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1. Introduction

Most accounts of how idealized models explain seek to show that the model’s idealizations are “harmless” because they only distort features that are irrelevant. It is then argued that the idealized model is still able to explain because it provides an accurate representation of the relevant or difference-making features of the real-world system(s) in which the explanandum occurs. I will call this the standard view of how to justify idealizations in models that explain.


In this paper, I will first argue against the standard view. The general problem is that many of the distortions introduced by idealizing assumptions cannot be isolated to the distortion of irrelevant features of the model’s target system(s). Instead, many idealized models that explain provide holistically distorted representations of their target system(s). That is, the distortions introduced by many (if not most) idealizations in scientific modeling are far more pervasive than is assumed by the standard view. As a result, the standard view will fail to justify many of the idealized modeling techniques that are used to explain in actual scientific practice.


In response, I contend that most idealized models that are used to explain in science ought to be characterized as holistically distorted representations. That is, I will suggest that models are themselves idealizations (as a whole), rather than having idealizations as isolable parts. I describe these models as “holistic distortions” because they pervasively misrepresent the basic components, interactions, and difference-making features of their target system(s). This holistic distortion view, however, raises a serious challenge. Given that most accounts of how models explain require accurate representation of difference-making factors, how can models that provide holistically distorted representations explain? In order to answer this question, I will propose an alternative method for justifying scientists’ use of idealized models to explain that appeals to universality: the fact that systems with (perhaps very) different physical features will display similar patterns of macroscale behavior. I will argue that universality allows us to connect holistically distorted models with real-world systems in ways that allow for explanation without requiring accurate representation of difference-makers (Batterman and Rice 2014).


The following section surveys various instances of the standard view in the literature. Next, Section 3 uses examples from physics and biology to argue against the standard view and motivate my alternative approach. In response, Section 4 argues that many idealized models that explain are holistic distortions and lays out the four main claims of my holistic distortion view. Then, Section 5 discusses how to justifying the use of holistic distortions to explain by appealing to universality. The final section concludes and suggests some ways to expand the holistic distortion view.
2. The Standard View
The standard view of how to justify the use of idealizations within models that explain is to show that the idealizations are “harmless” because they do not get in the way of the accurate parts of the model that do the real explanatory work. As Michael Strevens puts it, “the causal factors distorted by idealized models are details that do not matter to the explanatory target—they are explanatory irrelevancies. The distortions of the idealized model are thus mitigated” (Strevens 2009, 340). In other words, the goal of these accounts is to isolate idealizations and justify their distortions (typically one at a time) by showing that each idealization only distorts a set of features that are irrelevant to the target explanandum. The models are then claimed to explain because they provide an accurate representation of the contributions made by the relevant or difference-making features of their target system(s).


As a first example, Mehmet Elgin and Elliott Sober (2002) argue that optimality models in evolutionary biology can still be explanatory despite being highly idealized because the idealizations make little difference to the predicted outcome. They say: 

A causal model contains an idealization when it correctly describes some of the causal factors at work, but falsely assumes that other factors that affect the outcome are absent. The idealizations in a causal model are harmless if correcting them wouldn’t make much difference in the predicted value of the effect variable. Harmless idealizations can be explanatory (Elgin and Sober 2002, 448).

In other words, according to Elgin and Sober, idealized models can still explain because they only distort features that are irrelevant to the occurrence of the explanandum. We can see their irrelevance by noting that removing the idealizations from the model—or replacing them with correct assumptions—would not make much difference to the predictions made by the model. As a result, according to these philosophers, idealized optimality models can explain when they correctly describe the (difference-making) role of natural selection in bringing about the explanandum and only idealize other evolutionary factors that are assumed to be irrelevant (e.g. drift or migration).

Ernan McMullin’s (1985) account of “Galilean” idealization is also aimed at showing that many of the idealizations used within scientific models are harmless in a sense. According to McMullin’s account, idealizations can be used to make scientific models more (computationally) tractable as long as those idealizations can (at least in principle) be replaced as science progresses (McMullin 1985; Weisberg 2007, 2013). More specifically, in order for models to provide “full” explanations that are compatible with scientific realism, the models must be capable of being “corrected” or “filled in” such that the idealizations can be shown to be irrelevant to the results of the original model (McMullin 1985, 261-263). As Michael Weisberg puts it, “Galilean idealization takes place with the expectation of future deidealization and more accurate representation” (2007, 642). According to McMullin, this process of deidealization shows that the idealizations in the original model were not really essential to the theoretical results—i.e. that they were ultimately harmless misrepresentations. Moreover, it enables us to see that “the original model does give a relatively good fit to the real structure of the explanandum object” (McMullin 1985, 264). That is, by showing that the idealizations were harmless (because they could later be corrected) we also see that the original model was approximately accurate with respect to the relevant features of the target phenomenon.

Other philosophers have attempted to demonstrate that idealizations in scientific models are harmless by appealing to robustness analysis. Richard Levins initially argued that when we consider a number of similar but distinct models, “If these models, despite their different assumptions, lead to similar results, we have what we can call a robust theorem that is relatively free of the details of the model” (Levins 1966, 20). More contemporary defenders of robustness analysis have suggested that when we have a robust result we can infer additional claims about the role of idealizations within models that explain (Kuorikoski et al. 2010; Lehtinen and Kuorikoski 2007). These authors argue that robustness analysis can provide, “evidence that the result is not an artifact of particular idealizing assumptions” (Kuorikoski et al. 2010, 543). For example, they suggest that within economic models, ‘‘the assumption of self-interest is not explanatorily important in a model if it can be replaced with another behavioral assumption without changing the analytical results’’ (Lehtinen and Kuorikoski 2007, 127, my emphasis). In other words, these philosophers argue that robustness analysis can be used to justify idealization within models that explain by showing that the idealizing assumption is not explanatorily important; i.e. that its distortion is irrelevant to the explanation provided by the model.


In a similar spirit, Michael Weisberg and Michael Strevens both attempt to justify idealizations in models that explain by arguing that idealizations’ role is to help isolate the difference-making features by distorting only what is irrelevant (Strevens 2009; Weisberg 2007, 2013). For example, Weisberg describes minimalist idealization as, “the practice of constructing and studying theoretical models that include only the core causal factors which gave rise to the phenomenon” (Weisberg 2007, 642).
 According to Weisberg, a minimalist model, “accurately captures the core causal factors” since, “[t]he key to explanation is a special set of explanatorily privileged causal factors. Minimalist idealization is what isolates these causes and thus plays a crucial role for explanation” (Weisberg 2007, 643-5). 


Weisberg cites Strevens’s (2009) account of idealized models as a paradigm example of minimalist idealization. Strevens explains his account of how idealized models can explain in this way: 

The content of an idealized model, then, can be divided into two parts. The first part contains the difference-makers for the explanatory target...The second part is all idealization; its overt claims are false but its role is to point to parts of the actual world that do not make a difference to the explanatory target. The overlap between an idealized model and reality...is a standalone set of difference-makers for the target. (Strevens 2009, 318).

According to these views, a causal factor makes a difference to a phenomenon just in case its removal from the correct causal model of the system prevents the model from entailing the phenomenon’s occurrence. After applying this criterion of difference making, a canonical explanation is a causal model that contains all the difference-making causes. Idealizations can then be introduced in order to emphasize that the distorted features are irrelevant. For example, in the case of explaining Boyle’s law, Weisberg claims:

[T]heorists often introduce the assumption that gas molecules do not collide with each other. This assumption is false; collisions do occur in low-pressure gases. However, low-pressure gases behave as if there were no collisions. This means that the collisions make no difference to the phenomenon and are not included in the canonical explanation. Theorists’ explicit introduction of the no-collision assumption is a way of asserting that collisions are actually irrelevant and make no difference. Even with this added, irrelevant fact, the model is still minimalist because it accurately captures the core causal factors. (Weisberg 2007, 643)

Like the previous views, according to these accounts, when idealized models explain it is because the model accurately represents the difference-making features of the target system and the idealized parts of the model are justified by only distorting features that are assumed to be irrelevant. 


As a final example, according to Uskali Mäki’s functional decompositional approach economic modelers use idealizations to build isolations (i.e. idealized models) such that: “(i) the factors and causal mechanisms contained in the isolated field are real, that (ii) these factors have a certain significant impact on the explanandum…and that (iii) the effect of these factors on the explanandum is mediated by the causal mechanisms depicted” (Mäki 1992, 343). In other words, Mäki argues that idealizations in economic models can be justified by distorting irrelevant factors so that scientists can isolate the accurate representation of the difference-making features of the target system(s).


The general strategy of these views is to first argue that a model’s idealizations can be isolated from the model’s accurate representation of the difference-making features of the target system(s). These accounts then claim that the use of idealizations in models that explain can be justified because the idealizations only distort features that are irrelevant to the occurrence of the target explanandum. In other words, the goal is to show that the idealizations are harmless because they do not get in the way of the accurate representation of the difference-makers for the target explanandum. Ideally, then, a model that explains can be characterized as having two dissociable parts: (1) the accurate representation of the relevant (i.e. difference-making) features and (2) the distortion of a set of features that are irrelevant. I will refer to this kind of approach as the standard view of how to justify the use of idealizations in models that explain.

3. Against the Standard View

In this section, I argue that the standard view will fail to account for many of the explanations provided by idealized models in science. The general problem is that the distortions introduced by the idealizing assumptions of many scientific models that explain cannot be isolated to (or targeted on) particular irrelevant features. Instead, the distortions introduced are often pervasive system-wide distortions. Moreover, idealizations are often introduced that directly distort difference-making features for the target explanandum.

3.1. An Example from Physics: Minimal Models and the Thermodynamic Limit

Physicists often provide explanations that appeal to models that fail to accurately represent the difference-making features of their target system(s) (Batterman and Rice 2014; Batterman 2002, 2010; Bokulich 2011, 2012; Hartman 1998; Pexton 2014). For example, physicists routinely use the Ising model to explain various properties of magnets and lattice gas models to explain various patterns of fluid flow (Batterman and Rice 2014). However, these idealized models drastically distort the kinds of entities, interactions, and basic ontology of their target systems. For instance, the lattice gas automaton (LGA) model is a reinterpretation of the familiar 2D Ising model and places a set of point particles on a hexagonal lattice and allows them to move in one of six directions (Figure 1).
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Figure 1: The lattice gas automaton (LGA) model (Goldenfeld and Kadanoff 1999).

The model then uses the following updating algorithm: Between (1) and (2) the particles move in the direction of their arrow to the nearest neighboring node. If the momentum at that node sums to zero, the particles undergo a collision resulting in a jump of 60 degrees as shown in (3). Running this algorithm many times for many particles is able to reproduce many of the macroscopic behaviors of real fluids.

What is important to note is that physicists have used lattice gas models to explain various features of liquid-gas phase transitions and patterns of fluid flow despite the fact that these models drastically misrepresent the features of any real fluid (Batterman and Rice 2014). Real fluids are not discrete, are not composed of point particles, the motions of their components are not restricted to a lattice, and the simple algorithms used within the LGA model do not accurately describe any of their interactions. Consequently, the LGA model pervasively distorts the basic ontology, features, and key interactions of its target systems—yet it is still used to explain and understand various behaviors of real fluids.


What is more, physicists’ applications of these lattice gas (and Ising) models often involve an essential mathematical operation called the thermodynamic limit. This widely used modeling assumption is the limit in which (roughly speaking) the number of particles of the system approaches infinity. What is important to note is that in many cases, “This limiting idealization is essential for the explanation because for a finite number of particles the statistical mechanical analogs of the thermodynamic functions cannot exhibit the nonanalytic behavior necessary to represent the qualitatively distinct behaviors we observe” (Batterman 2010, 7). Most importantly, the thermodynamic limit is important for introducing singularities: qualitative differences in the behavior of the system in the limit from the behavior of the system as it approaches the limit (Kadanoff 2013). In other words, for a wide range of explanations provided using mathematical models in physics, the thermodynamic limit is an essential mathematical operation: without it the mathematical representation of the system will not display the behaviors we are interested in explaining.
 For example, as Margaret Morrison explains with respect to phase transitions:

The occurrence of phase transitions requires a mathematical technique known as taking the ‘thermodynamic limit,’ N→∞; in other words we need to assume that a system contains an infinite number of particles in order to understand the behavior of a real, finite system…[since] the assumption that the system is infinite is necessary for the symmetry breaking associated with phase transitions to occur. In other words, we have a description of a physically unrealizable situation (an infinite system) that is required to explain a physically realizable phenomenon (the occurrence of phase transitions). (Morrison 2009, 128).

The thermodynamic limit is widely used in mathematical modeling in physics. However, physicists do not introduce this idealizing assumption simply as a way of ignoring (or emphasizing) what is irrelevant to the target phenomenon. In fact, the idealization distorts the very processes that result in various kinds of symmetry breaking, which is the key feature responsible for the occurrence of phase transitions in magnets and fluids.
 A phase transition occurs when the system’s Hamiltonian contains certain symmetries (or invariances) in one phase that are broken in the second phase. Therefore, this symmetry breaking is the difference-making process with respect to the occurrence of phase transitions: without it the phenomenon does not occur. Yet models that invoke the thermodynamic limit drastically distort the process by which this all-important symmetry breaking occurs by assuming it is the result of the system’s approaching an infinite number of particles. As a result, this idealization directly distorts the difference-making features of the model’s target system(s), but the mathematical model (i.e. the Hamiltonian) still displays the macroscale behaviors of interest in the limit. Therefore, instead of distorting irrelevant features, this idealization of difference makers serves as a necessary condition for applying the mathematical techniques involved in the explanation (Morrison 2009, 2015).


More specifically, in many cases, taking the thermodynamic limit allows physicists to apply a mathematical technique called renormalization. Renormalization is a strategy for extracting stable macrobehaviors by eliminating irrelevant degrees of freedom from the mathematical description of the system and increasing the value of relevant parameters. Renormalization effectively transforms the Hamiltonians describing a range of real and possible systems into another Hamiltonian that describes a possible system with fewer degrees of freedom, but preserves the form (and behavior) of the original Hamiltonians. Repeatedly applying this technique at progressively larger scales, “demonstrates that many of the details that distinguish the physical systems from one another are irrelevant for their universal behavior” (Batterman 2002, 42). In other words, this mathematical modeling technique demonstrates that various features of real systems are counterfactually irrelevant to their macroscale behavior. In addition, “by telling us what (and why) various details are irrelevant for the behavior of interest, this same analysis also identifies those properties that are relevant to the universal behavior being investigated” (Batterman 2000, 127). This modal information about which features are relevant and which are irrelevant is the key to explaining the pervasiveness of the patterns of behavior—e.g. phase transitions—that we observe across various real fluids (and magnets). Once we see why most of the physical details of these systems are irrelevant and that a certain set of features are necessary for the occurrence of the behavior, we can provide an explanation for why these patterns occur across such varied physical system (Batterman and Rice 2014).

However, as I noted above, a necessary condition for applying this renormalization technique is the invocation of the thermodynamic limit. Therefore, in this case, rather than distorting factors that are assumed to be irrelevant (as the standard view would have it), the thermodynamic limit plays an ineliminable role by allowing for the application of a mathematical technique that extracts (or reveals) explanatory information about which features are relevant and irrelevant for the occurrence of the target explanandum. The important point is that the thermodynamic limit is an idealization that plays an essential role in the mathematical modeling techniques that provide epistemic access to the modal information used in various explanations in physics. Rather than distorting a particular set of features that are irrelevant, the thermodynamic limit results in a pervasively distorted representation of real systems, but one in which the mathematical modeling techniques necessary to provide various explanations are applicable. In this case the renormalization group demonstrates that most of the physical components and interactions of the fluid are irrelevant to its macroscale behaviors. The basic algorithms of the LGA model can then be used to investigate how various other features—e.g. the viscosity of the fluid—are counterfactually relevant to those macroscale behaviors. In this way, the holistically distorted model (in combinations with various mathematical modeling techniques) can be used to extract various kinds of modal information that can be used to provide explanations of the behaviors of real fluids. 

What is more, as Kadanoff (2013) explains, “the differences among solid, liquid and gas; the distinctions among magnetic materials and between them and nonmagnetic materials; and the differences between normal materials and superfluids are all best understood as distinctions that apply in the limit in which the number of molecules is infinite” (143). Indeed, the case described here is similar to several other cases in physics such as the use of singular limits in fluid mechanics and the ray limit in geometrical optics (Morrison 2009, 2015). Because these idealizations are essential to the overall mathematical frameworks used in these explanations, the distortions introduced cannot be isolated to particular features of the system that are irrelevant. Put differently, it is impossible to isolate the contributions made by the accurate parts of these mathematical models from the contributions made by their idealized parts. Only by pervasively distorting the features of real-world systems can physicists apply the mathematical modeling techniques required to provide epistemic access to the explanations we seek.

3.2. An Example from Biology: Optimality Modeling

Additional examples can be found in biology. For example, biological modelers often make use of various mathematical modeling techniques involving optimization (Maynard Smith 1978, 1982; Orzack and Sober 2001; Potochnik 2007, 2010; Rice 2012, 2013). In addition, optimization models serve as an excellent case study because they are widely used in other sciences, including physics (Hartmann and Rieger 2002), economics (Pindyck and Rubinfeld 2009), cognitive science (Churchland 2013; Carruthers 2006), and chemical engineering (Corsano et al. 2009). This is because Optimization Theory is a widely applicable mathematical modeling technique that can be used to determine what values of some control variables will—given a set of tradeoffs and constraints—optimize the values of some design variables (Maynard Smith 1978; Seger and Stubblefied 1996).


In population biology, optimization models typically aim to explain phenotypic traits by determining the trait value that optimizes (e.g. maximizes) fitness subject to certain constraints and tradeoffs.
 These models aim to include the relevant set of phenotypic strategies for selection to choose from—what is called the model’s strategy set. Then, by specifying a mathematical function that incorporates additional constraints and tradeoffs involved in the selection of the trait, various mathematical techniques are used to assign payoffs to each of the available strategies. At this point, the model is typically used to identify an optimal strategy; i.e. the strategy that optimizes the design variables subject to the constraints and tradeoffs.
 The ideal optimization criterion in biological contexts would be (inclusive) fitness, but in most cases a more easily measured proxy is used; e.g., net energy intake. It is then assumed that the closer a strategy is to the optimal strategy the fitter that strategy is. As a result, over the long-term, natural selection is expected to move the population to the optimal strategy and maintain that equilibrium state. 


In addition, biological optimality models typically assume that natural selection is the only evolutionary factor that is relevant to the trait’s evolution. In other words, these models are used to provide adaptationist explanations, which assume that the processes involved in selection are the difference-making features for the target explanandum. In order to eliminate the role of other evolutionary processes, these models are typically highly idealized and assume the population is infinitely large, that reproduction is asexual, that offspring perfectly resemble their parents, that mating is perfectly random, etc. (Maynard Smith 1978; Rice 2012, 2013; Sober 2000). These assumptions are then combined with the constraints and tradeoffs mathematically represented within the optimization model to demonstrate why the optimal strategy is the expected equilibrium point of the evolving population.


As an example, Heath et al. (2010) used an optimality model to explain counterintuitive foraging behaviors of arctic wintering eiders (ducks). Eiders acquire their prey—primarily blue mussels—by diving to the bottom of the sea surrounding the ice where they rest. Previous studies (Heath et al. 2007) showed that foraging is most energetically profitable during what are called “slack currents”, which occur in the middle of the eider’s foraging cycle. The puzzling phenotypic behavior to be explained is that eiders diving activity is often greatest during the start and end of the foraging cycle when currents are stronger and when foraging is least profitable. In other words, eiders concentrate their foraging at the beginning and end of the foraging period, even though these are the least profitable times for them to dive. Heath et al. (2010) used an optimality model to try and explain this foraging behavior by looking at a set of constraints and tradeoffs that hold over the entire foraging cycle.


The model considers an entire tidal cycle (372 min) divided into 1-minute intervals. At each time interval the modeled eiders can decide to rest on the surface (i = 1); to dive and forage (i = 2); or rest by hauling out onto the ice edge (i = 3). Each of these decisions has an associated rate of energy expenditure ei and energetic gain gi. The model also includes two state variables for stomach contents z and energy stores x, both of which were discretized for implementation in the mathematical model. Current speed was discretized into 13 different speed categories and set based on observed values in the eider’s environment. Other parameters such as energetic expenditure and gain as a function of current speed were estimated from previous empirical observations. The model also incorporates the energetic costs of grinding up mussels and digesting them. By incorporating each of these constraints and tradeoffs, the optimality model provides various equations for calculating the energetic costs and benefits of adopting particular foraging strategies (i.e. the trait types) over the entire foraging cycle (Heath et al. 2010, 3181). 


Moreover, like many optimal foraging models, the model assumes that a strategy’s fitness is a direct function of the total net energy gained by adopting that strategy (Heath et al. 2010, 3181). Using the model’s equations, the decision that maximizes total net energy gain at time T can be calculated for each combination of states of z and x. By iterating these results across all the time steps of the cycle and the set of possible values for z and x, these modelers were able to identify the foraging strategy that provides the maximum net energy gain over the entire tide cycle; i.e. the optimal strategy given the constraints and tradeoffs involved in the eider’s foraging cycle. 
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Figure 2: Predicted allocation of foraging effort across a tidal cycle is given by the dashed lines according to optimality models that incorporate (a) time available, (b) the profitability of diving and (c) the dynamic model that included the interactions between profitability, digestion and the tide cycle. (d) provides an example of the time series of an observed diving eider. The optimality model that incorporated the interactions between these processes (c) is shown to provide the best predictive fit to the observed data shown by the solid lines. (Heath et al. 2010, 3183).

They then compared the predicted foraging strategy of their optimality model (Figure 2 c) with data collected by observing the actual foraging behaviors of eiders (Figure 2 d). The results showed that the observed patterns of foraging behavior were best predicted by the optimality model that incorporated the constraints and tradeoffs involved in each of these processes when compared to models that focused exclusively on time availability (Figure 2 a), or profitability of diving (Figure 2 b). 

Consequently, by constructing an optimization model, these modelers were able to demonstrate that “counterintuitive foraging patterns...could be understood as an adaptive response to a tradeoff between short-term energetics in dive cycles, longer term digestive constraints and the cyclical nature of tidal currents” (Heath et al. 2010, 3185). Indeed, by taking into consideration the various constraints and tradeoffs involved in the selection of this trait, this optimization model can be used to provide an adaptive explanation for this puzzling foraging behavior.


However, in order to derive this optimal strategy as the expected equilibrium of the evolving population, these optimality models make use of several idealizing assumptions about the evolutionary process that led to the observed phenotypic trait. Indeed, biological optimality models typically make use of a large collection of idealizing assumptions, including (but not limited to):

(1) The models’ smooth mathematical curves and simplified (e.g. discrete) equations are idealized when compared to actual processes within the models’ target system(s).

(2) The strategy sets are intended to capture the relevant set of alternatives rather than the set of strategies actually competing in the population’s past.

(3) There are idealizations regarding the processes of inheritance; e.g. assuming that offspring will perfectly resemble their parents and that reproduction is asexual.
(4) The models assume there is no intergenerational overlap.
(5) The models’ optimization assumptions (e.g. maximization of energy intake) do not accurately represent an actual selection process in the system, but only captures a general optimizing tendency of the system in the long run.

(6) It is assumed that selection pressures in the population do not change over time.

(7) The individual-level events that determine the fitnesses of the trait types are assumed to be random and statistically independent to allow the population to be represented as a normal distribution of trait types.

(8) Infinite population size is assumed to allow for the use of various laws of large numbers that eliminate statistical error (i.e. drift).

This group of idealizations is typical of biological optimality models and results in a pervasive misrepresentation of the model’s target system(s)—including directly distorting the process of natural selection, which is assumed to be the difference making process in these adaptationist explanations. First, the smooth curves, discrete equations, and approximated strategy sets will almost always be somewhat inaccurate when compared to the constraints, tradeoffs, and phenotypic strategies actually interacting in the population’s evolutionary past. On their own these assumptions may introduce relatively minor distortions of the selection process, but the model’s distortions do not end there. By assuming that offspring will perfectly resemble their parents and that there is no intergenerational overlap, the model drastically distorts the actual inheritance processes involved in the selection of the trait. Furthermore, the model represents a selection process that only optimizes energy intake and whose selection pressures remain constant over evolutionary time scales. Yet, in real biological populations, energy intake is only one factor that contributes to fitness and selection pressures frequently change over time—i.e. the optimization process described by the model does not accurately represent any selection process that occurs in the model’s target system. Consequently, these idealizing (and other modeling) assumptions combine (and interact) to represent an evolutionary model system that pervasively distorts the selection process that actually produced the target explanandum.

In addition, several of these idealizations are introduced to allow for the application of mathematical modeling techniques used to extract explanatory information; e.g. using various statistical theorems, laws of large numbers, or discrete modeling of continuous processes. Furthermore, like the mathematical techniques used in applications of the LGA model, because these idealizations are essential to the overall mathematical frameworks used in these explanations, the distortions they introduce cannot be isolated to features of the system that are irrelevant. Most importantly, the assumption that the individual-level events are random and statistically independent allows for applications of the central limit theorem, which enables the modeler to represent the population’s distribution of trait types as a normal curve where the expected value is the (optimal) trait favored by natural selection. Furthermore, like the different behaviors that occur in a system approaching the thermodynamic limit, an evolving population that approaches an infinite number of individuals (that mate randomly) displays unique patterns of behavior in the limit, but also drastically distorts the processes that produce those behaviors in real finite populations. For one thing, the assumption of infinite population size misrepresents the relationship between selection and drift by artificially representing them as isolable process that can occur independently (Walsh et al. 2002). These idealizing assumptions also entail that the model misrepresents the inherently nondeterministic process of natural selection as a deterministic process. However, the occurrence of drift (i.e. statistical error) is a fact of every real-world (i.e. finite) biological population and influences the outcomes of many evolutionary processes. While these idealizations result in a pervasive distortion of the actual evolutionary processes, making these assumptions enables biological modelers to apply the central limit theorem and various laws of large numbers in order to make exact calculations about the equilibrium point predicted by the optimization model. In other words, these idealizing assumptions are necessary for applying the mathematical techniques used in the explanation. As a result, it is impossible to isolate the contributions made by the accurate parts of these mathematical models from the contributions made by their idealized parts. Only by pervasively distorting the features of real-world systems can biologists apply the mathematical modeling techniques required to extract the modal information used to explain.
More specifically, the statistical modeling techniques enabled by these idealizations can be used to demonstrate that most of the physical components, events, and interactions of the system are irrelevant to the target explanandum. That is, similar to physicists use of renormalization, statistical modeling techniques in biology can demonstrate that many of the details of the physical system(s) are irrelevant to their macroscale behavior. Moreover, using these statistical and optimization modeling frameworks enables biological modelers to extract modal information about how the population-level constraints and tradeoffs involved in the design problem are relevant to the evolution of the phenotypic trait. In other words, despite drastically distorting the components, interactions, and difference-making features of its target system, the optimality model can still reveal how the explanandum counterfactually depends on various constraints and tradeoffs involved in the population’s evolutionary past. In sum, when they are considered collectively, these idealizing assumptions result in a pervasively distorted representation of biological populations, but one in which the mathematical modeling techniques necessary to extract the modal information used in many biological explanations are applicable.
 
As a result, instead of distorting only irrelevant factors as a means to providing an accurate representation of the difference-making natural selection process, these models purposefully move us away from even attempting to accurately represent some isolable part of the dynamical processes that led to the explanandum (Rice 2012, 2013). In other words, these optimization models not only drastically distort non-selective features such as drift, sexual recombination, migration, etc., but also drastically distort the selection process that led to the observed trait. Indeed, optimality models typically invoke a fundamentally different kind of evolutionary process that does not—and could not—occur in any real-world biological population. Consequently, optimization models pervasively misrepresent the features and processes of their target system(s), including those that are assumed to be the difference makers for the target explanandum. Still, despite their being pervasive misrepresentations of their target system(s), optimization models are widely used to provide explanations in evolutionary biology (and other sciences as well) by discovering constraints and tradeoffs that were important to the evolution of the optimal strategy. Indeed, like the LGA model, many of the patterns of counterfactual dependence that hold in the pervasively distorted model system will be similar to those of its real-world target system(s)—those counterfactual relationships will just hold for (perhaps very) different reasons in the model system and perhaps only in limiting cases. That is, these models drastically distort their target system(s), but can still be used in combination with various mathematical modeling techniques to extract modal information about the target explanandum that would otherwise be inaccessible (or at least very difficult to discern). Specifically, the mathematical techniques involved in optimality modeling allow biologists to extract modal information about how the explanandum counterfactually depends on population-level constraints and tradeoffs among fitness enhancing variables and why most of the physical features of the target system(s) are irrelevant to the target explanandum.
 
3.3. Summing up


I have chosen these two examples because they are representative of much wider classes of idealized models that explain across the sciences. Indeed, singular limits are widely used in physical modeling and optimization (and game-theoretic) techniques are widely used in biology and economics. These cases raise a serious challenge to the standard view because several idealizations are introduced that pervasively distort the features of their target systems, including difference-makers. As a result, we cannot isolate—or quarantine—the distortions introduced by these idealizations to some set of features that are irrelevant. In other words, these idealized models do not accurately represent an isolable set of difference-making features while restricting the use of idealizations to the distortion of irrelevant features. Instead, these scientific modelers use a variety of idealizations to apply mathematical techniques that allow for the discovery of explanatory information. As a result, the contributions made by the idealizations cannot be quarantined from the contributions made by the accurate parts of the model.


To simply reject these highly idealized models as “nonexplanatory” would be to render incomprehensible much of what contemporary science has purported to explain. Furthermore, attempting to force these cases into some version of the standard view would mischaracterize the distinctive roles idealizations play within the explanations provided by these models. Therefore, in order to account for these cases, we require an alternative account of the role of idealizations within the explanations provided by scientific models.

4. Idealized Models as Holistic Distortions

In light of these examples, I propose an alternative approach in which idealized models are characterized more holistically as pervasively distorted representations of their target system(s). This is a methodological prescription for philosophers’ attempts to understand the roles idealizations play within the explanations provided by scientific models.
 I will refer to this alternative account as the holistic distortion view of idealized models. According to this view, many (if not most) of the idealized models that are used to explain in science holistically distort the entities, processes, and difference-making features of their target system(s) in order to allow scientific modelers to utilize various mathematical modeling techniques that would not otherwise be applicable.
 Applying these mathematical modeling techniques, in turn, allows these modelers to access scientific explanations that would not otherwise be accessible.


The reason this more holistic methodology is needed is that—as the examples above have shown—the idealizations used in scientific theorizing are often constitutive of the core mathematical frameworks used in scientific models that explain. These idealizations result in pervasive distortions because they allow for the use of mathematical frameworks that represent the target system as a fundamentally different kind of system in which qualitatively different kinds of behaviors are expected to occur. As a result, the idealizations cannot be isolated or quarantined as peripheral bystanders in the way suggested by the standard view. Instead, the distortions introduced by these idealizations result in pervasive misrepresentations of the features, processes, and entities of the model’s target system(s); e.g. by modeling a continuous system discretely, modeling dependent variables as if they were completely independent, modeling evolution in an infinite population, or modeling a physical system using singular limits. 


These idealizing assumptions are typically introduced because they are necessary to apply certain mathematical and theoretical modeling techniques (cf. Cartwright 1983, Ch. 7 and Wimsatt 2007). Moreover, these modeling techniques are often essential and ineliminable because they allow scientific modelers to extract the desired explanatory information that would otherwise be inaccessible. That is, without these mathematical techniques scientific modelers would no longer be able to provide certain scientific explanations. I contend that a primary goal of philosophical accounts of idealized models should be to justify scientists’ use of these holistic distortions in terms of the explanations (and understanding) they enable them to achieve that would otherwise be unattainable. This contrasts with the standard view's attempts to show that the inaccurate parts of scientific models are harmless because they distort only what is irrelevant. The project of the holistic approach is instead to uncover the positive contributions that idealizations make to scientific explanations by allowing for the applications of various modeling techniques that reveal or demonstrate the information required to explain. Instead of attempting to quarantine the role of idealizations in models that explain, we need to embrace the ineliminable contributions those idealizations make to the explanations provided by contemporary science.


Without committing to any particular account of scientific explanation, I think we can already identify ways holistically distorted models can provide information that can be used to explain real-world phenomena. For example, in both examples presented above the models provide extensive modal information about the (counterfactual) relevance and irrelevance of features of the model’s target system(s) to the occurrence of the target explanandum. Lattice gas models can show us how patterns of fluid flow counterfactually depend on the fluid’s pressure, density, and viscosity. Renormalization techniques can demonstrate why most of the physical features of the system are counterfactually irrelevant to their displaying certain universal behaviors. Optimization models can show us how the equilibrium point of the evolving population counterfactually depends on various constraints and tradeoffs involved in the trait’s selection. Statistical modeling techniques can demonstrate why most of the physical details of the system are irrelevant its macroscale behaviors. Additional examples can be found throughout scientific modeling. Indeed, scientific modeling often requires “ineliminable misrepresentations of the true ontology of a system…because we require them to frame a system in a certain way to extract modal information” (Pexton 2014, 2344). 


Importantly, the kind of counterfactual (i.e. modal) information that these idealized modeling techniques allow scientists to discover is widely held to be an essential part of providing scientific explanations (Bokulich 2011, 2012; Rice 2015; Saatsi and Pexton 2012; Woodward 2003). Therefore, one way to justify the use of these idealized models to explain is to see how moving to a different representational framework that holistically distorts real-world systems can allow for the extraction of this kind of counterfactual information that would not otherwise be accessible.


It is important to note, however, that different idealized modeling techniques in different contexts will provide explanatory information in different ways. Consequently, we should not expect a univocal account of how idealized models provide explanatory information. Indeed, one of the mistakes of the standard view is to attempt to justify all uses of idealization in models that explain in the same basic way: by only distorting features that are irrelevant. Moreover, the standard view mistakenly attempts to provide this justification in a post-hoc way by looking to the resulting explanations—and philosophical accounts of them—in order to justify the previous introduction of idealizations. For example, the standard view seems to imply that the justification scientific modelers do, or at least should, provide for introducing certain idealizations is that they already knew (or ultimately discovered) that they were only distorting irrelevant features. This justification follows directly from applying existing philosophical accounts of explanation and idealization to these final results of the scientific modeling process.
 However, it seems that in many (if not most) instances of scientific modeling, the modeler could not possibly claim to know which features are relevant and irrelevant to the phenomenon when they introduce their idealizing assumptions. Furthermore, I think it is particularly heavy handed for philosophers to suggest that the introduction of these idealizing assumptions can only be justified when the ultimate result of the modeling process is an explanation that fits with existing philosophical accounts of explanation. 

In contrast to this approach, I suggest that philosophers of science need to focus on the original reasons the idealizing assumptions were introduced in the process of developing particular explanations. That is, we need to understand the reasons these idealizations are often introduced before scientific modelers have been able to identify the relevant and irrelevant features for the target explanandum. For example, as the cases above have shown, in many instances modelers pervasively misrepresent the target system(s) in order to apply the mathematical modeling techniques they have on hand in order to extract modal information. Furthermore, given that modeling techniques and ways of explaining will be different across modeling contexts, we will require a more pluralistic approach to justifying scientists’ use of idealized models to explain.


In sum, the four main claims of my holistic distortion view are the following:

(1) Many (if not most) idealized models that are used to explain in science are holistically distorted representations of their target system(s).

(2) Idealizing assumptions often make ineliminable contributions by allowing for the application of various mathematical modeling techniques. 

(3) The use of such holistically distorted models ought to be justified by their ability to provide epistemic access to explanations (and understanding) that would otherwise be inaccessible.

(4) Given that modeling techniques and kinds of explanation will differ across cases and disciplines, we will require a pluralistic approach to justifying scientists’ use of idealized models to explain.

Together, these four claims provide the foundation for a fundamentally new way of thinking about how idealized models explain. The task going forward is to provide the justification for scientists’ use of holistically distorted models by enumerating the ways that these models can provide access to explanations (e.g. modal information) that would otherwise be inaccessible. Fortunately, this work is already underway: e.g. philosophers have started to analyze minimal model explanations (Batterman and Rice 2014), optimization explanations (Potochnik 2007, 2010; Rice 2012, 2013), statistical explanations (Ariew, Rice and Rohwer 2015), topological explanations (Huneman 2010, 2015), and fictional models that explain (Bokulich 2011, 2012; Morrison 2015).
 Analysis of additional cases will yield additional ways that idealizations allow for the application of modeling techniques that enable scientists to provide explanations that would otherwise be inaccessible.

5. An Alternative Way to Justify Idealized Modeling: Universality

One way to characterize what is distinctive about this holistic distortion view is that, rather than thinking in terms of models that contain isolable idealizing assumptions, it suggests that we should think in terms of the models themselves as idealizations. This, then, raises a serious problem given that most of our accounts of how models explain—e.g. those outlined in Section 2—require that models accurately represent difference-making features. Given that I have argued that this is not the case for many of our best scientific models, what makes these models capable of providing explanations of real-world phenomena? For example, it seems somewhat mysterious how holistically distorted models can provide true counterfactual information about their target system(s). In what remains, I will try to offer one possible solution to this problem by appealing to universality.


I suggest that idealized modeling techniques that involve holistic distortion of real-world systems can provide true counterfactual information because many idealized model systems are known to approximate the patterns of behavior of real-world systems—but perhaps do so only in the limit and perhaps for very different reasons than their target system(s). In other words, scientists can provide explanations by studying idealized models that pervasively distort their target system(s), but still reproduce various patterns of behavior that are independent of the particular physical features of the system. This requires that we can establish an appropriate link between the behavior of the ideal case (e.g. the selection process described by the optimization model) and the behavior of the real case(s) scientists are interested in (e.g. the actual selection process that occurred).


One way to establish these links between the patterns of behavior of idealized models and real systems is to exploit an extremely convenient feature of our universe called universality (Batterman and Rice 2014).
 In its most general form, universality is just a statement of the fact that (perhaps extremely) different physical systems will display similar macrobehaviors that are largely independent of the details of their physical components. The group of systems that will display similar macrobehaviors despite (perhaps drastic) differences in their physical details are said to be in the same universality class. As Kadanoff (2013) puts it, “Whenever two systems show an unexpected or deeply rooted identity of behavior they are said to be in the same universality class” (178). I contend that universality is a ubiquitous feature of various real, possible, and model systems that can be (and is) exploited by scientific modelers to discover idealized models that are holistic distortions of their target system(s) and yet enable them to explain the behaviors of those systems (Batterman and Rice 2014). It is important to note, however, that in line with the pluralism advocated in the fourth claim of my holistic distortion view, I do not claim that universality is the only way to link an idealized model with its target system(s) in ways that allow for explanation—i.e. this is not intended as a replacement univocal account of how all idealized models relate to their target system(s). Rather, my claim is that universality provides one particularly promising alternative way to establish a link between idealized models and real-world systems that allows for explanation, but does not rely on accurate representation (nor approximation) of the contributions of difference-makers.

A widely cited example of universality involves statistical modeling (Ariew, Rice and Rohwer 2015; Batterman 2000; Walsh et al. 2002). The ability to mathematically model many complex systems derives from the universality of two fundamental principles of probability theory: the law of large numbers and the central limit theorem. The stability of such macobehaviors is due to the fact that the features of normal curves are largely independent of the details of the components or dynamical processes that operate in the system. For example, the central limit theorem tells us that the distribution of any random and statistically independent sample will approximate the normal curve. Moreover, Gaussian distributions can occur even when these independence assumptions are substantially weakened. 

Scientific modelers have long recognized the explanatory value of making certain modeling assumptions to allow for the application of statistical modeling techniques. For example, Francis Galton first recognized the stability of the normal curve in natural systems when studying the heights of children with exceptionally tall or short parents (see Steigler 2010). Later applications of statistical modeling techniques allowed for the development of the Boltzman distribution that is at the heart of modern statistical mechanics (Kadanoff 2013). Then, inspired by the statistical treatment of gases, R. A. Fisher applied the same statistical methodology to the modeling of biological populations (Ariew, Rice, and Rohwer 2015; Fisher 1922; Morrison 1996, 2015). Indeed, we find these same modeling techniques used in the optimization case described above in order to represent the distribution of trait types as a normal curve.

What is important to note is that in each case, rather than attempting to accurately model a set of difference-making factors, these statistical modelers attempted to exploit universal mathematical features of complex systems that are independent of the details of their physical parts and interactions. Doing so enabled them to study highly idealized model systems that distorted the components, interactions, and difference-making features of real-world systems and yet still allowed them to investigate the universal macrobehaviors shared by the model system and real-world systems. By making certain idealizing assumptions they were able to use mathematical modeling techniques that would approximate certain macroscale behaviors of real-world systems. The application of these mathematical techniques, in turn, enabled them to extract modal information and provide explanations of various real-world phenomena that would otherwise have been inaccessible. The universality of various mathematical features—such as the law of large numbers and central limit theorem—are what provide the necessary link between these highly idealized model systems and the various real-world systems whose behaviors they are used to explain. This link, however, has nothing to do with accurately representing difference-makers. Instead, the universality of these patterns of behavior enables scientific modelers to move away from attempting to accurately represent difference-making features. As a result, they can instead focus on constructing idealized models that exhibit the necessary universal patterns of behavior and are susceptible to various mathematical modeling techniques that can be used to extract explanatory information.


A more recently discovered instance of universality has been found in the modeling of melt pond development in climate science (Hohenegger et al. 2012; Golden 2014). Ponds (of melted ice) with complex geometries form on the surface of sea ice (Figure 3).
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Figure 3: The complex geometry of well-developed Arctic melt ponds (Hohenegger et al. 2012, 1158).

These modelers explicitly state that their goal is to discover if, “melt pond geometry exhibits universal characteristics which do not depend on the details of the driving mechanisms” (Hohenegger et al. 2012, 1157). Instead of representing the physical mechanisms of the system, by looking at the macroscale geometrical features of these melt ponds these modelers were able to identify universal patterns of macrobehavior that enabled them to apply mathematical techniques used in other areas of physics. 


Specifically, Hohenegger et al. found that when graphing the area and perimeter of these ice ponds, there was a critical length scale when the area of the pond was about 100 m2. At this critical point, the melt pond quickly transitions from one phase (having a fractal dimension of 1) to another phase (having a fractal dimension of approximately 2). This pattern of phase transition was found to hold across hundreds of thousands of observed and modeled melt ponds (Figure 4).
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Figure 4: (a) Area versus perimeter data for observed melt ponds observed, (b) graph of the fractal dimension D as a function of area A. Typical ponds in each regime are shown in (c): a small pond with D = 1, a transitional pond with a horizontal length scale of about 30m, and a large convoluted pond with D ≈ 2 (Hohenegger et al. 2012, 1159).

Discovering this phase transition is important because it shows that melt ponds involve a separation of length scales. This is significant because, “a separation of scales in the microstructure of a composite medium is a necessary condition for the implementation of numerous homogenization schemes to calculate its effect properties” (Hohenegger et al. 2012, 1160). Homogenization is a mathematical technique used to find a homogenous medium whose macroscale behavior is the same as (or highly similar to) a given heterogeneous medium. In other words, being able to apply homogenization theory enables the use of mathematical techniques that extract information about the macroscale behaviors of the heterogeneous melt pond systems by modeling them as homogeneous systems. This results in a pervasively distorted representation of the nature of the real systems, but one that preserves their macroscale behavior. In short, Hohenegeer et al. discovered that universal features of a class of systems—e.g. scale separation and phase transitions—are present in Arctic melt ponds. This discovery enabled them to justifiably use idealizing assumptions in order to apply certain mathematical modeling techniques used to study other kinds of phase transitions. As Golden explains in a later paper, the behavior of these melt ponds:

…is similar to critical phenomena in statistical physics and composite materials. It is natural, therefore, to ask if the evolution of melt pond geometry exhibits universal characteristics that do not necessarily depend on the details of the driving mechanisms…Fundamentally, the melting of Arctic sea ice is a phase transition phenomenon…We thus look for features of melt pond evolution that are mathematically analogous to related phenomena in the theories of phase transitions and composite materials. (Golden 2014, 13)

As a result of discovering that these melt ponds were in this universality class, these modelers were able to apply certain mathematical modeling techniques to extract information about the macroscale behaviors of these real-world systems that are independent of the mechanisms and components of the physical system. More specifically, they found that the change in phase counterfactually depends on the melt pond being self-similar, which occurs when “there exists a sub-pond…such that the perimeter to area ratio of the entire pond is approximately the same as that of the sub-pond” (Hohenegger et al. 1160). As a result, changes in this self-similarity can be used to explain changes in the different phases of melt pond development. In sum, by discovering that these melt ponds are in the same universality class as other physical (and model) systems, these modelers were able to apply various mathematical modeling tools (e.g. homogenization) to extract explanatory information about real-world systems without having to accurately represent the entities, processes, or ontology of those systems. In this way, these mathematical modeling techniques enabled access to explanations and understanding that would otherwise have been inaccessible.


There are certainly other instances of universality (e.g. see Batterman 2000 and Batterman and Rice 2014), but these examples serve to illustrate the general idea. The general goal of these idealized modeling techniques is to discover universal macrobehaviors that are independent of the physical details of the system. Discovering these behaviors (and their stability) then enables scientists to investigate highly idealized models that drastically distort the physical features and dynamics of real-world systems, but preserve their universal patterns of macroscale behavior. Investigating these idealized models is useful because they enable scientists to apply various mathematical modeling techniques they have on hand that can be used to identify explanatory information about which features are counterfactually relevant and irrelevant to the occurrence of the target explanandum.


Suppose, then, that we can show that certain macrobehaviors are universal across a range of real, possible, and model systems and that the idealized models used by scientists to explain are within the same universality classes as the real physical systems whose behaviors they want to explain. If this were the case, then we could provide justification for scientists' use of those idealized models to explain and understand real systems despite their being holistically distorted representations of those systems. The justification for this kind of idealized modeling is not that the particular idealizations of the models are irrelevant, or that they only distort irrelevant features. Instead, the reason these idealized models are able to explain is that, as long as the system is within the relevant universality class, most of the physical details of the system are irrelevant for the occurrence of certain universal macrobehaviors. In this way, universality can provide an alternative link that can be used to justify the use of holistically distorted models to provide scientific explanations.


Finally, it is important to note that a more generalized conception of universality can differ in terms of its scope, the strength of the independence of the macrobehaviors from the details of the physical components of the system, and the specific set of features (or changes) that the behavior is independent of. The universality class required to justify a particular instance of idealized modeling will depend on the details of the modeling context; e.g. the target explanandum. For example, the universality class of interest may only need to include one target system and a single idealized model that is used to study that system. In other instances, the focus of the modeler will be on more general patterns across extremely heterogeneous systems. In these instances, the universality class will need to include a wider range of real and possible systems (Batterman 2002; Batterman and Rice 2014; Rice 2013). Consequently, the goals of the modeler(s) will determine the universality class(es) that are involved in justifying the use of a particular idealized modeling techniques to explain.

6. Conclusion

I have argued against the standard view by showing that many of the distortions introduced by idealizations in scientific modeling cannot be isolated to the distortion of irrelevant features. In response, I have proposed the holistic distortion view, according to which, idealized models are characterized as holistically distorted representations of their target system(s). In addition, I have provided an alternative method for justifying the use of idealized models to explain that appeals to universality. Going forward, philosophers of science ought to continue to analyze additional examples of universality in order to provide justification for scientists’ use of holistically distorted models to explain.
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� Weisberg, of course, identifies several other kinds of idealization. However, minimalist idealization is the one most closely connected with idealized models that explain. Weisberg also includes several other philosophers whose accounts are close to minimalist idealization. However, for the sake of space, I will not discuss those views here.


� Moreover, Strevens tells us, “All idealizations, I suggest, work in the same way” (Strevens 2009, 341).


� For example, as Leo Kadanoff (2000) puts it, “The existence of a phase transition requires an infinite system. No phase transitions occur in systems with a finite number of degrees of freedom” (238).


� As the number of particles approaches infinity, the system’s correlation length diverges to infinity. At this point, all the scales of the system become relevant to its behavior. The divergence of this correlation length leads to the breaking of certain symmetries (or invariances) in the system’s Hamiltonian.


� For example, the optimal time spent foraging might tradeoff with time that can be spent on other tasks that are important to survival (Pyke 1984; Stephens and Krebs 1986).


� Optimality modeling also includes game-theoretic modeling where the optimal strategy is typically frequency dependent.


� The standard view might try to analyze the distortions introduced by these idealizations one at a time in isolation. However, this is almost always impossible since the evolutionary system represented by the mathematical model is a result of a complex and interacting collection of modeling assumptions. As a result, the claim that these idealized models pervasively distort their target system(s) ought to be evaluated by considering the assumptions of the model as an interacting whole. Thanks to an anonymous reviewer for helping me emphasize this point.


� While some of these idealizations only distort the first-order processes of selection, others distort the second-order processes, and still others pervasively distort the basic components and causal interactions operating within the model’s target system(s) in order to apply mathematical modeling techniques.


� See Rice (2013) for additional details about the counterfactual information provided by optimality explanations.


� It is important to note that this methodological prescription does not necessarily entail holism with respect to metaphysical structure, meaning, or confirmation


� This is consistent with the model being an accurate representation with respect to some aspects of its target system(s). However, pervasive distortion involves the misrepresentation most of the features of the model’s target system(s), including many features (e.g. causal factors) that are difference makers for the target explanandum.


� As a more specific example, consider how Michael Strevens’s kairetic account of explanation leads directly to his account of how idealized models can be justifiably used to explain only when they accurately represent difference-makers and introduce idealizations that only distort irrelevant causal factors. 


� Wimsatt’s (2007) views about false models leading to truer theories are also in line with the approach suggested here. 


� As I mentioned above, it is important that this is only one additional way to connect idealized models with their target system(s) in ways that allow for explanation. That is, the appeal to universality classes is not meant to provide a replacement univocal account of how idealized models connect with their target system(s). Thanks to an anonymous reviewer for helping me emphasize this point.


� These ponds are important because, while ice reflects most incident sunlight, these melt ponds absorb most of it.
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