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Abstract. The goal of this article is to construct an account of measurement in molecular biology, 

with an emphasis on bioinformatics practices. The reasons for constructing this account are two. 

First, I fill a lacuna in philosophy of biology and philosophy of science, where measuring practices 

in bioinformatics and molecular biology have been neglected. Second, I argue against a popular 

idea in molecular biology, according to which experimentalists are in a better position to 

characterize biological phenomena than bioinformaticians, because of their material access to 

experimental systems. By arguing that bioinformaticians can measure things that experimentalists 

cannot, I show that this claim is unwarranted.  

 

1. INTRODUCTION 

The goal of this article is to provide a comprehensive characterization of measurement practices 

in molecular biology and, in particular, its bioinformatics2 side. Here, molecular biology 

overlaps with Morange’s macromolecular biology (2008), which includes disciplines stemming 

from the molecular vision, such as systems biology, the various -omics, etc. This paper will 

show what does it mean for bioinformaticians to measure, what kinds of measurement they 

construct, and how their measurements relate to the measuring activities of so-called 

experimentalists or wet-lab biologists3 (Strasser 2017).  

The reasons for characterizing these measurement practices are mainly two. First, in 

philosophy of biology there has not been enough attention to the epistemic practices of 

bioinformatics. Attention to bioinformatics has been directed towards the processes of curating 

and processing data (Leonelli 2016; Strasser 2017), and to how the ‘data-intensive’ turn can be 

connected to the mechanistic ethos of molecular biology (Lopez-Rubio and Ratti 2021; Bechtel 

2020). But the discourse on data has not been properly connected to other bioinformatics 

 
1 mnl.ratti@gmail.com 
2 We follow Ratti and D’Agostino’s usage of the term(2025), which covers also ‘computational biology’ 
3 The term ‘experimentalist’ refers to biologists working in laboratories – so-called ‘wet-lab’ biologists. I will use 

‘wet-lab biologist’ and ‘experimentalist’ interchangeably.  
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practices which emerge in the measuring procedures to which bioinformaticians contribute. 

But even more important, the literature in philosophy of science is, to our knowledge, 

surprisingly silent on the measuring practices in molecular biology, a discipline which, 

arguably, is particularly obsessed with measurements. This article can fill these lacunae in both 

fields. 

The second reason lies in debates internal to molecular biology. A number of articles 

published a few years ago (Bartlett et al 2017; Bartlett et al 2016; Lewis et al 2016; Lewis and 

Bartlett 2013) have characterized the relation between bioinformaticians and ‘wet-lab’ 

biologists. Through surveys (more than 300 participants) and ethnographic investigations 

(almost 100 interviews), they have provided extensive evidence of the hardships that 

bioinformaticians or computational biologists are subjected to in biology. In particular, they 

have shown that a prevalent attitude is that “bioinformatics should remain in a symbiotic, 

subsidiary relationship to biology” (Lewis and Bartlett 2013, p 249), and that bioinformaticians 

deliver “neither good biology, nor good computer science, but, rather, (…) a service provider 

to biology” (Bartlett et al 2016a, p 188). When bioinformatics’ work has a more obvious 

biological connotation (e.g. data curation and data analysis), bioinformatics is “treated as 

infrastructural support” (Lewis et al 2016, p 479). The consequences of these views are 

nefarious: bioinformaticians are often perceived “institutionally peripheral” (Bartlett et al 

2018, p 5), and “the legitimacy of their entire research programmes (…) are being called into 

questions” (Bartlett et al 2016b, p 3). These studies have been corroborated by recent insights 

(Markowetz 2017; Grabowski and Rappsilber 2019; Way et al 2021). What is important for 

this article is that this view of bioinformatics is a consequence of specific epistemic ideas. In 

particular, it is often drawn a contrast between laboratory work and in-silico work. What is 

argued against bioinformaticians is that they “have next to no understanding of the biological 

significance of their findings, never mind the laboratory processes that produce the data” 

(Bartlett et al 2016a, p 201). This is sometimes connected to the ‘materiality’ culture of wet-

lab biology, and the nature of concrete ‘object-processing’ characterizing disciplines such as 

molecular biology (Knorr Cetina 1999). It is said that “bioinformaticians do not perform 

experiments, at least not in the way that biologists do” (Lewis and Bartlett 2013, p 249), and 

this seems to imply that wet-lab biologists benefits from a sort of epistemic priority over 

bioinformaticians. The studies by Bartlett and colleagues describe the idea of ‘not doing proper 

experiments’ as the view that bioinformaticians do not have the right sort of access to biological 

phenomena that biologists have. By adapting the notion of ‘inscription’ coined by Latour and 
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Woolgar (1979), they formulate a distinction that, they think, plays a pivotal role in the ethos 

of contemporary molecular biology. Wet-lab biologists think that they have an epistemic 

priority over bioinformaticians because they are the ones first translating “the matter of life 

into data (producing ‘primary inscriptions’), after which bioinformaticians, working in the dry-

lab, carry out further transformations (producing ‘secondary inscriptions’)” (Bartlett et al 2017, 

p 3). One reason to write this article is to argue against the view that experiments and primary 

inscriptions provide a privileged access (called ‘epistemic priority’) to biological phenomena. 

I will argue against this idea by constructing an account of measurement that will show that 

this idea of epistemic priority is simply misleading.  

The structure of the article is as follows. First, I formulate more precisely the idea of 

epistemic priority of experimentalists (Section 2). I call this the ‘epistemic priority account’ 

(EPA), and I distinguish two important components (i.e., EPA-a and EPA-b). In Section 3, I 

construct an account of measurement in molecular biology that applies to how both wet-lab 

biologists and bioinformaticians measure, and their joint and collaborative practices. With this 

account of measurement, and by comparing experimentalists’ and bioinformaticians’ 

contributions to measurement processes, I address the views on epistemic priority, by showing 

that EPA-b rarely applies (Section 4), and that EPA-a is false (Section 5). Analyses of EPA-b 

and EPA-a will be carried out through a detailed engagement with classic measurement 

activities in biology, such as sequencing, flow cytometry, and gene set enrichment. An upshot 

of these analyses (Section 6) is, first, that the hierarchical divide between bioinformaticians 

and wet-lab biologists is, epistemically, unmotivated, and that one might even conclude that 

bioinformatics practices provide a richer access to biological phenomena. Second, my analysis 

also suggests show bioinformatics measurement practices provide a vantage point for 

theorizing.  

 

2 DEFINING EPISTEMIC PRIORITY 

In their studies (see Introduction), Bartlett and colleagues conceptualize the epistemic divide 

between experimentalists and bioinformaticians in two ways. First, a claim is made that 

experimentalists perform material experiments while bioinformaticians do not, and this confers 

them a priority on the basis of a material access to biological phenomena that bioinformaticians 

have not. Second, the distinction between primary and secondary inscriptions is an alternative 

formulation of the divide. Tending to primary inscriptions confers epistemic priority to wet-lab 
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biologists over bioinformaticians. This is another recurring theme: the importance of who 

materially generates data is central. This ‘priority’ has consequences for who claims 

‘discoveries’. It is worth noticing that Bartlett and colleagues are agnostic with respect to the 

validity of the consequences drawn from the distinction. In fact, for them the distinction is 

primarily a lens to conceptualize the epistemic underpinnings of the predicaments of 

bioinformaticians. 

 These observations about ‘experiments’ and ‘inscriptions’ can be summarized by saying 

that, according to the current ethos, experimentalists have ‘epistemic priority’ with respect to 

bioinformaticians. Let us now characterize this idea more in detail. Here we take the priority 

of experimentalists lying in the fact that, in virtue of doing experiments and constructing 

primary inscriptions, they have access to more information about biological phenomena. The 

access to more information is a function, under this conception, of the proximity of biologists 

to the actual biological material. Because of this proximity, experimentalists modulate the 

information ‘extracted’ from biological materials: they are gatekeepers, and they constrain and 

shape knowledge claims. I do not use any specific account of information, but the idea is that, 

because of their material access to phenomena, experimentalists have a vantage point for not 

only identifying relevant properties of biological phenomena, but also for determining what 

kind of properties can be identified in the first place. I call this “the epistemic priority account’ 

(EPA), defined as follows: 

EPA = experimentalists have a vantage point over knowledge claims that can be made about 

biological phenomena because, in virtue of their material access and proximity to biological 

phenomena through experiments, they either (a) establish which kinds of properties of the 

phenomenon can be identified, or (b) concretely identify such properties. 

Please note the ‘either/or’. What we mean is that at least one of the two conditions must 

apply for EPA to be justified. EPA characterizes the contested battlegrounds emerging from 

Bartlett and colleagues’ studies, and it reflects my own experience in talking to 

bioinformaticians. In what follows, I will put to test both a (EPA-a) and b (EPA-b). 

 

3 MEASUREMENTS IN BIOLOGY AND BIOINFORMATICS 

In order to see if EPA is justified, I propose to look at measurement practices in contemporary 

molecular biology. There are two advantages to use this angle to address EPA over Bartlett and 

colleagues’ approaches based on experiments and inscriptions.  
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One advantage of focusing on measurements is that it is much more neutral than 

discussions about experiments. What counts as an experiment is a highly contentious issue. 

There are indeed a number of different types of experiments, from confirmatory to exploratory 

(Radder 2003), and it is not clear how to count them. In fact, some think (Parker 2009) that we 

should talk about experimental activities rather than experiments. But even if we select a 

general class of experiment or experimental activity, there are still problems. One way to 

address EPA would be, for instance, to argue that bioinformaticians indeed perform some form 

of experiment and then, by comparing wet-lab experiments and bioinformatics experiments, 

see if proximity is indeed a function of ‘more information’. Ratti and D’Agostino explore this 

path (2025). But because there are strong and polarized opinions about what counts as an 

experiment, one can always arbitrarily restrict the level of proximity required for something to 

count as an experimental activity. In the case of measurements, there are indeed competing 

accounts, but they share a number of important components, as I will show.  

Next, unlike the distinction between primary and secondary inscriptions, 

‘measurement’ does not assume, a priori, that proximity to the material substance gives 

advantage to wet-lab biologists. It leaves open this question for scrutiny, which is what I want 

to do here. But it nonetheless assumes that an interaction is necessary, since measuring requires 

one between an apparatus and an object of study. 

 By using this more neutral lens, we can actually compare what biologists and 

bioinformaticians do, and whether the measurements they construct justifies EPA. In this 

section, I provide a characterization of measurement practices in molecular biology in general, 

which will apply to both experimental and bioinformatic activities. With this account in hand, 

in Sections 4 and 5 I will see what is the contribution of wet-lab biologists and 

bioinformaticians to specific cases of measurement practices, and whether these contributions 

motivate EPA-a and EPA-b.   

3.1 A Basic Account of Measurement in Molecular Biology 

In recent years, there has been an increasing attention to methodological and epistemological 

issues related to measurements in science (Tal 2020). There are a number of competing 

accounts defining the central characteristics of the measurement process and what does it mean 

to measure something. In what follows, I rely on Parker’s account of measurement (2017), 

which is an integration of two recent accounts, one information-theoretic from van Fraassen 

(2008), and one model-based developed by Tal (2017). The starting point is her distinction 
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(similar to others in the literature) between instrument indication, instrument reading, and 

measurement outcome.  

‘Instrument indication’ refers to the physical state of an apparatus used to measure 

(which may be indicated in a quantitative way like a numerical readout, or non-quantitative 

way like a colour), while ‘instrument reading’ is the indication ‘read’ according to the 

conventions of the apparatus. For the sake of simplicity, here I use ‘instrument reading’ to cover 

both readings and indications. While the distinction is certainly important, it is not particularly 

relevant here. I also use the term ‘apparatus’ to refer to one or more instruments, such that an 

apparatus can be one instrument, or a particular setting where one or more instruments are used 

and coordinated. The use of this term might differ from others in the literature (see, e.g., Harre 

2010).  

A measurement outcome is the actual ‘state’ assigned to the measured object, which is 

inferred from one or more instrument readings. Bokulich defines a measurement outcome as 

“a knowledge claim that attributes a particular value of a variable of a property to the object or 

event being measured” (2020, p 429). ‘Measurement outcome’ is conceptualized by Parker in 

informational terms, meaning that the measurement outcome is information about the 

measured object inferred from instrument readings. I take Parker’s and Bokulich’s formulations 

to be equivalent: the information inferred from instrument indication can be expressed as a 

knowledge claim about a property of the object measured. The process of inferring an outcome 

from a reading is called ‘calibration’ (Bokulich 2020, p 429). While Parker does not use any 

specific account of information (I will not do either), ‘informative’ is connected especially to 

models and representations. This emerges clearly if we look at what Parker takes from the two 

other accounts mentioned above. 

In van Fraassen’s account, measurement is an activity based on a physical interaction 

between an instrument and an object, such that agents setting up the interaction will gather 

information about the state of object itself (before the interaction). In his account, a 

measurement outcome is “a representation of what is measured4” (2008, p 179). This means 

that measuring provides a representation of an entity, in such a way that some physical 

parameters that characterize the measured object are displayed. It is an information-gathering 

activity, where the information is expressed as a selective representation of the object. Central 

 
4 To be fair, Van Fraassen’s account of measurement outcome is much more complex than this, given it 

encapsulates six specific characteristics. However, for this article there is no need to go much in depth about it 
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to Van Fraassen’s account is the idea of a logical space. Measuring activities are about a 

measured object, where this is an item that is already classified in the domain of a given theory5. 

In his view, when an object is measured, it is located within “a space common to a whole family 

of models provided by the theory” (p 164). This ‘space’ is the logical space. Because this logical 

space is constructed within a given theory, then the representation constructed as an act of 

locating will necessarily incorporate a number of auxiliary assumptions, calculations, and 

theoretical and modeling inputs: via the representation, the measured object is located “in a 

certain logical space, with a location that it does not have a priori” (2008, p 177). In a simplified 

case, measuring bodies of gas is the practice of locating the object measured at the intersection 

of three dimensions, consisting of volume, temperature, and pressure. Tal proposes 

measurement as a form of model-based inference, where the model is an abstract and idealized 

representation of the measurement process (i.e., of how an apparatus provides information to 

establish the value of a parameter), and measuring consists in “inferences from the final state(s) 

of a physical process to value(s) of a parameter in the model” (2012, p 17). Because the model 

of the measurement process is idealized, steps to correct deviations from ideal conditions 

(typical of ‘idealizations’) must be specified. This happens especially in so-called ‘white-box 

calibration’, where the total uncertainty must be clearly specified to properly calibrate the 

instrument, while in ‘black-box calibration’ this estimation is already accounted for in the 

instrument reading. Despite formal differences (see Parker 2017, p 278), these two accounts 

have a lot in common, Parker argues. In both cases measurement is relative to models or 

theories, and measurement outcomes are selective representations of some sort.  

Parker concludes that measuring is an empirical information-gathering quest, where 

through the physical interaction of an apparatus with an object, one infers characteristics of the 

measured object (i.e. a measurement outcome) by locating the object in a logical space, 

structured according to a given theoretical background. By locating the measured object in a 

logical space, measuring activities lead to the construction of a selective representation of the 

object, where the representation itself coheres with relevant background theory and other 

auxiliary assumptions about the interfering factors, characteristics of instruments, etc. 

 My account of measurement in biology has a lot in common with Parker’s. For instance, 

I adopt the general idea that measuring is an empirical information-gathering activity based on 

 
5 “A Claim of the form ‘This is an X-measurement of quantity M pertaining to S’ makes sense only in a context 

where the object measured is already classified as a system characterized by quantity M. To so describe an 

object is already to classify by theory” (2008, p 144) 
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the interaction between an apparatus and an object of interest, and that locates an object in a 

logical space. However, there are some caveats that will lead my account of measurement in 

biology in a slightly different direction. 

First, the nature of measurement outcomes is broader in biology than it is in the cases 

cited by Parker. In fact, measurement outcomes can be quantitative or qualitative. While cases 

discussed by Tal, van Fraassen, and Parker are quantitative6, in molecular biology you have a 

bit of everything, from quantitative (such as qPCR to measure the amount of DNA in a sample), 

semi-quantitative (e.g. agarose gel electrophoresis to determine the presence of a DNA sample 

in a standard PCR), qualitative (e.g. cell morphology characteristics measured through electron 

microscopy). 

Second, Parker’s taxonomy of measurement outcomes does not fit well the peculiarities 

of molecular biology. Parker distinguishes different types of measurement on the basis of the 

inferences required to go from instrument readings to measurement outcomes. In a ‘direct’ 

measurement, there is no need to “transform the raw instrument reading into a value for a 

different parameter” (2017, p 28), and the instrument reading is the outcome, while in ‘derived’ 

measurement at least one additional layer of inference is required to calculate (using “reliable 

principles or definitions” p 281) the outcome. Finally, ‘complex’ measurement is when 

measurements outcomes are derived by integrating different direct/derived measurements. In 

my understanding, the distinction is about how sophisticated the process of calibration is. While 

this taxonomy has its merits, and in fact coheres well with my emphasis on who (between 

bioinformaticians and experimentalists) is in charge of transforming readings into an outcome, 

in molecular biology it is difficult to have such clear cut distinctions on the basis described by 

Parker. For instance, it is difficult to identify cases of direct measurements given that, even 

basic measurements, will require transformations of materials and representations. For this 

reason, I distinguish measurement outcomes in molecular biology on the basis of the proximate 

goal that they serve. There are various proximate goals, such as detection; effect estimation; 

and characterization. Correspondingly, detection measurements ‘record’ the presence or 

absence of a given biological entity or activity; effect estimation measurements gather 

information about how the presence or absence of an entity correlates with the state of a system; 

‘characterization’ measurements’ goal is to integrate different kinds of data modalities on an 

entity or process. Examples of classic measurement types can be found in Table 1. In this 

 
6 To be fair, Tal explicitly acknowledges the possibility of ‘qualitative measurements’ (2017, p 34), but he does 

not discuss them 
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article, I discuss measurement especially for detecting and characterizing, but my arguments 

apply more broadly. 

 

Table 1. Different kinds of measurements in biology  

Third, Parker stresses the role of ‘inference’ for constructing measurement outcomes. 

But this can sometimes be misleading in molecular biology. It is certainly true that readings are 

‘interpreted’ in light of, e.g., background domain knowledge and integrated with other 

instrument indications to ‘infer’ the outcome (i.e., calibration). However, restricting calibration 

to just inferring is too narrow, because it underestimates the materiality of the processes of 

constructing measurement outcomes from readings. Or better: calibration is not just an 

inferential process; it is also a construction process. Van Fraassen points out, en passant, 

something along these lines, when he says that measurement activities can be destructive (e.g. 

a photon absorbed, a metal sample vaporized), with the consequence that the measurement 

outcome does not necessarily reveal the final state of the object, but rather its state before the 

interaction. In molecular biology, the majority (if not all) measuring activities are of this kind. 

Maybe the term ‘destructive’ is too strong, but certainly radical modifications and 

manipulations of the object measured are the rule, rather than the exception. This is to say that 

one might talk about calibration in a broader sense as ‘transformations in the pipeline’, rather 

than ‘inference’, because ‘interpreting’ and ‘resolving uncertainties’ require material 

transformations. As reported by Stevens (2013), in biology the word ‘pipeline’ is used to refer 

to “the series of processes applied to an object in order to render it into some appropriate final 

format” (p 109). ‘Rendering’ means exactly ‘selectively representing’, and ‘the final format’ is 

the location of the object in a specific logical space. But this pipeline is something much 
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broader than just an inferential process interpreting an instrument reading: the ‘processes’ can 

be physical transformations happening in a laboratory (Rheinberger 2023), as well statistical 

and computational manipulations (which can count as ‘inferring’) happening in a virtual 

experimental system (Ratti and D’Agostino 2025). Looking only at ‘inferences’ in molecular 

biology misses this rich tapestry of transitions and transformations.  

Fourth, a point about physical interactions with the apparatus is in order. No one can 

deny the importance of bioinformatics tools in contemporary biology, even if you think that 

EPA is justified. Therefore, an excessive focus on the initial physical interaction can obfuscate 

a rich tapestry of practices. While a physical interaction between an apparatus and a biological 

object is indeed necessary for measurement, this interaction is in many cases materially 

abstracted and made it virtual, in various digital media. For this reason, the interactions between 

the object and the apparatus are not only physical, but also ‘virtual’. 

Finally, Van Fraassen and Parker use the term ‘logical space’. In the case of molecular 

biology, the more general term ‘conceptual space’ is preferable, given the heterogeneous nature 

of the space where items will be located, with theories coming from different disciplines 

(chemistry, physics, biology, etc), as well as know-how and tacit practical knowledge with 

respect to instruments and the specificities of the measuring context. 

Based on these considerations, I define measurement in biology as: 

Measurement in biology (MB) = an empirical activity aimed at gathering information about 

biological phenomena (e.g., their properties) with the following characteristics:  

• The activity happens in a pipeline, which specifies the (physical and virtual) 

interactions between one or more instruments and an object (typically an 

experimental system7) 

• Throughout the pipeline, the object is materially and computationally processed to 

generate instrument readings, which are transformed until a final representation is 

reached 

• this final representation is the ‘measurement outcome’; the representation is 

located in a conceptual space defined by a network of auxiliary assumptions, 

which include domain knowledge coming from various disciplines, and 

knowledge of the instruments involved; 

• the measurement outcome serve proximate goals (e.g., detection; effect 

estimation; characterization) 

 

 
7 See (Rheinberger 1997) 
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3.2 Connecting MB to EPA 

Let us connect MB to EPA. It should be noted that EPA is epistemic because it is about 

knowledge claims that can be generated as a result of material proximity. MB is also defined 

in terms of knowledge claims (represented as measurement outcomes), so EPA and MB speak 

the same language. Justifying EPA by investigating what biologists and bioinformaticians do 

in terms of MB, would mean to show one of two things (or, ideally, both). First, it means to 

show that material access and proximity is what enables biologists to turn instrument readings 

into measurement outcomes, and that bioinformaticians’ role is only to refine readings, rather 

than transforming them into outcomes. This would prove EPA-b: given that information 

concerning properties of biological phenomena are expressed, per Bokulich’s definition, as 

knowledge claims represented as measurement outcomes, and experimentalists are responsible 

for the outcomes, then EPA-b is justified. Second, it means to show that material access and 

proximity is what enables biologists to conceptualize measurement outcomes, and hence the 

corresponding type of knowledge claims that can be made in principle. This would prove EPA-

a. In both cases, experimentalists have a vantage point over information/knowledge claims 

because of their material proximity and material access to biological phenomena. 

 

4 EPA-b AND BIOINFORMATICS  

In this section, we look into the merit of EPA-b. The strategy is to the take common examples 

of measurement in biology, where both bioinformaticians and experimentalists contribute to, 

and find who transforms readings into outcomes, rather than only providing or refining 

readings. If experimentalists are in charge of this crucial step, and this is because of their 

material access and proximity to experimental systems, then they have the vantage point 

described by EPA-b. I introduce two common examples in 4.1 (one type of detection 

measurement, and one type of characterization measurement), and  discuss them in 4.2. 

4.1 Common Examples of Measurements 

4.1.1 Detection Measurements: Sequencing Technologies 

A detection measurement has the goal of detecting the presence of one or more biological 

objects and/or processes. The information gathered is the presence or absence of something. 

The process of measuring qua detecting activities is common in molecular biology – a classic 
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example is PCR (REF), where the goal is to establish whether a given fragment of DNA is 

present in a DNA sample. Here I discuss sequencing technology, which is a more complex case.  

Sequencing refers to the measurement processes that lead to the detection of a primary 

structure of polypeptides (e.g. proteins) or polynucleotides (e.g., DNA or RNA molecules). The 

term ‘sequencing’ covers a wide array of methods and approaches. My focus is on DNA 

sequencing. It is usually said that there are three generations of DNA sequencing approaches 

(van Dijk et al 2018). The first-generation sequencing approach is known as Sanger-

sequencing. Second-generation sequencing addresses a number of limitations of Sanger 

sequencing, in particular by allowing massively parallel sequencing. Finally, third-generation 

sequencing improves the length of reads by facilitating long-reads sequencing. Often, second- 

and third-generation sequencing are lumped in the label ‘next-generation sequencing’ (NGS). 

In this short description, I will focus especially on second-generation. 

 There are three main steps in second-generation sequencing (Hu et al 2021). My 

descriptions of these steps is idealized, as there are many ways to go through the three phases8. 

These steps make up what is known as the ‘sequencing pipeline’, which refers to those 

procedures used to transform samples of DNA into measurements concerning the primary 

structure of, e.g., polynucleotides such as DNA.  

The first step of this pipeline is called ‘library preparation’. This is when samples of 

DNA are prepared in such a way that they are amenable to be ‘processed’ by the sequencing 

platform which will then produce instrument readings. In addition to quality and purity checks, 

DNA molecules are fragmented by means of laboratory procedures (e.g., enzymatic, chemical, 

physical methods, etc) into short pieces. This is because, in second-generation sequencing, 

sequencing platform cannot ‘read’ long sequences of DNA, but they can only detect shorter 

ones, where the length is determined by the requirements of a given sequencing platform. These 

short pieces, taken together, constitute the totality of a segment of DNA one wants to sequence 

(e.g., a chromosome; an entire genome; etc). After fragmentation, DNA shorter pieces are 

‘repaired’ by preparing the fragments for so-called ‘adaptor ligation’, which is when the 

fragments are attached oligonucleotides that can be ‘recognized’ by the sequencing machines’ 

surface: these ‘short fragments’ with adaptors will bind to the surface of the sequencing 

machine to facilitate massive parallel sequencing. This is a noteworthy progress with respect 

 
8 See (Metzker 2010) for a comprehensive overview of these differences in second-generation sequencing 
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to first-generation sequencing, where one had to fragment DNA sequences anyway, but then 

could only sequence one fragment at the time.  

The second step in the sequencing pipeline is sequencing proper. Different kinds of 

sequencing can be distinguished depending on the chemistry used. The most common is 

‘sequencing by synthesis’, in which the DNA library prepared in the first step is amplified 

(usually via clonal amplification), in order to produce a stronger signal that can be more easily 

detected. After amplification, nucleotides tagged with specific fluorescent dyes are added to 

the library and incorporated in the DNA molecules. To simplify a complex process, the 

nucleotides tagged with fluorescence (called ‘probes’) hybridize with their complementary 

sequences. After this phase, the sequencing machine excites fluorescent dyes with a laser, and 

a CCD camera detects the excitation (i.e. it literally takes photos!). In the rawest instrument 

reading, the four possible nucleotides are represented by lines of different colours on a chart 

(Metzker 2010; Stevens 2013).  

Finally, the third step is ‘analysis’. This step includes a number of automated, partially-

automated, and manual procedures. The most basic is called ‘base calling’, which is when, on 

the basis of the intensity of the signal detected by the CCD camera, a software provides a score 

as to how confident the machine is that a given base is indeed a specific nucleotide. Next, bases 

called (i.e., ‘reads’) from the fragmented DNA are assembled into a linear sequence. After 

assembly, sequences must be checked for quality control to, e.g., fill gaps. Base calling, 

assembly, and quality control are typically called ‘primary analysis’ (Hu et al 2021). After the 

raw sequence is stored in a file (in e.g., FASTQ format), it is subjected to secondary analysis, 

which is read alignment and variant calling. This kind of analysis is done by comparing the 

raw sequence to a Reference Sequence, in order to understand commonalities and differences. 

Tertiary analysis corresponds to variant annotation (e.g. differences with respect to the 

Reference Sequence considered), and functional annotation of variants (e.g., whether they are 

SNP, INDEL, CNV, etc), which can be used to “determine their biological and pathological 

functions” (Hu et al 2021, p 805). Secondary and tertiary analyses require the experienced use 

of software and statistical tools.  

Sequencing is a form of MB. First, it is an empirical information-gathering activity: 

what is gathered is information (broadly conceived) about the sequence of nucleotides 

constituting genomes. Second, this information-gathering activity happens in a pipeline (as 

defined in 3.1): it involves the transformation of objects (e.g. a sample of DNA fragmented, its 
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pieces amplified, etc), as well as representations (e.g. coloured points in a chart turned into 

letters). The measurement outcome – the sequence – is a representation of the polynucleotides 

chain arranged in a linear sequence. This representation is located in a wide conceptual space, 

structured around a dense theoretical background, auxiliary assumptions, and technical 

assumptions about the instruments used. Theoretical background comes from molecular 

biology (e.g., the nature of nucleotides, the complex mechanistic machine underlying 

amplification), as well as chemistry (e.g., the chemical basis governing complementary bases). 

The functioning of the sequencing platform relies significantly on physics (e.g., the way the 

laser excites fluorescent dyes). Analyses in the third step are based on best software practices, 

as well as applied statistics techniques. Finally, sequencing can be understood as ‘detection’ in 

a number of ways. For instance, it is the process through which the order of nucleotides and 

their precise arrangement in a polynucleotide chain is detected, or in general it is a process 

aimed at detecting the primary structure of a polynucleotide chain by identifying its constituent 

nucleotides. One could even say that what is detected is the presence and identity of nucleotides 

at every position in a polynucleotide chain. Tertiary analysis admittedly goes beyond mere 

detection, because it characterizes also the functional dimension of portions of the chain. But 

sometimes tertiary analysis is considered not part of sequencing proper. Moreover, it is 

appropriate to say that, after the secondary analysis in the third step, biologists have nonetheless 

a measurement outcome, namely the identity and position of nucleotides on a chain. 

4.1.2 Characterization Measurements (Flow Cytometry) 

In characterization measurements, the goal is not simply to detect an object or a process; rather, 

it is to reveal different aspects of an object or a process. While ‘detecting’, by establishing the 

presence of an object or process, might do this on the basis of a specific dimension (e.g., the 

presence and identity of nucleotides at every position in a polynucleotide chain), in 

‘characterization’ the object or process is specified on the basis of more than just one 

dimension. Common examples of ‘characterization measurements’ are the measurement 

outcomes resulting from microscopy, where morphology, position, and quantities of objects are 

characterized through visual means. In this section, we focus on a different (but analogous) 

type of measurement outcome, based on ‘cytometry’.  

Cytometry is the measurement of the features of cells - the word comes from Greek, 

where ‘kytos’ means ‘container’ (i.e., cell) and ‘metron’ means ‘measure’. ‘Flow’ refers to the 

fact that cells in flow cytometry are in ‘suspension’ in a fluid, rather than attached to a surface 
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like in microscopy. Flow cytometry is performed with the help of a flow cytometer (Robinson 

et al 2023), which is made of a number of components, including a fluidic system controlling 

the flow of cells; an optical system equipped, typically, with a laser that is supposed to capture 

the emitted fluorescence or simply the signals; and a data acquisition system which today are 

sophisticated software armed with cutting-edge data science tools, but in the early days of flow 

cytometry were analogue instruments that displayed signals (that is, instrument indications).  

Most flow cytometers are fluorescence-based, but there are also alternatives using, e.g., 

metal isotopes. Flow cytometers detect fluorescence signals emitted by dyes, which are 

fluorescent molecules (e.g. fluorochrome probes) used to measure a number of parameters of 

cells by ‘flagging’ them. In a typical flow cytometry measurement process (Aghaeepour et al 

2013), cells are stained with these fluorochrome-dyed molecules that bind to cell surface and 

intracellular components. When passed through the flow cytometer, cells are scanned through 

a laser beam existing the fluorochromes, and the emitted light (which is proportional to the 

density of the molecules dyed that are bind to cells) is measured. Given this general 

characterization, flow cytometry has the goal of ‘cell sorting’ (i.e., isolation and recovery of a 

given cell population) and ‘analysis’. The latter, understood as “the recording of many readouts 

for each individual cell” (Robinson et al 2023, p 6) is of particular interest here. 

Analyses that are done in flow cytometry are numerous (Robinson et al 2023). One can 

do ‘phenotyping’, which is the identification and classification of cells on the basis of multiple 

parameters. In immunology, one can analyze the fluorescence associated to given markers to 

track their expression and dynamics during disease progression. Another noteworthy analysis 

is ‘viability assays’. This procedure is based on the idea of using fluorescent dyes that 

selectively label cells with certain known characteristics. These ‘dyes’ have specific 

hydrophobic properties, which might penetrate intact cellular membranes or only enter 

compromised membranes, to even more specific that enter live cells but become fluorescent 

only when interacting with specific macromolecules (Robinson et al 2023). In this way, one 

characterize cell populations by distinguishing different types of states of cells, and their 

features. One can also combine flow cytometry for cell cycle analysis to, e.g., monitor p53 cell 

cycle arrest, or measure multidrug resistance. Finally, one can also measure cellular function, 

e.g. the oxidative potential of granulocytes (i.e. a type of white blood cell) using dyes sensitive 

to oxidation states. 
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Flow cytometry is indeed a measurement practice and, as sequencing, falls neatly into 

MB. First, flow cytometry is an empirical information-gathering activity, where the 

information gathered pertains to different dimensions of cells. For instance, in 

immunophenotyping quantitative information concerning activation, proliferation, or 

functional changes of cells populations can be gathered. Second, this information-gathering 

activity happens in a pipeline (as defined in 3.1), where cells go through a number of 

transformation steps such that they can be visualized in the proper way. The measurement 

outcome is a representation of specific characteristics of cells populations. As in any 

measurement, this representation is located in a conceptual space, encompassing theoretical 

backgrounds, and auxiliary assumptions concerning the instruments used. This wide 

conceptual space include background knowledge of hydrodynamic, optics, and chemistry for 

the functioning of the instruments, as well as knowledge about the biological underpinnings of 

cell component. Consider an example of how diverse is this conceptual space is: in commenting 

on viability assays, Robinson et al (2023) point out that the most commonly used dyes (i.e., 

propidium iodide and 7-aminoactinomycin D), while binding to DNA, can only enter 

compromised membranes. This means that the instrument reading ‘DNA is dyed with this 

fluorescent molecule’, combined with knowledge about cell membranes, and the chemistry 

underpinning the dyes themselves, will be turned into the measurement outcome ‘these cells 

are dead’. Finally, flow cytometry is not simply about detecting; rather it characterizes cells 

across many dimensions. When measuring cells in the immune systems through flow 

cytometry, activation, proliferation, and functional changes give us information of temporal 

and spatial nature. Through this complex tapestry of information, we get a picture of what those 

cells are, rather than just saying that they are present.  

4.2 Discussion 

Let us start by discussing detection measurements, in particular sequencing technologies. As 

we have noticed, there are at least three generations of sequencing. For first-generation 

sequencing technologies, no sophisticated bioinformatics tool was needed, and, to my 

knowledge, no sophisticated tool was available when Sanger designed the method. In this case, 

the property that is measured (i.e. the presence and identity of nucleotides at every position in 

a polynucleotide chain) is indeed detected because of wet-lab methodologies manipulating and 

transforming biological material. In other words, experimentalists, in virtue of experimental 

activities and material access to the biological system, transform a set of instrument readings, 

into a specific measurement outcome. Indeed, fragments were assembled by interpreting 
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polyacrylamide gels which separate DNA fragments by size. Let us now turn to second-

generation sequencing. Investments in alternative sequencing methods were motivated by the 

fact that, with Sanger sequencing, it was simply not possible to sequence more than one 

fragment at the time. Given that one requirement implicit in the idea of sequencing is exactly 

to fragment DNA to handle long sequences better, this meant that it became increasingly 

difficult to measure the presence and identity of nucleotides at every position in longer 

polynucleotide chains. The Human Genome Project was a 2-billions dollars, 13-years, 

consortia-based, massive effort to use this type of sequencing, at the least in the public 

consortium (Stoeger and Ratti 2025). The innovation brought by second-generation sequencing 

is to sequence millions of fragments in parallel. In order to transforms those millions of 

instrument readings coming from millions of fragment into a measurement outcome, 

bioinformatics tools are necessary (Pereira et al 2020). However, their necessity lie at two 

rather different levels. First, bioinformaticians provide support to refine readings. In this 

respect, bioinformatics tools are necessary in primary analysis, which is the detection and 

analysis of signals generated by the sequencing platforms (e.g., fluorescence reads) which leads 

to so-called base calling. While base-calling is increasingly automated, the computational 

procedures followed by algorithmic tools are, indeed, the result of bioinformaticians’ insights 

into how reads with given characteristics, can be indeed processed and analyzed to be turned 

into ‘sequencing reads’. For instance, Illumina platforms signal detection relies on 

fluorescence, and algorithms convert a fluorescence signal into a sequence by giving a score to 

the intensity of the four ‘fluorescence dyes’ that are attached to nucleotides. This also involves 

specific choices as to how to quantify the uncertainty, which is then made explicit by providing 

a score for each nucleotide in the sequence – and this process of calibration is done via 

bioinformatics means. Other procedures in primary analysis involves quality control, which is 

again based on algorithmic tools whose choice “is highly dependent on the dataset, downstream 

analysis, and parameters used” (Pereira et al, p 9). In all these cases, bioinformatics provides 

support for experimentalists, but it is support to refine readings into more precise readings. At 

a second level, bioinformatics is necessary in a more radical sense. In secondary analysis, the 

readings are further transformed into outcomes, as a result of tasks carried out by 

bionformaticians. This is especially evident in sequence alignment and variant calling. 

Alignment against a reference genome requires using algorithms such as, e.g., Burrow-Wheeler 

transform algorithm, which are tools for data transformation that restructure data to be more 

compressible – and the choice of what and how to compress, will rely on computational choices 

that require a bioinformatics mindset, rather than an ‘experimentalist’ one. Variant calling will 
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then validate a number of positions in the chain. This means that with alignment and variant 

calling, the readings concerning the positions in the chain are confirmed, by quantifying and 

addressing uncertainties, and finally turning them into measurement outcomes. The point is 

that, to detect/measure the presence and identity of nucleotides at every position in a long 

polynucleotide chain such as an entire genome, you do not just need bioinformaticians to 

automate tedious part of your transformations in the sequencing pipeline; it is the 

bioinformatician who transforms a set of instrument indications (e.g., fluorescence signals first, 

bases called next) into a precise measurement outcome. While for short polynucleotide chains 

experimentalists can construct the measurement outcome, in the case of longer chains one can 

(wickedly) see them acting as technicians preparing the samples, and it is the bioinformatician 

who constructs the large-scale measurement of long chains. 

Similar considerations apply also for characterization measurements, exemplified by 

flow cytometry. There was indeed a time when flow cytometry made use only of analogue 

instruments exploiting principles behind Coulter particle counters. Moreover, for simple tasks 

one might not need to use bioinformatics tools to turn the readings into an outcome. For 

instance, one can simply do what is called ‘manual gating’. This refers to the process of 

“visually inspecting multidimensional plots of the data, and drawing boundaries (gates) around 

populations of interest” (Liu et al 2024, p 11). Bioinformatics tools are here necessary, but in 

the sense of just refining readings, e.g. by generating plots, and experimentalists then will turn 

these instruments readings into a measurement outcome by locating the object of interest (i.e. 

the population of cells) into a well-defined conceptual space. Liu and colleagues (2024) 

characterize informally the ‘conceptual space’ used to interpret plots (and hence to turn 

readings into outcomes) as “experience-based, time-consuming, and relies on prior knowledge 

and arbitrary cutoffs to assign cell populations” (p 2). However, scalability is a problem, as 

manual gating is unreliable for large and multidimensional datasets. In these large-scale cases, 

bioinformaticians turn instrument readings into measurement outcomes. It is not a coincidence 

that, from early 2000s, flow cytometry has been able to measure an increasing number of 

fluorescent markers at a time, as a result of the increased capacity to generate multidimensional 

data, and develop bioinformatic tools for their analysis (O’Neill et al 2013). When the number 

of markers increases, so do the scatter plots that need to be investigated for ‘gating’. Because 

of such high dimensionality, manual gating is just not possible. Gating in the era of highly-

dimensional data requires the design and correct implementation of a variety of algorithms, 

such as dimensionality reduction tools, combinatorial gating algorithms, clustering algorithms, 
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etc (O’Neill et al 2013). All these algorithms require extensive bioinformatic work to do the 

gating, meaning that it is a task of the bioinformatician to turn the multidimensional instrument 

readings (e.g., fluorescent traces coming from the flow cytometer) into a measurement 

outcome, which will locate the object measured (e.g. a population of cells) within a conceptual 

space, whose dimensions would not only concern background knowledge and assumptions 

concerning the biology and the chemistry of the cell and the physics of the flow cytometer, but 

also the assumptions and standards of the bioinformatics tools involved. In other words, in 

these cases where highly multidimensional data is involved, bioinformaticians transform 

readings into outcomes. 

These two examples of MB show that, for small-scale cases, EPA-b is valid. 

Experimentalists turn readings into measurements, and while bioinformatics tools might play 

important role in the transformation pipeline, the crucial transformation into outcome can be 

done (in principles and in practice) by experimentalists, in virtue of their access to the object 

measured, their experimental activities, and the familiarity with the experimental system 

developed through constant material interactions. However, in large-scale cases, it is the 

bioinformatician who provides the crucial transformation into outcomes: there is no whole-

genome sequencing measurements without a bioinformatician crucially transforming a set of 

disconnected and uncertain readings, into a precise outcome; there are no cytometric 

measurements, without bioinformaticians turning the utter complexity of multidimensional 

instrument readings into a precise outcome. It is not just that bioinformaticians contribute to 

the measurement process in instrumental (though often essential) ways, and then 

experimentalists integrate the readings into an outcome: it is the task of bioinformaticians to 

provide the crucial transformation. Therefore, we conclude that EPA-b works only in simple 

cases, while for large-scale cases it does not. But given that a contemporary molecular biology 

is indeed large-scale, then one might be skeptical of the relevance of EPA-b, and conclude that 

measuring in the era of data-intensive biology does not necessarily depend on material 

proximity. In other words, material manipulations and how close we are to material 

experimental systems do not provide a vantage point over the identification and 

characterization of properties of biological phenomena.  

5 EPA-a AND BIOINFORMATICS 

Experimentalists can still rebut that EPA-a is not undermined by the examples discussed above. 

This is because, while it is true that the bioinformatician transforms a set of readings into an 
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outcome, the type of outcome (e.g., position of nucleotides; characteristics of the cell) is still 

defined in terms that are, in fact, amenable to the experimentalist ethos: the nucleotides and the 

cells are entities that are isolated and defined by means of the experimental activities of 

experimentalists. In other words, nucleotides and cells are physical entities whose properties 

are conceptualized in certain ways because of how they are materially accessed and 

manipulated. In this section, we show that the most exciting works of bioinformatics concern 

the construction of measurement outcomes that, in fact, violates EPA-a. We will exemplify this 

dimension of bioinformatics measurement through the case of gene set enrichment analysis 

(GSEA). 

5.1 GSEA Measurements 

GSEA is a computational method to construct measurement outcomes (Mootha et al 2003; 

Subramanian et al 2005) related to the altered state of gene pathways in a given phenotype. The 

outcome can be interpreted as knowledge claims relating expression of groups of genes to 

higher-level mechanisms, in such a way that these outcomes can be used, in concert with other 

outcomes, to build mechanistic models. GSEA has been developed in the context of the 

explosion of data generated in genomics. Back in 2003, mRNA expression profiles (mostly 

generated by microarrays) were constituted by lists of thousands of genes coming from samples 

belonging to two classes, where genes were ordered on the basis of their differential expression 

in the two classes. A common approach was to look at the top and bottom of the list, select a 

handful of genes showing the largest difference, and then discern biological clues on the basis 

of their characteristics. But this approach had obvious drawbacks. For instance, cellular 

processes affect sets of genes, rather than individual genes, and a slight increase or decrease in 

groups of genes might do more than more significant fold changes in individual genes. If we 

just look at individual genes, we might miss these subtler dynamics (Subramanian et al 2005). 

GSEA was developed exactly to identify set of genes that are connected to the emergence of a 

given phenotypes. From this perspective, GSEA is a detection measurement process. 

 This is how GSEA works. Take, for instance, the study where it was first introduced 

(Mootha et al 2003). Mootha and colleagues compare the expression profiles of patients with 

Type 2 diabetes mellitus (DM2) and normal glucose tolerance (NGT). First, a list L of genes 

ranked on the basis of their differential expression in the two groups is created, where the 

ranking is established by fold changes (namely, the ratio between the expression of the same 

gene in DM2 and NGT samples). Next, bioinformaticians curate an a priori list of different 
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sets of genes. Let’s call these set of genes Ss. Now, there are many ways in which one can 

choose Ss. In Subramanian et al (2005), it is said that these sets will depend on the specific 

question at hand. In the case of Mootha et al, they created 149 Ss, some collating genes from 

pathways (113) that might be related to DM2, and gene clusters coregulated in a mouse 

expression atlas (36). These sets were curated by consulting databases and by doing an 

extensive literature review. Statistically speaking, the null hypothesis is that the rank of the 

genes is random with respect to the diagnostic characterization of samples. The alternative 

hypothesis is that the rank reflects one or more Ss. GSEA has two instrument readings and one 

measurement outcome. The first reading is what is called enrichment score (ES), which is the 

strength of the association between the rank of genes in L with one or more Ss. Another reading 

is a preliminary Maximum ES (pMES), which is across all Ss. What was found was that pMES 

was detected for genes involved in oxidative phosphorylation (OXPHOS). In ranking Ss in 

pMES, there was also another interest set called cluster20 (c20), which overlapped partially 

with OXPHOS. This overlap was characterized as a new subset of OXPHOS involved in a 

specific pathway, and they call this new set OXPHOS-CR. The measurement outcome of GSEA 

was, in this case, the detection of OXPHOS-CR as a set of genes tightly co-regulated in DM2 

and significantly differential overexpressed with respect to NGT. This characteristic of this set 

of genes is expressed in terms of MES (namely, information about OXPHOS-CR is represented 

in the form of MES).  

 GSEA is a measurement process. It is an empirical activity aimed at gathering 

information about the properties of biological phenomena, in particular the propensity of two 

groups of samples with different conditions to have genes of specific pathways differentially 

expressed. The pipeline of GSEA starts in the wet-lab realms, with the collection of gene 

expression profiles readings. In contemporary cases, collection of these readings comes from 

RNA-sequencing, which goes through the stages typical of this method. It moves then to a 

‘virtual’ platform, where those readings are transformed by means of the computational and 

statistical operations described above. The measurement outcome is MES, namely the detection 

of a differentially expressed set of genes that are coregulated within one or more pathways 

affecting the phenotype of interest. The conceptual space is structured around domain 

knowledge concerning the mechanism of gene expression and gene functions. Domain 

knowledge is even precisely formalized in the way it is represented in databases providing 

annotations about genes and pathways (Leonelli 2016). Moreover, statistical and computational 

aspects are particularly important. 
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5.2 Discussion 

How does GSEA put pressure on EPA-a? GSEA measures how differences in two conditions 

(say, DM2 and NGT) can be associated to genes belonging to specific pathways. MES is a 

property of the differential expression of a set of genes – you cannot construct MES starting 

from the expression profiles of one group only. MES is something that is measured only when 

comparing differences between two conditions (DM2 and NGT). But most important, MES is 

not a property like the position and identity of nucleotides in a chain, properties of cell 

membranes, the length of telomeres, or the stiffness of a living tissue. MES is a statistical 

property of a group of genes and, as such, it is conceived in bioinformatics terms, by using 

concepts and methods from statistics such as fold change and permutation-based tests, and 

computational tools such as databases: it is a statistical transformation that lead to the 

conceptualization of a new kind of measurement outcome. MES is conceivable only through 

computational and statistical means: the conceptualization of MES qua property characterizing 

a dimension of biological phenomena, is entirely established by bioinformaticians and, as such, 

undermines EPA-a. In other words, having material access to gene expression dynamics does 

not provide any vantage point for conceptualizing MES in the first place – but having access 

to statistical properties and databases does. MES is not an isolated case: as shown in Table 2, 

there are also other well-known cases violating EPA-a. 

 

 

Table 2. Examples of bioinformatics tools violating EPA-a 
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6 FINAL REMARKS 

In this paper, I have provided an account of measurement in biology, where this account 

allowed me to differentiate the ways in which so-called ‘experimentalists’ (i.e., wet-lab 

biologists) and bioinformaticians measure the properties of biological phenomena. I have 

shown that bioinformaticians are responsible for the construction of large-scale measurement 

outcomes, as well as entire new kinds of measurements that, despite having biological 

relevance, can only be conceptualized from the standpoint of bioinformatics work and mindset. 

My analysis has two main consequences, one for philosophy of biology and philosophy of 

science, and the other for molecular biology as a discipline. 

 Regarding philosophy of science and biology, this article is the first attempt (to my 

knowledge) to build a comprehensive account of measurement in molecular biology, and it 

raises the question of what is the place of such an account within the dominant epistemology 

of molecular biology, characterized in mechanistic terms. Furthermore, by characterizing 

measurement practices also in bioinformatics, this article raises questions about the relations 

between measurements and data, which is an underexplored topic9. 

 By putting pressure on EPA, the relevance of this article for molecular biology is 

twofold. By arguing against EPA-b, it supports a more balanced relation between 

bioinformaticians and wet-lab biologists. One can even take a more extreme stance, and say 

that, because of the large-scale nature of contemporary biology dealing with multidimensional 

data, we are going towards a future where bioinformaticians will have a vantage point for 

formulating knowledge claims over experimentalists in general. This is very speculative, and 

yet one can be easily lured into such thoughts. Second, by arguing against EPA-a, 

bioinformaticians are put in a privileged position for theorizing about aspects of biological 

phenomena, given how their bioinformatics-based measurement outcomes can indeed reveal 

properties that might be difficult to even conceptualize by experimentalists. 

 

REFERENCES 

Aghaeepour, N., Finak, G., Hoos, H., Mosmann, T. R., Brinkman, R., Gottardo, R., 

Scheuermann, R. H., Dougall, D., Khodabakhshi, A. H., Mah, P., Obermoser, G., 

Spidlen, J., Taylor, I., Wuensch, S. A., Bramson, J., Eaves, C., Weng, A. P., Fortuno, 

E. S., Ho, K., … Vilar, J. M. G. (2013). Critical assessment of automated flow 

 
9 To my knowledge, this topic is explicit (briefly) addressed only by Van Fraassen (2008, p 166) 



24 
 

cytometry data analysis techniques. Nature Methods, 10(3), 228–238. 

https://doi.org/10.1038/NMETH.2365 

Bartlett, A., Lewis, J., Reyes-Galindo, L., & Stephens, N. (2018). The locus of legitimate 

interpretation in Big Data sciences: Lessons for computational social science from -

omic biology and high-energy physics. Big Data and Society, 5(1). 

https://doi.org/10.1177/2053951718768831 

Bartlett, A., Penders, B., & Lewis, J. (2017). Bioinformatics: Indispensable, yet hidden in plain 

sight? In BMC Bioinformatics (Vol. 18, Issue 1). BioMed Central Ltd. 

https://doi.org/10.1186/s12859-017-1730-9 

Bartlett, Andrew, Jamie Lewis, and Matthew L. Williams. (2016). “Generations of 

Interdisciplinarity in Bioinformatics.” New Genetics and Society 35 (2). Taylor & 

Francis: 186–209. doi:10.1080/14636778.2016.1184965. 

Bokulich, A. (2020). Calibration, Coherence, and Consilience in Radiometric Measures of 

Geologic Time. Philosophy of Science, 87. http://www.stratigraphy 

Grabowski, P., & Rappsilber, J. (2019). A Primer on Data Analytics in Functional Genomics: 

How to Move from Data to Insight? In Trends in Biochemical Sciences (Vol. 44, Issue 

1, pp. 21–32). Elsevier Ltd. https://doi.org/10.1016/j.tibs.2018.10.010 

Hu, T., Chitnis, N., Monos, D., & Dinh, A. (2021). Next-generation sequencing technologies: 

An overview. Human Immunology, 82(11), 801–811. 

https://doi.org/10.1016/j.humimm.2021.02.012 

Knorr-Cetina, K. (1999). Epistemic Cultures. Harvard University Press. 

Latour, B., & Woolgar, S. (1979). Laboratory Life: The Construction of Scientific Facts (2nd 

editio). Princeton University Press. 

Leonelli, S. (2016). Data-centric Biology. University of Chicago Press. 

Lewis, Jamie, and Andrew Bartlett. (2013). “Inscribing a Discipline: Tensions in the Field of 

Bioinformatics.” New Genetics and Society 32 (3): 243–63. 

doi:10.1080/14636778.2013.773172. 

Lewis, Jamie, Andrew Bartlett, and Paul Atkinson. (2016). “Hidden in the Middle: Culture, 

Value and Reward in Bioinformatics.” Minerva 54 (4). Springer Netherlands: 471–90. 

doi:10.1007/s11024-016-9304-y. 

Liu, P., Pan, Y., Chang, H.-C., Wang, W., Fang, Y., Xue, X., Zou, J., Toothaker, J. M., 

Olaloye, O., Santiago, E. G., McCourt, B., Mitsialis, V., Presicce, P., Kallapur, S. G., 

Snapper, S. B., Liu, J.-J., Tseng, G. C., Konnikova, L., & Liu, S. (2024). 

Comprehensive evaluation and practical guideline of gating methods for high-

dimensional cytometry data: manual gating, unsupervised clustering, and auto-gating. 

Briefings in Bioinformatics, 26(1). https://doi.org/10.1093/bib/bbae633 

López-Rubio, E., & Ratti, E. (2021). Data science and molecular biology: prediction and 

mechanistic explanation. Synthese, 198(4), 3131–3156. 

https://doi.org/10.1007/s11229-019-02271-0 

Markowetz, F. (2017). All biology is computational biology. PLoS Biology, 15(3). 

https://doi.org/10.1371/journal.pbio.2002050 

https://doi.org/10.1016/j.tibs.2018.10.010


25 
 

Metzker, M. L. (2010). Sequencing technologies the next generation. In Nature Reviews 

Genetics (Vol. 11, Issue 1, pp. 31–46). https://doi.org/10.1038/nrg2626 

Mootha, V. K., Lindgren, C. M., Eriksson, K.-F., Subramanian, A., Sihag, S., Lehar, J., 

Puigserver, P., Carlsson, E., Ridderstråle, M., Laurila, E., Houstis, N., Daly, M. J., 

Patterson, N., Mesirov, J. P., Golub, T. R., Tamayo, P., Spiegelman, B., Lander, E. S., 

Hirschhorn, J. N., … Groop, L. C. (2003). PGC-1α-responsive genes involved in 

oxidative phosphorylation are coordinately downregulated in human diabetes. Nature 

Genetics, 34(3). http://www.nature.com/naturegenetics 

Morange, M. (2008). The Death of Molecular Biology? History and Philosophy of the Life 

Sciences, 30(1), 31–42. https://www.jstor.org/stable/23334314 

O’Neill, K., Aghaeepour, N., Pidlen, J. S., & Brinkman, R. (2013). Flow Cytometry in 

Bioinformatics. PLOS Computational Biology, 9(12). 

https://doi.org/10.1371/journal.pcbi 

Parker, W. S. (2009). Does matter really matter? Computer simulations, experiments, and 

materiality. Synthese, 169(3), 483–496. https://doi.org/10.1007/s11229-008-9434-3 

Parker, W. S. (2017). Computer Simulation, Measurement, and Data Assimilation. In Brit. J. 

Phil. Sci (Vol. 68). https://about.jstor.org/terms 

Radder, H. (2003). Technology and Theory in Experimental Science. In H. Radder (Ed.), The 

Philosophy of Scientific Experimentation. University of Pittsburgh Press. 

Ratti, E., & D’Agostino, G. (2025). Beyond “Trapped Pets” and “Red Buttons”: 

Bioinformatics as an Experimental Discipline. Perspectives on Science, 33(2), 158–

201. https://doi.org/10.1162/posc_a_00638 

Rheinberger, H.-J. (1997). Toward a History of Epistemic Things: Synthetizing Proteins in the 

Test Tube. Stanford University Press. 

Robinson, J. P., Ostafe, R., Iyengar, S. N., Rajwa, B., & Fischer, R. (2023). Flow Cytometry: 

The Next Revolution. In Cells (Vol. 12, Issue 14). Multidisciplinary Digital 

Publishing Institute (MDPI). https://doi.org/10.3390/cells12141875 

Stevens, H. (2013). Life out of sequence - A data-driven history of bioinformatics. Chicago 

University Press. 

Strasser, B. (2017). Collecting Experiments - Making Big Data Biology. The University of 

Chicago Press. 

Subramanian, A., Tamayo, P., Mootha, V. K., Mukherjee, S., Ebert, B. L., Gillette, M. A., 

Paulovich, A., Pomeroy, S. L., Golub, T. R., Lander, E. S., & Mesirov, J. P. (2005). 

Gene set enrichment analysis: A knowledge-based approach for interpreting genome-

wide expression profiles. PNAS doi10.1073pnas.0506580102 

Tal, E. (2017). Calibration: Modelling the measurement process. Studies in History and 

Philosophy of Science Part A, 65–66, 33–45. 

https://doi.org/10.1016/j.shpsa.2017.09.001 

van Dijk, E. L., Jaszczyszyn, Y., Naquin, D., & Thermes, C. (2018). The Third Revolution in 

Sequencing Technology. In Trends in Genetics (Vol. 34, Issue 9, pp. 666–681). 

Elsevier Ltd. https://doi.org/10.1016/j.tig.2018.05.008 



26 
 

van Fraassen, B. (2008). Scientific Representation: Paradoxes of Perspective. Oxford 

University Press. 

Way, G. P., Greene, C. S., Carninci, P., Carvalho, B. S., de Hoon, M., Finley, S., Gosline, S. J. 

C., le Cao, K. A., Lee, J. S. H., Marchionni, L., Robine, N., Sindi, S. S., Theis, F. J., 

Yang, J. Y. H., Carpenter, A. E., & Fertig, E. J. (2021). A field guide to cultivating 

computational biology. In PLoS Biology (Vol. 19, Issue 10). Public Library of 

Science. https://doi.org/10.1371/journal.pbio.3001419 

 

 

 

 


