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Abstract

It is a striking fact that the theories of the so-called geometric trinity of gravity can model the same gravitational
effects with such diverse geometric tools such as curvature, torsion, and non-metricity. Building on (Wolf et al.
2024), this contribution offers a clarification and expansion of responses to this underdetermination emerging in
recent years, namely discriminatory approaches such as Occamism and spacetime functionalism, or reinterpre-
tational approaches such as the common core and overarching solutions. Despite appearances, the future of the
metric-affine structure that accommodates the geometric trinity seems to lie not in these empirically equivalent

formulations but in heuristic for theory construction.
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1. The geometric trinity of gravity

At first glance, the existence of three empirically equivalent theories collectively known as
the “geometric trinity of gravity” — General Relativity (GR), the Teleparallel Equivalent of
General Relativity (TEGR), and the Symmetric Teleparallel Equivalent of General Relativity
(STEGR) — poses an obstacle to a literal realist view of curvature as an intrinsic property
of spacetime, thereby challenging one of twentieth-century physics’ most profound discov-
eries.” While GR describes gravitational interactions via non-vanishing Riemann curvature
R?,,, # 0 defined by the torsion-free, metric-compatible Levi-Civita connection @, TEGR
and STEGR do not use curvature. TEGR employs a flat, metric-compatible “Weitzenbock”
connection V with torsion 77, := r’ ] # 0; STEGR uses a flat, torsion-free, non-metric-
compatible “purely inertial” connection V with non-metricity Q o = vpgw # 0. Though
these theories thus use different affine and metric properties, they turn out to be dynami-
cally equivalent. The teleparallel field equations of TEGR, resulting from varying the action
functional Stepgr = % [ d*z+/eT (for e the determinant of the tetrad field), as well as the sym-
metric teleparallel field equations, from Ssrrar = % f d4z\/§Q, produce the same equations of
motion, up to boundary terms, as those that result from varying GR’s Einstein-Hilbert action:

Sen = —StEGR +b.t. = —SsTEGR + b.t., for the torsion scalar T := }lTW e, + %TPV“TMVP —

17, T,"" and non-metricity scalar () := }lQWp He — }lepQ”W’ — %QW“QMBB — %QWO‘Q%“.g

Read literally," cashing out explanations in terms of these spacetime properties leads
to rather different pictures of gravitational effects. Curvature is the property of spacetime that
when we parallel transport a vector (or tensors generally) around a closed loop the direction of
that vector is not preserved; torsion is the antisymmetric part of a connection that quantifies
the failure of (infinitesimal) parallelograms to close when vectors are parallel transported
along each other’s directions; non-metricity quantifies the failure of the connection to preserve
the metric under parallel transport, meaning that lengths and angles of vectors depend on
the path connecting them. See Figure 1. In all three theories of the geometric trinity, test

1See Hehl et al. 1995a; Jiménez, Heisenberg, and Koivisto 2019; Bahamonde et al. 2023; Heisenberg 2024
for in-depth explorations of the geometric trinity and the technical details below. In general the discussion
avoids the mention of tetrads, for brevity, since both metric formulations and tetrad formulations of three
theories exist (cf. Capozziello, Falco, and Ferrara 2022).

2A handy iconic mnemonic is to always write a symmetric connection with a symmetric symbol such as
‘o’ or ‘=’ and an anti-symmetric connection with an anti-symmetric symbol such as ‘~’.

3This dynamical equivalence is thus a local matter. One may inquire whether the empirical equivalence
of the trinity can be challenged in ways that go beyond the equations of motion, but no worked-out cases
are forthcoming, besides suggestions that one may expect empirical divergence globally, such as the absence
of black hole solutions (cf. Hayashi and Shirafuji 1979), or seeing different boundary effects (Wolf and Read
2023) or using quantum probes to exploit teleparallel analogues of the Aharonov-Bohm effect (Mulder and
Read 2024). Additionally, TEGR requires an additional topological property, namely that the manifold is
parallelizable, which means it must admit a global tetrad field.

4 Tt would be too far afield to philosophically substantiate the idea of (and disagreements about) “literal
interpretation” here. The underlying idea is (roughly) that the only tools for interpretation lie in the internal
semantic architecture of the theory itself, rather than being formulated in an externally imposed theoretical
superstructure (De Haro and Butterfield 2021; Dewar 2023). In the current context, the examples are taken
to show sufficiently clearly what a literal interpretation amounts to: if a model employs curvature, torsion,
or non-metricity to account for gravitational phenomena in an empirically adequate manner, then one maps
these properties of the formalism to spacetime properties of the physical world.



particles follow the exact same trajectories, but the explanation why those trajectories are
followed are — even though all three theories explain gravity in geometric terms rather than in
terms of forces — radically different. Consider the famous apple that falls from a tree. Within
GR, one solves the Einstein equations with Earth as an energy-momentum source and the
apple freely falling along an affine-geodesic of @, which coincides with the metric-geodesic
(a path of extremal proper time). Within TEGR, the apple falls because Earth’s mass this
time sources torsion, and this torsion causes the apple to accelerate downward, deviating
from the affine-geodesics of V. Within STEGR, because the metric is not preserved under
parallel transport, the length of the apple’s velocity vector ||u*||(z”) = ¢, (z*)utu” increases,
so that while the apple is moving along an affine-geodesic of V, the motion is accelerated,
which will be picked up by clocks and rulers tied to the metric. These explanations are so
different from the ontological commitment to curvature — internalized during late night hours
perusing MTW’s (1973) visualizations of curved spacetimes — that one begins to doubt that
commitment. Is spacetime truly curved?
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Figure 1: From left to right: (a) Curvature. The non-coincidence of vectors transported around
a closed loop is measured by the Riemann tensor. (b) Torsion. The amount of non-closure of
parallelograms formed by two vectors transported along each other is measured by the torsion
tensor. (¢) Non-metricity. The change of the length and angles of vectors due to non-preservation
of the metric under parallel transport is measured by the non-metricity tensor. Figure reproduced
on the basis of (Jiménez, Heisenberg, and Koivisto 2019, Fig 1).

The purpose of this article is to clarify and compare several recently emerging so-
lutions to this apparent underdetermination in a briefly summarized but exact form. Re-
lying extensively on Le Bihan and Read 2018; Wolf, Sanchioni, and Read 2024, it surveys
both discriminatory responses, such as Ockhamism and functionalism, and reinterpretational
strategies, including common core and overarching solutions.

2. Formal and problematic underdetermination and how to respond to it

Underdetermination is a word connoted in the mind of the philosopher with various arguments
in debates about scientific realism, and strong opinions on it abide.” We speak of “transient
underdetermination” or “weak underdetermination”) when the data domain is restricted
to the current domain that can technologically be probed. If the underdetermined theories
make indistinguishable predictions about all data that can possibly be gathered, we speak

5The relevant literature is too vast to review, but here the following work is consulted: (Sklar 1975; van
Fraassen 1980; Psillos 1999; Ladyman 2001; Chakravartty 2007; Stanford 2010; Azhar and Butterfield 2017;
Le Bihan and Read 2018; De Haro and Butterfield 2021; Mulder 2024).



of “permanent underdetermination” (or “strong underdetermination”).’ If we grant that a
theory has an observation base — i.e., the observable predictions can be isolated — then it is
an objective fact whether two or more theories are indeed formally underdetermined by the
data. That is,

Formal underdetermination of theories by data. Multiple theories explain
the same data by providing indistinguishable observable predictions, either tran-
siently or permanently. The theories can therefore not be discerned on empirical
grounds.

Formal underdetermination is ubiquitous in physics and usually does not justify something
to worry about. More worrying is when formally underdetermined theories are suspected to
be ontologically divergent, given plausible interpretations of the individual theories:

Problematic underdetermination of theories by data. Multiple theories
explain the same data by providing indistinguishable observable predictions and
provide ontologically-divergent explanations, either transiently or permanently.
The theories can therefore not be discerned on empirical grounds, which results
in empirical support for multiple potentially inconsistent ontologies.

Thus, formal underdetermination of theory by data, sometimes but not always, brings the
underdetermination of ontology in its wake.

Cases of problematic underdetermination require a philosophical response. One may
of course assume a distinction between the observable and unobservable and argue a la
constructive empiricism that we have an in-principle lack of empirical access to the latter,
resulting in a (transitory or permanent) agnosticism. There are various ways to formulate
more realist responses, here simplified into three main groups, cf. Fig. 2. First, one should
not go to jail for resisting the monist intuition that only one theory can be correct, for a
pluralist holds that perhaps we should not say there is a unique way the world is like, so that
there are multiple overlapping ontologies, indexically organized as ‘ontology;” and ‘ontology,’.
In fleshing out such a pluralism, one is not relieved from the responsibility to say whether
the underdetermination is problematic or merely formal, since one needs to say how many
ontologies there are.”

Second, one may appeal to supra-empirical criteria to choose one of the theories over
the others on independent grounds, what is also called “discrimination” in (Le Bihan and
Read 2018), such as choosing the simpler theory over the other, or the theory one deems
more intelligible or more aesthetically pleasing. Or, one may draw on Kuhnian values such as
consistency and fruitfulness (1973) or on technical criteria such as preferring a local or deter-
ministic explanation. Such supra-empirical criteria for theory-choice are notoriously disputed
because they need to be independently justified or otherwise argued for.

SThese are not entirely synonymous. Strong underdetermination implies permanent underdetermination,
but not wice versa, since there are cases of underdetermination that are permanent but apply to empirically
inequivalent models that will always saturate the in-principle observable parameter space (Pitts 2010; cf. Wolf
and Read 2025 for permanent underdetermination of empirically inequivalent dark energy models).

"Sophisticated pluralists recognize this responsibility of reading off the ontology from the theory (Feyer-
abend 1963; Chang 2012, Ch. 5.1).



Figure 2: Theory-choice in a situation of problematic underdetermination. From left to right:
(a) Pluralism. Commit to the ontology of all theories; (b) Prefer on independent grounds.
Choose one of the theories on supra-empirical grounds (e.g. Ockhamism); (c¢) Reinterpretation.
Ontologically commit to what the theories agree on in light of (cl1) the common core as an
individual viable theory, or (c2) an overarching structure that embeds the formalisms of all
theories. Options (c1) and (c2) are presented in (Le Bihan and Read 2018)

Third, one may attempt to reinterpret the theories such that it turns from a case of
problematic underdetermination into a case of (mere) formal underdetermination. Le Bihan
and Read (2018) provide useful language for two options to achieve this. One of these is a
common core solution, which aims to extract the shared structure from the theories to form a
minimal theory that (i) preserves all empirical content of the original theories, (ii) avoids extra
ontological commitments that differ across the full theories, and (iii) is ontologically viable in
its own right, as a fully fledged physical theory in its own right. The other is an overarching
solution, which is an ontological deflation across the underdetermined formalisms such that it
treats the theories, so far distinctly interpreted, as merely variant representations of a common
invariant ontology. That is, it retains all the formalisms but unifies them by embedding them
in a more encompassing mathematical framework. Again, also such reinterpretative responses
to problematic underdetermination ought to be independently argued for.®

Since the dynamical equivalence of the theories of the geometric trinity of gravity
holds for all predictions of the theories, it forms a case of permanent underdetermination
(see also Wolf, Sanchioni, and Read 2024). Additionally, the apparently physically divergent
explanations of gravitational effects (cf. 1) seem to be a sufficient reason to regard this
as a case of problematic underdetermination. In the remainder of this paper, the above
possible responses to this permanent underdetermination are summarized and discussed.’
Such overviews are foreshadowed in (Lyre and Eynck 2003; Mulder 2024; Mulder and Read
2024; Zhou 2025), and will most heavily rely on (Wolf, Sanchioni, and Read 2024).

8 As another solution one may consider the judgment, relative to a convincing equivalence criterion, that
the underdetermined theories are theoretically equivalent because they posit the same mathematical structure.
This can be seen as a special of the common core solution, where theories together comprise the common
core: they are all in fact the same theory and say the same things about the world. No wonder then that
they make the same predictions. Examples are structural, functional, categorical, Morita, and definitional
equivalence (cf. Glymour 1970; Barrett and Halvorson 2016; Weatherall 2019a,b; Dewar 2022, 2023; Knox
and Wallace 2024).

9No pluralist accounts appear to be forthcoming in the literature of the geometric trinity.



3. Discrimination by implicit definability: surplus and superfluous structure

The three nodes of the geometric trinity of gravity do not appear to be mere reformulations of
each other in the sense that they posit the same mathematical structure. One (preliminary)
argument against theoretical equivalence of TEGR with GR and STEGR is that, because
the parallelizability condition confines the solution space of TEGR to that of a subset of the
possible solutions of GR, the cardinalities of the theories do not coincide. Despite the (local)
empirical equivalence, TEGR allows for strictly fewer global solutions than GR. However, this
argument is not convincing, for (i) all the candidate physical spacetimes, such as Minkowski,
de Sitter, FLRW and black hole spacetimes, this requirement holds, and (ii) locally any
differentiable manifold can be parallelized.

The more convincing argument is to show that the GR posits strictly less structure
than the other two theories. This has been shown to be the case by (Weatherall and Meskhidze
2024, see also Knox 2011) in the case of GR and TEGR, and by (Golovnev 2024; Weatherall
2025) for the entire geometric trinity. The crux is that the Levi-Civita connection V is im-
plicitly definable in each theory of the geometric trinity, because it is uniquely determined by
the metric, whereas the teleparallel connections V and V are not.'’ Breaking the torsionfree
condition allows many torsionful connections to be compatible with the metric and, similarly,
breaking the compatibility condition introduces many flat torsionfree connections which are
not distinguished by the metric. Another way to see this is that for the manifold M and the
metric tensor g, the tuples Trpar = (M, g, V) and Tsregr = (M, g, V) require explicit men-
tion of the connection to specify all of the affine structure, while writing T = (M, g) suffices
(and Teg = (M, g, V) would be redundant). This many-to-one mapping from TEGR/STEGR
to GR, with the same empirical substructure, even up to isomorphism, means that the former
have surplus structure.'!

Weatherall and Meskhidze, as well as Golovnev, explicitly opt here for an Ockhamist
discriminatory solution in favor of GR. This Ockhamist argument is straightforward: since
GR and its teleparallel counterparts are empirically equivalent but GR requires only a metric
tensor, it is the more parsimonious theory, which, by Ockham’s razor, favoring theories that
do not posit unnecessary structure, GR is preferable.

The argument that GR should be preferred for positing less structure has been fore-
shadowed in the case of TEGR in (Knox 2011), by arguing that conserved quantities are
calculated by using the Levi-Civita connection “in disguise”, mimicked by the Weitzenbock
connection and the contorsion tensor. Although this mimicking by itself is symmetric be-
tween the theories, as pointed out in Mulder and Read 2024, in combination with the surplus
structure argument this can be read as making the point that TEGR has “unnecessary”
affine structure. Knox, however, uses this implicit observation to argue that TEGR is a re-
formulation of GR on a “relatively liberal attitude” towards ontology (Knox 2011, p. 274),
i.e., her inertial frame spacetime functionalism (avant la lettre, given Knox 2013). Knox’ po-

10A similar point is also made in (March, Wolf, and Read 2024; Wolf, Sanchioni, and Read 2024) in the
context of the common core solution, see §4.

"For tetrad formulations of TEGR, in which one may fix the tetrad frame and define the Weitzenbock
connection in terms of it, the additional “gauge degrees of freedom” (in the sense of surplus structure,
cf. Weatherall 2015) reside in the tetrads 4 x 4 = 16 independent components, compared to the (symmetric)
metric tensor’s @ = 10.



sition appears to combine elements form the prefer-on-independent-grounds approach and
the reinterpretative common core approach.

4. The common core of the geometric trinity is GR

On the premise that there exists an interesting common core capable of functioning as a
distinct individual theory, one may search for what the three connections V V, and V
have in common. Abstracting away from all the structure that is not in common between
these, however, leaves one with an impoverished structure, not capable of functioning as an
individual theory because it has not natural straight lines—what is called the “problem of
missing inertial structure” in (Diirr and Read 2024).

Indeed, as argued in (Wolf, Sanchioni, and Read 2024, p. 28, who thank Adam Caulton
and Oliver Pooley for discussion on this) and (March, Wolf, and Read 2024), no distinct
dynamical common core exists for the relativistic trinity. In fact, the common core “just is”
GR. The argument for this conclusion is essentially the implicit definability argument of the
previous section (3): the minimal overlap between GR, TEGR and STEGR is the empirical
substructure (M, g) itself, from which the inertial structure is implicitly uniquely defined by
the metric structure: the Levi-Civita connection coefficient are Zf”’w, = 0" (0uGrv + OuGpur —
OrGuw)-

Although the authors do not explicitly formulate the full solution, it is obvious that
this works: since GR is our most successful theory of gravity, it is certainly a viable theory
of its own, and a reinterpretation of GR, since it is the common core, is not required (or it is
trivial). No reinterpretations of TEGR and STEGR are required, but one should be “purging
what is not shared between” (Wolf, Sanchioni, and Read 2024, p. 27) the three theories and
thus they are no longer in sight. Thus this does not just amount to the same conclusion as
the Ockhamist argument, but functions as the same argument. Curiously, when the common
core approach, which requires reinterpretations, identifies as the common core one of the
original theories in full, this approach collapses into the Ockhamist approach, even though
the latter does not require any reinterpretation.

In this light, it is not too clear whether the authors endorse this as a solution to
the underdetermination of the geometric trinity or not. Indeed, (Wolf, Sanchioni, and Read
2024, pp. 26-28) actively resist it by arguing that such a solution would require arguments
that TEGR and STEGR are somehow pathological—after all, a common core in general
just adds to the number of theories or keeps the number equal, rather than subtract. Addi-
tionally, they resist Ockhamism by denying that the extra structure of (S)TEGR is totally
superfluous because it may enhance our modeling capacities, e.g. by unifying gravity with
particle physics.'” However, it is not clear how this enhanced modeling capacity can help
solve the underdetermination problem. Rather, it serves as a heuristic toward new theories,
which would be more of an argument in favor of the overarching approach in which a larger
mathematical embedding of the theories can do more than just their union.

2Weatherall (2025) argues that (S)TEGR is not like a Yang-Mills gauge theory because the Cartan
connection is not a principal connection, and induces additional structures such as the tetrad, i.e., internal
and external indices are mixed.



5. Overarching solutions: one MAG connection to rule them all?

An overarching solution to underdetermination among GR, TEGR, and STEGR would show
that these are not genuinely distinct theories but rather different representations of a sin-
gle gravitational theory formulated in varying terms of the affine-connection. Rather than
applying Ockham’s razor, this approach embraces surplus structure. Rather than purging of
the excess structure of the common core account is a form of reductive interpretation (tak-
ing equivalence classes of symmetry-related models), the opposite “sophistication” move is
made, in the sense of (Dewar 2019). Here the extra modeling capacities of the surplus struc-
ture is used to create different mathematical representations of the same phenomenon. More
precisely: rather than reformulating the theory to include only quantities invariant under a
symmetry, sophistication preserves TEGR and STEGR but alters their semantics by treat-
ing symmetry-related models as equivalent representations rather than distinct possibilities.
Thus, sophistication changes interpretation rather than structure, making it suitable for a
strategy to achieve the overarching solution.

One may naively consider (that is, it was a long-held belief of the author) that the
knowledge we obtain about the world lies at the intersection of the concepts of curvature,
torsion, and non-metricity. A natural candidate here is the concept of non-trivial path-
dependence. Looking at just GR and TEGR — which is natural, for unlike curvature or
torsion, non-metricity is not an intrinsic property of a connection, but rather a relational
property between connection and metric — one generalizes to their common structure of a
Riemann-Cartan manifold and assumes a general Cartan connection that is both curved and
torsionful. Such a spacetime has local Lorentz symmetry and local translation symmetry
(i.e., Cartan curvature has values in the Lie algebra of the Poincaré group 150(1,3)), and
theories constructed on this background are often called “Poincaré gauge theories” (PGT)
(Baez and Wise 2015; Weatherall 2025). Then, a plausible candidate for what represents their
commonality may be the Lie bracket of covariant derivatives '*:

[V, VI VP =R, VT —T°, NV, V7, (5.2)

generating the torsion and Riemann tensors. This may be interpreted as that what torsion and
curvature agree on, namely as a measure of the non-triviality of affine structure, representing
how translations and rotations jointly fail to commute. Unfortunately, although this works to
illustrate the conceptual interrelations, the Lie bracket is far from a mathematical invariant
of the dynamical equations (nor a dynamical common core, for that matter), and so cannot
serve as a central part of an overarching solution.

13That is,

Vo V] VP =8, (V,VP) + T, PV, VT —T,, V.V — {1 v}
= 0,0, VP + 0.1 VI + 17,0,V + 17,0,V + 17, T7 VT =T7,0, VP =17, T° VT —{u < v}
= 8,0,V + 9,17,V + [P, 8.V + T?, 0,V + T, 7, V° T, 0,VF 7, I V°
— 8,0,VF — 9,17,V —T*, 0V — I*, 0V —T?, T7, V°+T%, 0,VF +T7, I V°

= (aﬂrpua - 81’1—")#0’ + FpMTFTVU - FpVTFT#0'> V7= [FTMV - FTVH] (aTVp + FpTUVU> ) (51)

with in the last line the first four terms symmetric and the last two anti-symmetric under {u <> v}.



Recently, a sophisticated version of GR and TEGR was fully developed by (Chen,
March, and Read 2025), along with various other formulations of teleparallel gravity. Fol-
lowing (Martens and Read 2020), they distinguish between external sophistication, i.e., the
inserting more gauge transformations without changing the theory’s mathematical structure,
and internal sophistication, i.e., reformulating the theory so that symmetries become isomor-
phisms.'* Then, they show that teleparallel gravity as a Cartan or higher gauge theory can
be understood as internally sophisticated versions of more conventional formulations such as
TEGR. (in this case by moving towards Cartan or higher gauge formulations of teleparallel
gravity). Although not stated explicitly, the paper implements the spirit of the overarching
solution to underdetermination, because it treats distinct teleparallel formulations as different
representations of the same physical content.

In the standard formulation, models of teleparallel gravity are given either in terms of
a triple (M, g, V(W)) or a pair (eamwabu>. A more sophisticated interpretation recognizes
that many such models are related by local Lorentz transformations of the tetrad, of the
form e®, — A%(x)e’,, for A%(z) a local Lorentz transformation. In a naive formulation,
each such transformation yields a distinct model. However, if one expands the category of
models to include local Lorentz gauge transformations as morphisms, these models become
isomorphic, as Chen, March, and Read show. Therefore, the teleparallel equivalent of general
relativity (TEGR) can be given a more sophisticated interpretation by enlarging the class
of morphisms -— such as in a Cartan-geometric or higher gauge-theoretic framework — so
that local frame rotations are treated as gauge redundancies rather than physically distinct
configurations.

Moving on to incorporate STEGR, the mathematical structure should be further en-
riched and the common concept further weakened. In this case, one moves to a general metric-
affine gravity (MAG), which allows for a general connection that can be curved, torsioned
and non-metric. Its general affine connection is often written as'’:

I, =I%,+K., + L0, (5.3)
where K}, is the contortion tensor (built from torsion) and L, the disformation tensor
(built from non-metricity). The full symmetry group of MAG is the affine group: Aff(4,R) =
GL(4,R) x R*, the semi-direct product of the general linear group and the group of space-
time translations, combining Lorentz transformations, scaling, and volume-preserving defor-
mations with spacetime translations (Hehl et al. 1995b). One then has three independent
fields, namely the tetrad, the connection and the metric.

An overarching solution in terms of MAG can then easily be formulated. One tolerates
the surplus structure and recovers the theories of the geometric trinity by taking the appro-
priate limits, e.g. recovering GR by setting K ﬁ‘y = 0 and Lﬁy = 0. Closest to formulating
such a solution is (Zhou 2025).

141n category language, a sophisticated theory is one where more morphisms are added so that symmetries
become isomorphisms, allowing you to identify equivalent models internally (see fn. 4).

15 Although canonical texts like (Bahamonde et al. 2023; Heisenberg 2024) write it so, this may be too
rough: the contorsion tensor cannot be defined as usual without the assumption of metric-compatibility.
Nevertheless, since we only look at the three nodes of the geometric trinity, this is harmless in the current
context.



Can we embed a sophisticated version of GR, TEGR and STEGR withing MAG?
Each theory should then be interpretable in an internally sophisticated way by expanding the
category of models to include gauge transformations such that the three formulations become
equivalent as categories: their differences in torsion, curvature, or non-metricity would then
reflect alternative presentations of the same underlying physical content. Such a treatment

requires more space and time than currently available, but appears to be in sight, if modeled
on (Chen, March, and Read 2025).

Curvature Torsion Non-Metricity

General Relativity (GR) yes no no
Teleparallel Gravity (TEGR) 1no yes 1no
Symmetric Teleparallel Gravity (STEGR) no no yes
Poincaré Gauge Theory (PGT) yes yes no
Metric-Affine Gravity (MAG) yes yes yes

Table 1: Presence of geometric structures in different (gauge) theories of gravity.

However, these sophisticated solutions achieve little more than a mathematical embed-
ding. It is not clear whether the overarching theory offers a distinct ontological interpretation
(cf. Le Bihan and Read 2018, p. 9). The justification of an overarching solution may very
well lie in extensions of any one of the three nodes of the geometric trinity into empirically
inequivalent domains, not in a solution to underdetermination.

Another overarching approach is the conventionalist solution in (Diirr and Read 2024),
which resolves problematic underdetermination of the geometric trinity by treating the in-
compatible geometric structures of GR, TEGR, and STEGR not as competing claims about
reality, but as formal choices that lack truth-values, i.e. conventions. Conventionalism denies
there is a fact of the matter about which spacetime property, such as curvature, torsion, or
non-metricity, is “true”. Rather, each formalism can be chosen at convenience. Although this
position is explicitly framed in (Wolf, Sanchioni, and Read 2024) as a “pluralist” option, it
seems more natural to regard the stripping of truth-values of affine properties as a reinterpre-
tation. Perhaps this is a semantic issue, and these properties can be regarded as having never
had a truth-value. However, in that case, there was never a case of problematic underdeter-
mination to begin with, and the formal underdetermination of the geometric trinity would
be akin to any mathematical reformulation in physics. In addition, (Diirr and Read 2024)
identifies their position explicitly as a selective realism, indicating that the three theories are
not pluralistically accepted alongside each other.

6. Is there a future for the geometric trinity of gravity?

There is no question that, seen purely at the level of empirical equivalence, the theories
of the geometric trinity are indeed formally underdetermined and, moreover, theoretically
inequivalent. That gravitational effects can be modeled in such different ways is a highly
non-trivial formal fact by itself. Literally read, this also amounts to a case of problematic
underdetermination, if anything. But should we thereby be concerned about our ontological
commitment to spacetime curvature, as represented by the Riemann tensor in terms of the
Levi-Civita connection?

10



There are good prima facie reasons to resist such concerns. To date, the Ockhamist
argument in (Weatherall and Meskhidze 2024; Weatherall 2025), and foreshadowed in (Knox
2011), appears to be the most worked out argument that achieves the goal of resolving
problematic underdetermination, by discarding TEGR and STEGR on the basis of positing
superfluous structure. Since parsimony arguments need to be justified by themselves, there
may yet be more convincing alternative solutions. The common core solution formulated in
(March, Wolf, and Read 2024; Wolf, Sanchioni, and Read 2024), is successful and favors GR
itself as a common core, but this solution happens to coincide with the Ockhamist position
(to the extent that it was offered as an alternative). The overarching solution of a metric
affine GL(4,R) structure, although prima facie promising, offers little more than an artificial
gluing together trinity, as a trivial embedding without explanatory benefit. The sophisticated
interpretation of GR and TEGR by (Chen, March, and Read 2025) can hopefully be extended
meaningfully in this direction.
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