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Abstract

Interference phenomena, such as those observed in Young’s double-slit experiment, are
foundational to quantum mechanics, yet their interpretation continues to spark debate.
Villas-Boas et al. [Phys. Rev. Lett. 134, 133603 (2025)] propose a quantum-optical frame-
work attributing non-detection in regions of destructive interference to photons occupying
“perfectly dark” states, which they claim do not interact with a two-level atom sensor due
to vanishing coupling in the Jaynes-Cummings Hamiltonian. We argue that this interpreta-
tion is fundamentally flawed. Dark states, such as the out-of-phase coherent state |a, —a),
are readily detectable in alternative experimental setups, including dispersive coupling in
cavity QED and photon-counting detectors like photomultiplier tubes or avalanche photo-
diodes, which are sensitive to the photon number operator. This detectability undermines
the assertion that dark states are the intrinsic cause of non-detection in destructive interfer-
ence regions. Instead, the quantum mechanical superposition principle, combined with the
Born rule, fully accounts for interference patterns across all detection schemes, as evidenced
by well-established experiments such as single-photon double-slit interference, Hong-Ou-
Mandel two-photon interference, and cavity QED measurements. By overgeneralizing a
detector-specific effect, the dark-state framework introduces an unnecessary and redundant
construct, as the standard quantum mechanical formalism already provides a complete and
experimentally validated explanation of interference phenomena.

1 Introduction

Interference phenomena, such as those observed in Young’s double-slit experiment, are corner-
stones of quantum mechanics, revealing the wave-like behavior of particles, including photons.
In their Letter, Villas-Boas et al. [I] propose a quantum-optical framework that attributes non-
detection in regions of destructive interference to photons residing in “perfectly dark” states,
which do not interact with a two-level atom sensor. We argue that this claim is fundamentally
flawed, as dark states are detectable in various experimental setups and theoretical models.
Instead, non-detection is a detector-specific consequence of the quantum mechanical superpo-
sition principle and the Born rule, which together fully account for interference patterns across
all detection schemes.

2 Critique of the Dark-State Framework

Villas-Boas et al. [I] propose a quantum-optical framework to reinterpret classical interference
phenomena, classifying photonic states in a multi-mode system as bright states, which couple
strongly to a two-level atom and correspond to constructive interference, and dark states, or
photon-dark states (PDS), which satisfy E*t(r,t)|1))) = 0 and do not couple to the atom,
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associated with destructive interference. The electric field operator is defined as E+(r,t) x
a1 + ase’, where a; (i = 1,2) are photon annihilation operators for mode i. They claim that
non-detection in regions of destructive interference results from photons residing in dark states.
Consider the out-of-phase coherent state |a, —«), identified as a PDS because it satisfies
Et(r,t)|a, —a) =0 (§ = 0). In the Jaynes-Cummings (JC) Hamiltonian:
Hye = hwoto™ + > hwiala; +hg Y (0% a; + o~ al), (1)
(2 1
where oF, 0~ are the raising and lowering operators for the two-level atom, and g is the coupling
strength, the interaction term hg >, (0 a; + a‘d;r) couples the atom to the field. For the PDS
|, —av), the interaction vanishes, leading to zero excitation probability via the Born rule and
resulting in non-detection.
However, the claim that dark states cause non-detection is incorrect, as dark states are

detectable with other interactions. For instance, a dispersive coupling in off-resonant cavity
QED:

Hyisp = hwoto™ + > hwiala; + hyo.(alay + ajas), (2)
i

where o, = |e)(e| — |g){g| is the Pauli Z operator for the atom, and x is the dispersive coupling
strength, allows detection of the PDS |«, —a). The photon number is:
(o, —alajar + ahaala, —a) = 2laf?, (3)

yielding an energy shift for the excited state |e):

(e, o, —a|Hgisple, o, —at) = hiw + 2hx|al?, (4)

and for the ground state |g), (g|o.|g) = —1, yielding —2hx|a|?>. The relative energy shift of
4hx|a|? induces a phase evolution in a superposition state %(] g) +le)):

[¥(t) = 7

This phase ¢ = 4x|a|?t is detectable via Ramsey interferometry.
Most photon detectors, such as photomultiplier tubes (PMTs) and avalanche photodiodes

<6i2x\o¢|2t‘g> n e—i2x|a\2t’€>> o, —ar). (5)

(APDs), are sensitive to the photon number operator N = dJ{&l + dgég. Their Hamiltonian is:
Hyot = Z hw,&;rd, + Z hwjl;;@] + Z hg”(&zi); + CALZB]'), (6)
i j ij

where 13;, Bj are the creation and annihilation operators for the detector’s internal modes (e.g.,
electronic states in PMTs or APDs). A direct calculation shows the detection rate is propor-
tional to (N ) = 2|a|?%. The Born rule ensures detection reflects the photon number, as confirmed
in single-photon double-slit experiments [2], the Hong-Ou-Mandel effect [3], and cavity QED [4]
(see also [9]).

3 Conclusion

Villas-Boas et al.’s dark-state framework correctly derives that states like |a, —cr) are unde-
tectable by a two-level atom in the JC Hamiltonian due to zero coupling. However, their claim
that dark states cause non-detection is incorrect, as dark states are detectable in other detection
schemes, such as dispersive coupling and photon-counting detectors. The overgeneralization of
dark states as the cause constitutes a fatal flaw. Existing experiments, such as single-photon



double-slit, Hong-Ou-Mandel, and cavity QED setups, confirm that the superposition principle,
combined with the Born rule, fully explains interference patterns.
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