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Abstract 

A general class of presupposition arguments holds that the background knowledge 
and theory required to design, develop, and interpret a machine learning (ML) 
system imply a strong upper limit to ML’s impact on science. I consider two 
proposals for how to assess the scientific impact of ML predictions, and I argue that 
while these accounts prioritize conceptual change, the presuppositions they take to 
be disqualifying for strong novelty are too restrictive. I characterize a general form 
of their arguments I call the Concept-free Design Argument: that strong novelty is 
curtailed by utilizing prior conceptualizations of target phenomena in model design. 
However, I argue that if ML design choices (such as ground-truth labels for 
supervised ML and inductive biases) are based on prior conceptualizations of 
phenomena, it need not impede conceptual change. Furthermore, while their 
accounts focus narrowly on conceptual change, a variety of learning outcomes also 
contribute to strong scientific change. Thus, I present a variety of types of strong 
novelty from philosophy of creativity, epistemology, and philosophy of science that 
paint a more varied picture of how ML advances science. One of these is a form of 
local theory-independent learning from data that signals an aim to substantially 
revise existing theory, but it is not easily undermined by prior assumptions about 
target phenomena. Furthermore, generating surprise, reducing utility blindness, and 
eliminating deep ignorance also indicate high impact to scientific knowledge or 
research direction. I illustrate these types of strong novelty with several cases of 
scientific discovery with algorithms. My taxonomy clarifies several desiderata for 
machine-based exploration and should inform choices in designing for scientific 
change. 
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1. Introduction 

A general class of presupposition arguments holds that the background knowledge and theory 

required to design, develop, and interpret a machine learning (ML) system imply a strong upper 

limit to ML’s impact on science. For instance, some philosophers argue that existing theoretical 

frameworks impose hard constraints on the possibility of ML generating strong change to 

biological knowledge (Ratti 2020) or that prior paradigm commitments imply humans still play 
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the “leading role” in guiding conceptual revision in psychiatry (Genin et al. 2024). Others worry 

that a “theory-free” ideal perpetuates a false conception of scientific objectivity and the view that 

ML will profoundly change scientific knowledge by minimizing or eliminating theory (Andrews 

2024). Furthermore, some suggest ML’s potential to enable scientific progress might be analyzed 

by the idea of “use novelty,” which is highly sensitive to what prior theory was used for model 

definition and training (Boge 2022). Yet, as these authors demonstrate, a plethora of prior 

assumptions regarding phenomena inform the design of an ML system—and so the prospects of 

ML generating strong novelty seem to have been lost.  

However, as I will argue, these accounts tend to overstate the presuppositions that are 

disqualifying for strong novelty. Also, they each focus narrowly on one or two types of high 

impact to scientific knowledge (e.g. conceptual change), neglecting the variety of outcomes that 

are significant for scientific advancement. Often, they also conflate the goals of automating 

science with advancing science: they focus primarily on the novelty generated by an ML system 

rather than by a human-machine collective.1 Finally, they tend to fault presuppositions for a gap 

between some preferred concept of strong novelty and the limitations of ML. But this neglects 

other contributing factors such as theory’s openness to revision or if the concept of novelty 

matches the level of generality of an ML problem (e.g., does ML function as an appraiser when 

strong novelty means deciding between research paradigms?). 

This paper will engage with several of the shortcomings of presupposition-based 

accounts, aiming to reorient the discourse regarding novelty and ML towards a more pluralistic, 

 
1 Clark and Khosrowi (2022) argue convincingly that AI entities deserve consideration as 
members of a discovering collective and suggest that some contextualized form of novelty or 
originality might be used to analyze their contribution. 
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prudently permissive perspective. I present a variety of types of strong novelty that paint a more 

varied picture of how ML advances science. One of these is a form of local theory-independent 

learning from data that signals an aim to substantially revise existing theory but is not easily 

undermined by prior assumptions about target phenomena (Section 3.5). Like presupposition-

based accounts, I focus on the novelty of ML outcomes rather than the novelty of ML processes 

(such as creative processes; Halina 2021). Unlike existing accounts, I identify types of strong 

epistemic impact that might be applied to any learning system, whether human, machine, or 

human-machine (revealing co-learning outcomes). This approach is appropriate for designing 

new research projects with ML: in learning scenarios, some form of local epistemic change is 

necessary for wider historical impact. Indeed, an outcome that is “psychologically” novel with 

respect to some learning system is necessary to generate a change that has never occurred in 

history before (“historical novelty”).2 Therefore, system learning outcomes suggest relevant 

desiderata when designing for scientific change. Moreover, I present cases that show how these 

outcomes culminate in historical novelty for science. 

The paper will proceed as follows. I first consider two existing proposals for how to 

assess the scientific impact of ML predictions, and I argue that while these accounts prioritize 

conceptual change, the presuppositions they take to be disqualifying for strong novelty are too 

restrictive. Specifically, I argue that a general form of their arguments I call the Concept-free 

Design Argument relies on too narrow a concept of strong novelty and too broad an account of 

the presuppositions that limit it (i.e. provisional assumptions and theoretically non-salient 

aspects, Section 2). I then introduce my taxonomy, drawing on literature from the philosophy of 

 
2 Boden (2004, 2009) makes this point for creative outcomes: historically creative ideas (that 
have never occurred in history before) are special cases of psychologically creative ideas (that 
are new to the person who generates them). 
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creativity, epistemology, and the philosophy of science (Section 3). I begin with types of 

unexpectedness that signal deep, local scientific impact (surprise, blindness reduction, deep 

ignorance elimination). I then revisit the significance of conceptual change—a wide form of 

impact—and I argue that a variety of ML outputs might stimulate conceptual change, while deep 

learning (DL) might directly generate novel conceptualizations. Finally, I argue that the degree 

of independence of local theory that demarks or explains phenomena helpfully discriminates 

strong from weak learning outcomes. I end by considering the significance of my taxonomy in 

helping to design new research projects and agendas, as well as the role it might play in dialectic 

with process-centered accounts (Section 4).  

2. Existing philosophical accounts of strongly novel ML outcomes 

Philosophers often conduct case studies that focus on the role of theory in science; thus, 

their accounts of ML’s impact tend to be narrow and limited to a particular domain. Nonetheless, 

here I consider general features of two accounts that distinguish strong and weak types of 

novelty according to certain types of presuppositions. I first introduce their projects along with 

the view that strong novelty is conceptual change (Section 2.1), and then I identify and challenge 

a general form of their arguments I call the Concept-free Design Argument: that strong novelty is 

curtailed by utilizing prior conceptualizations of target phenomena in model design (2.2–2.4). 

Finally, I consider what other intuitions these accounts capture that should be retained (2.5). 

2.1. Conceptual Change 

Ratti (2020) considers how ML models might impact theory in the domains of molecular 

biology and genomics. He identifies three ordinal kinds of novelty: the weakest kind occurs if an 

ML model indicates that a new biological model might be added to a family of models, allowing 
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existing theory to be explored in a new direction (“N1,” pp. 88–89). A stronger, revisionary, kind 

of novelty would occur if an ML model represented patterns in data that suggested a 

modification were needed to a family of biological models, such as a mechanism (“N2”). He 

characterizes the strongest kind of novelty as a change to the background theory that informs an 

investigation, which he understands as conceptualizations of phenomena (“N3”). He concludes 

that it is not possible for ML to generate N3 novelty: existing biological concepts must be used 

to label examples for training the model (supervised ML) or to interpret novel classes 

(unsupervised ML). Meanwhile, N2 is only possible in principle but not in practice since 

researchers rely on existing biological theory to evaluate the reliability of any unexpected 

algorithmic outputs. Thus, he argues ML only generates N1 novelty in biology (pp. 91–92).3 

Boge (2022) focuses on the relationship between discoveries made with DL algorithms 

and scientific understanding. He argues that since DL models are content instrumental (their 

formal elements need not be assigned any meaning for them to have predictive power) and 

opaque with respect to what complex, abstract features of the data they utilize, understanding 

mechanisms that govern a target phenomenon is possible only under certain conditions. 

Particularly, it requires a prior conceptualization of input data and output predictions, as well as 

 
3 Ratti (2020) argues that since the structure of theory varies in each scientific discipline, 
articulating types of novelty must be done on a domain-specific basis (2020, p. 86). Thus, his 
conclusion applies to molecular biology and genomics. Nonetheless, he expects that it might 
extend to other disciplines that involve a mechanistic background interpreted in a qualitative way 
(p. 95). However, it is unclear why qualitative theoretical structure might curtail strong novelty, 
except perhaps as fully automated conceptual change. Moreover, I challenge the programmatic 
nature of his claim—the idea that domain-specific theory should act as a normative constraint for 
investigating novelty and ML (p. 95). Indeed, philosophers have offered domain-general 
accounts of exploratory activities (e.g. Elliott 2007), and most ML algorithms and explainable AI 
techniques are amenable to this level of analysis as they are designed to be domain-general (e.g. 
Zednik & Boelsen, 2022). 
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background knowledge for connecting an interpretation of what the algorithm has learned to the 

target phenomenon (p. 55). He thus concludes that DL models might play a role in stimulating 

radical conceptual shifts, but in the most exploratory contexts where there is little background 

theory to guide model interpretation, DL is unlikely to generate the scientific understanding 

needed for conceptual change unless the “right set of geniuses, with the necessary ‘exotic’ ideas, 

are around” to make the connection (p. 72).  

Both Ratti and Boge suggest that an outcome that induces the need to change the 

background theory used to guide an exploratory activity is a very strong kind of scientific 

impact. For Boge, background theory refers to the general structure of mechanisms or state 

spaces being explored in a concrete setting; he follows Franklin’s (2005) distinction between 

background theory and local theory. Ratti defines “N3” novelty in terms of change to the 

theoretical “store,” meaning “theory when it is used to conceptualize phenomena” (p. 89). 

Although these are slightly different concepts,4 in this section, I will focus on conceptual change, 

which aligns with both of their accounts and captures the idea that background theory provides 

the structure, rather than the particular “ingredients” for a mechanism or state space (Boge, p. 

69). I agree that conceptual change regarding phenomena is an important dimension of strong 

novelty. However, I disagree that utilizing existing concepts in model design generally hinders it. 

 
4 Ratti’s (2020) characterization of the biological “store” stems from Douglas and Magnus’ 
(2013) concept of theoretical framework, but he distinguishes between ways of using a biological 
theory in contrast to understanding theory and framework as separate conceptual entities (p. 88). 
Notably, Douglas and Magnus’ theoretical framework includes a variety of concepts and 
commitments at all levels of scientific description, such as auxiliary hypotheses (p. 88). Thus, 
change to background theory might in general indicate a different idea than change to 
conceptualization of phenomena. Furthermore, Boge (2022) might mean theory at a lower level 
of description: he mentions that quantum field theory is the background theory of particle 
physics (p. 69). Nonetheless, I focus on conceptual change as it is relevant to a general form of 
their argument that I consider in the remainder of Section 2. 
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Furthermore, I take a broader view of the significance of conceptual change, and I propose a 

variety of ways that ML can contribute to it (see Section 3.4).  

2.2. The Concept-free Design Argument 

Not only do Boge and Ratti share a similar definition of strong novelty, but they also take 

a similar view of what design choices curtail it. Generalizing their accounts, I call the argument 

that ML does not generate strong novelty if prior conceptualizations of target phenomena are 

used to design a model the Concept-free Design Argument:  

 

Pr1  Strong novelty is change to conceptualizations of phenomena. 
 
Pr2  If prior conceptualizations of phenomena are used to design a model, the model 
does not stimulate/generate significant conceptual change. 
 
®  ML design choices that operationalize prior conceptualizations of phenomena 
curtail strong novelty. 

 

I have already explicated Boge and Ratti’s views of strong novelty (Pr1): Ratti sees strong 

novelty as change to the theoretical framework used to conceptualize biological phenomena 

(“N3”), Boge sees strong novelty as change to background theory, which includes conceptual 

change. Their reasons supporting the second premise (Pr2) differ: Ratti emphasizes the use of 

ML in biology is part of a theory-informed practice that involves an end-to-end commitment to a 

certain explanatory model from data acquisition to post-hoc interpretation of model outputs (p. 

89). Boge, on the other hand, seems concerned with how much empirical progress might be 

possible if prior conceptualizations help to generate ML predictions: he suggests a form of “use 

novelty” might be applied to ML outputs to signal previously unobserved phenomena (p. 47, see 

Section 2.4 below).  
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However, I argue that the Concept-free Design Argument faces two major limitations: (1) 

it overfits to a single type of strong novelty, while exploratory activities generate a variety of 

strong impacts to scientific knowledge and research direction, and (2) it assumes that prior 

conceptualizations are theoretically “interesting” in that they suitably demark or explain 

phenomena.5 However, I will show next that implementing prior conceptualizations of 

phenomena via two ML design choices (i.e. ground-truth labels for supervised ML, inductive 

biases) need not curtail strong novelty, even when understood in the sense of Pr1. The remainder 

of the paper will address both limitations, serving to reorient the discourse regarding novelty and 

ML: I introduce a wide variety of concepts of strong novelty (Section 3), I highlight cases and 

uses of supervised ML that show its high impact on scientific knowledge and research (see 

Section 3.2-3.4), and I introduce a concept of theory-independence that better nuances how 

design choices might curtail strong novelty (Section 3.5). 

2.3. What’s in a label? 

Both Boge (2022) and Ratti (2020) take the view that supervised ML does not produce strongly 

novel scientific outcomes since, in the case of classification, training a model involves a ground-

truth label that represents a preconception of how to identify a known phenomenon. Ratti 

emphasizes the use of supervised ML in biology is “pervaded by non-novelty”; it simply 

automates the identification of biological entities that are well characterized and formally defined 

(p. 90). But Boge also claims that if token predictions merely correspond to “the recognition of 

the presence of a type of phenomenon of interest” they are generally weaker than predictions of 

novel types (p. 48). Thus, they claim that unsupervised ML affords the possibility of generating 

 
5 Thanks to an anonymous reviewer for the helpful suggestion to frame my response to Ratti and 
Boge by identifying a general form of their argument along these lines. 
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stronger novelty since it groups unlabeled data points into clusters that can be used to define 

novel types of phenomena.  

The idea that utilizing a class identifier undercuts strong novelty risks overly constraining 

exploratory science. Even when strong novelty is defined as conceptual change (in the sense of 

Pr1), identifying a phenomenon does not imply it is adequately understood or explained. For 

example, the theoretically salient aspect of predicting the locations of earthquake aftershocks is 

how to conceptualize the nature of the relationship between mainshocks and aftershocks, not 

whether a particular terrestrial location is classified as mainshock, aftershock, or no shock (I also 

discuss how this case demonstrates blindness reduction, another form of strong novelty, in 

Section 3.2). 

Moreover, identifying some known aspects of a phenomenon does not inhibit significant 

conceptual change. This assumption relies on too sharp a distinction between identification and 

refinement of target phenomena, but exploratory work might iterate between these. For example, 

Yao (2023) argues that some (token) astronomical events act as “Rosetta Stone” clues for 

unlocking the keys to articulating general astrophysical types (as do “traces” in the historical 

sciences, p. 1389). Boge does recognize that ML might be supervised with less theory: if tokens 

are merely labeled as “background” or “anomaly” during training, the latter can be analyzed for 

traces of new types of particles (p. 67). But the labels used to train a supervised ML model might 

correspond to varying degrees of scientific understanding and play a more or less established 

role in a given theory.6  

 
6 Granted, if labels are manually annotated by humans, the resources required seem to imply 
some degree of conceptual stability. Nonetheless, labels are not always generated in this way: 
they might merely represent a known outcome corresponding to an input sample. 



Author version— forthcoming in Synthese 

 10 

In sum, characterizing predictions as strong or weak according to whether they are of 

token or type does not generally align with scientific impact, even for novel conceptualizations 

of phenomena. It is also too coarse for describing the degrees of scientific understanding that 

might be used in developing an ML model. Implementing prior conceptualizations of phenomena 

via ground-truth labels need not undermine strong novelty.  

 

2.4. The Inductive Bias Worry 

I have framed the Concept-free Design Argument in terms of the model design choices that 

might limit conceptual/theoretical progress, but it is closely related to the Inductive Bias Worry: 

Inductive Bias Worry: If prior conceptualizations of target phenomena are used to choose 

inductive biases for model training, ML predictions might not enable significant empirical 

progress, and hence little conceptual change.  

Boge (2022) argues the use of deep neural network models might produce a large gap between 

empirical discovery and scientific understanding. But since he also suggests that some strong 

predictions are “use novel” (Worrall, 1985) relative to model design choices, he seems to worry 

that choosing inductive biases (introduced below) based on prior conceptualizations of target 

phenomena might impede empirical scientific progress with ML. Indeed, he suggests that use 

novelty might be significant after describing two roles for novel predictions: to judge how 

empirically successful a theory is relative to a competitor (Lakatos, 1970) and to assess the 

reliability of a discovery method (Maher, 1988). 

Philosophers originally proposed the concept of use novelty to capture the idea that some 

evidence plays a special role in supporting a theory: if a theory entails a certain empirical fact 

that the theorist did not use to construct the theory, the fact seems to act as a reason for accepting 
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the theory (see Barnes 2022). Gardner (1982, p. 3) calls this heuristic idea “use novelty,” and 

Worrall (1978, 1985) also develops it. The idea improves upon a purely temporal concept of how 

novelty contributes to theory confirmation, where only historically novel consequences of a 

theory are epistemically privileged. The heuristic version captures that if a theory offers new 

explanations of known facts that it was not specifically designed to accommodate, these use 

novel facts might also offer strong support for the theory. Nonetheless, the heuristic conception 

still faces the historical difficulty of analyzing what facts a theorist used to construct a theory, 

which are not usually comprehensively described in the published record. Thus, Gardner (1982) 

argues for a knowledge-based version that mitigates this difficulty: it only requires analyzing 

what facts a theorist knew when constructing a theory, such that any unknown consequences 

might contribute to theory acceptance (i.e. if a theorist did not know a fact, presumably, they did 

not use it for theory construction). 

Boge’s remarks on DL discovery best align with the knowledge-based concept of use 

novelty, which is both temporal and heuristic: he argues that a strong prediction is finding a 

previously unobserved phenomenon and use novelty might signal “that information about that 

phenomenon was not included in training and model-definition” (p. 47). While it is somewhat 

difficult to analyze what facts a DL algorithm “used” to generate a prediction, it is somewhat 

easier to judge what information it “knew”; for instance, inductive biases encode prior 

information about the preferred types of solutions to direct the learning algorithm. They include 

design choices such as the initial values for the weights of a neural network or the model 

architecture that best suits a prediction task. These choices might be based on presuppositions 

about target system dynamics or on general features of the data.  
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However, in ML (particularly DL) it is largely an empirical question how inductive 

biases contribute to successful (i.e. accurate or explainable) predictions. Researchers study the 

impact of various inductive biases on model generalization, explainability, and problem 

tractability. Some approaches impose strong, explicit theoretical constraints on the learning 

algorithm (see Kashinath et al. 2021), while others rely on implicit background knowledge (see 

Thuemmel et al. 2024). Indeed, it seems to be an emerging scientific question which approach is 

best for discovery, perhaps with no general answer (Iten et al. 2020, Cranmer et al. 2020, 

McCabe et al. 2023). Thus, it is far from clear that the Inductive Bias Worry is warranted.  

Furthermore, recall that known features of phenomena may not include the theoretically 

salient aspects (as I argued in Section 2.3 above), and they also do not imply an adequate 

empirical characterization—utilizing prior concepts does not imply there is little left to learn. It 

is also somewhat curious that theoretical choices involved in generating data should get a “free 

ride” in characterizing use novelty: Boge’s examples of use novelty include the discovery of 

novel thermoelectric materials from the texts of prior scientific papers, where data is highly 

mediated by theory (p. 47). Granted, as he notes, use novelty might also play a role in 

establishing the reliability of a discovery method (Maher 1988). But assessing reliability in this 

way does not gauge the scientific impact of a prediction. 

 Instead, more nuanced distinctions are needed regarding the type of theoretical 

presuppositions that might impede empirical progress, limiting conceptual change (Pr1). For 

example, I argue that independence of “local” theory that demarks or explains phenomena 

affords strong novelty with ML (see Section 3.5). 
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2.5. Beyond conceptual change 

In addition to identifying strong novelty as conceptual change, Boge (2022) and Ratti’s 

(2020) accounts capture the more general intuition that major revisions to theory or existing 

scientific knowledge are strongly novel. Also, Boge’s distinction between discovery and 

understanding suggests that a strong outcome of scientific exploration is one that makes a large 

impact on the direction of subsequent research, especially research that targets the understanding 

that might be lacking. Finally, their accounts suggest that predictions that are free of certain 

kinds of theoretical bias count as novel in a special way. (However, using prior 

conceptualizations of phenomena to design labels or inductive biases need not curtail strong 

novelty.) Next, I use these general intuitions to suggest several new dimensions of strong 

novelty. 

3. Dimensions of strong novelty for scientific exploration 

In this section, I introduce concepts of strong novelty from various philosophical domains that 

capture the intuitions discussed above that a strongly novel outcome of scientific exploration is 

one that has great impact on scientific knowledge or research direction and is achieved without a 

certain kind of theoretical bias. I argue that these concepts make precise what “strong” novelty is 

for scientific exploration with ML. I do not take any of these individual dimensions to be 

necessary for strong novelty. Indeed, the first three concepts are forms of “unexpectedness” 

identified by philosophers of creativity and epistemologists that are largely incompatible, such 

that if an outcome generates one to a significant degree, it does not generate the others.7 

 
7 I leave open the possibility that these types may occur as a series of outcomes in an exploratory 
project, and I do not attempt to identify conditions for discretizing outcomes. 
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Meanwhile, the last two concepts (conceptual change, local theory-independent learning from 

data) are independent: they can co-occur with the others but are not fully captured by them. My 

aim is to provide a useful taxonomy for characterizing how ML (and other computational 

techniques) can contribute to strongly novel scientific outcomes, but I expect and welcome 

amendments to it based on further study and ML’s expanding set of uses in science. 

While the philosophy of creativity is relevant in several ways to the analysis of ML-

enabled science (creativity can be ascribed to a person, process, or product), I focus on the 

analysis of outcomes. Nonetheless, creative process and creative outcome are closely linked: 

most philosophers agree that some sort of process condition is required to identify products that 

are creative, but they disagree on what it should be. Some argue that a creative outcome requires 

an agential process (Paul & Stokes 2018). However, in keeping with my focus on strong impact 

and collective discovery, I will consider accounts that make a nominal commitment to individual 

process. Particularly, Simonton (2012) argues that Campbell’s (1960) theory of creative process 

explains why creative outcomes differ from obvious solutions: their utility is initially unknown 

and must be tested, which requires some process of “blind” variation of ideas and selective 

retention. Notably, this suggests that a wide variety of algorithms might contribute to creative 

outcomes. Furthermore, this prior blindness suggests the first two ways unexpected outcomes 

might be generated—by surprise, and by blindness reduction.  

3.1. Surprise 

In the analysis of creative outcome, surprise indicates a change to the content of belief 

regarding an idea’s utility (Tsao et al. 2019). For example, surprise occurs if an idea that was 

first thought to be useless turns out to be useful (Tsao et al. call this “implausible utility”). By 

Simonton (2012, 2022) and Boden’s (2004) criteria, a novel outcome that is useful and surprising 
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is also creative. Alternatively, surprise also occurs when belief that an idea is useful is 

disconfirmed; for instance, when an anomaly challenges existing theory and prompts a field to 

enter a highly exploratory phase (Simonton calls this “problem finding” and connects it to 

Kuhn’s revolutionary science; 2016). In either case, highly surprising outcomes significantly 

change scientific knowledge or the direction of research. 

Surprise varies in degrees according to the magnitude of change in expected utility.8 I 

take scientific utility to be context dependent: it includes true or approximately true claims, as 

well as scientific concepts that do not have truth values but might be judged by other normative 

means, such as their stability and generative power (see end of this section and Section 3.4). 

Also, although this concept of surprise comes from Simonton’s psychological analysis of 

creative outcome, I take the relevant context of evaluation to be the community of experts 

engaged in researching a scientific problem (Simonton affirms a similar distinction between 

“objective” and “subjective” estimates of creative criteria; 2012). At the same time, I do not limit 

my account to human changes in expectation; it may be relevant to consider how outcomes 

change what machine “scientists” find plausible (Guimerà et al. 2020).   

An example that illustrates that computational methods can make a very strong impact on 

scientific knowledge at even the basic level of evidence-gathering procedures, and without very 

sophisticated processes of algorithmic abstraction, is Krenn et al.’s (2017) discovery of a new 

design for a quantum optic experiment using a topological search algorithm. Their objective was 

to find high-dimensional, multipartite entangled quantum states by varying the possible elements 

 
8 In analyzing creative outcome, Simonton (2016) employs a psychological response parameter 
representing prior knowledge of an idea’s utility. He notes that it regards justification for belief 
(footnote 3, p. 196), but Tsao et al. (2019) make a useful Bayesian distinction between 
expectation and uncertainty (see also Section 3.2 on blindness reduction). 
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of an experimental apparatus (e.g. crystals, beam splitters, prisms). They used discrete 

topological search since quantum states are discrete (and are not well-suited for gradient-based 

optimization). Krenn et al. (2020) explain that when they found a ten-dimensional entangled 

state, it was unexpected because the search only allowed using two crystals that were thought to 

each generate three-dimensionally entangled photon pairs, so they expected that the maximum 

dimension of entangled states would be 3 x 3 = 9 dimensional. As they investigated the 

anomalous design further, they found that it involved an extra event where the two crystals fire 

together and the paths of the entangled photons are coherently superposed. Although they found 

the design relied on a technique that has been explored in other contexts (the Wang, Zou, and 

Mandel technique employed in quantum spectroscopy, quantum imaging, and more; 1991), it 

had not been used for high-dimensional, multipartite quantum entanglement generation before 

(Krenn et al. 2017). The idea that a very high-dimensional entangled state could be generated by 

two crystals was implausible with respect to their current knowledge of the possibility space in 

quantum optics, but it turned out to be quite useful for experimental design. Thus, their 

topological search algorithm generated surprise.9  

 

Relationship to other types of strong novelty: 

Notably, surprise may or may not occur along with conceptual change (see Section 2.1), 

while changes to concepts need not be surprising. Thus, conceptual change is independent of 

surprise. Nonetheless, as conceptual change has a broader impact than local belief revision (see 

 
9 Krenn et al. (2020) also argue that the design relies on a new concept they call “Entanglement 
by Path Identity,” and they were able to generalize this concept to other experimental setups. See 
Section 3.4 for a discussion of the role of computational techniques in generating conceptual 
change. 
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Section 3.4), surprise regarding novel concepts suggests a deep and wide impact. Still, surprise 

requires a sufficient degree of prior belief in an idea’s utility to signal a meaningful change. 

Without this, the concepts of epistemic change I propose next might instead indicate strong 

novelty: reducing utility “blindness” in a domain of widespread uncertainty or eliminating deep 

ignorance regarding a proposition that a researcher is unaware of.  

3.2. Blindness reduction 

Another form of unexpectedness that constitutes strong novelty in scientific exploration 

is what Tsao et al. (2019) call “blindness reduction.” Blindness reduction refers to a decrease in 

uncertainty regarding an expectation of how useful an idea is. In Bayesian terms, blindness 

reduction narrows the probability distribution over possible utilities. (By contrast, surprise 

changes the expected mean of the distribution). In some exploratory contexts, there is 

widespread and extreme uncertainty regarding the utility of many ideas; there, blindness 

reduction constitutes a strongly novel outcome, steering scientific research towards promising 

ideas. 

An example that illustrates the potential of blindness reduction to make a profound 

impact on research direction is the case that Duede (2023) considers of using supervised ML to 

predict the locations of earthquake aftershocks from mainshock locations (DeVries et al. 2018). 

He argues that this case exemplifies a general exploratory strategy that is not negatively 

impacted by DL opacity: it involves postulating that a functional relationship exists between a 

certain selected dependent variable of a dataset and other independent variables and then training 

a DL model to test this idea. If the model’s predictive accuracy is higher than chance it narrows 

the uncertainty that the relationship exists as postulated. The DL aftershock model achieved 

much greater accuracy than existing theoretical models (an AUC of 0.849 in contrast to 0.583, p. 



Author version— forthcoming in Synthese 

 18 

632), which gave researchers support for the idea that theory could be significantly improved.10 

This outcome showcases blindness reduction that steers research in a context of high prior 

uncertainty: leading theoretical models did not do well at explaining the data much better than 

chance, and it was unclear which (if any) geophysical properties might improve theory. 

Blindness reduction prompted subsequent exploration: researchers used the spatial distribution of 

the DL model’s aftershock predictions to identify three salient geophysical parameters that 

explain nearly all its variance in predictions. 

 

Relationship to other types of strong novelty: 

Although Tsao et al. (2019) identify surprise as the strong driver of scientific change (as with 

Kuhn’s paradigm shifts) and blindness reduction as a weaker form of learning (Kuhn’s “normal 

science,” p. 284), this dichotomy neglects that when prior uncertainty regarding one or more 

ideas is extremely high, surprise is unlikely since it requires a significant degree of belief in an 

 
10 Notably, this case is not about reducing what Sullivan (2022) calls “link uncertainty.” She 
takes the view that it is not opacity that threatens an ML model’s ability to generate scientific 
understanding of target phenomena, but rather the lack of supporting scientific and empirical 
evidence connecting the model to the target. Thus, reducing link uncertainty should improve 
understanding, and it may convert “how-possibly” questions to “how-actually” ones (if such a 
distinction is warranted; Boge 2022, Bokulich 2014). However, reducing utility blindness is 
independent of reducing link uncertainty: it is possible to alleviate the former without decreasing 
the latter or vice versa. Duede’s (2023) examples do not seem to require low link uncertainty but 
still demonstrate blindness reduction, and it is not clear that decreasing link uncertainty would 
directly contribute to this. Duede emphasizes that researchers did not make any attempt to 
interpret how the model made predictions by identifying salient features of the data. 
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idea’s utility. In that case, learning is more sensitive to blindness reduction.11 Therefore, 

although surprise and blindness reduction can co-occur in general, when blindness reduction 

signals high-impact learning, it is largely incompatible with surprise. Still, both surprise and 

blindness reduction require a state of awareness of a proposition such that it is meaningful to 

characterize a belief or uncertainty regarding it. ML might also play a prior role in generating 

this state of awareness, offering another kind of strong impact to exploratory research: 

eliminating deep ignorance. 

3.3. Deep ignorance elimination 

Being deeply ignorant means being in a state of unawareness of a true proposition. Eliminating 

deep ignorance occurs by generating awareness of a claim that is true (whether or not it also 

generates a belief in that claim’s truth value). Outcomes that eliminate deep ignorance are likely 

to constitute strong novelty for science because they present a reason to pursue research in a 

novel direction (assuming they meet some relevant criteria of reliability): either to assess a 

claim’s truth value or to attain warrant for belief in a claim’s truth value.12 Although this concept 

of epistemic change does not vary in degrees, the scientific impact still does (i.e. the “strength” 

of the novelty).  

 
11 Their Bayesian formulation of learning an idea’s utility contains separable terms for surprise 
and blindness reduction and is generally more sensitive to surprise. However, they normalize 
their term for posterior surprise to the prior uncertainty; thus, if prior uncertainty is high, learning 
is driven by blindness reduction. 
12 Granted, other epistemic and practical reasons may supersede this one. 
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I take this concept from a propositional account of ignorance (Peels 2014). I propose it is 

relevant to characterizing outcomes of rational scientific activities.13 Peels explains: “S is deeply 

ignorant that p iff (i) it is true that p, and (ii) S neither believes that p, nor disbelieves that p, nor 

suspends belief on p” (p. 485). Here, let “p” be a true claim that a certain idea is useful (taking 

again a context-specific notion of scientific utility). Then eliminating deep ignorance means 

changing unawareness of p to either belief, disbelief, or suspension of belief on p.  

Examples of how ML contributes to eliminating deep ignorance in science are prolific; 

the size and complexity of datasets used in many scientific domains mean that researchers are 

often unaware of informational patterns that the data contain and what empirical regularities they 

might provide evidence for.14 Krenn et al. (2022) argue that one way computational methods aid 

scientific understanding is to act as a “computational microscope” for viewing patterns that 

scientists would not otherwise be able to see. Khosrowi and Finn (2025) consider whether the 

pattern recognition abilities of generative AI suggest their outputs should count as novel 

synthetic evidence, playing a similar epistemic role to material evidence and expert judgment. 

 
13 But note that the analysis of ignorance concerns much broader issues: it includes concepts of 
ignorance as actively upheld false outlooks or substantive epistemic practice; see El Kassar 
(2018). 
14 Deep ignorance elimination is compatible with Ratti’s (2020) weakest sense of novelty, which 
regards enlarging the scope of existing theory (“N1,” pp. 88-89). However, eliminating deep 
ignorance concerns the exploratory aspect of gaining knowledge of a possibility space, not 
necessarily the acceptance of novel hypotheses. This is significant because it has broader 
implications. For example, Spelda and Stritecky (2021) argue that generative AI can reverse the 
problem of unconceived alternatives for scientific realism by helping to ascertain more of the 
consequences of so-far empirically equivalent theories by producing data from the “left out” 
regions of the possibility spaces of available evidence. This means acquiring useful modal 
knowledge of phenomena that might be discovered in the future, and in contrast to N1 novelty, it 
might lead to revision of theoretical commitments. Furthermore, my account differs from Ratti in 
that I do not view enlargement of existing theory as inherently weaker than conceptual change 
(see also end of Section 3.5). Thanks to an anonymous reviewer for raising this connection. 



Author version— forthcoming in Synthese 

 21 

They remark that the impact would be to “provide genuinely new knowledge to agents who lack 

the ability to make those same inferences” (p. 2). Nonetheless, an in-principal argument that 

some computational tools provide epistemic access to patterns that some agents would not 

otherwise be able to obtain is not required to show deep ignorance elimination: all that is 

required is a change from unawareness of a useful proposition to awareness of it.  

To illustrate, Ludwig and Mullainathan (2024) demonstrate the success of an approach 

for extracting scientific hypotheses that have never been considered before from ML models on a 

problem in economics. The task is to discover novel factors that have not already been identified 

in previous research that predict judicial decisions regarding pretrial detention. They build a 

supervised ML model that “fuses” decision trees and convolutional neural networks, leveraging 

both structured data and facial images of defendants, but their analysis focuses on the latter since 

it explains much of the variation in the fusion model’s predictions (pp. 775–777).15 To describe 

the novel features, they recruit non-expert annotators and present them with pairs of synthetic 

mug shots that are as similar as possible except for the difference between model’s predicted 

detention probability, which has been maximally increased by morphing the images (pp. 756–

757). The annotators identify being “well-groomed” and “heavy-faced” as correlated with the 

model’s prediction that a defendant is more likely to be released. (They confirm this by tasking a 

different group of annotators with coding real mug shots with the new features.) As with 

blindness reduction, eliminating deep ignorance provides a new direction for future research: the 

 
15 The data selected includes more than fifty thousand arrests made over three years in 
Mecklenburg County, North Carolina (Ludwig and Mullainathan 2024, pp. 767–775). 
 



Author version— forthcoming in Synthese 

 22 

authors note the novel features do not seem to be simple proxies for factors like substance abuse, 

mental health, or socioeconomic status, and so they plan to perform a causal investigation.16  

This case is also noteworthy for how the researchers isolate the contribution of the 

learning algorithm to eliminating deep ignorance (Ludwig and Mullainathan, 2024). They use 

non-expert annotators in order to bound the creativity involved in interpreting the images: they 

do not want domain expertise to add to what the algorithm has already learned (p. 759). Also, 

they analyze whether the algorithm has detected novel sources of signal by fitting a simple linear 

regression (1) of actual judicial decisions (dependent variable) to the model’s predictions 

(independent variable), and they find that it better fits the variance in judicial decisions than a 

regression (2) including all previously known visual traits (i.e. demographic and psychological, 

e.g. “attractiveness,” “competence,” etc., pp. 785–786). Meanwhile, a regression (3) that includes 

both the model’s predictions and all known visual and demographic traits does not much alter the 

coefficient representing the model’s contribution compared to (1).17 Thus, they conclude that the 

algorithm has discovered genuinely novel sources of signal since controlling for all previously 

known factors (even a variable that incorporates existing tacit knowledge; pp. 775, 784) only 

modestly diminishes the predictive power of the model. 

 

Relationship to other types of strong novelty: 

Deep ignorance elimination does not reduce to the concepts of belief revision I have 

introduced previously. Instead, these can be related to Peels’ (2014) other types of ignorance: 

 
16 This success also gives the authors confidence that their approach will be useful in a wide 
range of scientific contexts where the aim is to automatically generate hypotheses that humans 
have never considered before (Ludwig and Mullainathan, 2024). 
17 See also Table III, Ludwig and Mullainathan (2024, pp. 783–783) where (1) is column 1, (2) is 
column 5, (3) is column 7. 
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surprise might change disbelief that p to belief that p (eliminating disbelieving ignorance), and 

blindness reduction narrows uncertainty regarding p such that it might change suspension of 

belief that p to belief that p (eliminating suspending ignorance) or warrantless belief that p to 

warranted belief that p (eliminating warrantless ignorance). Furthermore, deep ignorance 

elimination is not likely to co-occur with these other concepts as a single exploratory outcome: if 

a researcher disbelieves or suspends belief that p once becoming aware of it, it seems to require 

further investigation to generate surprise or blindness reduction. Thus, the concepts of strong 

novelty I have discussed so far in this section are largely incompatible outcomes. They are useful 

for analyzing local epistemic change, but an ML outcome might also make wider impact to 

knowledge structure if it generates conceptual change. 

3.4. Conceptual change, revisited 

New concepts are generally regarded as having a strong impact on scientific knowledge and 

research direction: concepts are used to design experiments, identify phenomena, articulate 

theory that explains phenomena, and construct theories that unify other theories. In this section, I 

revisit the significance of conceptual change as a dimension of strong novelty, as it includes a 

wide variety of targets at various levels of scientific description (c.f. Section 2.1). Furthermore, I 

take the perspective that, like the other concepts of strong novelty I introduce, conceptual change 

varies in degrees and thus may not always contribute the strongest impact. Here, I will not 

attempt to defend any particular positive notion of what concepts are, but I will make use of 

Thagard’s (1990) argument that conceptual change does not amount to merely local belief 

revision (e.g. addition or removal of conceptual features). This negative perspective affirms that 

concepts are not just sums of beliefs in necessary and sufficient definitional criteria or simple 

symbolic frames that host features and prototypical exemplars (e.g. Minsky frames; 1975). I will 
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also not attempt to identify conditions for distinguishing when a new concept can be clearly 

differentiated from prior concepts. I will argue that a variety of ML outputs might generate 

conceptual change, and I will consider whether it indicates a different kind of strong novelty if 

an ML algorithm merely prompts novel human conceptualizations, or if it directly generates 

novel concepts. 

The negative perspective that concepts are not merely characterized by a set of necessary 

and sufficient definitional features suggests that it is not only unsupervised ML algorithms, 

which cluster data points into novel groupings of features, that might generate conceptual 

change. For example, if concepts are mental representations of complex structures that include 

kind relations, part-whole relations, instances, and rules of inference in which a concept figures 

such as Thagard (1990, p. 266) proposes, then a variety of ML outputs might count as candidates 

for the constitutive elements of concepts (e.g. symbolic equations, token exemplars, decision 

rules).18 This further problematizes the simple token/type account of weak and strong novelty 

(see Section 2.3). Alternatively, a view of concepts as distributed patterns of neural activation at 

least allows that various ML outputs might act as stimulants for human changes to concepts. 

Moreover, it raises the questions of (1) whether some ML algorithms such as DL also form 

conceptualizations useful for tasks, and (2) if so, whether the outcomes constitute stronger 

novelty for science. 

 
18 Although Thagard (1990) arranges various kinds of conceptual changes in a rough order of 
increasing strength, where novel instances and rules figure lower, and hierarchical 
reorganizations of structure higher (p. 268), I highlighted that novel instances play a special role 
in some scientific disciplines such as astronomy (see Section 2.3). Thus, I do not attempt to 
generalize how various kinds of conceptual change might align with scientific impact. 
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An affirmative answer to (1) is plausible: some philosophers propose that DL algorithms 

learn category representations that count as candidates for concepts.19 For example, López-Rubio 

(2021) argues that convolutional neural networks (CNNs) and generative artificial networks 

(GANs) build internal states that can be mapped to the kinds of complex visual categories 

humans use in cognitive processes (such as high-level visual stimuli, e.g. “chair” or “tree”). 

Also, Buckner (2018) proposes a mechanism of abstraction by which CNNs form category 

representations and (2020) explores whether their failures on seemingly insignificant changes to 

inputs (i.e. “adversarial examples”) might in some cases indicate they are representing patterns in 

data in an “alien” way (p. 734).  

An affirmative answer to (2) is more tenuous: DL-learned categories might represent data 

in a way that is unfamiliar to humans and thus afford the possibility of greater conceptual 

change. However, as López-Rubio (2021) explains, network dissection methods that associate 

individual neurons with a (visual) category still rely on human interpretation of objects and their 

contexts. This raises the problem that for exploratory activities that aim to develop new concepts 

based on neuron-to-world associations, there may be a large gap between DL-based discovery 

and understanding (aligning with Boge’s account, 2022). Furthermore, these methods may be 

misguided as current evidence that deep neural networks represent concepts in individual units is 

somewhat weak (Freiesleben 2024). Nonetheless, investigating how DL abstraction might be 

used for conceptual change suggests a promising line of research for understanding ML’s 

scientific impact (in contrast to negative appraisals of disruption based solely on the use of 

presuppositions). Notably, in contrast to the Concept-free Design Argument (Section 2.2), it is 

 
19 These accounts do not defend a particular constitutive account of concepts that would suggest 
objective criteria for the suitability of candidates. 
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far from clear that conceptual change need be diminished by design choices that utilize existing 

human concepts; instead, approaches that enforce the learning of human concepts might improve 

model interpretability (see Freiesleben 2024), thereby aiding conceptual change. 

 

Relationship to other types of strong novelty: 

Conceptual change is an important dimension of strong novelty that does not reduce to 

other concepts of epistemic change (Sections 3.1–3.3). Thagard (1990) identifies ten roles that 

concepts play in human reasoning and language and argues that local belief revisions are 

inadequate to explain most of them; rather, they require accounting for conceptual structure (pp. 

258–259). Meanwhile, he notes the simple belief-revision approach never addresses the origin of 

concepts, but a structural approach suggests concepts can be generated by example and by 

combining previous concepts (pp. 259–260). A neural perspective also problematizes the simple 

belief revision account—López-Rubio (2021) shows how GANs learn constraints along with 

similarities based on instances: inserting an object into a visual scene also modifies the area 

around it (p. 10023). 

While I have argued that conceptual change need not be impeded by prior 

conceptualizations of target phenomena (Section 2), intuitively, how and what prior information 

is utilized to generate predictions seems relevant to assessing their novelty and impact. As it is 

still unclear what kind of theoretical bias might reduce the potential for scientific change, I next 

propose a final concept of strong novelty that directly addresses this. 

3.5. Local theory-independent learning from data 

I argue that outcomes that are learned from data with some independence of local theory 

regarding a target phenomenon are good candidates for strong novelty. Local theory means 
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theory that demarks or explains a phenomenon that is a target of investigation. Independence 

selects outcomes that are not strongly determined by local theory. Learning in this “bottom-up” 

way constitutes a form of strong novelty for science because it signals an aim to find a new 

research direction, often by relying on a different set of cognitive tools for analyzing complex 

systems. Thus, although this concept places a minimal process condition on an outcome, such 

that it is not assessed by impact only but by whether the outcome is arrived at in the “right sort of 

way,” it helpfully signals scientific contexts in which existing theory is open for substantial 

enlargement or revision. 

I derive this concept of strong novelty from the philosophical literature on exploratory 

experimentation. In general, exploratory experiments are activities that do not aim to test 

particular hypotheses and that involve extensive variation of parameters (Elliott 2007). Franklin 

(2005) describes a type of mapping activity where theory plays a background role in guiding 

researchers to relevant properties, but it does not function “locally” in the sense of describing 

causal hypotheses regarding map constituents (p. 893). She highlights a case that demonstrates 

the strong impact of maps on subsequent research: a DNA microarray allows biologists to collect 

“wide” data regarding how the levels of all kinds of mRNA vary over the cell cycle, and it 

enabled the Spellman group (1998) to eventually formulate hypotheses that identified and 

explained various similarities in the mapped gene behaviors. 

While exploratory science encompasses a wide range of activities, I add the data-driven 

learning condition to this concept of strong novelty to select activities that employ methods 

designed to characterize data in a novel way (e.g. unsupervised ML, supervised representation 

learning). For example, Chattopadhyay et al. (2019) aim to generate a novel galaxy classification 

scheme directly from observational data (i.e. data that has not been reduced in the usual way; for 
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example, to typical ratios of spectral line emissions known to be useful for distinguishing 

phenomena). They employ linear independent component analysis (ICA) on a set of 49 

observable attributes covering a range of physical characteristics, followed by unsupervised K-

means clustering to generate ten novel galaxy classes. These steps demonstrate local theory-

independent learning from data: the ICA representation learning technique omits theoretical 

assumptions about which components are best for representing the most robust regularities, and 

K-means clustering proceeds without prior assumptions about how to demark particular classes 

in the ICA space. Nonetheless, inferences involving linear ICA still rely on the assumption that 

relevant signals can be identified by linear combinations of observable features, which might be 

theoretically motivated or a simplifying assumption. If the former, it highlights that this concept 

of strong novelty varies in degrees. If the latter, it does not diminish the potential impact to 

subsequent research. 

In contrast, Parker et al.’s (2024) foundation model for galaxy objects might achieve a 

greater degree of independence of local theory. They align image and spectral data in a novel 

representation space with contrastive (self-supervised) learning. As contrastive learning 

strategies do not assume linear independence, these would involve fewer assumptions about the 

data-generating process (which might be based on local theory). I leave a detailed consideration 

of these cases and the kind(s) of novelty introduced by foundation models to future work, but I 

emphasize here that local theory-independent learning from data is characterized by an aim to 

suspend existing theory regarding target phenomena to find a novel direction for subsequent 

research that attempts to demark or explain them.  

 

Relationship to other types of novelty 
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Local theory-independent learning from data is distinct from the other types of strong novelty in 

my taxonomy by how it accounts for the operationalization of existing theory. As it is sensitive 

to how outcomes are generated, it might co-occur with the concepts that are not, suggesting 

further ways to differentiate types of strong impact.  

Moreover, this concept of strong novelty is better suited for analysis in the context of 

scientific exploration than existing presupposition-based accounts. Particularly, it clarifies that 

local theory is the kind of prior information that might diminish the scientific impact of a 

prediction. Only when local theory (that demarks or explains phenomena) is highly fixed is the 

degree of learning highly constrained. However, local presuppositions might be used in a 

provisional, exploratory manner (e.g. iterating between identification and refinement of target 

phenomena, c.f. Section 2.3). Also, learning outcomes achieved with independence from local 

theory signal deep impact (according to the degree of independence, as do the concepts of local 

epistemic change in Sections 3.1–3.3), while conceptual change signals wide impact (which may 

not necessarily be major). Thus, in contrast to Ratti’s (2020) account, I do not take enlargement 

of existing theory (“N1”) to be inherently “weaker” than conceptual change (“N3”). 

Furthermore, my account is more general than his, and some exploratory activities might aim to 

generate novelty along both dimensions in scientific domains without stabilized concepts.  

In addition, while independence of local theory is less sensitive to prior knowledge and 

presuppositions about phenomena than use novelty (see Section 2.4), it is more sensitive to 

theoretical choices regarding data and model interpretation. It is not curtailed merely by design 

choices to use labels for supervised learning or inductive biases, if these are independent of 

fixed, local theory. However, it captures that theory might constrain novelty at various stages of 

an ML pipeline. Furthermore, it may be more amenable to historical analysis than use novelty: 
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the aim to break with existing theory in order to substantially recharacterize a target phenomenon 

is often stated as a project aim in the published record.20  

4. Discussion 

A major aim of identifying types of strong novelty for science is to help design new 

research projects and agendas. My taxonomy should facilitate cross-disciplinary engagement as 

these novelty desiderata might be relevant to a wide range of scientific fields. For example, the 

general strategy for reducing utility blindness with neural networks (Section 3.2) can be applied 

to problems from a variety of domains and is useful for assessing the pursuit-worthiness of a new 

idea. Similarly, ML is likely to make a large scientific impact when the aim is to eliminate deep 

ignorance, particularly in data-intense projects where computational tools help to overcome 

practical and epistemic barriers to discovery.  

Also, my taxonomy should help to nuance claims of ML’s impact on science by attending 

to a wide range of its uses (perhaps restructuring the divide between scientific optimism and 

philosophical pessimism, Duede 2023). This might include tracking the success of various 

algorithms in contributing to scientific change. While statistical learning theory provides 

guarantees for the generalization performance of some types of models (Luxburg & Schölkopf 

2011), it does not address how to ensure that various scientific desiderata are met (but see 

Freiesleben et al. for an account of scientific inference with interpretable ML, 2022). Assigning 

credit to ML systems for their past contributions to discovery is likely to play at least some 

normative role in justifying the choice of a computational approach for a given exploratory aim. 

 
20 On the other hand, some versions of use novelty, such as the knowledge-based concept 
discussed in Section 2.4, require making additional historical inferences regarding the epistemic 
states of the scientists. 
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At the same time, designing new research projects requires a careful examination of the 

capacities of ML algorithms. My top-down analysis complements these assessments but would 

also benefit from future engagement with bottom-up perspectives since each approach has its 

limitations; top-down requires connecting desiderata to design criteria, which may be unavailable 

or without guarantee of success, while beginning with the novelty of processes (e.g. their 

creativity or goal-directedness) risks ultimate misalignment between means and ends. Finally, bi-

directional engagement is likely to be fruitful because while the reliability of processes is 

relevant to designing for novelty, novelty also plays a role in the reliability of predictive 

processes. For example, reliable statistical inference methods such as extrapolation seem 

significant both for the learning outcomes they generate (perhaps affording epistemic access to a 

novel domain) and for how their outcomes contribute to the robustness of predictive processes 

(consider Cranmer et al. 2021, Freiesleben & Grote 2023, Grote et al. 2024). I expect my 

taxonomy to add clarity to the dialectic between outcome and process-centered accounts of 

strong novelty. 

5. Conclusion 

I have presented concepts of strong novelty that suggest a variety of ways that ML makes high 

impact to science. Conceptual change indicates a broad form of scientific impact that is not 

reducible to local notions of epistemic change. However, to fully appreciate the ways that ML 

advances science, philosophical consideration of novelty and ML must move beyond conceptual 

change. Surprising outcomes change scientific beliefs, while reducing utility blindness and 

eliminating deep ignorance play a key progressive role in exploratory contexts. Meanwhile, the 

concept of local theory-independent learning from data is a better starting point for future 
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reflection on what design choices are likely to achieve strong novelty than use novelty or mere 

token/type distinctions: it places a minimal constraint on the theory incorporated into an ML 

project.  
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