three types of foundational dependence identified in Section 4 appear in discrete 
settings. As in the continuous case, “coherence” refers to the well-posedness of the intended 
formulation in the standard analytic framework for the model; “uniqueness” means uniqueness of 
the admissible solution within that framework; and “identity” means agreement on determinism 
but disagreement on the deterministic evolution.  These discrete analogues are constructed to 
parallel their continuous counterparts in Sections 5.1, 5.2, and 5.3, with the underlying 
definability features playing the same roles. 

4 We might also consider the metatheory dependence of continuous dependence. Recall Hadamard (iii): stability of 
the solution map with respect to data in the prescribed norms. In Section 5.1, under LC the solution map (u₀,f) ↦ u is 
continuous in X because the standard parabolic estimates hold with V ∈ L^∞. Under V=L, the weak formulation is 
ill‑formed for certain Δ¹₂ potentials, so (iii) fails vacuously (there is no map). To see a non‑vacuous contrast, fix the 
same measurable coefficient V and instead encode Σ¹₃‑sensitive data as in §5.3. Then both backgrounds satisfy 
(i)–(ii) and (iii), but they yield different continuous solution maps Sᴾᴰ ≠ Sᴸ because u₀ᴾᴰ ≠ u₀ᴸ. Roughly: there are 
models M and N and admissible data classes D such that the solution operators Sᴹ, Sᴺ : D → X are continuous and 
single‑valued, yet Sᴹ ≠ Sᴺ (indeed, Sᴹ(d) ≠ Sᴺ(d) for a comeagre set of d ∈ D constructed by the Σ¹₃ bump 
encoding).  
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6.1 Coherence difference: Discrete evolution with continuum-defined parameter 
Let C ⊆ [0,1]² be the fixed lightface Δ¹₂ set from Section 3, non-measurable in V = L and 
Lebesgue measurable under LC. Define: 

α = ∬₍₀,₁₎² χ꜀(x,y) dx dy, β = e⁻ᵅ². 

(Note: This example concerns discrete dynamics but references a continuum-defined parameter. 
While the system evolves on ℓ²(ℕ), we define parameters using α above. Such 
continuum–discrete mixing is common in physics—for example, lattice gauge theory (Wilson 
1974). The gate β = e⁻ᵅ² then determines the discrete evolution operator.) 

Under LC, α is a well-defined real in [0,1], so β > 0 is defined. Under V = L, χ꜀ is 
non-measurable, so α and β are undefined in the Lebesgue sense. 

Now consider the linear difference equation on ℓ²(ℕ): 

f�₊₁ = A f� + g�, A = β · I. 

Under LC, A is bounded and the recursion is well-posed.  Under V=L, β is undefined, so the 
discrete equation is incoherent. 

6.2. Discrete solution uniqueness 

Let sites i = 1,…,N with periodic boundary condition u₍ᴺ₊₁₎ = u₁. Fix 0 < ε < 1 and define, for γ ≥ 
0: 

Eᵧ[u] = Σᵢ₌₁ᴺ [½(uᵢ₊₁ − uᵢ)² + (uᵢ² − 1)² + (ε + γ)uᵢ²]. 

As in Section 5.2, set γᴹ by the same Σ¹₃ predicate φ(n₀), with 0 ≤ γ₀ < 2 − ε < γ₁. 

High-γ regime (ε + γ₁ > 2): 

 
For any u, the discrete Hessian is 

∇²Eᵧ(u) ⪰ L + (−4 + 2(ε + γ))I, 

where L is the ring Laplacian (positive semidefinite, kernel = constants). If −4 + 2(ε + γ₁) > 0, 
this sum is positive definite. Hence Eᵧ with γ = γ₁ is strictly convex and admits a unique 
minimizer. 

Low-γ regime (ε + γ₀ < 2): 

 
The on-site potential has minima at ±a₀, where a₀ = √(1 − (ε + γ₀)/2). The gradient term Σᵢ ½(uᵢ₊₁ 
− uᵢ)² ≥ 0 vanishes only for constants, so the global minimizers are exactly u ≡ ±a₀. Thus: 
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● LC: γᴾᴰ = γ₁ ⇒ strict convexity ⇒ unique minimizer. 
 

● V=L: γᴸ = γ₀ ⇒ double-well, flat only at constants ⇒ two minimizers. 
 

Coherence holds in both; uniqueness changes solely via the γ value set by a Σ¹₃ predicate (cf. 
Brezis 2011; Dacorogna 2008). 

6.3. Discrete solution identity 

Let φ(n,r) be a Σ¹₃ formula with n ∈ ℕ and real parameter r such that for some n₀: 

● Under LC: φ(n₀,r) is true 
 

● Under V=L: φ(n₀,r) is false 
 

For each model M, define: 

Cᴹ = {n ∈ ℕ : M ⊨ φ(n,r)}. 

Then Cᴾᴰ and Cᴸ differ at least at n₀. Define the recurrence: 

a₀ = 0, a� = a�₋₁ + 3⁻ᵐ · χ꜀ᴹ(m), m ≥ 1. 

The sequence converges to: 

a_∞ᴹ = Σ�≥₁ 3⁻ᵐ · χ꜀ᴹ(m). 

Both backgrounds prove uniqueness of the limit, but since χ꜀ᴸ(n₀) = 0 and χ꜀ᴾᴰ(n₀) = 1, we have 
|a_∞ᴾᴰ − a_∞ᴸ| ≥ (½)·3⁻ⁿ⁰ > 0. 

7. Directions for Future Research 

Although I have focused on specific constructions (especially the measurability of simply 
definable sets), many possible sources of foundational sensitivity exist. Several lines of 
investigation appear promising: 

1. Other regularity properties. PD ensures that all projective sets have the Baire property 
and the perfect set property, in addition to measurability (Kechris 1995; Moschovakis 
2009). In V = L there are definable counterexamples to each. PDEs or discrete systems 
whose analysis depends essentially on one of these other properties could yield new 
examples of foundational dependence. 
 

2. Higher definability complexity. Moving from Δ¹₂ to Σ¹₃ or Π¹₃ sets allows one to exploit 
genuine disagreement on the membership of specific natural numbers between models. 
At higher complexity, it may be possible to construct other systems whose existence or 
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uniqueness properties themselves change between universes. 
 

3. Physically natural models. The examples here are designed to be standard in analytic 
structure but to carry definability-coded coefficients or data. It would be valuable to 
identify equations arising directly in mainstream physics—for example in general 
relativity (Wald 1984), quantum field theory (Haag 1996), or statistical mechanics 
(Ruelle 1969)—where such definability enters from modeling assumptions rather than 
being inserted for illustrative purposes. 
 

4. Hybrid systems. Many real-world models couple continuous and discrete components. If 
definable sets appear in one part of such a system, foundational sensitivity may propagate 
to the other, possibly producing effects not seen in purely continuous or purely discrete 
settings. 
 

5. Computational complexity analogues. In discrete settings, definability considerations 
connect with questions about the computational difficulty of solving the system. It would 
be interesting to explore whether there are complexity-theoretic counterparts to the 
examples here, where foundational differences change the computational feasibility of 
prediction (see Pour-El and Richards 1989; Blum et al. 1998).5 
 

6. Robustness analysis. A systematic study of the extent to which real physical systems are 
robust to foundational differences would help determine the significance of these results. 
It would also be illustrative to study more radical alternatives to ZFC + LC, such as ZF + 
AD (Axiom of Determinacy), NF (New Foundations), Kripke–Platek set theory, and 
perhaps systems of intuitionistic analysis (Bishop and Bridges 1985). 
 

These directions suggest that the dependence of determinism on set-theoretic background is a 
rich phenomenon for further investigation, not confined to the constructions presented here. 

8. Conclusion: Implications and Interpretations 

Physicists and philosophers of physics commonly assume that disagreements in the foundations 
of mathematics—such as whether to accept large cardinals or V = L—have no bearing on 
physical inquiry. I have argued otherwise. 

The examples surveyed demonstrate that the Axiom of Constructibility (V = L) and large 
cardinal axioms (LC) strong enough to prove Projective Determinacy can diverge on all the key 
aspects of determinism. What should we make of this phenomenon? 

One reaction is that, despite widespread opinion to the contrary, Quine (1951, 1990) was right, 
and the search for new axioms to settle undecidables is not different in kind from the search for 
fundamental physical laws. Quine writes: “sentences such as the continuum hypothesis...which 
are independent of [standard] axioms, can...be submitted to the considerations of simplicity, 
economy, and naturalness that contribute to the molding of scientific theories generally. Such 

5 Thanks to Gabriel Goldberg for suggesting this line of inquiry. 
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considerations support... [the] Axiom of Constructibility, ‘V = L’” (Quine 1990, p. 95). This 
position raises familiar puzzles. Set theorists are not responsive to experiment even to the extent 
that the most theoretical physicists are (Maddy 1997, p. 155). But maybe they should be. 

My own view (following Clarke-Doane 2022, 2024, 2025) is that there is no fact of the matter as 
to which of V = L or LC is really right. Each is a legitimate arena in which to carry out 
mathematical reasoning—broadly like Euclidean and non-Euclidean geometries. The heady 
difference is that all the geometries live in a single set theory. But a given metatheory takes itself 
to be maximal. This raises unresolved questions about how to formulate the “monism–pluralism” 
debate (Clarke-Doane 2025, Sec. 1), and whether it is even factual (cf. Carnap’s Principle of 
Tolerance). However, if one is a set-theoretic pluralist, then, by the arguments above, one must 
be a pluralist about core physical concepts too. (“Concepts” rather than “concept” because if 
determinism is relative to set-theoretic foundations, then so too presumably is physical necessity, 
prediction, explanation, causation and more.)  The same physical theory can be deterministic in 
one universe and non-deterministic in another. More precisely, all the defining aspects of the 
determinism of a theory may vary with speculative extensions of standard mathematics. The 
question of whether a theory is deterministic along a given dimension is, in this case, either 
misconceived or practical—whether to assume V = L or LC for a physical purpose at hand. 

(Note that the results of this article also suggest a new perspective on mathematical explanation 
in science (Batterman 2010; Baker 2005). If set-theoretic metatheory can affect physical 
predictions, the boundary between mathematical and physical explanation is blurred in ways that, 
to my knowledge, have not been investigated.) 

It might be objected that the above constructions are too artificial to matter for “real” physics. 
But many physical systems do involve coefficients or boundary conditions defined through 
limiting processes or optimization procedures that could produce sets high in the projective 
hierarchy. For instance, solutions to inverse problems in geophysics (Tarantola 2005) or optimal 
control boundaries in plasma physics (Freidberg 2014) often involve constructions that climb the 
definability hierarchy. Whether such systems actually reach the complexity needed for 
foundational sensitivity is open.  More importantly, the objection misses the point.  I have argued 
that the concept of determinism is entangled with speculative set theory.  The method of 
conceptual analysis does not require naturally occurring examples - just as Gettier cases need not 
be realistic to reveal facts about knowledge, or Davidson’s “swampman” (Davidson 1987, 
443–4) cases need not be even physically possible to reveal facts about our memories.  A great 
deal of excellent work has examined the concept of determinism using toy models.  But this 
work has so far ignored the role played by the ambient metatheory, and this turns out to matter. 

It must be emphasized that the point is not just that we need to supplement the standard axioms 
in order to decide some questions of determinism (as with, say, ZFC + Con(ZFC)). That is an 
easy application of Gödel’s theorems, assuming that those axioms are consistent (and recursively 
axiomatizable). V = L and LCs are seriously entertained extensions of standard mathematics. We 
have to take a stand on them like the stand that pioneers of set theory took with respect to the 
Axiom of Foundation or the Axiom of Choice. The question of which of V = L or LCs is 
true—or whether it even makes sense to say that one of them is true—is not a question that 
admits of proof or refutation (short, perhaps, of a proof that LCs are inconsistent). The fact that 
determinism varies depending on serious axiom candidates (as opposed to varying with the likes 
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of ZFC + ¬Con(ZFC)) reveals that our understanding of core physical concepts is 
contested—and maybe indeterminate—in the way that our concept of set has long been argued to 
be (Skolem 1922; Putnam 1980; Field 2008). 

Jensen writes: 

Most proponents of V = L and similar axioms support their belief with a mild 
version of Ockham’s razor. L is adequate for all of mathematics; it gives clear 
answers to deep questions; it leads to interesting mathematics. Why should one 
assume more? … I do not understand … why a belief in the objective existence of 
sets obligates one to seek ever stronger existence postulates. Why isn’t Platonism 
compatible with the mild form of Ockham’s razor? … I doubt that one could, with 
the sort of evidence I have, convert the mathematical world to one or the other point 
of view. Deeply rooted differences in mathematical taste are too strong and would 
persist (Jensen 1995, pp. 400–401).6 

Quantum-gravity theorists sometimes remark that we may need “new math” to formulate a final 
theory. I have argued that this “new math” may go much deeper than anticipated—not just new 
tools within a familiar framework, but new foundational frameworks. Future progress in physics 
may therefore depend on novel interactions between physics and the foundations of mathematics. 

Appendix A: The Projective Hierarchy and Definability 

A.1. Basic definitions 

For sets of natural numbers, the arithmetical hierarchy is defined by alternating quantifiers 
over a decidable relation. Σ⁰₁ sets are those definable by an existential quantifier over a decidable 
predicate; Π⁰₁ sets are their complements; Δ⁰₁ sets are both Σ⁰₁ and Π⁰₁. Higher levels are defined 
inductively: Σ⁰�₊₁ formulas start with an existential quantifier over a Π⁰� formula, and Π⁰�₊₁ 
are their complements. 

For sets of reals (identified with functions from ℕ to ℕ), the analytical hierarchy or projective 
hierarchy is defined similarly, but with quantifiers over sets of natural numbers. Σ¹₁ sets 
(analytic) are projections of Borel sets. Π¹₁ sets are their complements. Δ¹₁ sets are both Σ¹₁ and 
Π¹₁ (the Borel sets). Higher levels are obtained by alternating existential and universal 
second-order quantifiers. 

The lightface hierarchy allows no real parameters in the definition; the boldface hierarchy 
allows parameters. 

A.2. Key properties 

● Δ¹₁ = Borel sets. 
● Σ¹� sets are projections of Π¹�₋₁ sets. 
● Each inclusion is proper: Σ¹� is strictly contained in Σ¹�₊₁. 

6 Jensen adds: "The author confesses to being emotionally a[n advocate of V=L]" (1995, p. 401, n. 17). See Woodin 
2010 for a different perspective on V=L, and Koellner 2008 for a critical discussion of'pluralism in set theory.  
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● Δ¹₂ sets are those both Σ¹₂ and Π¹₂. 

A.3. Projective Determinacy 

Projective Determinacy (PD) is the statement that for every projective set A of reals, the 
associated perfect-information infinite game is determined (one player has a winning strategy). 

Appendix B: Absoluteness Facts Used 

Let us fix a real parameter r (if any) shared by the backgrounds under comparison. 

 
(i) Shoenfield absoluteness (lightface/boldface Δ¹₂): For any Δ¹₂(r) predicate θ(x,r) with x, r ∈ 
ℝ (or x ∈ [0,1]ᵏ), membership θ(x,r) is absolute between suitable transitive ZFC models 
containing r. Consequently, if C ≔ {x : θ(x,r)} is Δ¹₂(r), then C is the same set across those 
backgrounds, although its regularity (measurability, Baire) may differ. This is the hinge in §§5–6. 

(ii) Regularity divide: In L there is a lightface Δ¹₂ well‑order ≺ of ℝ; the associated set W ≔ 
{(x,y) ∈ [0,1]² : x ≺ y} witnesses Δ¹₂ non‑measurability via the Sierpiński–Fubini argument 
(horizontal sections countable; vertical co‑countable). Under LC, all projective sets (hence Δ¹₂) 
are Lebesgue measurable and have the Baire property. 

(iii) Higher complexity toggling. At Σ¹₃ one can arrange background‑sensitive truth of a fixed 
arithmetical index n₀. In Section 5.3 we encode this into smooth initial data to obtain 
background‑sensitive solution identity with uniqueness preserved.  
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