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ABSTRACT 

In the recent philosophy literature, there have been several attempts to use the 

seminal result by Geroch and Jang (1975) to precisify Harvey Brown’s claim that 
the geodesic principle can be recovered as a theorem in General Relativity, and then 

to critique it. We contend that the philosophical debate has unfolded in a curious 
way: even though Geroch and Jang’s paper contains two distinct approaches to the 

problem of geodesic motion, the philosophical literature has focused on only one 

of them. We then argue that the neglected approach offers an alternative—and 

more physical—set of resources to explain geodesic motion. Motivated by this 
approach, we prove a new “physical Geroch-Jang theorem”, which provides a 

scale-relative interpretation of the geodesic principle in General Relativity. We, 
thereby, make new resources available to re-evaluate Brown’s arguments as well as 
those of his critics. 
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2 1 INTRODUCTION 

There has been considerable discussion of the concept of inertial motion in General Relativity 

(GR), beginning with Einstein himself (Einstein and Grommer 2005; Kennefick 2005; 
Lehmkuhl 2017): does GR have the theoretical resources to explain the inertial motion 

of “small” bodies free of external influences, as opposed to taking it for granted? Brown 

(2007) prominently claims that the Einstein Field Equations (EFE) of GR provide such an 

explanation by means of the “geodesic principle,” the insight that the trajectories of “free” 
test bodies are well modeled by the geodesics of a spacetime manifold.1 Brown’s claim has 
led to a body of literature (Samaroo 2018; Sus 2014; Weatherall 2011, 2017, 2019, 2020) that 
attempts to conceptualize and assess this claim within the framework of a foundational 
paper by Geroch and Jang (1975), which aimed to derive the geodesic motion of a test 
body in GR.2 

We are in agreement with the tacit assumption in the literature that a serious assessment 
of Brown’s claim ought to engage with rigorous results about geodesic motion provable in 

the context of GR. Moreover, we also agree that Geroch and Jang’s paper is an important 
reference point. However, we believe that further technical and conceptual groundwork 

on this point of reference is needed before it can pay philosophical dividend. Specifically, 
we contend in this article that the literature has unfolded in a curious way: even though 

the original paper (Geroch and Jang 1975) contains two rather distinct approaches to the 

problem of geodesic motion in GR—we will call them “weakest topology” and “scale-relative 

topology” approach, respectively3—the philosophical literature has only focused on the 

former. Since, as we will argue, the two approaches implement different interpretations of 
the underlying physical problem, the ensuing philosophical discussion has been one-sided 

and progress on the issue of geodesic motion has potentially been stifled because the full 
set of available resources (in particular, the “scale-relative topology” approach) has not yet 
been exploited. In this article, we aim to accomplish the important technical and conceptual 
task of revisiting the original paper, giving a careful reconstruction, and drawing important 
philosophical lessons from it in order to re-open the issue of geodesic motion in GR for debate 

within the philosophy-of-physics community. The chief philosophical contribution, as we 

see it, consists in the reconstruction of the philosophy of a locus classicus of the philosophical 
debate, which as such, merits careful attention and a thorough interpretation. We, thereby, 
lay important groundwork that must be conducted before results such as those contained in 

Geroch and Jang’s paper can be exploited in philosophical dialectic. 

In line with this motivation, we pursue three goals. First, we aim to accomplish a task of 
conceptual analysis, viz. distinguishing and explicating the aforementioned two approaches 
within the original paper: while the statement of the theorem implements the “weakest 
topology” approach, the proof strategy and the “the physical interpretation of the theorem” 
as given by Geroch and Jang themselves (Geroch and Jang 1975, 66) are closer to the “scale-
relative topology” approach. Delineating these approaches carefully is novel as the literature 

has not recognized the two strands and thus has not taken into account the discrepancy 

1 Indeed, Brown claims that GR is the historically first theory to do so (Brown 2007, 141). 

2 Weatherall (2020) has recently revisited the problem in light of a result proved in 
collaboration with Geroch (Geroch and Weatherall 2018). Since it is not the Geroch-Weatherall 
theorem that has been the focal case of the literature, we still feel justified to restrict attention to 
the locus classicus of the debate, especially since it has, to our minds, not been treated sufficiently 
so far. 

3 To avoid any misunderstanding, we would like to flag that “weakest topology” is not meant 
pejoratively, but as a description of the topology’s “strength.” Preempting a point to be made below, 
“weakest” can be read as “least quantitative.” 
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3 between the proof strategy and the formulation of the theorem. Second, since Geroch and 

Jang’s professed physical motivation is to model test bodies relative to scale, that is, “insofar 
as that body is sufficiently small compared with the curvature” (Geroch and Jang 1975, 
66), we argue for adopting a “scale-relative topology” approach, which involves pursuing a 

theorem that explicitly incorporates such considerations of scale into its assumptions. This 
is a significant intervention in the literature and opposes a perspective recently advocated by 

Weatherall, who directs philosophical attention away from test bodies (or point particles) 
because for him, “the status of such objects is unclear in general relativity” (Weatherall 
2020, 222).4 Third, we show that although Geroch and Jang’s argumentation is telegraphic 
and incomplete, their sketched proof, which follows the “scale-relative topology” approach, 
can be easily made rigorous by making various limits explicit that are only implicit in 

their argumentation. To take these limits, a new set of assumptions is needed. Choosing the 

simplest one possible, we obtain a new, now fully explicit and rigorous theorem. By achieving 

these three goals, we lay down the conceptual and technical preliminaries necessary for a 

fruitful employment of the “scale-relative topology” approach in the philosophical debate 

on inertial motion in GR and likewise for a careful re-assessment of the justification of the 

“weakest topology” approach. 

Our article is structured as follows. Our novel reading of Geroch and Jang’s paper is given in 

Section 2. Subsection 2.1 consists of a clean reconstruction of their treatment of geodesic 
motion in the case of Special Relativity (SR). Along the way, we correct a small mistake 

made in the philosophical literature concerning an energy condition. The reconstruction 

of the SR case will provide the necessary background for the GR case, which can, and in 

our view ought to, be understood as an extension of the SR result.5 The GR case itself is 
treated in Subsection 2.2, where we show that the original paper contains the two approaches 
mentioned above as different strands. We also argue that only one of them is compatible 

with the physical interpretation motivating the paper. Section 3 then contains the precise 

statement of our new theorem (which we call the “physical GJ theorem”) as well as a sketch of 
its proof—the details are given in the appendix—and an interpretation. Finally, in Section 4, 
we briefly comment on other approaches, besides the Geroch-Jang paper, to geodesic motion 

in the physics and mathematics literature. 

2 AN ANALYSIS OF THE GEROCH-JANG PAPER 

The paper (Geroch and Jang 1975) contains two parts: the first attempts to derive the geodesic 
motion of a free extended body in Special Relativity (SR), and the second attempts to derive 

the geodesic motion of a test body in General Relativity (GR). The SR result about extended 

bodies is relatively straightforward, which might explain why it has not been addressed in 

the philosophy literature. However, since it is essential to the overall argumentative strategy 

in the GR case, we include the SR result in our presentation. 

Following the original paper, in Section 2.1, we lay some crucial groundwork by discussing 

the SR case, in order to (i) contrast the notions of “extended body” and “test body;” 
(ii) introduce SR concepts such as linear momentum (𝑃𝑎) and angular momentum (𝐽𝑎𝑏) 

4 For transparency’s sake, we note that this remark is made in the context of Geroch and 
Weatherall (2018), which is bracketed here. However, Weatherall’s comment seems to apply equally 
to his interpretation of the problematic contained in the Geroch-Jang paper. 

5 While this point has not been disputed, the precise connection between the SR result and the 
GR case has never been made explicit. On our view, this is not surprising because the connection 
becomes clear only upon rigorously pursuing the “scale-relative topology” approach, as we do in 
this article. 
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4 that will be analogously extended to the GR case; and (iii) develop the energy condition to 

prepare the GR case. There is one additional function played by Section 2.1: some of the 

philosophical literature on the Geroch-Jang paper contains a confused discussion (with a 

small mathematical mistake) of energy conditions, and without dispelling this confusion, it 
is difficult to see how one could prove a physical GJ theorem of the kind that we undertake 

in Section 3; we thus take the opportunity to make this minor, yet useful correction. 

Having laid the groundwork in Section 2.1, Section 2.2 proceeds to discuss the two very 

different conceptual strands in the GR part of Geroch and Jang (1975): (i) what we call the 

“GJM result” (Malament’s formulation of the theorem in the GR case in the Geroch-Jang 

paper) and (ii) the physical reasoning that Geroch and Jang use to sketch an argument for 
their result, which we call “the physical GJ argument.” We will argue in this section that the 

GJM result is physically unmotivated. On the other hand, the physical GJ argument—despite 

being incomplete—outlines the proof strategy for a novel result, the “physical GJ theorem.”6 

We proceed to sketch the statement and proof of this result in Section 3; the details are given 

in Appendix D. 

2.1 SPECIAL RELATIVITY 

The first part of Geroch and Jang (1975) concerns the extended body in SR. From a 

mathematical point of view, it proceeds by assuming that one has Minkowski space (M, 𝜂𝑎𝑏) 
and a non-vanishing spatially compactly supported energy-momentum tensor 𝑇𝑎𝑏 on M that 
represents the extended body. Energy-momentum is assumed to be covariantly conserved, 
that is, 

∇𝑎𝑇𝑎𝑏 = 0, 

7where ∇ is the Levi-Civita connection associated with the flat Minkowski metric 𝜂𝑎𝑏. 

Since Minkowski space is maximally symmetric (i.e., the number of Killing fields is maximal), 
we can immediately derive (see Lemma B.1 in the appendix)8 

𝑃𝑎𝜉𝑎 + 𝐽𝑎𝑏∇𝑎𝜉𝑏 = ∫ 𝑇𝑎
𝑏 𝜉

𝑏 d𝑆𝑎 (1)
Σ 

for any spacelike hypersurface Σ and any Killing field 𝜉𝑎 . This integral identity should be 

interpreted as follows. For any spacelike hypersurface of Minkowski space, and any of the 

10 Killing fields (i.e., any of the symmetries of the Poincaré group), the integral on the right 
hand side can be split into a momentum part (where 𝑃𝑎 generalizes linear momentum) and 

an angular momentum part (where 𝐽𝑎𝑏 generalizes angular momentum). Note here that the 

one-form 𝑃𝑎 and the two-form 𝐽𝑎𝑏 are defined on all of Σ. Accordingly, the left-hand side is a 

function that can be evaluated at any point on Σ, while the right-hand side (an integral) is a 

constant on Σ. 

6 To avoid any misunderstanding, we would like to stress that we do not intend to be dismissive 
about the GJM result by not calling it a theorem. Rather, we merely mean to imply that the physical 
GJ argument is, on our view to be explained below, not a rigorous proof of the GJM result, but 
rather a proof sketch for the physical GJ theorem. 

7 Latin indices of tensors are used as abstract indices while Greek indices designate a choice of 
coordinate basis. We adopt the metric convention − + ++. 

8 As noted in the appendix, we understand d𝑆𝑎 as a shorthand for −𝑛𝑎 dvol𝜂(Σ), where 𝑛𝑎 is a 
future-directed unit normal to a spacelike hypersurface Σ with induced volume element dvol𝜂(Σ). 
While this is the more canonical choice, Geroch and Jang seem to use it as a shorthand for
+𝑛𝑎 dvol𝜂(Σ), which would, however, mean that ∫Σ 𝜑 𝑛𝑎 d𝑆𝑎 is negative for a positive smooth 
function 𝜑 with compact support. This difference explains why we have 𝑃𝑎𝜉𝑎 on the left-hand side 
whereas Geroch and Jang have −𝑃𝑎𝜉𝑎 . 

Dold and Teh 
Philosophy of Physics 
DOI: 10.31389/pop.203 



5 Furthermore, the Riemann-flatness of Minkowski space makes it possible to derive 

particularly simple differential equations for 𝑃𝑎 and 𝐽𝑎𝑏:9 

∇𝑎𝑃𝑏 = 0 

∇𝑎𝐽𝑏𝑐 = −𝑔𝑎[𝑏𝑃𝑐]. 

Using these ingredients, Geroch and Jang proceed to show that the extended body follows 
a timelike geodesic. More precisely, they prove that there is a timelike geodesic in the 

spatially convex hull of the support of 𝑇𝑎𝑏 by showing (1) that one can construct a center-
of-motion curve whose tangent is 𝑃𝑎 (see Proposition C.7) and (2) that 𝑃𝑎 is timelike (see 

Proposition C.5).10 To prove this, an energy condition is required. In the original paper, 
Geroch and Jang assume that 𝑇𝑎𝑏 satisfies the following Strict Dominant Energy Condition 

(Strict DEC): 

Definition 2.1: (Strict DEC) An energy-momentum tensor 𝑇𝑎𝑏 satisfies the Strict DEC if at 
11every point, either 𝑇𝑎𝑏 = 0 or 𝑇𝑎𝑏𝑋𝑎𝑌𝑏 > 0 for all co-oriented timelike vectors 𝑋𝑎 and 𝑌𝑎 . 

However, the Strict DEC is insufficient for the argument to work in the SR setting (a fortiori 
the GR setting). A simple counterexample to the theorem is furnished by null dust. Let 𝑘𝑎 be 

a constant null vector field. Define the energy-momentum tensor given by 𝑇𝑎𝑏 = Φ𝑘𝑎𝑘𝑏 and 

choose a Φ with compact spatial support such that ∇𝑎𝑇𝑎𝑏 = 0, i.e., 𝑘𝑎∇𝑎Φ = 0. Then 𝑇𝑎𝑏 

satisfies the Strict DEC, but there can be no timelike geodesic in the convex hull of the support 
of 𝑇𝑎𝑏 because the spatial support of 𝑇𝑎𝑏 lies within a cylinder whose boundary is tangent to 

𝑘𝑎, so every timelike geodesic starting in the support leaves the cylinder eventually.12 

So which energy condition is sufficient for Geroch and Jang’s SR result to go through? 
Analysing their argument (see Lemma C.5) reveals that in order to ensure that 𝑃𝑎 is timelike, 
they require that 

∫ 𝑇𝑎
𝑏 𝜉

𝑏𝑛𝑎 dvol𝜂(Σ) > 0 
Σ 

for a causal Killing field 𝜉𝑎 . If we want to follow Geroch and Jang (1975) in imposing a 

pointwise energy condition, then this is satisfied if and only if 

𝑇𝑎
𝑏 𝜉

𝑏𝑛𝑎 > 0. 

As we could have chosen another Σ and hence a different 𝑛𝑎 , we must require more 

generally that 

𝑇𝑎𝑏𝑋𝑎𝑌 𝑏 > 0 

for co-oriented non-vanishing 𝑋𝑎 and 𝑌𝑏 such that 𝑋𝑎 is timelike and 𝑌𝑏 is causal. By 

Lemma A.3, this just means that 𝑇𝑎𝑏 satisfies the Strengthened Dominant Energy Condition 

introduced into the discussion by Malament (2009): 

9 For more details on the following steps, see Corollary B.3 and Appendix C. 

10 The spatially convex hull of the support of 𝑇𝑎𝑏 can be defined simply as the smallest set 
containing the support of 𝑇𝑎𝑏 such that for every spacelike hypersurface Σ, the intersection 𝐶 ∩ Σ is 
a convex set in the Riemannian manifold (Σ, 𝜂𝑎𝑏|Σ). 

11 The condition is referred to as a “(strong) energy condition” in Geroch and Jang (1975, 66), 
although they only consider non-zero energy-momentum tensors. We adopt the standard 
nomenclature from Weatherall (2012, 213) and like Weatherall, also allow for energy-momentum 
tensors that vanish everywhere. 

12 Weatherall (2012) provides a counterexample in the non-Special Relativistic setting by 
showing that the GJM result does not hold if the Strict DEC, rather than a stronger energy 
condition, is imposed. To show this, he constructs a cylindrical spacetime. Our counterexample, by 
contrast, is Special Relativistic insofar as it is formulated in Minkowski space. 
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6 Definition 2.2: (Strengthened DEC) An energy-momentum tensor 𝑇𝑎𝑏 satisfies the 
Strengthened Dominant Energy Condition if given any timelike vector 𝑋𝑎 at any point, 
(1) 𝑇𝑎𝑏𝑋𝑎𝑋𝑏 ≥ 0 and (2) either 𝑇𝑎𝑏 = 0 or for all timelike 𝑋𝑎 , 𝑇𝑎

𝑏 𝑋
𝑏 is timelike. 

To conclude our discussion of energy conditions, we note that an energy condition even 

stronger than the Strengthened DEC has appeared in the literature: 

Definition 2.3: (Strengthened∗ DEC) An energy-momentum tensor 𝑇𝑎𝑏 satisfies the 
Strengthened∗ Dominant Energy Condition if at every point, either 𝑇𝑎𝑏 = 0 or 𝑇𝑎𝑏𝑋𝑎𝑌 𝑏 > 0 

for all non-vanishing co-oriented causal vectors 𝑋𝑎 and 𝑌 𝑏 . 

It has been falsely claimed (Weatherall 2012, 213) that this energy condition is equivalent to 

the Strengthened DEC.13 This can easily be shown to be wrong by considering 𝑇𝑎𝑏 = −𝑔𝑎𝑏, 
which satisfies the Strengthened DEC. To see this, one checks that for every timelike 𝑋𝑎 , 
𝑇𝑎

𝑏𝑋
𝑏 = −𝛿𝑏

𝑎𝑋𝑏 = −𝑋𝑎 is timelike. Moreover, 𝑇𝑎𝑏𝑋𝑎𝑋𝑏 = −𝑋𝑎𝑋𝑎 > 0, and thus 𝑇𝑎𝑏 

satisfies the Strengthened DEC. However, this energy-momentum tensor does not satisfy 

the Strengthened∗ DEC because for every non-zero null vector 𝑁𝑎 , 𝑇𝑎𝑏𝑁𝑎𝑁𝑏 = −𝑁𝑎𝑁𝑎 = 0. 

The Strengthened DEC is, therefore, weaker than the Strengthened∗ DEC. For a Geroch-
Jang-style result, one ideally wants the weakest possible condition that works, so as to not 
rule out a priori certain energy-momentum tensors: Strengthened DEC fulfils this role in 

the SR case. The final SR result can, therefore, be stated as follows: 

Theorem 2.4: Let (ℝ4, 𝜂𝑎𝑏) be Minkowski space, and let 𝑇𝑎𝑏 be a conserved energy-momentum 

tensor with compact non-vanishing spatial support satisfying the Strengthened DEC. Then there 
is a timelike geodesic in the convex hull of the support of 𝑇𝑎𝑏. 

Apart from the issue of the energy condition, the proof of Theorem 2.4 as given in Geroch 

and Jang (1975) is complete mutatis mutandis. However, their presentation does not clearly 

indicate which parts of the proof actually require that 𝑇𝑎𝑏 be covariantly conserved. Since 

this issue is crucial for the proof of the GR case, we include a more careful presentation of 
the proof of Theorem 2.4 in Appendix C, paying close attention to where exactly covariant 
conservation is needed. 

Before turning to the GR result, it is worth noting that Theorem 2.4 is Special Relativistic 
insofar as it is genuinely about Minkowski space. For not only does the proof use that 
(M, 𝜂𝑎𝑏) is maximally symmetric—in order to define 𝑃𝑎 and 𝐽𝑎𝑏 on every hypersurface 

Σ—but Riemann-flatness is used for the vanishing of ∇𝑎𝑃𝑏, which would otherwise take 

the form 

= 𝐽𝑐𝑑𝑅𝑐𝑑 ∇𝑎𝑃𝑏 𝑎𝑏, 

introducing an interaction of the motion with the geometry.14 Maximal symmetry and 

Riemann-flatness make the motion of an extended body lucidly tractable. 

2.2 GENERAL RELATIVITY: THE TWO STRANDS 

So much for the SR part of Geroch and Jang (1975). The rest of the Geroch-Jang paper 
purports to extend this result to GR. Crucially, the GR section operates with a different 
conception of “body:” while the SR result is about an extended body (of unspecified size) in 

Minkowski space, the second, General Relativistic part is about a “test body” in a general 
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7 spacetime, that is, a body “whose effect on the background spacetime structure is negligible” 
(Malament 2009, 8). 

As noted before, the GR section of Geroch and Jang’s paper itself contains two very different 
strands. The first is found in how Geroch and Jang state their General Relativistic theorem. 
Significantly, this strand has a global flavor, by which we mean that it requires the existence of 
a suitable energy-momentum tensor with non-vanishing support in any open neighborhood 

around the whole curve. As we will suggest shortly, this requirement has some unintuitive 

consequences. But there is also another strand, which can be read off from the way in which 

Geroch and Jang explain their proof. For instance, they write that “[t]he proof consists of 
noting that ‘the nearer one is to Γ [the analogue of the center-of-motion curve in the GR 

case], the more nearly is the result of special relativity applicable.’ ” They also provide a 

“physical interpretation of the theorem which is that, for any body, ‘insofar as that body is 
sufficiently small compared with the curvature that it may be regarded as a realization of 
the limit implicit in the theorem, then to that extent so may it be regarded as following some 

geodesic Γ’ ” (Geroch and Jang 1975, 66). These informal statements point to taking limits 
and implicitly appeal to the Equivalence Principle.15 Both aspects will be brought out more 

clearly in our theorem. 

Returning to the first strand, Malament (Malament 2009, 7–8) was the first to codify it (and 

replace Geroch and Jang’s energy condition by the Strengthened DEC), and we will thus call 
his statement the GJM result:16 

Theorem 2.5 (GJM result): Let (M, 𝑔𝑎𝑏) be a spacetime and let 𝛾 ∶ 𝐼 → M be a smooth 

embedded curve. Suppose that for any open neighborhood O of 𝛾(𝐼), there is a smooth symmetric 
2-tensor 𝑇𝑎𝑏 with the following properties: 

1. 𝑇𝑎𝑏 satisfies the Strengthened DEC. 
2. 𝑇𝑎𝑏 satisfies ∇𝑎𝑇𝑎𝑏 = 0. 
3. 𝑇𝑎𝑏 has non-vanishing support in O. 

Then 𝛾 is timelike and can be re-parametrized as a geodesic.17 

While the physical GJ argument, that is, the argument given by Geroch and Jang for 
Theorem 2.5, is incomplete and not fully rigorous, we are not aware of any counterexamples 
to the GJM result. Part of the difficulty in constructing a possible counterexample stems 
from the peculiar requirement that for any open neighborhood of the curve (e.g., one whose 

spatial volume asymptotes to zero, as depicted in Figure 1), there exists an energy-momentum 

tensor with the desired properties: since there is in general no minimal radius of a given 

neighborhood along the whole curve 𝛾(𝐼), one can only easily control such neighborhoods 
in the case of closed curves.18 But even if a complete proof of the GJM result is presented 

eventually—although we insist that the argument in Geroch and Jang (1975) is a proof sketch 

15 Indeed, Geroch and Jang cite Fermi 1922, who explicitly draws on considerations of scale. 
This, in turn, suggests an implicit appeal to the Equivalence Principle (Linnemann, Read, and Teh 
2024). There is also an interesting structural parallel to (Wallace 2017), where it is argued that the 
Equivalence Principle holds for isolated gravitating systems precisely because of considerations 
of scale. 

16 We slightly streamline the presentation by collapsing Malament’s two conditions 3 and 4 into 
our condition 3. 

17 Theorem 2.5 does not hold if certain “global” properties are weakened. The philosophical 
discussion has of course already pointed out the indispensability of condition 1, which is 
Malament’s correction to the formulation of the theorem given in the Geroch-Jang paper. 

18 See Weatherall (2012, 212). 
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Figure 1 Timelike curve with 
neighborhood whose spatial 
volume asymptotes to zero as 
proper time tends to ±∞. 

First, insofar as the GJM result is meant as an extension of the SR result, it gets things 
backwards in the following sense. In general, it seems that essentially two questions can 

be asked when inquiring under which conditions a curve 𝛾(𝐼) corresponding to a class of 
energy-momentum tensors is a timelike geodesic: 

(1) Given a curve 𝛾(𝐼) in a spacetime (M, 𝑔𝑎𝑏), what are sufficient conditions on a class of 
energy-momentum tensors that are, in a sense to be specified, associated with 𝛾(𝐼) such 

that 𝛾 is a timelike geodesic? 
(2) Given a class of energy-momentum tensors in (M, 𝑔𝑎𝑏), what are sufficient conditions 

on that class such that a curve 𝛾(𝐼) can, in a sense to be specified, associated with the 

class such that 𝛾 is a timelike geodesic? 

Only the second question asks for a theorem analogous to the SR result. For, in that case, the 

class is {𝑇𝑎𝑏} for an energy-momentum tensor 𝑇𝑎𝑏; a sufficient condition for 𝛾 to be a timelike 

geodesic is the requirement that 𝑇𝑎𝑏 should be covariantly conserved and should satisfy the 

Strengthened DEC; and the associated 𝛾(𝐼) is the curve of center-of-motion points. 

By contrast, the GJM result clearly answers the first question by defining “associated” via 

the support of the energy-momentum tensors in the class. We highlight this by saying 

that Theorem 2.5 implements a “weakest topology” approach, meaning that it uses the 

following topological space. Let Ω be the set of all energy momentum tensors excluding 

the tensor identically zero everywhere. Starting from a curve 𝛾(𝐼), one considers all open 

neighborhoods of that curve in M. Call their set Ξ. For every 𝑈 ∈ Ξ, define a subset 𝑁𝑈 of Ω: 
an energy-momentum tensor 𝑇𝑎𝑏 is in 𝑁𝑈 if and only if supp 𝑇𝑎𝑏 ⊆ 𝑈. Define the topology 

T as generated by the base {𝑁𝑈 ∶ 𝑈 ∈ Ξ} ∪ {∅}. Then (Ω, T ) is a topological space. Note 

that this topological space cannot separate an energy-momentum tensor 𝑇𝑎𝑏 from any of its 
multiples 𝜆𝑇𝑎𝑏 (𝜆 ∈ ℝ), implying that it does not “control” the “size” of energy-momentum 

tensors and is, thus, quantitatively “weak.” 

The GJM result can now be construed as an answer to the following question, which is an 

adaptation of the first question above to the topological space (Ω, T ): what are sufficient 
conditions on elements of Ω such that 𝛾 is a timelike geodesic? Figure 2 illustrates the way 

in which the GJM result is indeed an answer to this question. The conditions of Theorem 2.5 

define a subset of Ω, here depicted by the red curve, such that 𝛾 is a timelike geodesic 
if any open set 𝑁O has non-empty intersection with the red curve. When attempting to 

apply the GJM result to a curve 𝛾(𝐼), one can therefore only conclude that 𝛾 is indeed a 

timelike geodesic if one can prove that the conditions of Theorem 2.5 can be satisfied by 



9 an energy-momentum tensor 𝑇𝑎𝑏 for any neighborhood, a difficult task, especially when 

dealing with complicated spacetimes. But as well as being technically difficult, this way of 
proceeding is also not conceptually straightforward. Suppose one were to consider a curve 

𝛾(𝐼) representing a test body of a certain type, that is to say, suppose there is a sequence 

of energy-momentum tensors (1)𝑇𝑎𝑏,(2) 𝑇𝑎𝑏,(3) 𝑇𝑎𝑏, … with non-vanishing spatially compact 
support shrinking down to 𝛾(𝐼). If there is an open set 𝑁O that contains none of these 

energy-momentum tensors—a situation depicted in Figure 2—then in order to apply the 

GJM result, one needs to prove the existence of another energy-momentum tensor with 

support in O that satisfies the conditions of Theorem 2.5, even though the test body was 
already fully conceptualized using the sequence of energy-momentum tensors. The physical 
application of the GJM result and thereby the “weakest topology” approach thus come with 

considerable technical and conceptual difficulties. 

Second, the GJM result is intended to be about test bodies, those objects whose trajectories 
are well modeled by the gravitational effects of the background spacetime because they 

are small relative to these effects. This means that a class of tensors can only model such 

test bodies that are, in a certain sense, commensurate with the curvature. This is the issue 

of “physical scale,” which is crucial for the physical understanding of GR (Linnemann, 
Read, and Teh 2024). And yet, the GJM result does not contain any appeal to scale due to 

its global nature. The GJM result is therefore physically problematic; but fortunately, there 

is another strand in Geroch and Jang’s paper that respects “physical scale.” This strand is 
implemented in our new physical theorem, which fixes the shortcomings of the GJM result 
and implements the physical ideas more straightforwardly. Our resulting formulation will 
put more emphasis on the limit, which is merely implicit in the physical GJ argument. It 
thereby makes more precise the various limits that Geroch and Jang had to take in their 
argument, which were hidden under general phrases that some quantities can be made as 
small or close to each other “as we wish” or “as we please,” but were acknowledged explicitly 

through their “physical interpretation of the theorem which is that, for any body, ‘insofar 
as that body is sufficiently small compared with the curvature that it may be regarded as a 

realization of the limit implicit in the theorem, then to that extent so may it be regarded as 
following some geodesic Γ’ ” (Geroch and Jang 1975, 66). We will implement this intuition 

through a “scale-relative topology” approach, which asks the second of the two questions 
raised above, in the form: which topology should be placed on the class of energy momentum 

tensors based on physical desiderata? What is at stake is, therefore, not whether topologies 
play a role in the result—they clearly do—but rather, whether the topologies involved are 

specified physically.19 

Third, the “weakest topology” approach excludes certain energy-momentum tensors a 

priori by not being applicable to reasonable classes of energy-momentum tensors. This 
can be illustrated through an example. Let (M, 𝑔𝑎𝑏) be Minkowski space and 𝛾 an 

inextendible timelike geodesic with tangent vector 𝑢𝑎 . Consider moreover, the class C of 
energy-momentum tensors 

𝑇𝑎𝑏 = Φ 𝑢𝑎𝑢𝑏, (2) 

for a non-vanishing Φ ≥ 0 whose compact spatial support contains 𝛾(𝐼). For 𝑇𝑎𝑏 to be 

conserved, 𝑢𝑎∇𝑎Φ = 0, so Φ must have constant spatial volume for all times. However, if we 

consider an open neighborhood O of 𝛾(𝐼) that becomes infinitesimally narrow towards the 

future (see Figure 1), then there is no 𝑇𝑎𝑏 from C that is in that neighborhood. Theorem 2.5 
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therefore does not apply.20 Of course, one could object that there might be other energy-
momentum tensors in O that do not have the form (2). Two replies can be given. First, by 

shifting the focus from an explicitly given example to an existence claim, the objector has the 
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burden of proof to show that such energy-momentum tensors indeed exist. Second, the GJM 

result ought to be applicable in this situation as per the physical interpretation presented in 

the literature: that “we are representing ‘point particles’ as nested convergent sequences of 
smaller and smaller extended bodies” (Malament 2009, 8). 

One might further object to our example that the timelike dust of (2) is not a physically 

reasonable example tout court. However, it was supposed to be “a considerable advance to 

prove theorems that dispense with special modeling assumptions in favor of generic ones” 
and the GJM result was taken to be an example of this (Malament 2009, 3). Nevertheless, 
the GJM result has maneuvered us into the paradoxical situation that being maximally 

permissive about which neighborhoods of 𝛾(𝐼) ought to be admitted also meant being 

again restrictive about classes of energy-momentum tensors one can consider. So rather 
than “dispens[ing] with special modeling assumptions,” we have imported implicit ones. 
Therefore, although the GJM result without doubt achieves a degree of genericity—insofar 
as it does not presuppose a specific matter model (for example, that of a perfect fluid) as 
did some of the works prior to Geroch and Jang (1975)—it is not applicable to reasonable 

classes of energy-momentum tensors. 

The GJM result, which implements a “weakest topology” approach, is thus seen to be an 

at least not unproblematic reference point for philosophical discussions about geodesic 
motion in GR. So new results that avoid the “weakest topology” approach are desirable. In 

the next section, we show how such a result can be obtained by using other resources from 

the original paper by Geroch and Jang. 

NO

Ω

(1)

T ab
(2)

T ab

(3)

T ab

Figure 2 This is a schematic 
representation of the 
topological space (Ω, T ). 
The red curve represents the 
subset of energy momentum 
tensors satisfying the 
conditions of Theorem 2.5. 
The sequence (1)𝑇𝑎𝑏,(2) 𝑇𝑎𝑏, … 
exemplifies a class of 
energy-momentum tensors 
whose support is uniformly 
shrinking down to the curve. 
The shaded region represents 
an open set 𝑁O (induced by a 
neighborhood O) that does 
not contain any of the 
energy-momentum tensors 
of the given class. 

3 THE PHYSICAL GJ THEOREM AND ITS 
RELATION TO THE FIELD EQUATIONS 

The physical motivation provided by Geroch and Jang provides a proof strategy for our 
physical GJ theorem. We now proceed to sketch the statement and proof of this result, 
referring the reader to Appendix D for further details. 

20 One might wonder whether we have not been too unimaginative in our application of the 
GJM result. For example, could one not divide 𝛾(𝐼) into countably many open segments 𝛾𝑖 with 
finite length such that 𝛾(𝐼) = ⋃𝑖 𝛾𝑖 and then apply the GJM result to each 𝛾𝑖? But the problem is that 
here again, a neighborhood (of any 𝛾𝑖) can be chosen whose spatial volume tends to zero as we 
approach the ends of the segment, and no non-zero dust energy-momentum tensor exists whose 
support lies in such a neighborhood. 
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11 First, we will introduce the notion of a Geroch-Jang particle,21 which is a pair (𝛾, ((𝑛)𝑇𝑎𝑏)𝑛∈ℕ) 
such that 𝛾 ∶ 𝐼 → M is a smooth curve and ((𝑛)𝑇𝑎𝑏)𝑛∈ℕ 

is a sequence of energy-momentum 

tensors that is Geroch-Jang admissible. We call ((𝑛)𝑇𝑎𝑏)𝑛∈ℕ 
Geroch-Jang admissible if it 

shrinks down to 𝛾(𝐼), that is to say, every (𝑛)𝑇𝑎𝑏 has compact support “supp (𝑛)𝑇𝑎𝑏 ” and 

⋂ supp 
(𝑛)
𝑇 𝑎𝑏 = 𝛾(𝐼), 

𝑛∈ℕ 

and additionally satisfies what we call the Uniform Strengthened DEC and the Integrated 

Size and Integrated Conservation Conditions. We introduce these conditions in turn. 

Definition 3.1 (Uniform Strengthened DEC): A sequence of energy-momentum tensors 
((𝑛)𝑇𝑎𝑏)𝑛∈ℕ 

shrinking down to 𝛾(𝐼) satisfies the Uniform Strengthened DEC if for every 𝑞 ∈ 𝛾(𝐼) 
and every co-oriented non-zero 𝑉𝑎 and 𝑊 𝑎 at 𝑞 with 𝑉𝑎𝑉𝑎 < 0 and 𝑊𝑎𝑊 𝑎 ≤ 0, there exists a 

constant 𝑐 > 0 such that for every 𝑚 ∈ ℕ, 

(𝑚)
𝑇 𝑎𝑏𝑉𝑎𝑊 𝑏 ≥ 𝑐 > 0. 

This definition is uniform in 𝑚. Uniformity is a crucial ingredient of the proof in the following 

way. For any point 𝑝 on the curve 𝛾(𝐼), there is an open neighborhood 𝑈 about 𝑝 such that 
there exist normal coordinates, that is, coordinates in which 𝑔𝜇𝜈 = 𝜂𝜇𝜈 at 𝑝 and Γ𝜈𝜌

𝜇 = 0 at 𝑝. 
We can consider (𝑈, 𝜂𝑎𝑏) as a manifold on its own, which constitutes something like a “pre-
frame” about 𝑝.22 Now, the uniformity in the Uniform Strengthened DEC guarantees that if 
𝑈 is sufficiently small, then every (𝑛)𝑇𝑎𝑏 satisfies the Strengthened DEC in the pre-frame 

(𝑈, 𝜂𝑎𝑏) with a bound from below (in an appropriate sense).23 

The remaining conditions for a Geroch-Jang admissible sequence of energy-momentum 

tensors are contained in the following definitions. 

Definition 3.2 (Integrated Size Condition): A sequence ((𝑛)𝑇𝑎𝑏)𝑛∈ℕ 
satisfies the Integrated 

Size Condition with respect to a smooth curve 𝛾 ∶ 𝐼 → M if for every spacelike hypersurface Σ 

and for all vector fields 𝑋𝑎 and 𝑌 𝑎, there exists a constant 𝐶 > 0 such that 

(𝑛)
∫ 𝑇 𝑎𝑏𝑋

𝑎𝑌 𝑏| dvol𝑔(Σ) < 𝐶 (3)
Σ
| 

for all 𝑛 ∈ ℕ. 

The Integrated Size Condition enforces that |(𝑛)𝑇𝑎𝑏𝑋
𝑎𝑌𝑏| does not grow “too much.” 

Importantly, if the sequence ((𝑛)𝑇𝑎𝑏)𝑛∈ℕ 
satisfies the Integrated Size Condition and shrinks 

down to 𝛾(𝐼), then for every spacelike hypersurface Σ and for all vector fields 𝑋𝑎 and 𝑌 𝑎 , 

(𝑛) (𝑛)
∫ dist(𝑥) | 𝑇 𝑎𝑏𝑋

𝑎𝑌𝑏
| dvol𝑔(Σ) ≤ sup dist(x) ⋅ ∫ 𝑇 𝑎𝑏𝑋

𝑎𝑌𝑏
| dvol𝑔(Σ) → 0 (4)

Σ 𝑥∈supp((𝑛)𝑇𝑎𝑏) Σ 
| 

as 𝑛 → ∞. Here, “dist” denotes the geodesic distance from a point 𝑥 ∈ Σ to 𝛾(𝐼) ∩ Σ. 

Definition 3.3 (Integrated Conservation Condition): A sequence ((𝑛)𝑇𝑎𝑏)𝑛∈ℕ 
satisfies the 

Integrated Conservation Condition with respect to a smooth curve 𝛾 ∶ 𝐼 → M if for every 
spacelike hypersurface Σ and for every vector field 𝑋𝑎 , 

Σ 
|∇

𝑎 
(𝑛)

∫ 𝑇 𝑎𝑏𝑋𝑏
| dvol𝑔(Σ) → 0. (5) 

as 𝑛 → ∞. 

Dold and Teh 
Philosophy of Physics 
DOI: 10.31389/pop.203 

21 The name was introduced by Tamir, though with a different meaning (Tamir 2012, 147). 

22 We call (𝑈, 𝜂𝑎𝑏) a “pre-frame” because the physical GJ theorem shows that under the 
conditions of the theorem, it can, in fact, be considered an inertial frame for the test body as 𝑛 → ∞. 

23 For more details, see the proof in Appendix D. 



12 Clearly, the Integrated Conservation condition, though entailed by 

∇𝑎
(𝑛)
𝑇 𝑎𝑏 = 0, 

is significantly weaker: by (5), conservation need only hold “in the limit” as the volume of 
the energy-momentum tensors’ support becomes smaller and smaller. 

The combination of (4) and (5) implies that in a pre-frame (𝑈, 𝜂𝑎𝑏), integrals of the divergence 

of the energy-momentum tensors vanish in the limit as 𝑛 → ∞: 

𝜕𝜇 
(𝑛) (𝑛)

∫ 𝜂𝜇𝜌𝜕𝜇 𝑇 𝜇𝜈𝑋𝜈dvol𝜂(Σ) = ∫ 𝑇 𝜌𝜈𝑋𝜈 dvol𝜂(Σ)
Σ Σ 

(𝑛)
= ∫𝜂𝜇𝜌𝜕𝜇 𝑇 𝜌𝜈𝑋𝜈√|det𝜂|Σ| d𝑥1 … d𝑥3 

Σ 

(𝑛)
= ∫𝜂𝜇𝜌𝜕𝜇 𝑇 𝜌𝜈𝑋𝜈 √|det𝜂|Σ| √|det𝑔|Σ| d𝑥1 … d𝑥3 

Σ √|det𝑔|Σ| 

(𝑛)
= ∫𝜂𝜇𝜌𝜕𝜇 𝑇 𝜌𝜈𝑋𝜈 √|det𝜂|Σ| dvol𝑔(Σ) 

(6) 

Σ √|det𝑔|Σ| 

(𝑛) (𝑛) (𝑛)
[𝜂𝜇𝜌∇𝜇 = ∫ 𝑇 𝜌𝜈 + 𝜂𝜇𝜌 (Γ𝜇𝜌𝜍 𝑇 𝜍𝜈 + Γ𝜇𝜈𝜍 𝑇 𝜌𝜍)] × 

Σ 

× 𝑋𝜈 √|det𝜂|Σ| dvol𝑔(Σ).√|det𝑔|Σ| 

For the calculation, we first express dvol𝜂(Σ) in coordinates on Σ and then do the same for 
dvol𝑔(Σ). In the last step, ∇ is expressed using Christoffel symbols. The last integral of (6) can 

be interpreted as an integral in (M, 𝑔𝑎𝑏), so the Integrated Size and Conservation Conditions 
can be applied. In particular, since Γ𝜇𝜌𝜍 = O(dist(𝑥)), we can use (4) and (5) to see that the 

last integral tends to zero as 𝑛 → ∞. This calculation also provides a further insight. The 

reader might have wondered why a weight occurs in (4). The last integral of (6) shows why: 
24there, (4) enters to control the first non-trivial term of Γ𝜇𝜌𝜍 . 

In Appendix D, we give the full proof yielding the following theorem: 

Theorem 3.4 (Physical GJ theorem): Let (M, 𝑔𝑎𝑏) be a spacetime and let (𝛾, ((𝑛)𝑇𝑎𝑏)𝑛∈ℕ) be 
a Geroch-Jang particle. Then 𝛾 is a timelike geodesic (upon possible re-parametrization). 

The benefit of this theorem and the “scale-relative topology” approach is that it provides a 

quantitative understanding of the limits and approximations needed to state and prove a 

theorem about geodesic motion. The full extent of the quantitative character of the physical 
GJ theorem is further elucidated by the fact that the “scale-relative topology” approach 

makes possible a heuristic connection between the theorem and the dynamics of GR. This 
connection also further motivates the two conditions (4) and (5). Consider first (4). As 
the support of (𝑛)𝑇𝑎𝑏 shrinks as 𝑛 → ∞, this condition prevents a blow-up stronger than 

1/dist(𝑥). This is an assumption on the (𝑛)𝑇𝑎𝑏’s being “well behaved.” What is interesting is 
that (5) can be heuristically derived from (4) using the additional ingredient that every (𝑛)𝑇𝑎𝑏 

is conserved with respect to the Levi-Civita connection of the metric “sourced” by it and 

the energy-momentum tensor of the background spacetime, as well as particular modeling 
assumptions (8) to (10), as we will now explain. 
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13 Let 𝑇𝑎𝑏 be the energy momentum tensor associated with the background spacetime (M, 𝑔), 
that is to say, 

𝐺𝑎𝑏 =∶ 8𝜋𝑇𝑎𝑏. 

Moreover, let (𝑛)𝑔𝑎𝑏 be a metric on M associated with the Einstein tensor 

(𝑛) (𝑛)
𝐺 𝑎𝑏 ∶= 8𝜋 (𝑇𝑎𝑏 + 𝑇 𝑎𝑏) , (7) 

and let (𝑛)∇𝑎 be the Levi-Civita connection associated with (𝑛)𝑔.25 We take the test-particle 

concept to entail that in any coordinates, 

(𝑛)
𝑔 𝜇𝜈 → 𝑔𝜇𝜈 (8) 
(𝑛)
Γ 𝜇𝜈𝜍 → Γ𝜇𝜈𝜍 (9) 

(𝑛) (𝑛)
∇ 𝜇 𝐺 𝜈𝜍 → ∇𝜇𝐺𝜈𝜍 (10) 

pointwise as 𝑛 → ∞. The underlying intuition is that a test particle does not significantly 

perturb the background metric. 

In Appendix E, we present the calculation, which uses the EFE, of how 

∇𝑎
(𝑛)

∫ 𝑇 𝑎𝑏𝑋𝑏 dvol𝑔(Σ)
Σ 

can be expressed as a sum of five integrals 𝐼1 to 𝐼5. Since the energy-momentum tensors 
shrink down to 𝛾(𝐼), the spacelike hypersurface can be assumed to have finite volume. Then, 
by the modeling assumptions, one sees that 𝐼1 to 𝐼3 tend to zero as 𝑛 → ∞. Finally, to see 

that 𝐼4 and 𝐼5 tend to zero, we use these limits as well as (4). 

4 CONTEXTUALIZING THE PHYSICAL GJ 
THEOREM 

In Section 3, we have introduced our new physical GJ theorem, which implements Geroch 

and Jang’s “scale-relative topology” approach fully. We have thus provided a realization of 
the physical GJ argument by making explicit the scale relativity of the concept of a test body. 
In addition, we have given a heuristic justification of the Integrated Conservation Condition 

by means of the EFE. 

In this section, we add a brief discussion of the physical GJ theorem in the context of multiple 

other results from the literature, to wit, the results due to Geroch and Weatherall (2018), 
Ehlers and Geroch (2004),26 Gralla and Wald (2011), and Yang (2014). A general feature 

of our result is that just as is the case with Geroch and Jang, we are concerned with the 

question of which assumptions are sufficient to guarantee the timelikeness of the resulting 

geodesic. By contrast, the first three results simply assume the timelike character. We will 
say a little bit more about each of the four approaches in turn. 

While we do not wish to say much about the recent study by Geroch and Weatherall, leaving 

a full evaluation for future work, it should be remarked that their approach can be seen 

as an implementation of the “weakest topology” approach because of their qualitative 
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26 A rigorous proof of a generalized version of their theorem is given by Bezares et al. (2015). 



14 assumptions on the class of energy-momentum tensors and the absence of quantitative 

bounds. Moreover, Geroch and Weatherall’s theorem represents the energy-momentum 

tensors by distributions, which leads us away from the intuitive concept of a test body as 
employed in the original Geroch-Jang paper. While a distributional approach does, of course, 
not constitute a problem as such, we deem it to be sufficiently different to justify postponing a 

discussion for now. 

The result by Ehlers and Geroch, by contrast, shares an important similarity with our 
heuristic justification of the assumptions of the physical GJ theorem. The Ehlers-Geroch 

theorem is itself essentially perturbative, in the way in which the energy-momentum tensors 
associated with the test body are being absorbed (via the EFE) into the Einstein tensor 
modeling the world tube of the small body, thereby using an approximation similar to our 
heuristic derivation in Section 3. However, there are also important differences between 

the two theorems. First, the Ehlers-Geroch theorem does not implement the “scale-relative 

topology” approach fully: since no explicit limits are taken and no quantitative bounds 
specified, the nature of the approximation and limiting procedures remains less explicated 

than in the statement and proof of the physical GJ theorem. Second, while the result by 

Ehlers and Geroch operates at a higher level of abstraction (so that it can be interpreted as 
encompassing both the physical GJ theorem and our heuristic justification of the assumptions 
from the EFE), this gain in generality comes at the price of losing the intuitive concept of 
a test body. 

Gralla and Wald’s result is explicitly perturbative. They model the test body by introducing a 

formal power series expansion (in the perturbation parameter) around an ambient spacetime 

solution of the EFE, and consider the linearized equations of motion around that solution. 
Thus, one can think of the Gralla-Wald approach as being more explicitly perturbative than 

that by Ehlers and Geroch as it allows for quantitative control over the perturbative fields 
and their dynamics. 

Lastly, consider Yang’s mathematical proof of the geodesic motion of test bodies modeled by 

a more specific choice of energy-momentum tensor. He adopts the matter model of complex 

scalar fields given by non-linear Klein-Gordon equations, which are then coupled to the 

Einstein equations. He then shows that there is a sequence of initial data with shrinking 

spatial support that is more and more centered on a timelike geodesic. Note that Yang gives 
a genuinely dynamical argument, using the EFE as a system of partial differential equations 
whose solutions are obtained from an initial-value problem. Here, the timelike nature of 
the geodesic is obtained “for free,” or more accurately, from a careful analysis of the partial 
differential equations, without having to be imposed “by hand.” The price to pay is that he 

has to assume a fairly specific matter model. 

5 CONCLUSION 

Brown’s claim about the special status of GR vis-à-vis the explanation of geodesic motion 

of free bodies has attracted considerable scholarly attention. One strain of interpreting 

Brown’s claim—and criticizing it—goes back to Malament, who, accepting that “the geodesic 
principle can be recovered as a theorem in general relativity,” points out that “it is not a 

consequence of Einstein’s equation (or the conservation principle) alone” (Malament 2009, 2). 
To arrive at his conclusion, Malament needed to choose a particular way of conceptualizing 

this recovery of the geodesic principle and thus choose an appropriate theorem. His preferred 

choice was what we call the GJM result. Apart from Malament, this line of engaging with 

geodesic motion and Brown’s claim was adopted by Weatherall, who largely followed 

Malament in the explication of “explanation” as a “consequence of Einstein’s equation” 
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15 (Weatherall 2019, 144)27 and, at least initially, in probing the issue through the lens of 
the GJM result. On that basis, he also stressed that to prove geodesic motion, one needs an 

“assumption that the energy-momentum fields associated with test matter are divergence free 

just in case the fields are non-interacting”—the second condition in Theorem 2.5—but one 

does not “get that assumption directly from Einstein’s equation,” implying that the condition 

“is a bare assumption about test matter” and not a consequence of the EFE (Weatherall 2011, 
280). The strategy of using the GJM result for the philosophical study of inertial motion was 
also taken up by Sus who called “the result proposed by Geroch and Jang in 1975” one of the 

“most promising attempts” to “model a body associated with the energy-momentum tensor 
of the theory” (Sus 2014, 300). Samaroo likewise stated that “[t]here are various geodesic 
theorems, but Geroch and Jang’s (1975) has a claim to being the most perspicuous” and 

“if any geodesic theorem can be said to figure in a deductive-nomological explanation of 
inertial motion, the Geroch-Jang theorem can be said to do so” (Samaroo 2018, 972). All 
these commentators have followed Malament’s lead and have made the GJM result and thus 
the “weakest topology” approach, rather than the “scale-relative topology” approach, the 

focus of their analysis of geodesic motion in GR. 

Our results show that the GJM result is but one strand of the original Geroch-Jang 

paper, and the less physically motivated strand at that because it does not capture many 

physicists’—including Geroch and Jang’s—intuitive understanding of the test-body concept. 
Furthermore, we have demonstrated that Geroch and Jang’s physical motivation can indeed 

be clarified and turned into a rigorous argument and theorem in favor of geodesic motion. 
As argued, the Integrated Conservation Condition also affords a connection (in the sense of 
an approximation and limit) to the dynamics of the EFE via the heuristic derivation given 

in Section 3 and Appendix E. While Malament’s assessment—that geodesic motion “is not 
a consequence of Einstein’s equation (or the conservation principle) alone”—is valid also 

here because of the requirement of the Uniform Strengthened DEC, Weatherall’s worry 

about covariant conservation might therefore be somewhat assuaged. Consequently, the 

possibility of a heuristic derivation of the Integrated Conservation Condition could play 

into the hands of a defender of Brown’s claim, who needs a tangible way to cash out the 

logical relation between the EFE and the dynamics of “small” bodies. We submit that based 

on our results, the time is ripe for a re-evaluation of Brown’s arguments as well as those of 
his critics. 

A ENERGY CONDITIONS 

Lemma A.1: The energy-momentum tensor 𝑇𝑎𝑏 satisfies the Strengthened DEC if and only 
if (1) it satisfies the Strict DEC, and (2) if 𝑇𝑎𝑏 ≠ 0 at a point, then 𝑇𝑎

𝑏 𝑋
𝑏 is timelike for every 

timelike 𝑋𝑎 . 

Proof. It suffices to show that the Strengthened DEC implies the Strict DEC. Let 𝑇𝑎𝑏 ≠ 0 and 

𝑋𝑎 and 𝑌𝑎 be co-oriented timelike vectors. Then 𝑇𝑎𝑏𝑋𝑎𝑌 𝑏 ≠ 0 because 𝑇𝑎
𝑏 𝑋

𝑏 is timelike. 
Moreover, since 𝑇𝑎𝑏𝑋𝑎𝑋𝑏 ≥ 0, 𝑋𝑎 and −𝑇𝑎

𝑏 𝑋
𝑏 are co-oriented. Therefore, 𝑇𝑎𝑏𝑋𝑎𝑌𝑏 > 0. 

Remark A.2: The proof shows in particular that if 𝑇𝑎𝑏 satisfies the Strengthened DEC and 

𝑇𝑎𝑏 ≠ 0, then 𝑋𝑎 and −𝑇𝑎
𝑏 𝑋

𝑏 are co-oriented timelike for every timelike 𝑋𝑎 . 

Lemma A.3: An energy-momentum tensor 𝑇𝑎𝑏 satisfies the Strengthened DEC if and only if 
at every point, 𝑇𝑎𝑏 = 0 or 𝑇𝑎𝑏𝑋𝑎𝑌 𝑏 > 0 for all co-oriented 𝑋𝑎 and 𝑌𝑎 such that 𝑋𝑎 is timelike 
and 𝑌 𝑎 is causal. 
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27 It should be noted that in the article, Weatherall also offers an alternative account of cashing 
out what it means for GR to “explain” geodesic motion. 



16 Proof. It follows from Remark A.2 that if 𝑇𝑎𝑏 satisfies the Strengthened DEC and 𝑇𝑎𝑏 ≠ 0, 
then for every co-oriented timelike 𝑋𝑎 and causal 𝑌𝑎 , −𝑇𝑎

𝑏 𝑋
𝑏 and 𝑌 𝑎 are co-oriented, 

hence 𝑇𝑎𝑏 𝑋
𝑎𝑌𝑏 > 0. For the other direction, assume that 𝑇𝑎𝑏 ≠ 0 and 𝑇𝑎𝑏𝑋𝑎𝑌𝑏 > 0 for 

all co-oriented 𝑋𝑎 and 𝑌𝑎 such that 𝑋𝑎 is timelike and 𝑌 𝑎 is causal. If 𝑇𝑎
𝑏 𝑋

𝑏 were null or 
spacelike, there would be a causal 𝑌𝑎 such that 𝑇𝑎

𝑏 𝑋
𝑏𝑌𝑎 = 0, a contradiction. Therefore, 

𝑇𝑎
𝑏 𝑋

𝑏 is timelike, and 𝑇𝑎𝑏 satisfies the Strengthened DEC. 

B ENERGY FLUX 

The equality (1) is well-known. As such, it appears in Geroch and Jang (1975) without 
derivation. In this appendix, we derive (1) in a slightly more general setting. 

Let (M, 𝑔𝑎𝑏) be a maximally symmetric Lorentzian manifold28 of dimension 𝑚, and let 
Σ be a spacelike hypersurface with future-directed unit normal 𝑛𝑎 . The induced volume 

(𝑚 − 1)-form dvol(Σ) (or dvol𝑔(Σ) if we need to indicate the corresponding metric) is given 

by 𝜄𝑛𝜖, where 𝜖 is the volume 𝑚-form of M and 𝜄 is the interior product operator. This 
means that29 

𝜖 = −𝑛♭ ∧ dvol(Σ). 

In Geroch and Jang (1975), the one-form d𝑆𝑎 is used, which satisfies 

∫ 𝑋𝑎 d𝑆𝑎 = ∫𝜄𝑋𝜖 = −∫𝜄𝑋 (𝑛♭ ∧ dvol(Σ)) = − ∫ 𝑋𝑎𝑛𝑎 dvol(Σ). (11)
Σ Σ Σ Σ 

If (𝑥1, … , 𝑥𝑚−1) are coordinates on Σ and 𝑔𝑎𝑏|Σ denotes the induced metric tensor on Σ and 

det𝑔|Σ its determinant, then 

dvol(Σ) = √det𝑔|Σ d𝑥1 ∧ … ∧ 𝑥𝑚−1. 

Let a tensor 𝑇𝑎𝑏 be admissible with respect to Σ if and only if the map from the Lie algebra 

of Killing fields into the reals 

𝜉𝑎 ↦ ∫ 𝑇𝑏
𝑐 𝜉𝑐d𝑆𝑏 

Σ 

is well-defined for all Killing fields 𝜉𝑎 . 

Lemma B.1: Let (M, 𝑔𝑎𝑏) and Σ be as above. Moreover, let 𝑇𝑎𝑏 be admissible. Then there exists 
a unique 𝑃𝑎 and a unique anti-symmetric 𝐽𝑎𝑏 on Σ such that for every Killing field 𝜉𝑎 , 

𝑃𝑎𝜉𝑎 + 𝐽𝑎𝑏∇𝑎𝜉𝑏 = ∫ 𝑇𝑎
𝑏 𝜉

𝑏 d𝑆𝑎 (12)
Σ 

holds at any point 𝑝 ∈ Σ. 

Proof. Set 𝑁 ∶= 𝑚(𝑚 + 1)/2. Let K be the 𝑁-dimensional Lie algebra of Killing fields on M. 
For every 𝑝 ∈ Σ, a Killing field is uniquely determined by the values of 𝜉𝑎 and ∇𝑏𝜉𝑐 (𝑏 < 𝑐) 
at 𝑝 via the ordinary differential equation 

∇𝑎∇𝑏𝜉𝑐 = 𝑅𝑐𝑏𝑎𝑑𝜉
𝑑. (13) 

We define 𝑃𝑎 and 𝐽𝑎𝑏 as follows. Fix 𝑝 ∈ Σ. From (13), we know that there exist a 

linear bijection 

Φ𝑝 ∶ ℝ𝑁 → K 
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28 A (pseudo-)Riemannian manifold of dimension 𝑚 is called maximally symmetric if it has 
𝑚(𝑚 + 1)/2 independent Killing fields. 

29 With ♭ denoting the musical isomorphism, indeed 𝜄𝑛 (𝑛♭ ∧ dvol(Σ)) = 𝜄𝑛𝑛♭ ∧ dvol(Σ)− 
𝑛♭ ∧ 𝜄𝑛dvol(Σ) = −dvol(Σ). 
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17 mapping the values of 𝜉𝑎 and ∇𝑏𝜉𝑐 (𝑏 < 𝑐) at 𝑝 onto the vector space of Killing fields. We 

also define the linear map 

𝑄 ∶ K → ℝ, 𝜉𝑎 ↦ ∫ 𝑇𝑎
𝑏 𝜉

𝑏 d𝑆𝑎. 
Σ 

Since the map 𝑄 ∘ Φ𝑝 is linear, there are 𝑁 coefficients 𝑃𝑎 and 𝐽[𝑎𝑏] at 𝑝 such that at 𝑝, 

𝑃𝑎𝜉𝑎 + 𝐽𝑎𝑏∇𝑎𝜉𝑏 = ∫ 𝑇𝑎
𝑏 𝜉

𝑏 d𝑆𝑎. (14)|𝑝 
|𝑝 Σ 

Since 𝑝 is arbitrary, and since the right hand side is independent of 𝑝, (14) defines a one-form 

𝑃𝑎 and a two-form 𝐽[𝑎𝑏] on Σ. Moreover, (14) determines 𝑃𝑎 and 𝐽[𝑎𝑏] uniquely at every 𝑝, so 

𝑃𝑎 and 𝐽[𝑎𝑏] are unique. 

Remark B.2: Both 𝑃𝑎 and 𝐽𝑎𝑏 depend crucially on 𝑇𝑎𝑏 and Σ. Note also that the boundary 𝜕(Σ) 
of Σ need not be empty. 

Corollary B.3: Suppose that the intersection of 𝜕Σ with the support of 𝑇𝑎𝑏 on Σ is empty. Then 

[∇𝑎𝑃𝑏 − 𝐽𝑐𝑑𝑅𝑐𝑑𝑎𝑏] 𝜉
𝑏 + [∇𝑎𝐽𝑏𝑐 + 𝑔𝑎[𝑏𝑃𝑐]]∇𝑏𝜉𝑐 = 𝐾𝑎. (15) 

such that the values of the one-form 𝐾𝑎 are determined as follows. If 𝑋𝑎 is parallel to Σ, then 

𝜄𝑋𝐾 = 0. The remaining component is determined by 

𝜄𝑛𝐾 = ∫ ∇𝑎𝑇𝑎𝑏𝜉𝑏 dvol(Σ). (16)
Σ 

Proof. The identity (15) can be obtained by taking the Lie derivative of both sides of (12) with 

respect to an arbitrary vector field 𝑋𝑎 . The left-hand side is obtained by a straightforward 

calculation. The right-hand side vanishes if 𝑋𝑎 is parallel to Σ. If it is orthogonal to the 

hypersurface, we need to calculate L𝑋 (𝑇𝑎
𝑏 𝜉

𝑏 d𝑆𝑎) in the integral. By (11), setting 𝑌𝑎 = 

𝑇𝑎
𝑏 𝜉

𝑏, we can use Cartan’s magic formula:30 

L𝑋 (𝜄𝑌𝜖) = 𝜄𝑋 (d (𝜄𝑌𝜖)) + d (𝜄𝑋𝜄𝑌𝜖) 

= 𝜄𝑋 ((div𝑌)𝜖) − d (𝜄𝑌𝜄𝑋𝜖) 

= div𝑌 𝜄𝑋𝜖 − d (𝜄𝑌𝜄𝑋𝜖). 

Now set 𝑋𝑎 = 𝑛𝑎 . Since the integral of the second term of the last line over Σ vanishes by 

Stokes’ Theorem (because the intersection of 𝜕Σ and the support of 𝑇𝑎𝑏 was assumed to be 

empty), we obtain (16). 

C THE SR CASE 

In this appendix, we present a systematic review of Geroch and Jang’s argument for geodesic 
motion of extended bodies in Minkowski space (ℝ4, 𝜂𝑎𝑏). Our presentation is more careful 
than that of Geroch and Jang (1975), in particular it pays closer attention to the precise 

step in the argument in which one needs to assume that the energy-momentum tensor is 
divergence-free. 

First, for a non-vanishing admissible energy-momentum tensor 𝑇𝑎𝑏 with compact support, 
define a one-form 𝑃𝑎 and two-form 𝐽𝑎𝑏 relative to a spacelike hypersurface Σ = {𝑡 = 𝑡0} via 

(12). From this one derives the following 
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div𝐴 denotes ∇𝑎𝐴𝑎 . 



18 Proposition C.1: Let (ℝ4, 𝜂𝑎𝑏) be Minkowski space with global coordinates (𝑥𝜇) = 

(𝑡, 𝑥1, … , 𝑥3) and let Σ be a spacelike hypersurface with constant 𝑡 = 𝑡0. Then 

𝜕𝑖𝑃𝜇 = 0 

𝜕𝑖𝐽𝜇𝜈 = −𝜂𝑖[𝜇𝑃𝜈]. 

Moreover, there exist a one-form 𝐴𝑎 and a two-form 𝐵𝑎𝑏 such that 

𝜕𝑡𝑃𝜇 = 𝐴𝜇 

𝜕𝑡𝐽𝜇𝜈 = −𝜂𝑖[𝜇𝑃𝜈] + 𝐵[𝜇𝜈]. 

The forms 𝐴𝑎 and 𝐵𝑎𝑏 are defined via integrals of linear combinations of 𝜕𝜇𝑇𝜇𝜈 with linear 
weights over Σ. 

Proof. The proposition is a direct application of Corollary B.3 with 𝑛𝑎 = 𝜕𝑡, noting that 
Minkowsi space has vanishing Riemann tensor. 

Remark C.2: Evidently, if 𝑇𝑎𝑏 is covariantly conserved, i.e., 𝜕𝜇𝑇𝜇𝜈 = 0, then 𝐴𝜇 and 𝐵𝜇𝜈 vanish. 

We now construct a center-of-motion point 𝑝 (of the extended body) on Σ under the 

assumption that 𝑃𝑎 is timelike. 

Lemma C.3: Under the same assumptions as above, assume furthermore that 𝑃𝑎𝑃𝑎 < 0 on Σ. 
Then there is a unique point 𝑝 ∈ Σ such that 

𝐽𝑖𝜇𝑃𝜇 = 0. 

Proof. One calculates 

𝜕𝑖 (𝐽𝜇𝜈𝐽𝜇𝜈) = −2𝜂𝑖𝜇𝑃𝜈𝐽𝜇𝜈 

and 

𝐻𝑖𝑗 ∶= 𝜕𝑗𝜕𝑖 (𝐽𝜇𝜈𝐽𝜇𝜈) = 2𝜂𝑖
𝜇𝑃𝜈𝜂𝑗[𝜇𝑃𝜈] = |𝑃|2𝛿𝑖𝑗 − 𝑃𝑖𝑃𝑗, (17) 

where |𝑃|2 = 𝑃𝜇𝑃𝜇. 

Π𝜇𝜈 ∶= 𝜂𝜇𝜈 − (18)
|𝑃| 
1 
2 𝑃𝜇𝑃𝜈 

is the projection operator orthogonal to 𝑃, which is positive definite when restricted to 

spacelike vectors. The matrix 𝐻𝑖𝑗 is therefore negative definite (because |𝑃|2 < 0). Moreover, 
𝐻𝑖𝑗 is constant on Σ, and hence 𝐽𝜇𝜈𝐽𝜇𝜈 achieves a unique maximum 𝑝 ∈ Σ where its 
gradient vanishes. 

Remark C.4: Since 𝑃𝑎 is timelike and 𝐽𝑎𝑏 anti-symmetric, one has, in fact, 

𝐽𝜇𝜈𝑃𝜈 = 0 (19) 

at the point 𝑝 defined by Lemma C.3. 

Next, we use the Strengthened DEC to show that the conditions of the previous lemma are 

indeed satisfied, that is to say, that 𝑃𝑎 is timelike. 

Lemma C.5: If 𝑇𝑎𝑏 satisfies the Strengthened DEC and has non-vanishing support, then 𝑃𝑎 is 
future-directed timelike. 

Proof. The one-form 𝑃𝑎 is constant on Σ. Hence, we can write 𝑃𝑎 = 𝜆 (𝜕𝑡)𝑎 + 𝛼𝑎 on Σ, 
where 𝜆 ∈ ℝ and 𝛼𝑎 spacelike and constant (in Minkowski space). We show that 𝑃𝑎 is 
timelike by distinguishing two cases. If 𝛼𝑎 = 0, then trivially, 𝑃𝑎 is timelike. Otherwise, the 
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19 constant (on Σ) non-vanishing vector field 𝜉𝑎 = sign(𝜆)|𝛼| (𝜕𝑡)𝑎 + 𝛼𝑎 is Killing, null, and 

future-directed, where |𝛼| = √𝛼𝑎𝛼𝑎. We have 

𝑃𝑎𝜉𝑎 = −sign(𝜆)𝜆|𝛼| + |𝛼|2 = |𝛼|(|𝛼| − |𝜆|). 

Therefore, from (12), we obtain using (11) that 

|𝛼|(|𝛼| − |𝜆|) = − ∫ 𝑇𝑎
𝑏 𝜉

𝑏𝑛𝑎 dvol(Σ).
Σ 

By Lemma A.3, 𝑇𝑎
𝑏 𝜉

𝑏𝑛𝑎 > 0, so |𝛼| ∈ (0, |𝜆|), whence 

𝑃𝑎𝑃𝑎 = (|𝛼| + |𝜆|) (|𝛼| + |𝜆|) < 0. 

Therefore, 𝑃𝑎 is timelike. Now, choosing 𝜉𝑎 = (𝜕𝑡)𝑎 in (12) shows that 𝑃𝑎(𝜕𝑡)𝑎 < 0, hence 

𝜆 > 0 and 𝑃𝑎 is future-directed. 

We now use a particular Killing field (a boost around 𝑃𝑎 that leaves 𝑝 invariant) to show that 
the center-of-motion point 𝑝 lies in the convex hull of the support of 𝑇𝑎𝑏, that is to say, “in 

the extended body.” 

Lemma C.6: Let 𝑇𝑎𝑏 have non-vanishing compact support on Σ satisfying the Strengthened 

DEC. Let 𝑝 ∈ Σ such that 𝐽𝑖𝜇𝑃𝜇 = 0 at 𝑝. Then 𝑝 lies in the convex hull C of the support of 
𝑇𝑎𝑏 in Σ. 

Proof. Suppose 𝑝 to lie outside of the convex hull C. Then there exists a unique geodesic in 

Σ from 𝑝 to the boundary of C with minimal length. Let 𝑉𝑎 be its constant tangent vector. 
By Lemma C.5, 𝑃𝑎 is future-directed timelike, so there is a constant vector field 𝑋𝑎 such that 
𝑃𝑎, 𝑉𝑎, 𝑋𝑎 are linearly dependent as well as 𝑉𝑎𝑋𝑎 > 0, 𝑃𝑎𝑋𝑎 = 0, and 𝑋𝑎𝑋𝑎 = −𝑃𝑎𝑃𝑎 . Now 

let 𝜉𝑎 be the the unique Killing field such that at 𝑝, 

𝜉𝑎 = 0, 𝑋𝑎∇𝑎𝜉𝑏 = 𝑃𝑏, 𝑃𝑎∇𝑎𝜉𝑏 = 𝑋𝑏, 𝑌𝑎∇𝑎𝜉𝑏 = 0 

for any 𝑌 𝑎 orthogonal to 𝑃𝑎 and 𝑋𝑎 .31 Then 𝜉𝑎 is future-directed timelike on C. Then by 

construction, the left-hand side of (12) vanishes at 𝑝 where 𝐽𝜇𝜈𝑃𝜈 = 0 by (19). Yet, the 

right-hand side is strictly negative, a contradiction. 

It is worth noting that we have not yet made use of 𝑇𝑎𝑏’s being covariantly conserved up 

to this point. As the following proposition shows, the conservation condition is used to 

“follow” the points where 𝐽𝑖𝜇𝑃𝜇 = 0. It proves that the resulting center of motion moves on 

a geodesic. 

Proposition C.7: Let 𝑇𝑎𝑏 be a conserved energy-momentum tensor with compact spatial 
support satisfying the strengthened DEC. There then exists a well-defined smooth curve 𝛾 in the 
convex hull of 𝑇𝑎𝑏 such that 

𝐽𝑖𝜇𝑃𝜇 = 0 

on the curve. Then 𝑃𝑎 is parallel to the tangent vector 𝛾𝑎̇ . 

Proof. The claim can be easily seen by computing the derivatives of 𝐽𝑗𝜇𝑃𝜇 . Since 𝑇 is 
conserved, we obtain 

𝜕𝑖 (𝐽𝑗𝜇𝑃𝜇) = − 
1
2 
|𝑃|2Π𝑖𝑗 

𝜕𝑡 (𝐽𝑗𝜇𝑃𝜇) = − 
2
1 
|𝑃|2Π𝑡𝑗, 
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20 where Π as in (18). The ∇𝜈 (𝐽𝑗𝜇𝑃𝜇) are therefore just the components of the projection operator 
orthogonal to 𝑃𝑎 . Since 𝐽𝑖𝜇𝑃𝜇 = 0 on 𝛾, ∇𝑎 (𝐽𝑗𝜇𝑃𝜇) is orthogonal to 𝛾𝑎̇ . This immediately 

yields the claim. 

The above results can now be summarized in the following theorem: 

Theorem C.8: Let (ℝ4, 𝜂𝑎𝑏) be Minkowski space, and let 𝑇𝑎𝑏 be a conserved energy-momentum 

tensor with non-vanishing compact spatial support satisfying the Strengthened DEC. Then there 
is a timelike geodesic in the convex hull of the support of 𝑇𝑎𝑏. 

D PROOF OF THE GR CASE 

In Section 3, we introduced the definitions necessary to formulate Theorem 3.4. Moreover, 
we presented the conceptual ingredients of the proof. Here, we give the full details. 

The proof proceeds in two steps. In the first step, we show that 𝛾 is timelike. We first define a 

Minkowskian manifold (N , 𝜂𝑎𝑏), the “pre-frame,” about an arbitrary point on the curve, say 

𝑝 ∈ 𝛾(𝐼). This is done as follows. There exist a neighborhood 𝑈 of 𝑝 and normal coordinates 
(𝑡, 𝑥1, … , 𝑥3) in 𝑈 such that in these coordinates, 𝑝 = (0, 0, 0, 0) and 𝑔𝜇𝜈 = 𝜂𝜇𝜈 at 𝑝. Moreover, 
all Christoffel symbols vanish at 𝑝. 

Now view (𝑈, 𝜂𝑎𝑏) as a manifold (which is isometrically isomorphic to a subset of Minkowski 
space). By the Uniform Strengthened DEC (Definition 3.1), one can choose 𝑈 sufficiently 

small such that for all 𝑛, (𝑛)𝑇𝑎𝑏 satisfies the Strengthened DEC in (𝑈, 𝜂𝑎𝑏). Furthermore, 
there is an 𝜖 > 0 such that for all 𝑠 ∈ (−𝜖, 𝜖), Σ𝑠 ∩ 𝛾(𝐼) ≠ ∅, where Σ𝑠 ∶= {𝑡 = 𝑠}. Set 
N𝑝 ∶= 𝑈 ∩ {−𝜖 < 𝑡 < 𝜖}. The manifold (N , 𝜂𝑎𝑏) is also, evidently, isometrically isomorphic 
to a subset of Minkowski space. 

In (N , 𝜂𝑎𝑏), we can now simply apply results from Minkowski space for every (𝑛)𝑇𝜇𝜈 and 

obtain tensors (𝑛)𝑃𝜇 and (𝑛)𝐽𝜇𝜈 via 

(𝑛) (𝑛) (𝑛)
𝑃 𝜇𝜉𝜇 + 𝐽 𝜇𝜈∇𝜇𝜉𝜈 = − ∫ 𝑇 𝑡𝜈𝜉𝜈 dvol𝜂(Σ0) (20)

Σ0 

as in (12). The momentum (𝑛)𝑃𝜇 is future-directed timelike because every energy-momentum 

satisfies the Strengthened DEC in (N , 𝜂𝑎𝑏). This follows in the same way as in the SR case 

(Lemma C.5). Moreover, we can likewise define a center-of-motion curve (𝑛)𝛾 defined by 

(𝑛) (𝑛)
𝐽 𝑖𝜇 𝑃 𝜇 = 0, 

analogous to Lemmas C.3 and C.6. The center-of-motion curve then lies in the convex hull 
of the energy-momentum tensor’s support. 

Since the support of the energy-momentum tensors shrinks to 𝛾(𝐼), we have a convergence 

of the curves (𝑛)𝛾 to 𝛾. Moreover, by (3), the sequences of both (𝑛)𝑃𝑎 and (𝑛)𝐽𝑎𝑏 are bounded, 
which means that there is a subsequence such that they converge to a 𝑃𝑎 and a 𝐽𝑎𝑏, respectively. 
We pass to this subsequence. Now, since every (𝑛)𝑃𝑎 is constant on Σ0 and timelike, 𝑃𝑎 is 
constant on Σ0 and timelike or null. To show that 𝑃𝑎 is in fact timelike, consider the Killing 

field in (N , 𝜂𝑎𝑏) that is uniquely determined by 

𝜉𝜇 = 𝑃𝜇, 𝜕𝜇𝜉𝜈 = 0 

at (0, 0, 0, 0). Moreover, by the Uniform Strengthened DEC, there exists a 𝑐 > 0 such that at 
(0, 0, 0, 0), 

(𝑛)
𝑇 𝑡𝜇𝑃𝜇 ≥ 𝑐 
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21 for all 𝑛. For this 𝜉𝑎, the right-hand side of (20) is therefore negative for all large 𝑛 and hence 

𝑃𝑎 timelike. 

We now show that at 𝑝, 𝑃𝑎 is parallel to the tangent vector of 𝛾. For this, we prove that 

(𝑛) (𝑛) (𝑛)
𝑃 𝜇𝜕𝜇 ( 𝐽 𝑗𝜈 𝑃 𝜈) → 0 

for all 𝑗 = 1, 2, 3 as 𝑛 → ∞. First, one calculates the derivatives of (𝑛)𝑃𝜇 and (𝑛)𝐽𝜇𝜈 as in 

Proposition C.1. One obtains 

1
𝜕𝑖 ((𝑛)𝐽𝑗𝜇 

(𝑛)𝑃𝜇) = − 
2 
|(𝑛)𝑃|

2 (𝑛)Π𝑖𝑗 

𝜕𝑡 ((𝑛)𝐽𝑗𝜇 
(𝑛)𝑃𝜇) = − 

2
1 
|(𝑛)𝑃|

2 (𝑛)Π𝑡𝑗 +(𝑛) 𝐵𝑗𝜇 
(𝑛)𝑃𝜇 +(𝑛) 𝐽𝑗𝜇 

(𝑛)𝐴𝜇, 

where (𝑛)Π is the projection operator defined as in (18). It is easy to see that the product 
of (𝑛)𝑃𝑎 with these components tends to zero at 𝑝 once one realizes that the tensors (𝑛)𝐴𝑎 

and (𝑛)𝐵𝑎𝑏 go to zero: recall that the components of these tensors are given by integrals of 
the form 

∫ 𝜂𝜇𝜌𝜕𝜇 
(𝑛)𝑇𝜌𝜈𝜂𝜈𝜍𝑋𝜈 dvol𝜂(Σ); (21)

Σ 

as explained in Section 3 (see (6)), these integrals tend to zero as 𝑛 → ∞. This proves that 𝛾 

is timelike with a tangent vector proportional to 𝑃𝑎 at 𝑝. Since 𝑝 is arbitrary, the result holds 
for the entire curve. 

In the second step of this proof, we show that 𝛾 can be re-parametrized as a geodesic. For 
this, we use the fact that 𝛾 is timelike to construct Fermi normal coordinates along 𝛾 via 

standard methods.32 We can now repeat the argument of the first step along the whole curve 

to obtain a timelike 𝑃𝑎 defined along 𝛾 and tangent to 𝛾. It remains to show that 

(𝑛) (𝑛)
𝑃 𝜇∇𝜇 𝑃 𝜈 → 0. 

as 𝑛 → ∞. Since we have chosen Fermi normal coordinates, we know that the Christoffel 
symbols vanish along 𝛾. Therefore, on 𝛾(𝐼), 

(𝑛) (𝑛) (𝑛) (𝑛) (𝑛)
𝑃 𝑡

(𝑛)
𝑃 𝜇∇𝜇 𝑃 𝜈 = 𝑃 𝜇𝜕𝜇 𝑃 𝜈 = 𝐴 𝜈. 

Calculating (21) as before, we see that the quantity tends to zero as 𝑛 → ∞. This finishes 
the proof. 

E CALCULATING THE DIVERGENCE OF THE nTH 
ENERGY-MOMENTUM TENSOR 

We have 

∇𝑎 
(𝑛) (𝑛)

= 𝑔𝑎𝑐∇𝑐 𝑇 𝑎𝑏 𝑇 𝑎𝑏 

= 𝑔𝑎𝑐∇𝑐 (𝑇𝑎𝑏 + 
(𝑛)
𝑇 𝑎𝑏) (22) 

(𝑛)
𝑔 𝑎𝑐

(𝑛) (𝑛) (𝑛) (𝑛)
∇ 𝑐𝜏𝑎𝑏 + (𝑔𝑎𝑐 − 

(𝑛)
𝑔 𝑎𝑐) ∇ 𝑐𝜏𝑎𝑏 − 𝑔𝑎𝑐 (Γ𝑑 Γ 𝑑 Γ 𝑑 = 𝑎𝑐 − 𝑎𝑐) 𝜏𝑑𝑏 − 𝑔𝑎𝑐 (Γ𝑏𝑐

𝑑 − 𝑏𝑐) 𝜏𝑎𝑑, 

where we use the shorthand 

(𝑛)
𝜏𝑎𝑏 = 𝑇𝑎𝑑 + 𝑇 𝑎𝑑. 
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∇𝑎
(𝑛) 

(𝑔𝑎𝑐 − 
(𝑛) (𝑛) (𝑛)

∫ 𝑔 𝑎𝑐)𝑇 𝑎𝑏𝑋𝑏 dvol𝑔(Σ) = ∫ ∇ 𝑐 𝐺 𝑎𝑏𝑋𝑏 dvol𝑔(Σ)
Σ Σ 

(𝑛)
𝑔𝑎𝑐 (Γ𝑑 Γ 𝑑 −∫ 𝑎𝑐 − 𝑎𝑐) 𝑇𝑑𝑏𝑋𝑏 dvol𝑔(Σ)

Σ 

(𝑛)
𝑔𝑎𝑐 (Γ𝑑 Γ 𝑑 −∫ 𝑏𝑐 − 𝑏𝑐) 𝑇𝑎𝑑𝑋

𝑏 dvol𝑔(Σ)
Σ 

(𝑛) (𝑛)
𝑔𝑎𝑐 (Γ𝑑 Γ 𝑑 − ∫ 𝑎𝑐 − 𝑎𝑐) 𝑇 𝑑𝑏𝑋𝑏 dvol𝑔(Σ)

Σ 

(𝑛) (𝑛)
− ∫ 𝑔𝑎𝑐 (Γ𝑑 Γ 𝑑 𝑇 𝑎𝑑𝑋𝑏 dvol𝑔(Σ)𝑏𝑐 − 𝑏𝑐)

Σ 

Denote the first integral on the right-hand side by 𝐼1, the second one by 𝐼2, and so forth. 
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	(Br
	(Br
	own 2007, 141)




	2 Weatherall has recently revisited the problem in light of a result proved in collaboration with Geroch . Since it is not the Geroch-Weatherall theorem that has been the focal case of the literature, we still feel justified to restrict attention to the locus classicus of the debate, especially since it has, to our minds, not been treated sufficiently so far. 
	2 Weatherall has recently revisited the problem in light of a result proved in collaboration with Geroch . Since it is not the Geroch-Weatherall theorem that has been the focal case of the literature, we still feel justified to restrict attention to the locus classicus of the debate, especially since it has, to our minds, not been treated sufficiently so far. 
	(2020) 
	(2020) 

	(Geroch and W
	(Geroch and W
	eatherall 2018)




	3 To avoid any misunderstanding, we would like to flag that “weakest topology” is not meant pejoratively, but as a description of the topology’s “strength.” Preempting a point to be made below, “weakest” can be read as “least quantitative.” 
	3 To avoid any misunderstanding, we would like to flag that “weakest topology” is not meant pejoratively, but as a description of the topology’s “strength.” Preempting a point to be made below, “weakest” can be read as “least quantitative.” 

	4 For transparency’s sake, we note that this remark is made in the context of Geroch and Weatherall , which is bracketed here. However, Weatherall’s comment seems to apply equally to his interpretation of the problematic contained in the Geroch-Jang paper. 
	4 For transparency’s sake, we note that this remark is made in the context of Geroch and Weatherall , which is bracketed here. However, Weatherall’s comment seems to apply equally to his interpretation of the problematic contained in the Geroch-Jang paper. 
	(2018)
	(2018)



	5 While this point has not been disputed, the precise connection between the SR result and the GR case has never been made explicit. On our view, this is not surprising because the connection becomes clear only upon rigorously pursuing the “scale-relative topology” approach, as we do in this article. 
	5 While this point has not been disputed, the precise connection between the SR result and the GR case has never been made explicit. On our view, this is not surprising because the connection becomes clear only upon rigorously pursuing the “scale-relative topology” approach, as we do in this article. 


	2 AN ANALYSIS OF THE GEROCH-JANG PAPER 
	2 AN ANALYSIS OF THE GEROCH-JANG PAPER 
	The paper contains two parts: the first attempts to derive the geodesic motion of a free extended body in Special Relativity (SR), and the second attempts to derive the geodesic motion of a test body in General Relativity (GR). The SR result about extended bodies is relatively straightforward, which might explain why it has not been addressed in the philosophy literature. However, since it is essential to the overall argumentative strategy in the GR case, we include the SR result in our presentation. 
	(
	(
	Geroch and Jang 1975) 



	Following the original paper, in Section 2.1, we lay some crucial groundwork by discussing the SR case, in order to (i) contrast the notions of “extended body” and “test body;” 
	(ii) 
	(ii) 
	introduce SR concepts such as linear momentum (𝑃𝑎) and angular momentum (𝐽𝑎𝑏) 
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	that will be analogously extended to the GR case; and (iii) develop the energy condition to prepare the GR case. There is one additional function played by Section 2.1: some of the philosophical literature on the Geroch-Jang paper contains a confused discussion (with a small mathematical mistake) of energy conditions, and without dispelling this confusion, it is difficult to see how one could prove a physical GJ theorem of the kind that we undertake in Section 3; we thus take the opportunity to make this mi
	Having laid the groundwork in Section 2.1, Section 2.2 proceeds to discuss the two very different conceptual strands in the GR part of Geroch and Jang : (i) what we call the “GJM result” (Malament’s formulation of the theorem in the GR case in the Geroch-Jang paper) and (ii) the physical reasoning that Geroch and Jang use to sketch an argument for their result, which we call “the physical GJ argument.” We will argue in this section that the GJM result is physically unmotivated. On the other hand, the physic
	(1975)
	(1975)

	6 
	6 


	6 To avoid any misunderstanding, we would like to stress that we do not intend to be dismissive about the GJM result by not calling it a theorem. Rather, we merely mean to imply that the physical GJ argument is, on our view to be explained below, not a rigorous proof of the GJM result, but rather a proof sketch for the physical GJ theorem. 
	6 To avoid any misunderstanding, we would like to stress that we do not intend to be dismissive about the GJM result by not calling it a theorem. Rather, we merely mean to imply that the physical GJ argument is, on our view to be explained below, not a rigorous proof of the GJM result, but rather a proof sketch for the physical GJ theorem. 

	2.1 SPECIAL RELATIVITY 
	2.1 SPECIAL RELATIVITY 
	The first part of Geroch and Jang concerns the extended body in SR. From a mathematical point of view, it proceeds by assuming that one has Minkowski space (M, 𝜂𝑎𝑏) and a non-vanishing spatially compactly supported energy-momentum tensor 𝑇𝑎𝑏 on M that represents the extended body. Energy-momentum is assumed to be covariantly conserved, that is, 
	(1975) 
	(1975) 


	∇𝑇𝑎𝑏 = 0, 
	𝑎

	7
	7
	7


	where ∇ is the Levi-Civita connection associated with the flat Minkowski metric 𝜂𝑎𝑏. 
	Since Minkowski space is maximally symmetric (i.e., the number of Killing fields is maximal), we can immediately derive (see Lemma B.1 in the appendix)
	8 
	8 


	𝑃𝑎𝜉+ 𝐽𝑎𝑏∇𝜉= ∫ 𝑇𝜉d𝑆𝑎 (1)Σ 
	𝑎 
	𝑎
	𝑏 
	𝑎
	𝑏 
	𝑏 

	for any spacelike hypersurface Σ and any Killing field 𝜉. This integral identity should be interpreted as follows. For any spacelike hypersurface of Minkowski space, and any of the 10 Killing fields (i.e., any of the symmetries of the Poincaré group), the integral on the right hand side can be split into a momentum part (where 𝑃𝑎 generalizes linear momentum) and an angular momentum part (where 𝐽𝑎𝑏 generalizes angular momentum). Note here that the one-form 𝑃𝑎 and the two-form 𝐽𝑎𝑏 are defined on al
	𝑎 

	7 Latin indices of tensors are used as abstract indices while Greek indices designate a choice of coordinate basis. We adopt the metric convention − + ++. 
	7 Latin indices of tensors are used as abstract indices while Greek indices designate a choice of coordinate basis. We adopt the metric convention − + ++. 
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	Furthermore, the Riemann-flatness of Minkowski space makes it possible to derive particularly simple differential equations for 𝑃𝑎 and 𝐽𝑎𝑏:
	9 
	9 


	∇𝑎𝑃𝑏 = 0 
	∇𝑎𝐽𝑏𝑐 = −𝑔𝑎[𝑏𝑃𝑐]. 
	Using these ingredients, Geroch and Jang proceed to show that the extended body follows a timelike geodesic. More precisely, they prove that there is a timelike geodesic in the spatially convex hull of the support of 𝑇𝑎𝑏 by showing (1) that one can construct a center-of-motion curve whose tangent is 𝑃(see Proposition C.7) and (2) that 𝑃is timelike (see Proposition C.5).To prove this, an energy condition is required. In the original paper, Geroch and Jang assume that 𝑇𝑎𝑏 satisfies the following Stric
	𝑎 
	𝑎 
	10 
	10 


	Definition 2.1: (Strict DEC) An energy-momentum tensor 𝑇𝑎𝑏 satisfies the Strict DEC if at 
	11
	11
	11


	every point, either 𝑇𝑎𝑏 = 0 or 𝑇𝑎𝑏𝑋𝑌> 0 for all co-oriented timelike vectors 𝑋and 𝑌. 
	𝑎
	𝑏 
	𝑎 
	𝑎 

	However, the Strict DEC is insufficient for the argument to work in the SR setting (a fortiori the GR setting). A simple counterexample to the theorem is furnished by null dust. Let 𝑘be a constant null vector field. Define the energy-momentum tensor given by 𝑇𝑎𝑏 = Φ𝑘𝑎𝑘𝑏 and choose a Φ with compact spatial support such that ∇𝑇𝑎𝑏 = 0, i.e., 𝑘∇𝑎Φ = 0. Then 𝑇𝑎𝑏 satisfies the Strict DEC, but there can be no timelike geodesic in the convex hull of the support of 𝑇𝑎𝑏 because the spatial support 
	𝑎 
	𝑎
	𝑎
	𝑎
	12 
	12 


	So which energy condition is sufficient for Geroch and Jang’s SR result to go through? Analysing their argument (see Lemma C.5) reveals that in order to ensure that 𝑃is timelike, they require that 
	𝑎 

	∫ 𝑇𝜉𝑛𝑎 dvol𝜂(Σ) > 0 Σ 
	𝑎
	𝑏 
	𝑏

	for a causal Killing field 𝜉. If we want to follow Geroch and Jang in imposing a pointwise energy condition, then this is satisfied if and only if 
	𝑎 
	(1975) 
	(1975) 


	𝑇𝜉𝑛𝑎 > 0. 
	𝑎
	𝑏 
	𝑏

	As we could have chosen another Σ and hence a different 𝑛, we must require more generally that 
	𝑎 

	𝑇𝑎𝑏𝑋𝑌 > 0 
	𝑎
	𝑏 

	for co-oriented non-vanishing 𝑋and 𝑌such that 𝑋is timelike and 𝑌is causal. By Lemma A.3, this just means that 𝑇𝑎𝑏 satisfies the Strengthened Dominant Energy Condition introduced into the discussion by Malament : 
	𝑎 
	𝑏 
	𝑎 
	𝑏 
	(2009)
	(2009)


	10 The spatially convex hull of the support of 𝑇𝑎𝑏 can be defined simply as the smallest set containing the support of 𝑇𝑎𝑏 such that for every spacelike hypersurface Σ, the intersection 𝐶 ∩Σ is a convex set in the Riemannian manifold (Σ, 𝜂𝑎𝑏|Σ). 
	11 The condition is referred to as a “(strong) energy condition” in Geroch and Jang , although they only consider non-zero energy-momentum tensors. We adopt the standard nomenclature from Weatherall and like Weatherall, also allow for energy-momentum tensors that vanish everywhere. 
	(
	(
	1975, 66)


	(
	(
	2012, 213) 



	12 Weatherall provides a counterexample in the non-Special Relativistic setting by showing that the GJM result does not hold if the Strict DEC, rather than a stronger energy condition, is imposed. To show this, he constructs a cylindrical spacetime. Our counterexample, by contrast, is Special Relativistic insofar as it is formulated in Minkowski space. 
	(2012) 
	(2012) 
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	Definition 2.2: (Strengthened DEC) An energy-momentum tensor 𝑇𝑎𝑏 satisfies the Strengthened Dominant Energy Condition if given any timelike vector 𝑋at any point, 
	𝑎 

	(1) 𝑇𝑎𝑏𝑋𝑋≥ 0 and (2) either 𝑇𝑎𝑏 = 0 or for all timelike 𝑋, 𝑇𝑋is timelike. 
	𝑎
	𝑏 
	𝑎 
	𝑎
	𝑏 
	𝑏 

	To conclude our discussion of energy conditions, we note that an energy condition even stronger than the Strengthened DEC has appeared in the literature: 
	Definition 2.3: (StrengthenedDEC) An energy-momentum tensor 𝑇𝑎𝑏 satisfies the StrengthenedDominant Energy Condition if at every point, either 𝑇𝑎𝑏 = 0 or 𝑇𝑎𝑏𝑋𝑌 > 0 for all non-vanishing co-oriented causal vectors 𝑋and 𝑌 . 
	∗ 
	∗ 
	𝑎
	𝑏 
	𝑎 
	𝑏 

	It has been falsely claimed that this energy condition is equivalent to the Strengthened DEC.This can easily be shown to be wrong by considering 𝑇𝑎𝑏 = −𝑔𝑎𝑏, which satisfies the Strengthened DEC. To see this, one checks that for every timelike 𝑋, 𝑇𝑋= −𝛿𝑋= −𝑋is timelike. Moreover, 𝑇𝑎𝑏𝑋𝑋= −𝑋𝑋𝑎 > 0, and thus 𝑇𝑎𝑏 satisfies the Strengthened DEC. However, this energy-momentum tensor does not satisfy the StrengthenedDEC because for every non-zero null vector 𝑁, 𝑇𝑎𝑏𝑁𝑁= −𝑁𝑁𝑎 = 0. 
	(
	(
	Weatherall 2012, 213) 


	13 
	13 

	𝑎 
	𝑎
	𝑏
	𝑏 
	𝑏
	𝑎
	𝑏 
	𝑎 
	𝑎
	𝑏 
	𝑎
	∗ 
	𝑎 
	𝑎
	𝑏 
	𝑎

	The Strengthened DEC is, therefore, weaker than the StrengthenedDEC. For a GerochJang-style result, one ideally wants the weakest possible condition that works, so as to not rule out a priori certain energy-momentum tensors: Strengthened DEC fulfils this role in the SR case. The final SR result can, therefore, be stated as follows: 
	∗ 
	-

	Theorem 2.4: Let (ℝ, 𝜂𝑎𝑏) be Minkowski space, and let 𝑇𝑎𝑏 be a conserved energy-momentum tensor with compact non-vanishing spatial support satisfying the Strengthened DEC. Then there is a timelike geodesic in the convex hull of the support of 𝑇𝑎𝑏. 
	4

	Apart from the issue of the energy condition, the proof of Theorem 2.4 as given in Geroch and Jang is complete mutatis mutandis. However, their presentation does not clearly indicate which parts of the proof actually require that 𝑇𝑎𝑏 be covariantly conserved. Since this issue is crucial for the proof of the GR case, we include a more careful presentation of the proof of Theorem 2.4 in Appendix C, paying close attention to where exactly covariant conservation is needed. 
	(1975) 
	(1975) 


	Before turning to the GR result, it is worth noting that Theorem 2.4 is Special Relativistic insofar as it is genuinely about Minkowski space. For not only does the proof use that (M, 𝜂𝑎𝑏) is maximally symmetric—in order to define 𝑃𝑎 and 𝐽𝑎𝑏 on every hypersurface Σ—but Riemann-flatness is used for the vanishing of ∇𝑎𝑃𝑏, which would otherwise take the form 
	= 𝐽𝑅
	𝑐𝑑
	𝑐𝑑 

	𝑎𝑏 𝑎𝑏
	∇
	𝑃
	, 

	introducing an interaction of the motion with the geometry.Maximal symmetry and Riemann-flatness make the motion of an extended body lucidly tractable. 
	14 
	14 


	8 As noted in the appendix, we understand d𝑆𝑎 as a shorthand for −𝑛𝑎 dvol𝜂(Σ), where 𝑛is a future-directed unit normal to a spacelike hypersurface Σ with induced volume element dvol𝜂(Σ). While this is the more canonical choice, Geroch and Jang seem to use it as a shorthand for+𝑛𝑎 dvol𝜂(Σ), which would, however, mean that ∫𝜑 𝑛d𝑆𝑎 is negative for a positive smooth function 𝜑 with compact support. This difference explains why we have 𝑃𝑎𝜉on the left-hand side whereas Geroch and Jang have −𝑃𝑎
	8 As noted in the appendix, we understand d𝑆𝑎 as a shorthand for −𝑛𝑎 dvol𝜂(Σ), where 𝑛is a future-directed unit normal to a spacelike hypersurface Σ with induced volume element dvol𝜂(Σ). While this is the more canonical choice, Geroch and Jang seem to use it as a shorthand for+𝑛𝑎 dvol𝜂(Σ), which would, however, mean that ∫𝜑 𝑛d𝑆𝑎 is negative for a positive smooth function 𝜑 with compact support. This difference explains why we have 𝑃𝑎𝜉on the left-hand side whereas Geroch and Jang have −𝑃𝑎
	𝑎 
	Σ 
	𝑎 
	𝑎 
	𝑎 


	9 For more details on the following steps, see Corollary B.3 and Appendix C. 
	9 For more details on the following steps, see Corollary B.3 and Appendix C. 


	2.2 GENERAL RELATIVITY: THE TWO STRANDS 
	2.2 GENERAL RELATIVITY: THE TWO STRANDS 
	So much for the SR part of Geroch and Jang . The rest of the Geroch-Jang paper purports to extend this result to GR. Crucially, the GR section operates with a different conception of “body:” while the SR result is about an extended body (of unspecified size) in Minkowski space, the second, General Relativistic part is about a “test body” in a general 
	(1975)
	(1975)
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	13 This claim appears to have made its way into a publication by Curiel , whose presentation of various “versions” of the “physical SDEC” at least seems to imply the equivalence of version 1 (= our Strengthened DEC) and version 2 (= our StrengthenedDEC). 
	(
	(
	Curiel 2017, 49)


	∗ 

	14 See (15) in Corollary B.3. 
	spacetime, that is, a body “whose effect on the background spacetime structure is negligible” . 
	(
	(
	Malament 2009, 8)



	As noted before, the GR section of Geroch and Jang’s paper itself contains two very different strands. The first is found in how Geroch and Jang state their General Relativistic theorem. Significantly, this strand has a global flavor, by which we mean that it requires the existence of a suitable energy-momentum tensor with non-vanishing support in any open neighborhood around the whole curve. As we will suggest shortly, this requirement has some unintuitive consequences. But there is also another strand, wh
	(
	(
	Geroch and Jang 1975, 66)


	15 
	15 


	Returning to the first strand, Malament was the first to codify it (and replace Geroch and Jang’s energy condition by the Strengthened DEC), and we will thus call his statement the GJM result:
	(
	(
	Malament 2009, 7–8) 


	16 
	16 


	Theorem 2.5 (GJM result): Let (M, 𝑔𝑎𝑏) be a spacetime and let 𝛾∶ 𝐼→ M be a smooth embedded curve. Suppose that for any open neighborhood O of 𝛾(𝐼), there is a smooth symmetric 2-tensor 𝑇𝑎𝑏 with the following properties: 
	1. 𝑇𝑎𝑏 satisfies the Strengthened DEC. 
	2. 𝑇𝑎𝑏 satisfies ∇𝑇𝑎𝑏 = 0. 
	𝑎

	3. 𝑇𝑎𝑏 has non-vanishing support in O. 
	Then 𝛾 is timelike and can be re-parametrized as a geodesic.
	17 
	17 


	While the physical GJ argument, that is, the argument given by Geroch and Jang for Theorem 2.5, is incomplete and not fully rigorous, we are not aware of any counterexamples to the GJM result. Part of the difficulty in constructing a possible counterexample stems from the peculiar requirement that for any open neighborhood of the curve (e.g., one whose spatial volume asymptotes to zero, as depicted in ), there exists an energy-momentum tensor with the desired properties: since there is in general no minimal
	Figure 1
	Figure 1

	18 
	18 

	(1975) 
	(1975) 


	15 Indeed, Geroch and Jang cite , who explicitly draws on considerations of scale. This, in turn, suggests an implicit appeal to the Equivalence Principle . There is also an interesting structural parallel to , where it is argued that the Equivalence Principle holds for isolated gravitating systems precisely because of considerations of scale. 
	F
	F
	ermi 1922


	(Linnemann, Read, and Teh 
	(Linnemann, Read, and Teh 
	2024)

	(W
	(W
	allace 2017)



	16 We slightly streamline the presentation by collapsing Malament’s two conditions 3 and 4 into our condition 3. 
	17 Theorem 2.5 does not hold if certain “global” properties are weakened. The philosophical discussion has of course already pointed out the indispensability of condition 1, which is Malament’s correction to the formulation of the theorem given in the Geroch-Jang paper. 
	18 See Weatherall . 
	(
	(
	2012, 212)
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	for a different theorem, our physical GJ theorem—Theorem 2.5 will still be a problematic Dold and Teh 
	Philosophy of Physics 
	reference point for the philosophical discussion on geodesic motion in GR. We present three 
	DOI: 10.31389/pop.203 
	reasons for why we believe this to be so. 
	Figure
	Figure 1 Timelike curve with neighborhood whose spatial volume asymptotes to zero as proper time tends to ±∞. 
	First, insofar as the GJM result is meant as an extension of the SR result, it gets things backwards in the following sense. In general, it seems that essentially two questions can be asked when inquiring under which conditions a curve 𝛾(𝐼) corresponding to a class of energy-momentum tensors is a timelike geodesic: 
	(1) 
	(1) 
	(1) 
	Given a curve 𝛾(𝐼) in a spacetime (M, 𝑔𝑎𝑏), what are sufficient conditions on a class of energy-momentum tensors that are, in a sense to be specified, associated with 𝛾(𝐼) such that 𝛾 is a timelike geodesic? 

	(2) 
	(2) 
	Given a class of energy-momentum tensors in (M, 𝑔𝑎𝑏), what are sufficient conditions on that class such that a curve 𝛾(𝐼) can, in a sense to be specified, associated with the class such that 𝛾 is a timelike geodesic? 


	Only the second question asks for a theorem analogous to the SR result. For, in that case, the class is {𝑇𝑎𝑏} for an energy-momentum tensor 𝑇𝑎𝑏; a sufficient condition for 𝛾 to be a timelike geodesic is the requirement that 𝑇𝑎𝑏 should be covariantly conserved and should satisfy the Strengthened DEC; and the associated 𝛾(𝐼) is the curve of center-of-motion points. 
	By contrast, the GJM result clearly answers the first question by defining “associated” via the support of the energy-momentum tensors in the class. We highlight this by saying that Theorem 2.5 implements a “weakest topology” approach, meaning that it uses the following topological space. Let Ω be the set of all energy momentum tensors excluding the tensor identically zero everywhere. Starting from a curve 𝛾(𝐼), one considers all open neighborhoods of that curve in M. Call their set Ξ. For every 𝑈 ∈Ξ, de
	The GJM result can now be construed as an answer to the following question, which is an adaptation of the first question above to the topological space (Ω, T ): what are sufficient conditions on elements of Ω such that 𝛾 is a timelike geodesic? illustrates the way in which the GJM result is indeed an answer to this question. The conditions of Theorem 2.5 define a subset of Ω, here depicted by the red curve, such that 𝛾 is a timelike geodesic if any open set 𝑁O has non-empty intersection with the red curv
	The GJM result can now be construed as an answer to the following question, which is an adaptation of the first question above to the topological space (Ω, T ): what are sufficient conditions on elements of Ω such that 𝛾 is a timelike geodesic? illustrates the way in which the GJM result is indeed an answer to this question. The conditions of Theorem 2.5 define a subset of Ω, here depicted by the red curve, such that 𝛾 is a timelike geodesic if any open set 𝑁O has non-empty intersection with the red curv
	Figure 2 
	Figure 2 


	an energy-momentum tensor 𝑇𝑎𝑏 for any neighborhood, a difficult task, especially when dealing with complicated spacetimes. But as well as being technically difficult, this way of proceeding is also not conceptually straightforward. Suppose one were to consider a curve 𝛾(𝐼) representing a test body of a certain type, that is to say, suppose there is a sequence of energy-momentum tensors 𝑇𝑎𝑏,𝑇𝑎𝑏,𝑇𝑎𝑏, … with non-vanishing spatially compact support shrinking down to 𝛾(𝐼). If there is an open set
	(1)
	(2) 
	(3) 
	Figure 2
	Figure 2



	Second, the GJM result is intended to be about test bodies, those objects whose trajectories are well modeled by the gravitational effects of the background spacetime because they are small relative to these effects. This means that a class of tensors can only model such test bodies that are, in a certain sense, commensurate with the curvature. This is the issue of “physical scale,” which is crucial for the physical understanding of GR . And yet, the GJM result does not contain any appeal to scale due to it
	(Linnemann, 
	(Linnemann, 
	Read, and Teh 2024)

	(
	(
	Geroch and Jang 1975, 66)


	19 
	19 


	Third, the “weakest topology” approach excludes certain energy-momentum tensors a priori by not being applicable to reasonable classes of energy-momentum tensors. This can be illustrated through an example. Let (M, 𝑔𝑎𝑏) be Minkowski space and 𝛾 an inextendible timelike geodesic with tangent vector 𝑢. Consider moreover, the class C of energy-momentum tensors 
	𝑎 

	𝑇𝑎𝑏 = Φ 𝑢𝑎𝑢𝑏, (2) 
	for a non-vanishing Φ≥0 whose compact spatial support contains 𝛾(𝐼). For 𝑇𝑎𝑏 to be conserved, 𝑢∇𝑎Φ = 0, so Φ must have constant spatial volume for all times. However, if we consider an open neighborhood O of 𝛾(𝐼) that becomes infinitesimally narrow towards the future (see ), then there is no 𝑇𝑎𝑏 from C that is in that neighborhood. Theorem 2.5 
	𝑎
	Figure 1
	Figure 1
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	19 Our points here will, mutatis mutandis, also extend to the issues discussed in Fletcher and Fletcher and Weatherall . 
	(2020) 
	(2020) 

	(2023)
	(2023)


	therefore does not apply.20 Of course, one could object that there might be other energy-momentum tensors in O that do not have the form (2). Two replies can be given. First, by shifting the focus from an explicitly given example to an existence claim, the objector has the 
	therefore does not apply.20 Of course, one could object that there might be other energy-momentum tensors in O that do not have the form (2). Two replies can be given. First, by shifting the focus from an explicitly given example to an existence claim, the objector has the 
	therefore does not apply.20 Of course, one could object that there might be other energy-momentum tensors in O that do not have the form (2). Two replies can be given. First, by shifting the focus from an explicitly given example to an existence claim, the objector has the 
	therefore does not apply.20 Of course, one could object that there might be other energy-momentum tensors in O that do not have the form (2). Two replies can be given. First, by shifting the focus from an explicitly given example to an existence claim, the objector has the 
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	burden of proof to show that such energy-momentum tensors indeed exist. Second, the GJM 
	burden of proof to show that such energy-momentum tensors indeed exist. Second, the GJM 

	result ought to be applicable in this situation as per the physical interpretation presented in 
	result ought to be applicable in this situation as per the physical interpretation presented in 

	the literature: that “we are representing ‘point particles’ as nested convergent sequences of 
	the literature: that “we are representing ‘point particles’ as nested convergent sequences of 

	smaller and smaller extended bodies” (Malament 2009, 8). 
	smaller and smaller extended bodies” (Malament 2009, 8). 
	smaller and smaller extended bodies” (Malament 2009, 8). 


	One might further object to our example that the timelike dust of (2) is not a physically 
	One might further object to our example that the timelike dust of (2) is not a physically 

	reasonable example tout court. However, it was supposed to be “a considerable advance to 
	reasonable example tout court. However, it was supposed to be “a considerable advance to 

	prove theorems that dispense with special modeling assumptions in favor of generic ones” 
	prove theorems that dispense with special modeling assumptions in favor of generic ones” 

	and the GJM result was taken to be an example of this (Malament 2009, 3). Nevertheless, 
	and the GJM result was taken to be an example of this (Malament 2009, 3). Nevertheless, 
	and the GJM result was taken to be an example of this (Malament 2009, 3). Nevertheless, 


	the GJM result has maneuvered us into the paradoxical situation that being maximally 
	the GJM result has maneuvered us into the paradoxical situation that being maximally 

	permissive about which neighborhoods of 𝛾(𝐼) ought to be admitted also meant being 
	permissive about which neighborhoods of 𝛾(𝐼) ought to be admitted also meant being 

	again restrictive about classes of energy-momentum tensors one can consider. So rather 
	again restrictive about classes of energy-momentum tensors one can consider. So rather 

	than “dispens[ing] with special modeling assumptions,” we have imported implicit ones. 
	than “dispens[ing] with special modeling assumptions,” we have imported implicit ones. 

	Therefore, although the GJM result without doubt achieves a degree of genericity—insofar 
	Therefore, although the GJM result without doubt achieves a degree of genericity—insofar 

	as it does not presuppose a specific matter model (for example, that of a perfect fluid) as 
	as it does not presuppose a specific matter model (for example, that of a perfect fluid) as 

	did some of the works prior to Geroch and Jang (1975)—it is not applicable to reasonable 
	did some of the works prior to Geroch and Jang (1975)—it is not applicable to reasonable 
	did some of the works prior to Geroch and Jang (1975)—it is not applicable to reasonable 


	classes of energy-momentum tensors. 
	classes of energy-momentum tensors. 

	The GJM result, which implements a “weakest topology” approach, is thus seen to be an 
	The GJM result, which implements a “weakest topology” approach, is thus seen to be an 

	at least not unproblematic reference point for philosophical discussions about geodesic 
	at least not unproblematic reference point for philosophical discussions about geodesic 

	motion in GR. So new results that avoid the “weakest topology” approach are desirable. In 
	motion in GR. So new results that avoid the “weakest topology” approach are desirable. In 

	the next section, we show how such a result can be obtained by using other resources from 
	the next section, we show how such a result can be obtained by using other resources from 

	the original paper by Geroch and Jang. 
	the original paper by Geroch and Jang. 


	Figure
	Figure 2 This is a schematic representation of the topological space (Ω, T ). The red curve represents the subset of energy momentum tensors satisfying the conditions of Theorem 2.5. The sequence 𝑇𝑎𝑏,𝑇𝑎𝑏, … exemplifies a class of energy-momentum tensors whose support is uniformly shrinking down to the curve. The shaded region represents an open set 𝑁O (induced by a neighborhood O) that does 
	(1)
	(2) 

	not contain any of the energy-momentum tensors of the given class. 


	3 THE PHYSICAL GJ THEOREM AND ITS RELATION TO THE FIELD EQUATIONS 
	3 THE PHYSICAL GJ THEOREM AND ITS RELATION TO THE FIELD EQUATIONS 
	The physical motivation provided by Geroch and Jang provides a proof strategy for our physical GJ theorem. We now proceed to sketch the statement and proof of this result, referring the reader to Appendix D for further details. 
	20 One might wonder whether we have not been too unimaginative in our application of the GJM result. For example, could one not divide 𝛾(𝐼) into countably many open segments 𝛾𝑖 with finite length such that 𝛾(𝐼) = ⋃𝛾𝑖 and then apply the GJM result to each 𝛾𝑖? But the problem is that here again, a neighborhood (of any 𝛾𝑖) can be chosen whose spatial volume tends to zero as we approach the ends of the segment, and no non-zero dust energy-momentum tensor exists whose support lies in such a neighborh
	𝑖 

	First, we will introduce the notion of a Geroch-Jang particle,which is a pair (𝛾, (𝑇𝑎𝑏)) such that 𝛾∶ 𝐼→ M is a smooth curve and (𝑇𝑎𝑏)is a sequence of energy-momentum tensors that is Geroch-Jang admissible. We call (𝑇𝑎𝑏)Geroch-Jang admissible if it shrinks down to 𝛾(𝐼), that is to say, every 𝑇𝑎𝑏 has compact support “supp 𝑇𝑎𝑏 ” and 
	21 
	21 

	(𝑛)
	𝑛∈ℕ
	(𝑛)
	𝑛∈ℕ 
	(𝑛)
	𝑛∈ℕ 
	(𝑛)
	(𝑛)

	supp 𝑇 = 𝛾(𝐼), 
	⋂ 
	(𝑛)
	𝑎𝑏 

	𝑛∈ℕ 
	and additionally satisfies what we call the Uniform Strengthened DEC and the Integrated Size and Integrated Conservation Conditions. We introduce these conditions in turn. 
	Definition 3.1 (Uniform Strengthened DEC): A sequence of energy-momentum tensors (𝑇𝑎𝑏)shrinking down to 𝛾(𝐼) satisfies the Uniform Strengthened DEC if for every 𝑞 ∈ 𝛾(𝐼) and every co-oriented non-zero 𝑉and 𝑊 at 𝑞 with 𝑉𝑎𝑉< 0 and 𝑊𝑎𝑊 ≤ 0, there exists a constant 𝑐 > 0 such that for every 𝑚 ∈ ℕ, 
	(𝑛)
	𝑛∈ℕ 
	𝑎 
	𝑎 
	𝑎 
	𝑎 

	(𝑚)𝑇 𝑎𝑏𝑉𝑊 ≥ 𝑐 > 0. 
	𝑎
	𝑏 

	This definition is uniform in 𝑚. Uniformity is a crucial ingredient of the proof in the following way. For any point 𝑝 on the curve 𝛾(𝐼), there is an open neighborhood 𝑈 about 𝑝 such that there exist normal coordinates, that is, coordinates in which 𝑔𝜇𝜈 = 𝜂𝜇𝜈 at 𝑝 and Γ𝜈𝜌= 0 at 𝑝. We can consider (𝑈, 𝜂𝑎𝑏) as a manifold on its own, which constitutes something like a “pre-frame” about 𝑝.Now, the uniformity in the Uniform Strengthened DEC guarantees that if 𝑈 is sufficiently small, then e
	𝜇 
	22 
	22 

	(𝑛)
	23 
	23 


	The remaining conditions for a Geroch-Jang admissible sequence of energy-momentum tensors are contained in the following definitions. 
	Definition 3.2 (Integrated Size Condition): A sequence (𝑇𝑎𝑏)satisfies the Integrated Size Condition with respect to a smooth curve 𝛾∶ 𝐼→ M if for every spacelike hypersurface Σ and for all vector fields 𝑋and 𝑌 , there exists a constant 𝐶 > 0 such that 
	(𝑛)
	𝑛∈ℕ 
	𝑎 
	𝑎

	(𝑛)∫ 𝑇 𝑋𝑌 dvol𝑔(Σ) < 𝐶 (3)Σ| 
	𝑎𝑏
	𝑎
	𝑏
	| 

	for all 𝑛 ∈ ℕ. 
	The Integrated Size Condition enforces that |𝑇𝑋𝑌| does not grow “too much.” Importantly, if the sequence (𝑇𝑎𝑏)satisfies the Integrated Size Condition and shrinks down to 𝛾(𝐼), then for every spacelike hypersurface Σ and for all vector fields 𝑋and 𝑌 , 
	(𝑛)
	𝑎𝑏
	𝑎
	𝑏
	(𝑛)
	𝑛∈ℕ 
	𝑎 
	𝑎 

	(𝑛) (𝑛)∫ dist(𝑥) 𝑇 𝑋𝑌dvol𝑔(Σ) ≤ sup dist(x)⋅ ∫ 𝑇 𝑋𝑌dvol𝑔(Σ) → 0 (4)Σ 𝑥∈supp(𝑇𝑎𝑏) Σ 
	| 
	𝑎𝑏
	𝑎
	𝑏
	| 
	𝑎𝑏
	𝑎
	𝑏
	| 
	(𝑛)
	| 

	as 𝑛 → ∞. Here, “dist” denotes the geodesic distance from a point 𝑥 ∈ Σ to 𝛾(𝐼) ∩ Σ. 
	Definition 3.3 (Integrated Conservation Condition): A sequence (𝑇𝑎𝑏)satisfies the Integrated Conservation Condition with respect to a smooth curve 𝛾∶ 𝐼→ M if for every spacelike hypersurface Σ and for every vector field 𝑋, 
	(𝑛)
	𝑛∈ℕ 
	𝑎 

	(𝑛)∫ 𝑇 𝑎𝑏𝑋dvol𝑔(Σ) → 0. (5) 
	Σ 
	|
	∇
	𝑎 
	𝑏
	| 

	as 𝑛 → ∞. 
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	21 The name was introduced by Tamir, though with a different meaning . 
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	(Tamir 
	2012, 
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	22 We call (𝑈, 𝜂𝑎𝑏) a “pre-frame” because the physical GJ theorem shows that under the conditions of the theorem, it can, in fact, be considered an inertial frame for the test body as 𝑛 → ∞. 23 For more details, see the proof in Appendix D. 
	Clearly, the Integrated Conservation condition, though entailed by 
	(𝑛)𝑇 𝑎𝑏=0, 
	∇
	𝑎

	is significantly weaker: by (5), conservation need only hold “in the limit” as the volume of the energy-momentum tensors’ support becomes smaller and smaller. 
	The combination of (4) and (5) implies that in a pre-frame (𝑈, 𝜂𝑎𝑏), integrals of the divergence of the energy-momentum tensors vanish in the limit as 𝑛 → ∞: 
	(𝑛) (𝑛)
	𝜕
	𝜇 

	𝜇𝜌
	∫ 
	𝜂
	𝜕
	𝜇 

	𝑇 𝜇𝜈𝑋dvol𝜂(Σ) = ∫ 𝑇 𝜌𝜈𝑋dvol𝜂(Σ)ΣΣ 
	𝜈
	𝜈 

	(𝑛)=∫𝜂𝜕𝜇 𝑇 𝜌𝜈𝑋√d𝑥… d𝑥Σ 
	𝜇𝜌
	𝜈
	|det𝜂|Σ| 
	1 
	3 

	(𝑛)= ∫𝜂𝜕𝜇 𝑇 𝜌𝜈𝑋√|det𝑔|Σ| d𝑥… d𝑥Σ √
	𝜇𝜌
	𝜈 
	√
	|det𝜂|
	Σ
	| 
	1 
	3 
	|det𝑔|Σ| 

	(𝑛)= ∫𝜂𝜕𝜇 𝑇 𝜌𝜈𝑋dvol𝑔(Σ) Σ √
	𝜇𝜌
	𝜈 
	√
	|det𝜂|
	Σ
	| 
	(6) 
	|det𝑔|Σ| 

	(𝑛) (𝑛) (𝑛)
	(𝑛) (𝑛) (𝑛)
	𝜇𝜌
	[
	𝜂
	∇
	𝜇 


	= ∫ 𝑇 𝜌𝜈 + 𝜂(Γ𝜇𝜌𝑇 𝜍𝜈 + Γ𝜇𝜈𝑇 𝜌𝜍)] × 
	𝜇𝜌 
	𝜍 
	𝜍 

	Σ 
	× 𝑋dvol𝑔(Σ).√
	𝜈 
	√
	|det𝜂|
	Σ
	| 
	|det𝑔|Σ| 

	For the calculation, we first express dvol𝜂(Σ) in coordinates on Σ and then do the same for dvol𝑔(Σ). In the last step, ∇ is expressed using Christoffel symbols. The last integral of (6) can be interpreted as an integral in (M, 𝑔𝑎𝑏), so the Integrated Size and Conservation Conditions can be applied. In particular, since Γ𝜇𝜌= O(dist(𝑥)), we can use (4) and (5) to see that the last integral tends to zero as 𝑛 → ∞. This calculation also provides a further insight. The reader might have wondered why a 
	𝜍 

	24
	24
	24


	there, (4) enters to control the first non-trivial term of Γ𝜇𝜌. 
	𝜍 

	In Appendix D, we give the full proof yielding the following theorem: 
	Theorem 3.4 (Physical GJ theorem): Let (M, 𝑔𝑎𝑏) be a spacetime and let (𝛾, (𝑇𝑎𝑏)) be a Geroch-Jang particle. Then 𝛾 is a timelike geodesic (upon possible re-parametrization). 
	(𝑛)
	𝑛∈ℕ

	The benefit of this theorem and the “scale-relative topology” approach is that it provides a quantitative understanding of the limits and approximations needed to state and prove a theorem about geodesic motion. The full extent of the quantitative character of the physical GJ theorem is further elucidated by the fact that the “scale-relative topology” approach makes possible a heuristic connection between the theorem and the dynamics of GR. This connection also further motivates the two conditions (4) and (
	(𝑛)
	(𝑛)
	(𝑛)
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	Let 𝑇𝑎𝑏 be the energy momentum tensor associated with the background spacetime (M, 𝑔), that is to say, 
	𝐺𝑎𝑏 =∶ 8𝜋𝑇𝑎𝑏. 
	Moreover, let 𝑔𝑎𝑏 be a metric on M associated with the Einstein tensor (𝑛) (𝑛)
	(𝑛)

	𝐺 𝑎𝑏 ∶= 8𝜋 (𝑇𝑎𝑏 + 𝑇 𝑎𝑏) , (7) and let ∇𝑎 be the Levi-Civita connection associated with 𝑔.We take the test-particle 
	(𝑛)
	(𝑛)
	25 
	25 


	concept to entail that in any coordinates, 
	concept to entail that in any coordinates, 
	concept to entail that in any coordinates, 

	(𝑛)𝑔 𝜇𝜈 → 𝑔𝜇𝜈 
	(𝑛)𝑔 𝜇𝜈 → 𝑔𝜇𝜈 
	(8) 

	(𝑛)Γ 𝜇𝜈𝜍 → Γ𝜇𝜈𝜍 
	(𝑛)Γ 𝜇𝜈𝜍 → Γ𝜇𝜈𝜍 
	(9) 

	(𝑛)(𝑛)∇ 𝜇 𝐺 𝜈𝜍 → ∇𝜇𝐺𝜈𝜍 
	(𝑛)(𝑛)∇ 𝜇 𝐺 𝜈𝜍 → ∇𝜇𝐺𝜈𝜍 
	(10) 


	pointwise as 𝑛 → ∞. The underlying intuition is that a test particle does not significantly perturb the background metric. 
	In Appendix E, we present the calculation, which uses the EFE, of how 
	(𝑛)∫ 𝑇 𝑎𝑏𝑋dvol𝑔(Σ)Σ 
	∇
	𝑎
	𝑏 

	can be expressed as a sum of five integrals 𝐼to 𝐼. Since the energy-momentum tensors shrink down to 𝛾(𝐼), the spacelike hypersurface can be assumed to have finite volume. Then, by the modeling assumptions, one sees that 𝐼to 𝐼tend to zero as 𝑛 → ∞. Finally, to see that 𝐼and 𝐼tend to zero, we use these limits as well as (4). 
	1 
	5
	1 
	3 
	4 
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	4 CONTEXTUALIZING THE PHYSICAL GJ THEOREM 
	4 CONTEXTUALIZING THE PHYSICAL GJ THEOREM 
	In Section 3, we have introduced our new physical GJ theorem, which implements Geroch and Jang’s “scale-relative topology” approach fully. We have thus provided a realization of the physical GJ argument by making explicit the scale relativity of the concept of a test body. In addition, we have given a heuristic justification of the Integrated Conservation Condition by means of the EFE. 
	In this section, we add a brief discussion of the physical GJ theorem in the context of multiple other results from the literature, to wit, the results due to Geroch and Weatherall , Ehlers and Geroch ,Gralla and Wald , and Yang . A general feature of our result is that just as is the case with Geroch and Jang, we are concerned with the question of which assumptions are sufficient to guarantee the timelikeness of the resulting geodesic. By contrast, the first three results simply assume the timelike charact
	(2018)
	(2018)

	(2004)
	(2004)

	26 
	26 

	(2011)
	(2011)

	(2014)
	(2014)


	While we do not wish to say much about the recent study by Geroch and Weatherall, leaving a full evaluation for future work, it should be remarked that their approach can be seen as an implementation of the “weakest topology” approach because of their qualitative 
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	26 A rigorous proof of a generalized version of their theorem is given by Bezares et al. . 
	(2015)
	(2015)


	assumptions on the class of energy-momentum tensors and the absence of quantitative bounds. Moreover, Geroch and Weatherall’s theorem represents the energy-momentum tensors by distributions, which leads us away from the intuitive concept of a test body as employed in the original Geroch-Jang paper. While a distributional approach does, of course, not constitute a problem as such, we deem it to be sufficiently different to justify postponing a discussion for now. 
	The result by Ehlers and Geroch, by contrast, shares an important similarity with our heuristic justification of the assumptions of the physical GJ theorem. The Ehlers-Geroch theorem is itself essentially perturbative, in the way in which the energy-momentum tensors associated with the test body are being absorbed (via the EFE) into the Einstein tensor modeling the world tube of the small body, thereby using an approximation similar to our heuristic derivation in Section 3. However, there are also important
	Gralla and Wald’s result is explicitly perturbative. They model the test body by introducing a formal power series expansion (in the perturbation parameter) around an ambient spacetime solution of the EFE, and consider the linearized equations of motion around that solution. Thus, one can think of the Gralla-Wald approach as being more explicitly perturbative than that by Ehlers and Geroch as it allows for quantitative control over the perturbative fields and their dynamics. 
	Lastly, consider Yang’s mathematical proof of the geodesic motion of test bodies modeled by a more specific choice of energy-momentum tensor. He adopts the matter model of complex scalar fields given by non-linear Klein-Gordon equations, which are then coupled to the Einstein equations. He then shows that there is a sequence of initial data with shrinking spatial support that is more and more centered on a timelike geodesic. Note that Yang gives a genuinely dynamical argument, using the EFE as a system of p

	5 CONCLUSION 
	5 CONCLUSION 
	Brown’s claim about the special status of GR vis-à-vis the explanation of geodesic motion of free bodies has attracted considerable scholarly attention. One strain of interpreting Brown’s claim—and criticizing it—goes back to Malament, who, accepting that “the geodesic principle can be recovered as a theorem in general relativity,” points out that “it is not a consequence of Einstein’s equation (or the conservation principle) alone” . To arrive at his conclusion, Malament needed to choose a particular way o
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	Malament 2009, 2)



	Dold and Teh 
	Philosophy of Physics 
	DOI: 10.31389/pop.203 
	and, at least initially, in probing the issue through the lens of the GJM result. On that basis, he also stressed that to prove geodesic motion, one needs an “assumption that the energy-momentum fields associated with test matter are divergence free just in case the fields are non-interacting”—the second condition in Theorem 2.5—but one does not “get that assumption directly from Einstein’s equation,” implying that the condition “is a bare assumption about test matter” and not a consequence of the EFE . The
	(
	(
	Weatherall 2019, 144)


	27 
	27 

	(
	(
	Weatherall 2011, 

	280)

	(
	(
	Sus 2014, 300)


	(1975) 
	(1975) 

	(
	(
	Samaroo 2018, 972)



	Our results show that the GJM result is but one strand of the original Geroch-Jang paper, and the less physically motivated strand at that because it does not capture many physicists’—including Geroch and Jang’s—intuitive understanding of the test-body concept. Furthermore, we have demonstrated that Geroch and Jang’s physical motivation can indeed be clarified and turned into a rigorous argument and theorem in favor of geodesic motion. As argued, the Integrated Conservation Condition also affords a connecti

	A ENERGY CONDITIONS 
	A ENERGY CONDITIONS 
	Lemma A.1: The energy-momentum tensor 𝑇𝑎𝑏 satisfies the Strengthened DEC if and only if (1) it satisfies the Strict DEC, and (2) if 𝑇𝑎𝑏 ≠ 0 at a point, then 𝑇𝑋is timelike for every timelike 𝑋. 
	𝑎
	𝑏 
	𝑏 
	𝑎 

	Proof. It suffices to show that the Strengthened DEC implies the Strict DEC. Let 𝑇𝑎𝑏 ≠ 0 and 𝑋and 𝑌be co-oriented timelike vectors. Then 𝑇𝑎𝑏𝑋𝑌 ≠ 0 because 𝑇𝑋is timelike. Moreover, since 𝑇𝑎𝑏𝑋𝑋≥ 0, 𝑋and −𝑇𝑋are co-oriented. Therefore, 𝑇𝑎𝑏𝑋𝑌> 0. 
	𝑎 
	𝑎 
	𝑎
	𝑏 
	𝑎
	𝑏 
	𝑏 
	𝑎
	𝑏 
	𝑎 
	𝑎
	𝑏 
	𝑏 
	𝑎
	𝑏 

	Remark A.2: The proof shows in particular that if 𝑇𝑎𝑏 satisfies the Strengthened DEC and 𝑇𝑎𝑏 ≠ 0, then 𝑋and −𝑇𝑋are co-oriented timelike for every timelike 𝑋. 
	𝑎 
	𝑎
	𝑏 
	𝑏 
	𝑎 

	Lemma A.3: An energy-momentum tensor 𝑇𝑎𝑏 satisfies the Strengthened DEC if and only if at every point, 𝑇𝑎𝑏 = 0 or 𝑇𝑎𝑏𝑋𝑌 > 0 for all co-oriented 𝑋and 𝑌such that 𝑋is timelike and 𝑌 is causal. 
	𝑎
	𝑏 
	𝑎 
	𝑎 
	𝑎 
	𝑎 
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	Proof. It follows from Remark A.2 that if 𝑇𝑎𝑏 satisfies the Strengthened DEC and 𝑇𝑎𝑏 ≠ 0, then for every co-oriented timelike 𝑋and causal 𝑌, −𝑇𝑋and 𝑌 are co-oriented, hence 𝑇𝑋𝑌> 0. For the other direction, assume that 𝑇𝑎𝑏 ≠ 0 and 𝑇𝑎𝑏𝑋𝑌> 0 for all co-oriented 𝑋and 𝑌such that 𝑋is timelike and 𝑌 is causal. If 𝑇𝑋were null or spacelike, there would be a causal 𝑌such that 𝑇𝑋𝑌𝑎 = 0, a contradiction. Therefore, 𝑇𝑋is timelike, and 𝑇𝑎𝑏 satisfies the Strengthened DEC. 
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	B ENERGY FLUX 
	B ENERGY FLUX 
	The equality (1) is well-known. As such, it appears in Geroch and Jang without derivation. In this appendix, we derive (1) in a slightly more general setting. 
	(1975) 
	(1975) 


	Let (M, 𝑔𝑎𝑏) be a maximally symmetric Lorentzian manifoldof dimension 𝑚, and let Σ be a spacelike hypersurface with future-directed unit normal 𝑛. The induced volume (𝑚 − 1)-form dvol(Σ) (or dvol𝑔(Σ) if we need to indicate the corresponding metric) is given by 𝜄𝑛𝜖, where 𝜖 is the volume 𝑚-form of M and 𝜄 is the interior product operator. This means that
	28 
	28 

	𝑎 
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	29 


	𝜖 = −𝑛∧ dvol(Σ). 
	♭ 

	In Geroch and Jang , the one-form d𝑆𝑎 is used, which satisfies 
	(1975)
	(1975)


	∫ 𝑋d𝑆𝑎 = ∫𝜄𝑋𝜖 = −∫𝜄𝑋(𝑛∧ dvol(Σ)) = − ∫ 𝑋𝑛𝑎 dvol(Σ). (11)ΣΣΣ Σ 
	𝑎 
	♭ 
	𝑎

	If (𝑥, … , 𝑥) are coordinates on Σ and 𝑔𝑎𝑏|Σ denotes the induced metric tensor on Σ and det𝑔|Σ its determinant, then 
	1
	𝑚−1

	dvol(Σ) = √d𝑥∧ … ∧ 𝑥. 
	det𝑔|Σ 
	1 
	𝑚−1

	Let a tensor 𝑇𝑎𝑏 be admissible with respect to Σ if and only if the map from the Lie algebra of Killing fields into the reals 
	𝜉𝑎 ↦ ∫ 𝑇𝑏𝜉𝑐d𝑆Σ 
	𝑐 
	𝑏 

	is well-defined for all Killing fields 𝜉. 
	𝑎 

	Lemma B.1: Let (M, 𝑔𝑎𝑏) and Σ be as above. Moreover, let 𝑇𝑎𝑏 be admissible. Then there exists a unique 𝑃𝑎 and a unique anti-symmetric 𝐽𝑎𝑏 on Σ such that for every Killing field 𝜉, 
	𝑎 

	𝑃𝑎𝜉+ 𝐽𝑎𝑏∇𝜉= ∫ 𝑇𝜉d𝑆𝑎 (12)Σ 
	𝑎 
	𝑎
	𝑏 
	𝑎
	𝑏 
	𝑏 

	holds at any point 𝑝 ∈ Σ. 
	Proof. Set 𝑁 ∶= 𝑚(𝑚 + 1)/2. Let K be the 𝑁-dimensional Lie algebra of Killing fields on M. For every 𝑝 ∈ Σ, a Killing field is uniquely determined by the values of 𝜉and ∇𝜉(𝑏 < 𝑐) at 𝑝 via the ordinary differential equation 
	𝑎 
	𝑏
	𝑐 

	∇𝑎∇𝑏𝜉= 𝑅𝜉. (13) 
	𝑐 
	𝑐
	𝑏𝑎𝑑
	𝑑

	We define 𝑃𝑎 and 𝐽𝑎𝑏 as follows. Fix 𝑝 ∈ Σ. From (13), we know that there exist a linear bijection 
	Φ𝑝∶ ℝ→ K 
	𝑁
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	28 A (pseudo-)Riemannian manifold of dimension 𝑚 is called maximally symmetric if it has 𝑚(𝑚 + 1)/2 independent Killing fields. 
	29 With ♭ denoting the musical isomorphism, indeed 𝜄𝑛 (𝑛∧ dvol(Σ)) = 𝜄𝑛𝑛∧ dvol(Σ)− 𝑛∧ 𝜄𝑛dvol(Σ) = −dvol(Σ). 
	♭ 
	♭ 
	♭ 

	mapping the values of 𝜉and ∇𝜉(𝑏 < 𝑐) at 𝑝 onto the vector space of Killing fields. We also define the linear map 
	𝑎 
	𝑏
	𝑐 

	𝑄 ∶ K → ℝ, 𝜉↦ ∫ 𝑇𝜉d𝑆𝑎. Σ 
	𝑎 
	𝑎
	𝑏 
	𝑏 

	Since the map 𝑄 ∘Φ𝑝 is linear, there are 𝑁 coefficients 𝑃𝑎 and 𝐽[𝑎𝑏] at 𝑝 such that at 𝑝, 
	𝑃𝑎𝜉+ 𝐽𝑎𝑏∇𝜉= ∫ 𝑇𝜉d𝑆𝑎. (14)𝑝 𝑝 Σ 
	𝑎 
	𝑎
	𝑏 
	𝑎
	𝑏 
	𝑏 
	|
	|

	Since 𝑝 is arbitrary, and since the right hand side is independent of 𝑝, (14) defines a one-form 𝑃𝑎 and a two-form 𝐽[𝑎𝑏] on Σ. Moreover, (14) determines 𝑃𝑎 and 𝐽[𝑎𝑏] uniquely at every 𝑝, so 𝑃𝑎 and 𝐽[𝑎𝑏] are unique. 
	Remark B.2: Both 𝑃𝑎 and 𝐽𝑎𝑏 depend crucially on 𝑇𝑎𝑏 and Σ. Note also that the boundary 𝜕(Σ) of Σ need not be empty. 
	Corollary B.3: Suppose that the intersection of 𝜕Σ with the support of 𝑇𝑎𝑏 on Σ is empty. Then 
	[∇𝑎𝑃𝑏−𝐽𝑐𝑑𝑅]𝜉+[∇𝑎𝐽𝑏𝑐+𝑔𝑎[𝑏𝑃𝑐]]∇𝜉=𝐾𝑎. (15) 
	𝑐𝑑
	𝑎𝑏
	𝑏
	𝑏
	𝑐 

	such that the values of the one-form 𝐾𝑎 are determined as follows. If 𝑋is parallel to Σ, then 𝜄𝑋𝐾 = 0. The remaining component is determined by 
	𝑎 

	𝜄𝑛𝐾 = ∫ ∇𝑇𝑎𝑏𝜉dvol(Σ). (16)Σ 
	𝑎
	𝑏 

	Proof. The identity (15) can be obtained by taking the Lie derivative of both sides of (12) with respect to an arbitrary vector field 𝑋. The left-hand side is obtained by a straightforward calculation. The right-hand side vanishes if 𝑋is parallel to Σ. If it is orthogonal to the hypersurface, we need to calculate L𝑋 (𝑇𝜉d𝑆𝑎) in the integral. By (11), setting 𝑌= 𝑇𝜉, we can use Cartan’s magic formula:
	𝑎 
	𝑎 
	𝑎
	𝑏 
	𝑏 
	𝑎 
	𝑎
	𝑏 
	𝑏
	30 
	30 


	L𝑋 (𝜄𝑌𝜖) = 𝜄𝑋 (d (𝜄𝑌𝜖)) + d (𝜄𝑋𝜄𝑌𝜖) 
	= 𝜄𝑋 ((div𝑌)𝜖) − d (𝜄𝑌𝜄𝑋𝜖) 
	= div𝑌 𝜄𝑋𝜖 − d (𝜄𝑌𝜄𝑋𝜖). 
	Now set 𝑋= 𝑛. Since the integral of the second term of the last line over Σ vanishes by Stokes’ Theorem (because the intersection of 𝜕Σ and the support of 𝑇𝑎𝑏 was assumed to be empty), we obtain (16). 
	𝑎 
	𝑎 


	C THE SR CASE 
	C THE SR CASE 
	In this appendix, we present a systematic review of Geroch and Jang’s argument for geodesic motion of extended bodies in Minkowski space (ℝ, 𝜂𝑎𝑏). Our presentation is more careful than that of Geroch and Jang , in particular it pays closer attention to the precise step in the argument in which one needs to assume that the energy-momentum tensor is divergence-free. 
	4
	(1975)
	(1975)


	First, for a non-vanishing admissible energy-momentum tensor 𝑇𝑎𝑏 with compact support, define a one-form 𝑃𝑎 and two-form 𝐽𝑎𝑏 relative to a spacelike hypersurface Σ = {𝑡 = 𝑡} via (12). From this one derives the following 
	0
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	30 We also use that 𝜄𝐴𝜄𝐵 = −𝜄𝐴𝜄𝐵 as well as d (𝜄𝐴𝜖) = div𝐴 𝜖 for all vector fields 𝐴and 𝐵, where div𝐴 denotes ∇𝑎𝐴. 
	𝑎 
	𝑎
	𝑎 

	Proposition C.1: Let (ℝ, 𝜂𝑎𝑏) be Minkowski space with global coordinates (𝑥) = (𝑡, 𝑥, … , 𝑥) and let Σ be a spacelike hypersurface with constant 𝑡 = 𝑡. Then 
	4
	𝜇
	1
	3
	0

	𝜕𝑖𝑃𝜇 = 0 
	𝜕𝑖𝐽𝜇𝜈 = −𝜂𝑖[𝜇𝑃𝜈]. 
	Moreover, there exist a one-form 𝐴𝑎 and a two-form 𝐵𝑎𝑏 such that 
	𝜕𝑡𝑃𝜇 = 𝐴𝜇 𝜕𝑡𝐽𝜇𝜈 = −𝜂𝑖[𝜇𝑃𝜈] + 𝐵[𝜇𝜈]. 
	The forms 𝐴𝑎 and 𝐵𝑎𝑏 are defined via integrals of linear combinations of 𝜕𝑇𝜇𝜈 with linear weights over Σ. 
	𝜇

	Proof. The proposition is a direct application of Corollary B.3 with 𝑛= 𝜕𝑡, noting that Minkowsi space has vanishing Riemann tensor. 
	𝑎 

	Remark C.2: Evidently, if 𝑇𝑎𝑏 is covariantly conserved, i.e., 𝜕𝑇𝜇𝜈 = 0, then 𝐴𝜇 and 𝐵𝜇𝜈 vanish. 
	𝜇

	We now construct a center-of-motion point 𝑝 (of the extended body) on Σ under the assumption that 𝑃is timelike. 
	𝑎 

	Lemma C.3: Under the same assumptions as above, assume furthermore that 𝑃𝑎𝑃< 0 on Σ. Then there is a unique point 𝑝 ∈ Σ such that 
	𝑎 

	𝐽𝑖𝜇𝑃= 0. 
	𝜇 

	Proof. One calculates 
	𝜕(𝐽𝐽) = −2𝜂𝑃𝐽
	𝑖 
	𝜇𝜈
	𝜇𝜈
	𝑖𝜇
	𝜈
	𝜇𝜈 

	and 
	𝐻𝑖𝑗 ∶= 𝜕𝑗𝜕𝑖 (𝐽𝜇𝜈𝐽) = 2𝜂𝑃𝜂𝑗[𝜇𝑃𝜈] = |𝑃|𝛿𝑖𝑗 − 𝑃𝑖𝑃𝑗, (17) 
	𝜇𝜈
	𝑖
	𝜇
	𝜈
	2

	where |𝑃|= 𝑃𝜇𝑃. 
	2 
	𝜇

	Π𝜇𝜈 ∶= 𝜂𝜇𝜈 − (18)
	|𝑃| 
	|𝑃| 
	1 
	2 
	𝑃
	𝜇
	𝑃
	𝜈 

	is the projection operator orthogonal to 𝑃, which is positive definite when restricted to spacelike vectors. The matrix 𝐻𝑖𝑗 is therefore negative definite (because |𝑃|< 0). Moreover, 𝐻𝑖𝑗 is constant on Σ, and hence 𝐽𝜇𝜈𝐽achieves a unique maximum 𝑝 ∈ Σ where its gradient vanishes. 
	2 
	𝜇𝜈 

	Remark C.4: Since 𝑃is timelike and 𝐽𝑎𝑏 anti-symmetric, one has, in fact, 
	𝑎 

	𝐽𝜇𝜈𝑃= 0 (19) 
	𝜈 

	at the point 𝑝 defined by Lemma C.3. 
	Next, we use the Strengthened DEC to show that the conditions of the previous lemma are indeed satisfied, that is to say, that 𝑃is timelike. 
	𝑎 

	Lemma C.5: If 𝑇𝑎𝑏 satisfies the Strengthened DEC and has non-vanishing support, then 𝑃is future-directed timelike. 
	𝑎 

	Proof. The one-form 𝑃𝑎 is constant on Σ. Hence, we can write 𝑃= 𝜆 (𝜕𝑡)+ 𝛼on Σ, where 𝜆 ∈ ℝ and 𝛼spacelike and constant (in Minkowski space). We show that 𝑃is timelike by distinguishing two cases. If 𝛼=0, then trivially, 𝑃is timelike. Otherwise, the 
	𝑎 
	𝑎 
	𝑎 
	𝑎 
	𝑎 
	𝑎 
	𝑎 
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	constant (on Σ) non-vanishing vector field 𝜉= sign(𝜆)|𝛼| (𝜕𝑡)+ 𝛼is Killing, null, and future-directed, where |𝛼| = √. We have 
	𝑎 
	𝑎 
	𝑎 
	𝛼𝑎𝛼
	𝑎

	𝑃𝑎𝜉= −sign(𝜆)𝜆|𝛼| + |𝛼|= |𝛼|(|𝛼| − |𝜆|). 
	𝑎 
	2 

	Therefore, from (12), we obtain using (11) that 
	|𝛼|(|𝛼| − |𝜆|) = − ∫ 𝑇𝜉𝑛𝑎 dvol(Σ).
	𝑎
	𝑏 
	𝑏

	Σ 
	By Lemma A.3, 𝑇𝜉𝑛𝑎 > 0, so |𝛼| ∈ (0, |𝜆|), whence 
	𝑎
	𝑏 
	𝑏

	𝑃𝑎𝑃= (|𝛼|+|𝜆|)(|𝛼|+|𝜆|) < 0. 
	𝑎 

	Therefore, 𝑃is timelike. Now, choosing 𝜉= (𝜕𝑡)in (12) shows that 𝑃𝑎(𝜕𝑡)< 0, hence 𝜆 > 0 and 𝑃is future-directed. 
	𝑎 
	𝑎 
	𝑎 
	𝑎 
	𝑎 

	We now use a particular Killing field (a boost around 𝑃that leaves 𝑝 invariant) to show that the center-of-motion point 𝑝 lies in the convex hull of the support of 𝑇, that is to say, “in the extended body.” 
	𝑎 
	𝑎𝑏

	Lemma C.6: Let 𝑇𝑎𝑏 have non-vanishing compact support on Σ satisfying the Strengthened DEC. Let 𝑝 ∈ Σ such that 𝐽𝑖𝜇𝑃= 0 at 𝑝. Then 𝑝 lies in the convex hull C of the support of 𝑇𝑎𝑏 in Σ. 
	𝜇 

	Proof. Suppose 𝑝 to lie outside of the convex hull C. Then there exists a unique geodesic in Σ from 𝑝 to the boundary of C with minimal length. Let 𝑉be its constant tangent vector. By Lemma C.5, 𝑃is future-directed timelike, so there is a constant vector field 𝑋such that 𝑃, 𝑉, 𝑋are linearly dependent as well as 𝑉𝑎𝑋> 0, 𝑃𝑎𝑋= 0, and 𝑋𝑎𝑋= −𝑃𝑎𝑃. Now let 𝜉be the the unique Killing field such that at 𝑝, 
	𝑎 
	𝑎 
	𝑎 
	𝑎
	𝑎
	𝑎 
	𝑎 
	𝑎 
	𝑎 
	𝑎 
	𝑎 

	𝜉= 0, 𝑋∇𝑎𝜉= 𝑃, 𝑃∇𝑎𝜉= 𝑋, 𝑌∇𝑎𝜉= 0 
	𝑎 
	𝑎
	𝑏 
	𝑏
	𝑎
	𝑏 
	𝑏
	𝑎
	𝑏 

	for any 𝑌 orthogonal to 𝑃and 𝑋.Then 𝜉is future-directed timelike on C. Then by construction, the left-hand side of (12) vanishes at 𝑝 where 𝐽𝜇𝜈𝑃= 0 by (19). Yet, the right-hand side is strictly negative, a contradiction. 
	𝑎 
	𝑎 
	𝑎 
	31 
	31 

	𝑎 
	𝜈 

	It is worth noting that we have not yet made use of 𝑇𝑎𝑏’s being covariantly conserved up to this point. As the following proposition shows, the conservation condition is used to “follow” the points where 𝐽𝑖𝜇𝑃= 0. It proves that the resulting center of motion moves on a geodesic. 
	𝜇 

	Proposition C.7: Let 𝑇𝑎𝑏 be a conserved energy-momentum tensor with compact spatial support satisfying the strengthened DEC. There then exists a well-defined smooth curve 𝛾 in the convex hull of 𝑇𝑎𝑏 such that 
	𝐽𝑖𝜇𝑃= 0 
	𝜇 

	on the curve. Then 𝑃is parallel to the tangent vector 𝛾̇ . 
	𝑎 
	𝑎

	Proof. The claim can be easily seen by computing the derivatives of 𝐽𝑗𝜇𝑃. Since 𝑇 is conserved, we obtain 
	𝜇 

	𝜕𝑖 (𝐽𝑗𝜇𝑃) = − |𝑃|Π𝑖𝑗 
	𝜇
	1
	2 
	2

	𝜕𝑡 (𝐽𝑗𝜇𝑃) = − |𝑃|Π𝑡𝑗, 
	𝜇
	2
	1 
	2
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	31 One can easily check that this specification indeed gives rise to a well-defined Killing field by checking that at 𝑝, ∇𝑎𝜉𝑏 is anti-symmetric. 
	where Π as in (18). The ∇𝜈 (𝐽𝑗𝜇𝑃) are therefore just the components of the projection operator orthogonal to 𝑃. Since 𝐽𝑖𝜇𝑃= 0 on 𝛾, ∇(𝐽𝑗𝜇𝑃) is orthogonal to 𝛾̇ . This immediately yields the claim. 
	𝜇
	𝑎 
	𝜇 
	𝑎 
	𝜇
	𝑎

	The above results can now be summarized in the following theorem: 
	Theorem C.8: Let (ℝ, 𝜂𝑎𝑏) be Minkowski space, and let 𝑇𝑎𝑏 be a conserved energy-momentum tensor with non-vanishing compact spatial support satisfying the Strengthened DEC. Then there is a timelike geodesic in the convex hull of the support of 𝑇𝑎𝑏. 
	4


	D PROOF OF THE GR CASE 
	D PROOF OF THE GR CASE 
	In Section 3, we introduced the definitions necessary to formulate Theorem 3.4. Moreover, we presented the conceptual ingredients of the proof. Here, we give the full details. 
	The proof proceeds in two steps. In the first step, we show that 𝛾 is timelike. We first define a Minkowskian manifold (N , 𝜂𝑎𝑏), the “pre-frame,” about an arbitrary point on the curve, say 𝑝 ∈ 𝛾(𝐼). This is done as follows. There exist a neighborhood 𝑈 of 𝑝 and normal coordinates (𝑡, 𝑥, … , 𝑥) in 𝑈 such that in these coordinates, 𝑝 = (0,0,0,0) and 𝑔𝜇𝜈 = 𝜂𝜇𝜈 at 𝑝. Moreover, all Christoffel symbols vanish at 𝑝. 
	1
	3

	Now view (𝑈, 𝜂𝑎𝑏) as a manifold (which is isometrically isomorphic to a subset of Minkowski space). By the Uniform Strengthened DEC (Definition 3.1), one can choose 𝑈 sufficiently small such that for all 𝑛, 𝑇𝑎𝑏 satisfies the Strengthened DEC in (𝑈, 𝜂𝑎𝑏). Furthermore, there is an 𝜖 > 0 such that for all 𝑠 ∈ (−𝜖, 𝜖), Σ𝑠 ∩ 𝛾(𝐼) ≠ ∅, where Σ𝑠 ∶= {𝑡 = 𝑠}. Set N𝑝 ∶= 𝑈 ∩{−𝜖 < 𝑡 < 𝜖}. The manifold (N , 𝜂𝑎𝑏) is also, evidently, isometrically isomorphic to a subset of Minkowski space. 
	(𝑛)

	In (N , 𝜂𝑎𝑏), we can now simply apply results from Minkowski space for every 𝑇𝜇𝜈 and obtain tensors 𝑃𝜇 and 𝐽𝜇𝜈 via 
	(𝑛)
	(𝑛)
	(𝑛)

	(𝑛) (𝑛) (𝑛)𝑃 𝜇𝜉+ 𝐽 𝜇𝜈∇𝜉= − ∫ 𝑇 𝑡𝜈𝜉dvol𝜂(Σ) (20)Σ
	𝜇 
	𝜇
	𝜈 
	𝜈 
	0
	0 

	as in (12). The momentum 𝑃𝜇 is future-directed timelike because every energy-momentum satisfies the Strengthened DEC in (N , 𝜂𝑎𝑏). This follows in the same way as in the SR case (Lemma C.5). Moreover, we can likewise define a center-of-motion curve 𝛾 defined by 
	(𝑛)
	(𝑛)

	(𝑛) (𝑛)𝐽 𝑖𝜇 𝑃=0, 
	𝜇

	analogous to Lemmas C.3 and C.6. The center-of-motion curve then lies in the convex hull of the energy-momentum tensor’s support. 
	Since the support of the energy-momentum tensors shrinks to 𝛾(𝐼), we have a convergence of the curves 𝛾 to 𝛾. Moreover, by (3), the sequences of both 𝑃𝑎 and 𝐽𝑎𝑏 are bounded, which means that there is a subsequence such that they converge to a 𝑃𝑎 and a 𝐽𝑎𝑏, respectively. We pass to this subsequence. Now, since every 𝑃𝑎 is constant on Σand timelike, 𝑃𝑎 is constant on Σand timelike or null. To show that 𝑃𝑎 is in fact timelike, consider the Killing field in (N , 𝜂𝑎𝑏) that is uniquely dete
	(𝑛)
	(𝑛)
	(𝑛)
	(𝑛)
	0 
	0 

	𝜉𝜇 = 𝑃𝜇, 𝜕𝜇𝜉𝜈 = 0 
	at (0, 0, 0, 0). Moreover, by the Uniform Strengthened DEC, there exists a 𝑐 > 0 such that at (0, 0, 0, 0), 
	(𝑛)
	𝑇 𝑡𝜇𝑃≥ 𝑐 
	𝜇 
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	for all 𝑛. For this 𝜉, the right-hand side of (20) is therefore negative for all large 𝑛 and hence 𝑃𝑎 timelike. 
	𝑎

	We now show that at 𝑝, 𝑃𝑎 is parallel to the tangent vector of 𝛾. For this, we prove that 
	(𝑛) (𝑛) (𝑛)
	𝑃 𝜕𝜇 ( 𝐽 𝑗𝜈 𝑃 ) → 0 
	𝜇
	𝜈

	for all 𝑗 = 1,2,3 as 𝑛 → ∞. First, one calculates the derivatives of 𝑃𝜇 and 𝐽𝜇𝜈 as in Proposition C.1. One obtains 
	(𝑛)
	(𝑛)

	1
	(𝑛)(𝑛)𝜇(𝑛)(𝑛)
	𝜕
	𝑖 
	(
	𝐽
	𝑗𝜇 
	𝑃
	) 
	= − 
	2 
	|
	𝑃
	|
	2 
	Π
	𝑖𝑗 

	(𝑛)(𝑛)𝜇(𝑛)(𝑛)(𝑛) (𝑛)𝜇 (𝑛) (𝑛)𝜇
	𝜕
	𝑡 
	(
	𝐽
	𝑗𝜇 
	𝑃
	) 
	= − 
	2
	1 
	|
	𝑃
	|
	2 
	Π
	𝑡𝑗 
	+
	𝐵
	𝑗𝜇 
	𝑃
	+
	𝐽
	𝑗𝜇 
	𝐴
	, 

	where Π is the projection operator defined as in (18). It is easy to see that the product of 𝑃𝑎 with these components tends to zero at 𝑝 once one realizes that the tensors 𝐴𝑎 and 𝐵𝑎𝑏 go to zero: recall that the components of these tensors are given by integrals of the form 
	(𝑛)
	(𝑛)
	(𝑛)
	(𝑛)

	∫ 𝜂𝜕𝜇 𝑇𝜌𝜈𝜂𝑋dvol𝜂(Σ); (21)Σ 
	𝜇𝜌
	(𝑛)
	𝜈𝜍
	𝜈 

	as explained in Section 3 (see (6)), these integrals tend to zero as 𝑛 → ∞. This proves that 𝛾 is timelike with a tangent vector proportional to 𝑃at 𝑝. Since 𝑝 is arbitrary, the result holds for the entire curve. 
	𝑎 

	In the second step of this proof, we show that 𝛾 can be re-parametrized as a geodesic. For this, we use the fact that 𝛾 is timelike to construct Fermi normal coordinates along 𝛾 via standard methods.We can now repeat the argument of the first step along the whole curve to obtain a timelike 𝑃𝑎 defined along 𝛾 and tangent to 𝛾. It remains to show that 
	32 
	32 


	(𝑛) (𝑛)
	𝑃∇𝜇 𝑃𝜈→0. 
	𝜇

	as 𝑛 → ∞. Since we have chosen Fermi normal coordinates, we know that the Christoffel symbols vanish along 𝛾. Therefore, on 𝛾(𝐼), 
	(𝑛) (𝑛) (𝑛) (𝑛) (𝑛)(𝑛)
	𝑃 
	𝑡

	𝑃 ∇𝜇 𝑃 𝜈 = 𝑃 𝜕𝜇 𝑃 𝜈 = 𝐴 𝜈. 
	𝜇
	𝜇

	Calculating (21) as before, we see that the quantity tends to zero as 𝑛 → ∞. This finishes the proof. 
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	E CALCULATING THE DIVERGENCE OF THE nTH ENERGY-MOMENTUM TENSOR 
	We have 
	(𝑛) (𝑛)
	∇
	𝑎 

	𝑎𝑐
	= 𝑔
	∇
	𝑐 

	𝑇 𝑎𝑏 𝑇 𝑎𝑏 
	= 𝑔∇𝑐 (𝑇𝑎𝑏 + 𝑇 𝑎𝑏) (22) (𝑛)(𝑛) (𝑛) (𝑛) (𝑛)
	𝑎𝑐
	(𝑛)
	𝑔 
	𝑎𝑐

	𝑎𝑐 𝑎𝑐𝑎𝑐 𝑑 𝑑 𝑑 
	∇ 
	𝑐
	𝜏
	𝑎𝑏 
	+ 
	(
	𝑔
	− 
	(𝑛)
	𝑔 
	) 
	∇ 
	𝑐
	𝜏
	𝑎𝑏 
	− 𝑔
	(
	Γ
	Γ 
	Γ 

	= 𝑎𝑐 − 𝑎𝑐) 𝜏𝑑𝑏 − 𝑔(Γ𝑏𝑐− 𝑏𝑐) 𝜏𝑎𝑑, 
	𝑎𝑐 
	𝑑 

	where we use the shorthand 
	(𝑛)𝜏𝑎𝑏 = 𝑇𝑎𝑑 + 𝑇 𝑎𝑑. 
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	The first term in the last expression in (22) is zero by (7) and the contracted Bianchi identity. Dold and Teh 
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	(𝑛) (𝑛) (𝑛) (𝑛)
	∇
	𝑎
	(
	𝑔
	𝑎𝑐 
	− 

	𝑎𝑐
	∫ 
	𝑔 
	)

	𝑇 𝑎𝑏𝑋dvol𝑔(Σ) = ∫ ∇ 𝑐 𝐺 𝑎𝑏𝑋dvol𝑔(Σ)ΣΣ 
	𝑏 
	𝑏 

	(𝑛)
	𝑎𝑐 𝑑 𝑑 
	𝑔
	(
	Γ
	Γ 

	−∫ 𝑎𝑐 − 𝑎𝑐)𝑇𝑑𝑏𝑋dvol𝑔(Σ)Σ 
	𝑏 

	(𝑛)
	𝑎𝑐 𝑑 𝑑 
	𝑔
	(
	Γ
	Γ 

	𝑏𝑐 𝑏𝑐𝑎𝑑𝑔Σ 
	−
	∫ 
	− 
	)
	𝑇
	𝑋
	𝑏 
	dvol
	(Σ)

	(𝑛) (𝑛)
	(𝑛) (𝑛)
	𝑎𝑐 𝑑 𝑑 
	𝑔
	(
	Γ
	Γ 


	− ∫ 𝑎𝑐 − 𝑎𝑐) 𝑇 𝑑𝑏𝑋dvol𝑔(Σ)Σ 
	𝑏 

	(𝑛) (𝑛)
	𝑎𝑐 𝑑 𝑑 𝑏 
	− 
	∫ 
	𝑔
	(
	Γ
	Γ 
	𝑇 
	𝑎𝑑
	𝑋
	dvol
	𝑔
	(Σ)

	𝑏𝑐 𝑏𝑐Σ 
	− 
	)

	Denote the first integral on the right-hand side by 𝐼, the second one by 𝐼, and so forth. 
	1
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