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Abstract 

This article examines the phenomenon of electron localization from a conceptual perspective, 

without going into technical details. In particular, it analyzes two cases in which electrons are 

confined to a specific region near one or more atoms, but with different characteristics: 

electron localization in molecules and in crystalline solids. The features and requirements for 

localization in each case are discussed, along with their specific interpretative challenges and 

the various proposals put forward to address them. 
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1.- Introduction 

Electron localization, as studied in quantum chemistry, is a phenomenon consisting in the 

confinement of electrons to a specific region close to an atom or between atoms: electrons are 

localized in a certain region instead of moving freely throughout space. Although electron 

localization is manifested in different ways, here we will focus on two cases: molecules and 

crystalline solids. 

The aim of the present article is not to delve into technical matters, but to consider the 

phenomenon of electron localization from a conceptual point of view. With this purpose, the 

work is organized in two main parts: Section 2 devoted to molecules and Section 3 devoted to 

solids. Section 2 will take into account the leading role played by the electron density in the 

study of electron localization; the aim will be to point out the different interpretations of the 

concept of electron density, which lead to different ways of conceiving electron localization. 

In Section 3, the phenomenon of Anderson localization will be considered in order to show 

that, besides the just mentioned divergences about how electron localization is understood, it 

involves an additional conceptual issue related to the appeal to limiting procedures. Finally, 

the paper closes with some concluding remarks. 



2.- Electron localization in molecules 

In the study of molecular structure, electron localization refers to the concentration of electron 

density in certain regions of the molecular space. The analysis of the geometrical properties of 

the electron density (e.g., local maxima, local minima, saddle points) accounts for the 

chemical features of the molecule. Under certain circumstances, regions of high electron 

density can be associated with the formation of electron pairs in specific regions of space, 

thereby providing a quantum description of covalent bonds and lone electron pairs. 

Given this relationship between electron localization and electron density, if the concept of 

electron density is understood, the understanding of the concept of electron localization does 

not pose any difficulties. The problem is that the interpretation of the concept of electron 

density is not clear at all. 

2.1.- Two interpretations of the concept of electron density 

A it is well known, the electron density ( ) r  of a system of N  electrons is computed in terms 

of the wave function 1 2 1 2( , , , , , , , )N N r r r s s s , as the sum of the contributions of each 

electron, obtained by integrating over the coordinates of the other electrons. Although the 

mathematical calculation of ( ) r  does not pose any difficulty, the definition of the electron 

density involves passing from an abstract function 1 2 1 2( , , , , , , , )N N r r r s s s  on the 

configuration space of 3N  spatial dimensions and 2N spin dimensions, to a real-valued scalar 

function ( ) r  on a space of three dimensions that, therefore, can be thought as representing 

the physical space. Although electron density has been deeply studied at the conceptual and 

mathematical level [1], there is no agreement on the conceptual meaning of the magnitude 

thus obtained. In particular, two clearly different interpretations can be distinguished:  

• According to the Schrödinger-style charge density interpretation (CDI), the electron 

density is a density of charge distributed over the entire three-dimensional physical space. 

In this case the electron density is a physical field, in particular, a material field of negative 

charge. The CDI was the first interpretation to appear: it was formulated by Schrödinger [2] 

[3], who defined the electron density as a continuous distribution of electricity in the 

physical space. When it became clear that the wave function could not be conceived of as a 

physical field in three-dimensional space, Schrödinger’s interpretation of the electron 

density was also rejected in the context of physics. Nevertheless, it was explicitly retrieved 

in quantum chemistry, in the framework of the Quantum Theory of Atoms in Molecules 

(QTAIM): for Richard Bader, the electron density acquires materiality since describes the 

kind of stuff of which atoms and molecules are made (see, e.g., [4]). 

• According to the Born-style probability density interpretation (PDI), the electron density is 

a probability density. It represents the probability of detecting an electron at a particular 

point in space. Specifically, ( ) r  expresses the probability density of locating an electron 



within an infinitesimally small region surrounding a given position r . Depending on 

whether this is interpreted from a realist or instrumentalist point of view, it can mean 

different things. From a realist point of view, the function ( ) r  reflects the chance that the 

electron actually occupies the position r . From an instrumentalist viewpoint, it instead 

indicates the probability that a measurement would reveal the electron at that position r . In 

both interpretations, the electron density is conceived as a mathematical field describing 

probabilistic information. This view is the prevailing one in physics, in line with Born’s 

probabilistic formulation of quantum mechanics [5]. 

From a physical viewpoint, the CDI embodies some serious difficulties: 

‒ On the one hand, during measurement, the original distributed charge density must 

instantaneously, or almost instantaneously, “collapse” to become a charge density 

represented by a Dirac delta distribution centered at the electron position. This picture leads 

to two undesirable consequences: (i) collapse should produce highly strong currents, which 

have never been detected, and (ii) the local conservation of charge is violated during 

collapse, since charge suddenly disappears from one location to appear at another. 

‒ On the other hand, given two wave functions of a system of many electrons, their 

corresponding electron densities can be computed. According to quantum mechanics, if the 

system is in a superposition of those two wave functions, there should exist two different 

charge densities spread throughout the same three-dimensional physical space (for a 

detailed criticism, see [6]). In other words, the superposition of wave functions would lead 

to “superposition” of charge densities, an idea that makes no physical sense. 

The PDI, although widely adopted in physics, is not a friendly interpretation in the context 

of quantum chemistry, in which electron density is endowed with some kind of materiality 

related to the charge of electrons. It is not clear how a purely mathematical field, dealing with 

probabilities, can play the key role that electron density plays in quantum chemistry in 

physically accounting for the central concepts of chemistry. 

This dual interpretation of the concept of electron density is immediately reflected in the 

understanding of electron localization: as the concentration of charge from the CDI 

perspective, or as the concentration of probability from the PDI perspective.  

2.2.- Compatibility through averages 

It is important to highlight that these two interpretations generate a conceptual tension when 

considered together: the CDI and the PDI are, in principle, mutually incompatible, since a 

given magnitude cannot simultaneously be both a mathematical object and a physical entity. 

Under the CDI, electron density is understood as a material “cloud” spread across physical 

space, whereas under the PDI, it is interpreted as an abstract probability. For instance, if the 

electron density at a specific point in space is 0.9 (in units of electron charge), the PDI would 



interpret this as a probability of 0.9 that an electron will be detected at that point during a 

measurement—meaning the electron may or may not be found there. In contrast, the CDI 

would imply that a certain amount of charge exists at that location independently of whether a 

measurement is carried out or what its outcome might be. 

Despite this conceptual incompatibility, the two interpretations of the concept of electron 

density usually appear in the literature without distinguishing them. Furthermore, in several 

cases, the compatibility between the CDI and the PDI is presupposed on the basis of some 

kind of average strategy.  

Sometimes, the electron density is conceived in terms of a space-average. It is defined as a 

measure of the number of electrons per unit spatial volume: the physical space is divided into 

small cells and each cell is assigned a charge value proportional to the number of electrons it 

contains. Although this view is more akin to the CDI perspective, the link between charge 

density and probability is based on assuming that the probability of finding an electron in a 

given cell is proportional to the number of electrons in that cell. The idea of a “cloud” of 

electrons can be associated to the CDI only if the number of electrons tends to infinity. Thus, 

the space-average strategy may approximately work for systems of a high number of 

electrons; but for systems with few electrons, it is a very difficult strategy to adopt. For this 

reason, arguments in terms of time-average are more common in the literature. 

According to the time-average strategy, the electron density represents the mean value of 

the definite positions of the electron in its motion around the nucleus. This idea had already 

appeared in Linus Pauling’s famous book originally published in 1939: “We can accordingly 

describe the normal hydrogen atom by saying that the electron moves in and out about the 

nucleus, remaining usually within a distance of about 0.5 Å, with a speed that is variable but 

is of the order of magnitude of v0. Over a period of time long enough to permit many cycles of 

motion of the electron the atom can be described as consisting of the nucleus surrounded by a 

spherically symmetrical ball of negative electricity (the electron blurred by a time exposure of 

its rapid motion).” [7]. The same strategy is adopted in much more recent works. For 

instance, in a paper published in a journal of chemical education, the following image is used: 

“if a series of measurements could be made of x without disturbing the motion of the particle, 

the resulting distribution would be  . The latter would then reflect the motion of the particle 

in the same way in which the density of the image on a long-exposure photograph reflects the 

motion of a macroscopic object.” [8]. The same picture appears in a more recent textbook: 

“The rapid motion of electrons causes the sluggish nuclei to ‘see’ the electrons as a charge 

cloud rather than as discrete particles.” [9].  

Let us consider, for example, a hydrogen atom. The idea of the time-average strategy is 

that the electron moves very fast around the nucleus so that, in average, it forms a cloud of 

negative charge surrounding the nucleus. If the physical space is divided into small cells, it is 



theoretically possible to compute the time the electron spends in each cell. Assuming that the 

time the electron spends in each cell is proportional to the cell’s volume, this volume turns out 

to be proportional to the probability of finding the electron in that cell. This concept first 

emerged at the end of the 19th century, when Boltzmann used the motion of particles to 

explain the appearance of probability in classical statistical mechanics. A key assumption in 

his theory was the so-called “ergodic hypothesis,” which posits that the orbit of the system’s 

representative point in the phase space of microstates eventually passes through all points on 

the constant energy surface. This principle ensures that the time the system spends in a given 

region of phase space is proportional to the volume of that region, which, in turn, correlates 

with the probability of the system being in a microstate within that region.  

The average strategies implicitly assume that electrons are particles—similar to the 

classical particles envisioned by Boltzmann—meaning small objects that occupy specific 

positions in space. Specifically, the time-average strategy relies on the assumption that 

electrons follow definite trajectories around the nucleus. In other words, electrons are viewed 

as individual entities with specific positions and velocities, with the key difference from 

classical particles being that their behavior is not determined by classical equations of motion, 

but by an equation that defines their position in a statistical manner. The problem with this 

view is that it is conflict with the conceptual structure of standard quantum mechanics in the 

following senses: 

• It contradicts the Heisenberg principle, which states that quantum systems cannot have both 

a definite position and a definite momentum at the same time, and therefore, do not follow 

definite trajectories in the same way as classical objects. 

• The Kochen-Specker theorem [10] establishes that it is impossible to simultaneously assign 

precise values to all observables of a quantum system while maintaining the functional 

relationships between commuting observables. This leads to the conclusion that quantum 

mechanics, as commonly understood, is inherently contextual: definite values can only be 

consistently assigned to observables within a specific context, which is defined by the 

observables that share the same eigenbasis [11]. The theorem shows that the fact that some 

properties of a quantum system cannot be assigned definite values is not a limitation of our 

knowledge, but rather an ontological feature that arises from the theory’s formal structure. 

• The quantum realm exhibits striking non-local correlations between the properties of 

distant, non-interacting systems, as illustrated by the well-known Einstein-Podolsky-Rosen 

paradox [12]. These EPR correlations connect systems that are too far apart for any light 

signal to travel between them, yet they still do not permit the transmission of information 

faster than the speed of light. As a result, quantum non-locality is often interpreted in terms 

of holism—that is, the idea that certain physical systems behave as unified wholes that 

cannot be fully understood by analyzing their parts in isolation [13].  



• Elementary “particles” are fundamentally indistinguishable from one another—that is, they 

cannot be individually labeled or distinguished, nor can they be straightforwardly counted 

when they form collections [14]. This indistinguishability is reflected in the fact that they 

do not obey Maxwell-Boltzmann statistics; instead, they are described collectively by Bose-

Einstein statistics in the case of bosons, or Fermi-Dirac statistics in the case of fermions. 

All these characteristics converge on the same conclusion: quantum systems cannot be 

considered particles in any meaningful sense of the word. Elementary quantum systems do 

not qualify as individuals in the traditional sense of the term [15]. Indeed, they lack both 

synchronic and diachronic individuality: they are not identifiable by their location in space 

and time, nor can they be tracked over time through a continuous trajectory. Furthermore, 

because they are indistinguishable from one another, they cannot be counted or reidentified 

when they appear in groups, as is the case with individual objects. Their properties are 

contextual and inherently indefinite. 

The essentially quantum traits that standard quantum mechanics ascribes to quantum 

systems constitute an obstacle to the time-average strategy. The idea that the electron density 

represents a kind of mean value of the definite positions occupied by the electron in its motion 

around the nucleus requires conceiving electrons as particles with individuality and defined 

trajectories, an ontological picture that is challenged by the standard quantum theory. 

The obstacles that the time-average strategy must face can be surmounted by a change of 

theoretical perspective [16]. In fact, according to Bohmian Mechanics [17] [18], quantum 

systems are particles of the same nature as classical ones: they always have definite positions 

and velocities and, therefore, also definite trajectories. From the Bohmian perspective, then, 

probabilities are not objective, but only express the ignorance of the observer about the 

definite positions of the particles. Perhaps the fact that this ontological picture is more akin to 

the quantum chemistry views partially explains a certain revival of the interest in Bohmian 

Mechanics for the description of atoms and molecules since the 1980s. 

2.3.- How to interpret the concept of electron pair density?  

Since electron pairing plays a crucial role in chemistry, the concept of electron pair density 

has been introduced to account for the phenomenon of Lewis-pairing. Analogously to the case 

of electron density ( ) r , the concentration of electron pair density 1 2( , ) r r  in specific regions 

of molecular space provides valuable information about chemical bonding: it is through 

electron pair density that the Lewis model of electronic structure finds its physical expression 

[19]. It is worth noting that localization indicators such as the Electron Localization Function 

(ELF), Laplacian maps, and Electron Localization-Delocalization Matrices (LDMs) have 

found extensive use in recent computational studies. However, again, the question is how to 



interpret this central concept. In particular, the issue consists in relating the interpretations of 

( ) r  and 1 2( , ) r r . 

The Schrödinger-style charge density interpretation for the electron density cannot be 

easily extrapolated to the electron pair density. In fact, ( ) r  admits to be conceived as a 

material field of negative charge distributed over the three-dimensional physical space 

because it is a function of the three spatial coordinates. On the contrary, 1 2( , ) r r  is a function 

of six variables, so cannot be understood as representing a physical field on the spatial 

dimensions. As a consequence, who adopts a Schrödinger-style interpretation of the electron 

density is forced to endow the concept of electron pair density with a merely operational 

meaning in terms of probabilities.  

If the Born-style probability density interpretation is conferred to the electron density, it is 

natural to conceive the electron par density 1 2( , ) r r  as representing the probability of finding 

one electron in an infinitesimal volume centered at 1r  while another electron is in an 

infinitesimal volume centered at 2r . However, if this probabilistic view is combined with the 

assumption that electrons are particles, the Born-style interpretation of the electron pair 

density faces the same difficulties as in the case of the electron density: the concept of particle 

finds no comfortable place in standard quantum mechanics. The same happens if 1 2( , ) r r  is 

interpreted in terms of conditional probabilities as in some papers [20]. If we consider that 

1 2( , ) r r  represents the probability of finding an electron in 2r  given that there is another one 

in 1r  it is necessary to adopt the concept of a particle with well-defined position. Therefore, 

the appeal to the concept of electron pair density to account for electron pairing seems to 

count as an additional argument in favor of the particle ontological picture offered by 

Bohmian Mechanics: in the Bohmian context, any probabilistic claim acquires a merely 

epistemic meaning in terms of the ignorance of the precise position and momentum of the 

electrons.  

Various studies associated with the development of QTAIM have shown that certain 

chemically relevant properties of the pair density can be explained in terms of the geometric 

features of the electron density (see, e.g., [20] [21] [22]). In particular, the Laplacian of the 

electron density 
2 ( )  r , central to QTAIM theory, indicates regions where the density ( ) r  

is locally concentrated, 
2 ( ) 1  r , or locally depleted, 

2 ( ) 1  r . This quantity has been 

linked to the probability of electron pair formation. Studies such as those by Bader and Heard 

[20] have demonstrated that the kinetic energy density—derived from the Laplacian—can be 

interpreted as an indicator of electron localization and pair condensation. This perspective 

establishes a bridge between chemical topology and the quantum ontological framework 

underlying electron pairing. From this perspective, the density of pairs does not add any 

additional difficulty, but problems related to the interpretation of electron density ( ) r  

remain. 



3.- Electron localization in crystalline solids 

Electron localization in crystalline solids manifests certain peculiarities that are not present in 

the case of molecules. Philip Anderson [23] was the first to point out the absence of diffusion 

of waves in a disordered medium. As well-known, the so-called “Anderson localization” is 

the electron localization in a lattice whose degree of randomness (disorder), due to impurities 

or defects, is sufficiently large, above a certain critical value. A manifestation of the Anderson 

localization is the phenomenon of metal-insulator transition, which consists in the transition 

from a metal (a material with good electrical conductivity) to an insulator (a material that is a 

poor conductor). 

Unlike the case of molecules, electron localization in crystalline solids cannot be explained 

merely by studying the properties of the electron density. On the contrary, in this case 

localization is the result of the interaction of the electrons with the lattice. Therefore, in 

addition to the difficulties resulting from the different interpretations of the concept of 

electron density, here there are certain issues that depend precisely on the properties of the 

lattice. 

3.1.- Limiting procedure and idealization  

Since Anderson localization arises as the result of the interaction between the electrons and 

the “random” lattice, it depends on the features of the lattice: its degree of disorder and its 

dimension. In a one-dimensional or two-dimensional lattice, it can be proved that the 

resistivity grows exponentially with the number N of sites in the lattice: the solid becomes a 

perfect insulator in the limit N→∞. In other words, the metal-insulator transition is a phase 

transition that arises in the thermodynamic limit. However, since infinite systems do not exist, 

this theoretical procedure is an approximation or an idealization. But, which of the two? 

Although acknowledging that, in science, the terms ‘approximation’ and ‘idealization’ are 

commonly used without a clear distinction and even interchangeably, John Norton [24] 

proposes the following distinction: 

‒ An approximation is an inexact description of a target system.  

‒ An idealization is a real or fictitious system, distinct from the target system, some of whose 

properties provide an inexact description of some aspects of the target system. 

For example, if a property of a target system is represented by a power series, an 

approximation consists in retaining only the first term of the series as an approximated 

description of the target system’s property, whereas an idealization is the strategy of replacing 

the target system with an ideal system whose property is exactly described by the first term of 

the series. The distinction between the two strategies is relevant when limits are involved, 

because limits can be badly behaved. For example, the ratio between of the area to the volume 

of a sphere is 3/r, and goes to zero as the radius r goes to infinity; however, zero area-to-



volume ratio is not a property of a limit system because a “sphere” of infinite radius is not a 

sphere at all. Therefore, not always an approximation can be promoted to an idealization. 

Since statistical mechanics describes systems with a huge number of components, the 

operation of letting this number go to infinity is pervasive in the field. In fact, calculations 

with very large but finite number of components do not give the expected results: “The 

physical systems to which the thermodynamic formalism applies are idealized to be actually 

infinite […] This idealization is necessary because only infinite systems exhibit sharp phase 

transitions. Much of the thermodynamic formalism is concerned with the study of states of 

infinite systems.” [25]. “The existence of a phase transition requires an infinite system. No 

phase transitions occur in systems with a finite number of degrees of freedom.” [26]. The 

replacement of the target system by a system with an infinite number of components is an 

idealization. What makes the idealization admissible is the assumption that the ideal infinite 

system provides a sufficiently good description of the large but finite target system. It is 

important to stress that such admissibility arises from comparing the calculations on the ideal 

infinite system with the measurements on the real finite target system, because calculations on 

a finite model do not yield to the expected results, especially regarding phase transitions. 

The above quotes, referred to the thermodynamic behavior of statistical systems, perfectly 

apply to the case of Anderson localization. In fact, the metal-insulator transition is a phase 

transition which, although observed in finite real systems, can only be accounted for in 

idealized systems with infinite lattices. Therefore, independently of how the electron density 

is interpreted, in this case it is necessary to recognize the conceptual oddity that consists in 

obtaining results in idealized systems that are substantially different from real systems. 

However, some think that the role played by infinite limits in idealization is a mark of the 

objective emergence of new behavior. 

3.2.- Emergence of new behavior  

The idea of emergence came-up in the late-nineteenth and early-twentieth centuries with 

British emergentism, as an antireductionist stance [27]. However, the rest of twentieth 

century, under the strong influence of positivism, was marked by reductionism. It was only 

during the last decades of the century that the notion of emergence has “reemerged” [28].  

At present, after many years of discussion, there are almost as many conceptions of 

emergence as authors who address the issue. Nevertheless, there is a certain consensus about 

the fact that the general notion of emergence conjoins two apparently opposed features: 

dependence and autonomy. It mediates between extreme forms of dualism, which reject the 

dependence over the micro-level, and reductionism, which rejects the autonomy of the macro-

level [29]. Moreover, in relation to the lower level domain from which they arise, emergents 

are usually characterized as novel, unpredictable, unexplainable and/or irreducible on the 



basis of said lower level domain. As Anderson himself claims in his famous paper “More is 

different,” the word ‘emergence’ expresses the idea that the whole is not merely greater than 

but essentially different from the sum of the parts [30].  

A point that has been repeatedly emphasized is the association of emergence with the 

presence of a singular limit relation between the basal and the upper-level description [31] 

[32] [33]. The limit of a function is singular when the value of the function at the limit is 

different than its value as the parameter approaches the limit. When the function describes the 

behavior of a system, the singular limit implies that the system’s behavior in the limit is 

qualitatively different from its behavior for finite values of the parameter. In Anderson’s 

terms: “The essential idea is that, in the so-called N→∞ limit of large systems (on our own, 

macroscopic scale), it is not only convenient but essential to realize that matter will undergo 

mathematically sharp, singular “phase transitions” to states in which the microscopic 

symmetries, and even the microscopic equations of motion, are in a sense violated.” [30]. 

It is not surprising that Anderson, reflecting on his scientific work, recognized the 

importance of singular limits in the description of phase transitions and emergent behaviors. 

In fact, the phenomenon of localization that he discovered leads to the metal-insulator phase 

transition, in which the insulator behavior of the system emerges when the size of the lattice 

goes to infinity. From this perspective, the idealization involving infinite lattices is not a 

conceptual problem, but rather is precisely the mark of the novel behavior. It is in this sense 

that “more is different”: “The behavior of large and complex aggregates of elementary 

particles, it turns out, is not to be understood in terms of a simple extrapolation of the 

properties of a few particles. Instead, at each level of complexity entirely new properties 

appear.” [30].  

4.- Concluding remarks 

As anticipated in the Introduction, the perspective of the present article was essentially 

epistemological: the purpose was to point out the issues involved in the phenomenon of 

electron localization when considered from a conceptual viewpoint.  

On the one hand, the understanding of electron localization in molecules, central to 

account for many chemical facts, depends on the way in which the concept of electron density 

is interpreted. However, the interpretation of such a concept is not univocal, and the different 

interpretative perspectives have their peculiar difficulties.  

On the other hand, electron localization in crystalline solids, which is a collective 

phenomenon, leads to a phase transition that arises in the limit of infinite lattices. For this 

reason, such a transition can be conceived in terms of the emergence of novel and irreducible 



properties. The conceptual difficulty lies, in this case, in justifying the predictive success of a 

model of infinite size, when real systems are always finite. 

Although this work does not does not offer technical results, we hope that it will contribute 

to the way in which quantum chemists understand their own theoretical practices, under the 

assumption that conceptual clarification is an important resource for scientific development. 
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