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Abstract Machine learning (ML) is a major scientific success. Yet, ML models are
notoriously considered black boxes, where this black boxness may refer to details of
the ML model itself or details concerning its outcomes. Hence, there is a flourishing
field of “eXplainable Artificial Intelligence” (XAI), providing means for rendering
several aspects of ML more transparent. However, given their tremendous success,
why would we even want to explain black boxed ML models with XAI? I here
suggest that, in order to answer this question, we first need to distinguish between
proximate and ultimate aims in using XAl: While the proximate aim may be uni-
formly to provide instruments for explaining aspects of ML to relevant stakeholders,
the ultimate aim varies with the context of deployment. Furthermore, I argue that in
science, the ultimate aim is the understanding of scientific phenomena. I then sketch
three paths along which understanding of phenomena may be gained by means of
ML and XAL. In a coda, I address the possibility of gaining understanding from ML
directly, without explanations and XAlI

1 Prelude: Black Boxes, Stakeholders, and the Why of XAI

Machine learning (ML) is a major scientific success, as witnessed by the developments that
culminated in two recent Nobel prizes. In the basic problem set-up of ML, we are given a space
of data x € X, where the entries x;(w) of the data instances x characterize the features of some
objects w € Q of interest. The ML model My : X — Y then maps these data to more informative
representations My(x) = § € Y. For instance, the x;(w) could be pixels in an image, representing
the local colors of the objects depicted, and § could be the class label predicted by My (with the
hat indicating that this is the model’s prediction, which might diverge from a desired label). Or
the x;(w) might be amino acids, and the § a protein shape that My predicts for the given sequence
x. 6 here refers to a range of free parameters of the model that are iteratively adjusted during a
‘training phase’, so as to make the model perform better and better.
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published by Routledge.



Prima facie, there is nothing mysterious here: Given enough time and effort, it is usually no
problem to look up the detailed algorithm, as well as the model’s overall functional form (pend-
ing parameter-values), unless the code is proprietary (Burrell, [2016; Rudin,[2019). Nevertheless,
ML models are notoriously considered black boxes, and there is a flourishing field of “eXplain-
able Artificial Intelligence” (XAI), providing means for rendering certain aspects of ML more
transparent. What is behind this black boxness?

Many authors (e.g. Beisbart, 2021; Boge, 2022} [Burrell, 2016} |Creel, |2020; Rudin, [2019) have
tried to define the black boxness or opacity of ML, making reference either to the complexity
of the function My or uncertainties about how its outcomes arise. However, why would we
even want to ‘explain’ black boxed ML models with XA, given their tremendous success? This
question I call ‘the why of XAI’, and it can only be answered by taking both the ‘why’ and the
‘we’ rather seriously.

Thus, consider Humphrey’s (2009, 618) seminal definition of epistemic opacity:

a process is epistemically opaque relative to a cognitive agent X at time ¢ just in case
X does not know at ¢ all of the epistemically relevant elements of the process.

The process in question may either be the prediction or the learning process of ML (Bogel,
2022). But what’s crucial for us here is (i) the relativity to an agent, as well as (ii) the mention
of epistemically relevant elements. Let us begin with ‘epistemic relevance’.

Duran| (2018l 108) suggests to interpret ‘epistemic relevance’ in terms of aspects of ML (or
some other model) relevant for the justification of its results. This is plausible insofar as knowl-
edge implies justification on most accountsE] However, as [Durdn and Formanek! (2018) point
out, justified results might come about without requiring the transparency of My: extensive test-
ing, cross-validation, and robustness analysis might be sufficient for justifying the credibility of
ML outputsE] Hence, justification could in principle be had even without XAl

However, ‘epistemic’ must not be read overly narrowly here, as purely referring to knowledge:
Many authors believe that opacity has to do with the knowledge and understanding an agent has
of a model My or its outputs. And since many epistemologists (such as|Kvanvig| 2003} Pritchard,
2014) now recognize understanding as the ultimate epistemic good that is ideally delivered with
the accumulation of knowledge, it is plausible that those elements of an ML model should also
count as epistemically relevant which we need in order to better understand the model. As a
corollary, we can see why there is so much interest in the field of XAl, as many authors (such as
de Regt, [2017; |Khalifa, [2017; |Strevens|, 2013]) trace understanding to explanationE] However, for
most people outside computer science, understanding a model in detail might not actually be of
great interest. Thus, circling back: Given their success, for what sake do we want to understand
these models or their outputs?

A number of recent proposals have taken the agent in Humphreys’ account rather seriously. I
will collectively refer to such proposals as ‘stakeholder perspectives’. For example, Paez (2019
441) writes: “the purpose of providing an explanation or an interpretation of a model or a de-
cision is to make it understandable or comprehensible to its stakeholders.” Similarly, Langer

'Even reliablilism can be read as saying that knowledge is belief that just is justified by the reliability of the method
of its generation, even though no single agent may be in a position to state that justification explicitly.

“For recent accounts of ML robustness, see (Boge et al., IMS; [Freiesleben and Grotel [2023).

*For the connection between XAl ‘explanations’ and scientific explanations, see (Boge and Mosig} [2025alb).



et al.| (2021} 2) put “conglomerations of stakeholders’ interests, goals, expectations, needs, and
demands regarding artificial systems” at center stage. [Zednik! (2021)) discusses a concrete exam-
ple, based on a framework by (Tomsett et al., 2018), wherein different questions about an ML
model may be asked by different people, depending on what they want to use the model for.
Thus, to answer the why of XAI, we may also need to pay attention to the ‘we’ in it.

Following the above, different XAl methods might be relevant to different stakeholders, given
their different goals and interests: “for instance, LIME is explicitly meant to provide explana-
tions to the users of an ML system while [counterfactual explanations] are meant to do the same
for data-subjects.” (Buchholz, [2023] 9) To systematically chart the landscape of available meth-
ods, Buchholz| (2023 10) suggests to specify that the overall aim of XAI as follows: “Provide
instruments that produce explanations of topic ¢ for stakeholder s, where the “topic can also be
spelled out at a more fine-grained level as a particular aspect of an ML method.” Hence, might
the why of XAI be answered by referring to the aspect to be explained and the stakeholder to
explain it to?

I believe we are here back to square one in answering the why of XAI: For, for what sake
do relevant stakeholders want to explain and understand even particular aspects of My or its
outputs? In the following, I will propose a novel account for answering the why of XAlI, building
on a distinction between proximate and ultimate aims. As I shall argue, Buchholz and others
mostly characterize the proximate aims in using XAIl, whereas the ultimate aim may differ.
Furthermore, as I shall also argue, the ultimate aim varies with deployment context rather than
individual stakeholder. Finally, in science, the ultimate aim is the understanding of scientific
phenomena, not of ML models.

2 Proximate and Ultimate Aims

Ernst Mayr| (1961) famously introduced the proximate/ultimate-distinction into the debate on
causes in biology, and he did so by way of an example:

[A] warbler migrated on the 25th of August because a cold air mass, with northerly
winds, passed over our area on that day. [...] the physiological condition of the
bird interacting with photoperiodicity and drop in temperature [...] [w]e might call
[...] the proximate causes of migration. [...] the lack of food during winter and the
genetic disposition of the bird [...] are the ultimate causes. (Mayr,|1961], 1503)

What I am suggesting here it that, to answer the why of XAI, we first need to similarly dis-
tinguish proximate from ultimate aims. In the case of the warbler, it might be uncomfortable
to rephrase everything in terms of aims: While the warbler may well be said to aim at avoiding
the cold by migrating, it is not so clear that he can be said to literally aim for reproduction and
survival. However, in the case of ML-stakeholders, no such discomfort should arise: Proxi-
mally, they may aim to produce explanations of some particular aspect of an ML model, suitable
for understanding these aspects of the model. But ultimately, they might aim for something
completely different.

As briefly sketched above, in the remainder of the paper I will argue for the following: (I)
While the proximate aim (PA) in deploying XAI may be uniformly specified in the ways sug-
gested by Buchholz, the ultimate aim (UA) is non-uniform — a verdict which is so far compatible



with stakeholder perspectives. However, somewhat pace stakeholder perspectives, I will argue
that (IT) the UA covaries with the context of deployment, rather than the individual. In fact, (III)
the UA may have nothing to do with explanation. Finally, however, (IV) in science, outside the
science of ML, the UA is the understanding of the relevant subject matter, not the ML model
itself ]

Since (II) implies (I), and establishing (III) may provide evidence for (II), I will use the next
section to establish all these claims by means of examples. The central claim of this paper, (IV)
will then be established in sect. [d In sect. [5] I will sketch three paths along which this aim
may be achieved using ML and XAl Finally, in the coda (sect. [6) I will assess the possibility of
gaining understanding from ML directly, without XAI.

3 Ultimate Aims in Medical and Legal Deployment Contexts

The first kind of deployment context I will consider is medical practice (not medical research). In
this context, a major issue is the trust invested by patients in what for all we know are relatively
reliable methods. For example, as|Kundu| (2021} 1328) reports:

a conference posed the following question to its attendees: suppose you have cancer
and need surgery to remove the tumor. Which of the two surgeons would you pick
if you had to choose between a human surgeon, with a 15% change of dying, or a
robot surgeon, with a 2% chance of dying — with the caveat that no one knows how
the robot operates and no questions may be asked of it?

Surprisingly, “[a]ll but one of the attendees preferred the human.” (Kundul 2021}, 1328) Given
the major performance gap between human and machine, stipulated in this example, it is thus
understandable that: “Solving the explainability conundrum in AI/ML (XAI) is considered the
number one requirement for enabling trustful human-Al teaming in medicine.” (Royal Society
and Alan Turing Institutel 2019)[1]bienefeld

However, the crucial lesson for us here is the following: In the context of medical practice, the
PA may be rendering ML models’ workings transparent. A more distal aim served by fulfilling
the PA might be making them appear trustworthy. But the UA rather appears to be the consentful
deployment of the (for all we know) most reliable methods, or even the saving of human lives.
XAl clearly serves the PA. But it may thereby also serve the UA by increasing the acceptance
of more reliable methods. Notably, the UA thus has nothing to do with explanation, providing
evidence for (III).

Take another example, this time involving the legal and ethical implications of decision mak-
ing. In this connection, Baum et al.| (2022}, 5-6) ask us to consider the following scenario:

Suppose [some] company employs a fully automated hiring system to screen, rank,
and select job applicants [...] that [...] ranks April in the last place and excludes her

4One may also wonder about the aim in deploying ML at all. Often, ML models are deployed in science to make
predictions or just to clean and segment data. Here, the aim of using ML might just be to get a prediction or to get
clean data, but I suggest that this, too, would be merely a proximate aim. The ultimate aim of using ML within
the scientific context would still be to obtain understanding of phenomena, and ML’s actual contribution to this
might be marginal and mediated by further models and theories. Nevertheless, use of ML would here ultimately
serve the aim of understanding phenomena.



from the further hiring process. [...] maybe this ranking was decisively influenced
by the fact that April is a Black woman [...] the worry [arises] that no one can be
held morally responsible or legally accountable for excluding April.

However, assume now that a successful XAI method was able to highlight the relevant factors
that prompted the hiring system to exclude April from the application process. Would we then
not say that an employee of the company’s human resources department might be held both
responsible and accountable for the (bad) decision, pending their access to the XAl method’s
output? This is the verdict of Baum et al.| (2022] 15): “If [some human decision-maker] had a
suitable explanation of the system’s recommendation available [...] he [would be] in a position
to bear direct responsibility for his decision.”

The lesson to be learned here for us, however is again a different one: In the context of moral
attribution and legal claims, XAl may serve the PA of making reasons for decisions by ML sys-
tems transparent. However, the UA here is the localization of responsibility and accountability.
Since an XAI method may also serve the more distal aim of increasing the knowledge had by
human decision makers, it might thereby serve the UA of making them accountable.

We see that (I) the UA is non-uniform and (II) varies with the context of deployment: In
medical deployment contexts, we ultimately aim to promote reliable methods and save lives. In
legal and moral contexts, we aim to attribute responsibility and accountability. In both cases,
(I1I), the UA had nothing to do with explanation. However, why, then, should the UA in science,
(IV), be the understanding of the subject matter?

4 XAI and the Aim(s) of Science

Popular accounts of science tell us that “[s]cience aims to explain and understand”E] This verdict
is not just found in popular accounts though, but echoed by several recent accounts within the
philosophy of science, most prominently in the debate on scientific understanding (e.g./de Regt,
2017; [Elginl [2017)). Not everyone agrees: For instance, [Bird| (2022, 12) claims that “the aim of
science is the production of scientific knowledge”. However, insofar as knowledge is valued for
its ability to promote understanding (Kvanvig, 2003}, Pritchard, 2014)), we might consider the
production of knowledge a proximate aim of science, with understanding being its ultimate aim.

Furthermore, [Rowbottom| (2023) thinks that it is wrong to speak of ‘the aim of science’ in the
first place: People have aims, human activities such as science do not. However, Rowbottom
(2023}, 48) allows to replace talk of the aim of science by talk of ‘hypothetically rational aims’,
where “X is a hypothetically rational aim in doing science if and only if doing science raises
the aleatory probability of achieving X more than doing any other possible activity does.” Now,
several protagonists in the debate on scientific understanding highlight the connection between
understanding and abilities (de Regt, 2017 |[Elginl, 2017; Reutlinger et al., 2018)), or even suggest
to measure understanding in terms of such abilities. Thus, given the tremendous technological
and practical successes human societies have harvested by means of doing science, it seems
reasonable to claim that science increases the probability of understanding things much more

Shttps://undsci.berkeley.edu/lessons/pdfs/what_is_science_p4.pdf.
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than does any other activityE]

The bottom line is that understanding may be quite reasonably held to be ‘the’ aim of science.
However, what is the target of the understanding delivered by science? Several authors carefully
distinguish between scientists understanding of a given model or theory and their understanding
of a given phenomenon or subject matter: |de Regt| (2017, 23) distinguishes the understanding
of a theory, by which he means the ability to use the theory, from the understanding of a phe-
nomenon, which is the aim of science and consists in having an adequate explanation of the
phenomenon, based on one’s prior understanding of the relevant theory. Similarly, Strevens
(2013}, 513; orig. emph.) coins a notion of “understanding with [...] a theory”, by which he
means being “able to use that theory to explain a range of phenomena”. Of course, understand-
ing with a theory in this way requires understanding that theory itself in the first place (Strevens,
2013] ibid.).

However, recall Buchholz’ suggestion that the aim of XAI is to provide instruments that
produce explanations of particular aspects of a given ML method to a particular stakeholder.
If this is correct, the target of XAl is a class of models, not a phenomenon out there in reality.
How does that square with science’s UA being the understanding of phenomena, or whole ranges
thereof?

Before I outline at least three paths along which this may be achieved, let me dispel a dis-
traction: In sect. [T} I followed Durdn and Formanek] (2018) in arguing that external measures of
validation may sometimes be sufficient for establishing reliability, i.e., for justifying the cred-
ibility of ML outputs. But sometimes, this may not be enough. For example, Duede| (2022)
argues that we might want to know whether an ML model obeys certain principles in order to
estimate its reliability. Hence, it seems XAI might be used in the service of justification rather
than understanding, even within science. Similarly, Scorzato| (2024, 17) argues that “lower inter-
pretability makes the assessment of reliability less plausible”, because uncertainty-assessment
on the predictions will be harder. Finally, Tamir and Shech| (2024, 11) emphasize how “ML
research as well as ML applications can suffer from methodological failures calling the validity
of inferences based on ML models into question.” In this respect, XAl methods may help to
check whether an ML application is actually in line with the envisioned predictive goalsﬂ

Do these considerations impair my claim that the UA of using XAl in science is the under-
standing of phenomena? I do not think so, for even if ML is used mostly for predictive purposes
and valued for its reliability — and even if XAl is used mostly for the sake of ensuring this
reliability — scientist will ultimately want to understand the targeted phenomena, based on the
successful, reliable predictions. Thus, even though ML’s and XAI’s contributions to understand-
ing might be rather indirect, understanding may remain the ultimate aim of deploying ML and
XAl in science. Let us see how this might be brought about.

Pace Rowbottom| (2023), I am also inclined to think that understanding might come out as the majority vote if one
asked scientist about their personal aims in pursuing science.

Cf. also Boge et al.| (MS) for an example of how non-empirical considerations may be necessary for ensuring
reliability.
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Figure 1: Three paths to scientific understanding with (X)AI. Color available online

5 Three Paths to Understanding

The way I see it, there are at least three paths along which scientist might gain an understanding
of phenomena by means of ML and XAI (see fig. [I):

Assume that we are faced with an ML model which has been deployed in a scientific task, such
as protein structure prediction, with tremendous success. Then in the first instance, (i) scientists
might explain particular aspects of this ML model by means of XAI. This would mean serving
the PA of understanding ML, but as a ‘side-effect’, they might thereby uncover its discovery
method and learn a new approach to the subject matter scrutinized with the ML model. This I
consider a first path towards scientific understanding from ML, and it clearly proceeds via XAl

This path towards understanding is fairly indirect though. A more direct one would be to
(i) parallel the successful ML model’s predictions by means of a different, explanatory model.
Actually, this is not just a possibility, but there are some developments in physics in exactly
this direction: [Faucett et al.| (2021) introduce a method for predicting the presence of a novel
signal from physics-inspired variables, by means of a comparison with the decisions made by
an ML model. Similarly, |Wetzel| (2025) utilizes symbolic regression techniques to repackage
the information gathered by a ML model into a human-readable symbolic expressionﬂ The
involvement of XAl here is that it delivers tools to find out what the relevant variables really are,
i.e., to uncover what the ML model has ‘learned’ (Boge, [2022)).

Finally, (iii), it might be possible to forgo an involvement of XAI altogether and to leverage
ML to gain understanding into a phenomenon directly. I will only briefly comment on this
possibility in the coda.

8A small caveat here is that all of this is being done on well-understood benchmark data, and that it might be
significantly harder to do the same thing on novel, poorly understood data (Boge, [2022}2024)).
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Figure 2: Illustration of the three paths to scientific understanding with (X)AI. Color available
online

The three paths, along with the initial problem set, are illustrated in fig. 2] In the initial
problem set (fig. , a scientist, S, wonders about a fuzzy and colorful phenomenon, P, she
doesn’t understand (arrow from S to P with red question mark attached). She then uses an ML
model, M, to predict or classify certain things about that phenomenon by appeal to data gathered
on it (arrow from M to P with description). Using an XAI model, M’, which she understands
fairly well (arrow from S to M’ with green U attached), she may gain some modest amount of
understanding regarding the ML model M (arrow from M’ to M with yellow U attached), but
not necessarily any understanding regarding P.

On path 1 (fig.[2b), she instead directs an XAI model, M’, at M’s method for prediction (arrow
from M’ to [arrow from M to P] with yellow U attached). Ideally, in this way, she will not only



understand something about M, but also about P, because M’s method of access to P will equip
S with a novel method for accessing P herself (arrow from S to P, with orange U attached),
insofar as she understands that method. For instance, in line with the comments made at the
end of the last section, XAl may be proximally put in the service of assessing model reliability.
But such reliability-checks too could generate insights about the phenomena under study, for
instance, when a model fails in unexpected ways, or when XAI reveals that model is relying on
features that scientists hadn’t previously recognized as relevantﬂ

On path 2 (fig.[2¢), S does direct the XAI model M’ at M, but instead of using the understand-
ing so gained (arrow from M’ to M with orange U attached) to approach P more directly, she
uses it to construct a different model, M’’ (arrow from [arrow from M’ to M]to M’"), which is a
theoretical model (TM) that will mirror M’s predictions (arrow from M’ to P with description),
and may provide explanations which nurture her understanding of P to a fair degree (arrow from
S to P with yellow U attached). If successful, it seems likely that a fair amount of understanding
of P may be gained in this fashion, which explains the rise of dedicated approaches to this path
(Faucett et al., 2021} [Udrescu and Tegmarkl, 2020; Wetzel, [2025)).

Finally, on path 3 (fig. 2d), S might forego the effort of even using XAI (arrow from S to
M with red question mark attached), and directly inspect M’s suggested classifications and
predictions (arrow from S to [arrow from M to P]), thereby gaining at least some amount of
understanding of P (arrow from [arrow from M to P] to P with orange U attached).

Given that we had argued that the understanding of phenomena is the overall aim of science
and that we have thus highlighted three paths along which understanding of phenomena might
be gained with ML, two of which involved XAl, it seems clear that ‘the’ aim of XAl identified
by [Buchholz (2023) may only be a proximate aim. Further, we also see that in science, the UA
of science itself and that of XAl co-align: Within the context of scientific research, both ML and
XAI are just further tools that ideally allow us to gain understanding of phenomena, alongside
the theories and models that we have already used for this purpose in the past.

6 Coda: Understanding Without Explanation?

I have left open the possibility of foregoing XAl and gaining understanding with ML directly.
Why, if this is possible, go the extra mile and use XAI methods? In Boge| (2022), I argued that
ML models are not in general intended as representations from the outset, and that this distin-
guishes them from other computational models, especially in their capacity to foster explanations
and understanding (Bogel [2019]2022). Whereas computer simulations contain various elements
that can stand in for elements of a targeted systems (however crudely and imprecisely), all that
is being represented in ML, at least initially, is a wholesale connection between data X and rep-
resentations Y (class labels, protein shapes...). If I am correct, then this makes understanding
directly from ML highly problematic and XAI almost necessary for science’s UA (also|Rdz and
Beisbart, 2022).

However, in the preceding section, I indicated an alternative option: On path 3, scientists
might forego the use of XAl and use ML for the sake of understanding directly. A very similar
account of understanding directly from ML has prominently been offered by [Sullivan| (2019).

%As an anonymous reviewer has pointed this out to me.



Sullivan| (2019, 1) argues that “it is not the complexity or black box nature of a model that limits
how much understanding the model provides”, but, “a lack of scientific and empirical evidence
supporting the link that connects a model to the target phenomenon” — something she calls ‘link
uncertainty’.

While it is certainly right that models need to be appropriately linked to evidence in order to
provide understanding, and while some amount of opacity may remain tolerable, it is unclear
just how much understanding ML models can promote directly. Thus, R4z and Beisbart| (2022,
2) argue that Sullivan’s thesis is only plausible if the understanding gained is “some degree of
objectual understanding”.

Objectual understanding is the understanding of a subject matter or phenomenon, P (Dellsén,
2020; [Elgin, [2017); as in ‘S understands quantum physics’ or ‘S understands matter interfer-
ence’. This contrasts with understanding why p, where p is some proposition, such as ‘electrons
show interference-behavior’. The two are not identical, and understanding why is usually traced
to explanation (de Regt, [2017; Khalifa, [2017} |Strevens|, 2013)), whereas objectual understanding
is generally not (Dellsén 2020; Elginl 2017).

Elgin| (2017) argues that objectual understanding is basic, and in general more encompass-
ing than explanatory understanding; Dellsén| (2020) argues that there are cases which can only
be objectually understood, but not by means of explanation[gl It is arguable, though, that we
wouldn’t want to call something ‘scientifically understood’ if there was no explanation at all
that could be communicated at least among a relevant group of experts (Schuster et al., MS). In
any case, it seems right that whatever understanding may be gained along path 3, i.e., from ML
directly, will be significantly weaker than understanding gained by means of suitable explana-
tions (Riz and Beisbart, |2022)). Nevertheless, embedding this kind of (objectual) understanding
into an overall research process, new explanations of related phenomena may be forthcoming
(Schuster, MS), and so the existence of path 3 (and with it Sullivan/s (2019) account) remains
valuable in its own right.

7 Conclusions

I have argued that, in order to answer the why of XAl — that is, to say why, given their tremendous
success, we even want to explain black boxed ML models with XAI — we need to distinguish
between proximate and ultimate aims: The proximate aim in using XAl is to provide instruments
that produce explanations of particular aspects of ML models for relevant stakeholders. The
ultimate aim varies with the deployment context. In science, I argued that the ultimate aim
co-aligns with the aim of science itself: The understanding of phenomena. However, this is
usually possible only indirectly: by learning something about the ML model’s discovery method,
thereby gaining a different kind of access to the subject matter; or by emulating the ML model’s
success with a different, explanatory model.

Alternatively, ML may be used directly to understand something about the phenomena in
question (Sullivanl, 2019). However, following R4z and Beisbart| (2022)), I argued that this un-
derstanding will typically be significantly weaker than the understanding gained by means of ex-
planations. Hence, to answer the why of XAI with a focus on science: Success notwithstanding,

""However, see Boge and Stoll{(MS) in this connection.

10



scientists want to explain ML models because this is their best shot at ultimately understanding
the phenomena they gather data on.
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