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Abstract. The past few years have witnessed an increasing use of machine learning (ML) tools in 

science. Paul Humphreys has argued that, because of specific characteristics of ML systems, human 

scientists are pushed out-of-the-loop of science. In this chapter, I investigate to what extent this is true. 

First, I express these concerns in terms of what I call ‘epistemic control’. I identify two conditions for 

epistemic control, which I call ‘tracking’ and ‘tracing’, drawing on works in philosophy of technology.  

With this new understanding of the problem, I then argue against Humphreys’ pessimistic view. Finally, 

I construct a more nuanced view of epistemic control in ML-based science.  
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1. INTRODUCTION 

 

In the past few years, there has been a growing interest in the challenges of keeping meaningful 

control over automated computational tools. The issue of so-called ‘human-in-the-loop’ has 

been raised especially in the contexts of autonomous weapon systems (Human Rights Watch 

2012), public institutions (Danaher 2016), and credit scoring systems (Citron and Pasquale 

2014). The issue is raised because such automated processes are so complex, large-scale, and 

fast, that humans cannot simply monitor them in ways in which other tools are monitored. More 

precisely, this problem can be defined as the extent to which humans can keep control over 

automated tools by deciding when to use them, or preventing that these tools are used in a 

certain situation, or overseeing how the tools take decisions in specific instances (and, 

potentially, in all instances). For example, Danaher says that in the case of data mining systems 

humans “can predetermine the patterns that data-mining algorithms search for (…) can review 

and scrutinize the recommendations made by algorithms, or they can essentially leave it up to 

the machines” (2016, p 248).  

An unexplored side of this debate is that such automated computational tools (and in 

particular AI tools) are used in science as well, and hence the same issues of ‘human-in-the-
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loop’ and human control potentially apply in the context of scientific practice. Where scientific 

processes are automated, we must make sure that there is proper human oversight to ensure 

that scientific practice is not led astray by poorly designed or poorly adapted tools. While in 

the cases mentioned above the payoffs of having humans in the loop are especially ethical and 

legal, in the case of scientific practice the payoffs are also epistemic. I call this effort of keeping 

humans-in-the-loop of science ‘epistemic control’, which I will define more precisely in 

Section 2.  

  

The aim of this chapter is to analyze the relation between the use of machine learning 

(ML) in science, and human epistemic control. Asking the question of epistemic control in ML-

based science is important, given the increasing importance of ML tools in scientific practice, 

and the control-related issues that have been emerging in this context. In particular, recent 

analyses of the opacity of ML systems have raised concerns over the unpredictable ways in 

which ML shapes scientific methodologies and scientific outputs (Creel 2020; Boge 2022). 

Latest implementations of large language models in fields like biology or medicine (Mesko 

and Topol 2023; Bommasani et al 2021) have shown the challenges of controlling the content 

of the data sets used, how they are processed, and how the models are transferred across 

different contexts  

The structure of the chapter is as follows. In Section 2 I will introduce the notion of 

‘epistemic control’ and I will reconstruct the argument for the lack of epistemic control in ML-

based science. This is based on Paul Humphreys’ work that, I think, represents the most 

comprehensive and systematic attempt at making the claim that ML-based science can 

potentially be ‘out of human control’. Humphreys’ argument is based on a fine-grained analysis 

of how ML algorithms process data and the opacity of the learned representations. In Section 

3, I will first highlight two weaknesses in Humphreys’ argument (3.1 and 3.2), showing that 

there is more to ML-based science other than the aspects he emphasizes, and that scientists can 

keep meaningful epistemic control on other important components of ML systems that 

Humphreys neglects. Finally, I will propose an alternative reading of the problem of control in 

ML-based science, describing how the use of ML in science can lead scientists to commit to 

certain methodological choices that are subtle, but nonetheless have profound epistemic 

consequences, especially for the aims of science. I call this ‘the normativity’ of ML-based 

science. 
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2. EPISTEMIC CONTROL IN MACHINE LEARNING-BASED SCIENCE AND 

HUMPHREYS’ PESSIMISTIC VIEW  

 

2.1 Epistemic Control 

I define the concept of epistemic control by adapting the notion of ‘meaningful human control’ 

(de Sio and van den Hoven 2018) to the scientific context. Debates on this notion start with a 

simple question concerning autonomous weapon systems: who can be said to be responsible 

for the wrongdoings of autonomous weapons systems? For humans to be responsible, it is said, 

they have to be ultimately in control. But for ‘being in control’, mere ‘human-in-the-loop’ is 

not a sufficient condition, because just being in the loop does not imply being able to influence 

the system or understanding it, and these are additional conditions that intuitively are important 

for control. For this reason, some have proposed the idea of ‘meaningful human control’. 

According to de Sio and van den Hoven (2018), meaningful human control requires two 

conditions. The first is called ‘tracking’, namely that a system is under meaningful human 

control when the system’s actions track relevant human moral reasons, in the sense that the 

system is demonstrably and verifiably responsive to the relevant human moral reasons. The 

second condition is called ‘tracing’: to be under meaningful human control, there should be 

tracing relations between the mechanism of decision-making of the system, and the technical 

and moral understanding of some relevant humans involved. It is important to point out that 

their account is tailored for systems where many human agents are involved in their 

construction and implementation, and as long as for some of these agents the two conditions 

apply, then there is meaningful human control. My conception of epistemic control draws 

significantly from de Sio and van den Hoven’s account, but it differs in two respects.  

First, the two contexts are different. For instance, de Sio and van den Hoven are 

especially interested in the moral dimension of control, while my interest is epistemic. 

Moreover, the boundaries of the system to be under meaningful control are sharper in de Sio 

and van den Hoven’s case, because it is about sharply identifiable systems (i.e., a drone or a 

tank). In the case of science, it can be something as broad as a scientific project, or something 

more specific and concrete as a scientific instrument, an experimental system, or something 

abstract as a methodology. I subsume all these possibilities into the label ‘scientific item2’. A 

second difference is that it is not clear whether de Sio and van den Hoven’s account is discrete 

or not. But in my account, there is a continuum of control that human scientists can exercise 

 
2 This is vague and unsatisfactory, but for reasons of space, I will develop this idea in another work 
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over the scientific endeavor. On these bases, I propose to modify the two conditions in the 

following way to adapt them to an epistemic context like science: 

• Tracking condition: a scientific item must be responsive to scientists’ epistemic or 

methodological standards or criteria relevant in the circumstances; the way the 

scientific item works or unfolds should track epistemic or methodological criteria or 

standards that a community of scientists accept. These ‘criteria’ or ‘standard’ are 

discipline-specific. For instance, in the case of a standard polymerase chain reaction 

(PCR), ‘tracking’ is obtained by making sure that each step of the process (i.e., 

denaturation, annealing, elongation, detection) is responsive and aligned to latest, 

updated standards and benchmarks created by the biological community  

• Tracing condition: one or more scientists must be able to trace, from a given 

methodological and epistemic perspective, how the scientific item works or unfolds; 

these ‘perspectives’ are, again, discipline-specific. Going back to the example of the 

PCR, tracing conditions apply when one or more scientists are able to tell how the final 

outcome of the PCR has been obtained by appealing to methodological and epistemic 

criteria accepted by the biological community. 

There is meaningful human epistemic control (for short, epistemic control) when these two 

conditions apply. But, as I said above, there is a continuum of control. Therefore, a more precise 

statement would be to say that epistemic control grows when the degree of instantiation of the 

two conditions increases. 

Defined in this way, epistemic control is an ideal that has been pursued in various ways in 

the history of science under different names or labels. Prominent exemplifications include 

attempts at mechanizing scientific methods or providing grounds for ‘procedural objectivity’ 

(Nickles 1980; Gillies 1996; Megill 1994); replacing idiosyncratic personal judgements with 

impersonal standards (Davis 2019; Porter 1995); organizing a collective process of oversight 

over scientific work (Longino 1990). In these cases, tracking and tracing conditions have been 

implemented in various ways: by mechanizing the scientific methods, scientific procedure are 

transparent in such a way that one can ascertain whether they are responsive to accepted 

epistemic and methodological standards (i.e., they track relevant epistemic and methodological 

criteria), and the community of scientists will be able to trace them; by replacing idiosyncratic 

personal judgements, we make sure that subjective aspects, which have been typically seen as 

not responsive to methodological and epistemological criteria accepted in the community and 

are implicit and tacit (i.e. they cannot be tracked and traced), are kept to a minimum. It is also 
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important to add that epistemic control does not imply epistemic success, because a scientific 

item might be easy to track and trace, but then one might find that it is simply not aligned with 

the accepted methodological and epistemic criteria. However, having more epistemic control 

facilitates the process of scrutiny which will increase the chances of at least spotting 

problematic scientific items.  

In which sense in ML-based science there can be a lack of epistemic control? I will 

expand on this below, but for the time being let’s look at two examples that illustrate the 

intuition behind losing epistemic control in ML-based science. These examples refer to errors 

that are peculiar to ML. Consider shortcuts first. These are errors that happen when a ML 

system achieves high predictive accuracy by leveraging features of data sets that have little to 

do with the target phenomenon the ML system is supposed to learn from. For instance, a deep 

neural network (DNN) might classify medical images as ‘cancer/non-cancer’ on the basis of 

non-medical information erroneously encoded in the image itself. A second example are 

adversarial attacks, which is when target manipulations of data sets (that can be imperceptible 

to humans, such as modifying a few pixels in images) lead to a drop in performance. These are 

ML-specific errors that we want to avoid. But in both cases, it is difficult for human scientists 

to diagnose these issues, especially anticipating them. It is difficult to anticipate shortcuts, 

because often what the ML system leverages to make predictions cannot be neatly identified 

or interpreted through meaningful human concepts (Boge 2022) – it is difficult to track ML 

system’s functioning with respect to discipline-specific epistemic criteria or standards. Second, 

anticipating adversarial attack is challenging because of the complexity of the algorithmic 

processes (Freiesleben and Grote 2023) – it is difficult to establish tracing relations between 

the way ML system unfolds and the relevant methodological understanding.  

These problems have suggested that scientists might have little control over how ML 

systems learn or their outputs. But beyond considerations about the complexity of 

computational systems, a precise account of how the characteristics of ML concretely 

undermines epistemic control is hard to find. The only exception is Paul Humphreys’ work 

(2011; 2020; 2021). His concerns about ML in sciences get close to the idea of losing epistemic 

control – and this is why I will focus on his writings to get a baseline understanding of the 

relation between ML and epistemic control. In order to understand his ideas and how they are 

connected to my concept of epistemic control, we need to understand two components of his 

view; first, the view that computational systems brings a new ‘epistemic perspective’ in 

science; second, that this epistemic perspective is irreducible to a human perspective because 

of opacity.  
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2.2. Epistemic Perspectives  

Let me start with ’epistemic perspective’. According to Humphreys (2011), one interesting 

aspect of computational science is that “it uses methods that push humans away from the centre 

of the epistemological enterprise” (p 133). This, he continues, is not necessarily novel; as a 

matter of fact, many scientific instruments have ‘pushed away’ humans, at least when 

perceptual tasks were concerned. But in the case of computational sciences, the push is much 

more radical: it is a divorce. Science has always been anthropocentric, Humphreys says, but 

now the situation can change. This divorce is a radical displacement that can happen, according 

to Humphreys, because computational systems are akin to a new scientific authority. This 

might potentially lead to “abstract[ing] from human cognitive capabilities when dealing with 

representational and computational issues” (Humphreys 2011, p 134). But what does 

Humphreys exactly mean by ‘new scientific authority’?  

This is the way I understand Humphreys’ views. He says that the idea of an exclusively 

anthropocentric epistemology may not be suitable to describe what is currently happening in 

science. In (2021), he sketches a notion of ‘machine knowledge’, as something that can 

characterize a machine’s point of view on what can be known. In (2020), he also refers to 

patterns that machines can discover to which humans are not accustomed, or simply unable to 

interpret. Humphreys’ idea is that there something like a point of view on the objects of 

scientific knowledge (i.e. natural phenomena) that is unique of computational tools such as ML 

or computer simulations; and this point of view may be problematic for human beings, in the 

sense of something that humans cannot understand it. This ‘problematic’ point of view on the 

object of knowledge constitutes, according to Humphreys, a ‘new scientific authority’.  

I call ‘the epistemic perspective of ML’ these views associated to ‘point of view’ or 

‘scientific authority’. To be fair (and to my knowledge), Humphreys does not use the term 

‘perspective’. He speaks at times of ‘style of reasoning’, and he refers explicitly to Crombie’s 

and Hacking’s works. But he ended up rejecting the notion, because ‘reasoning’ has an 

anthropocentric flavor (2011, p 133). He also uses the expression ‘styles of representation’ 

(2020). These are unique ways of representing phenomena (from a specific angle and not 

another), and they include specific ways of manipulating these representations to construct 

knowledge (i.e. techniques). But Humphreys’ view sometimes seems to encompass much more 

than just representations, including epistemic interests, problems and questions, hypotheses, 

theories and models, presuppositions, methods. For this reason, ‘epistemic perspective’ might 

be a better term, exactly because this typically encompasses all those aspects mentioned just 
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above (Plumacher 2012). The notion of epistemic perspective plays both an analytical function 

(i.e. it determines the epistemic object and its conditions), and an ordering function (i.e. it helps 

us navigating epistemic practices), which cannot be adequately covered by ‘styles of 

representation’.  

The issue with respect to the human’s and the computational tools’ perspectives boils 

down to one specific question: “are there distinctive styles of representation [i.e. epistemic 

perspectives] that are involved in automated science [i.e. computational science]” (2020, p 13) 

which involve nonhuman agents? Especially when computational tools like DNN are 

concerned, Humphreys argues that this is indeed the case. Even though hardware, software, 

and architectures are built by humans, still “the details of the internal representations are 

constructed by the computer, not by humans” (p 22). These internal representations constructed 

by the machine constitute a significant part of the perspective of computational tools. This 

‘machine perspective’, according to Humphreys, should be neatly distinguished from the 

perspective of human scientists. 

Humphreys does not say what the human point of view or ‘human perspective’ really 

is. In the case of science, we can say that the ‘human perspective’ is discipline-specific: it is 

constituted by the given discipline-specific norms, the background knowledge including an 

ontology underlying the given scientific field (which can be used to ‘build’ discipline-specific 

scientific representations), and specific research questions and goals3.  

Humphreys says that this new computational perspective can displace or replace the 

human perspective. Why? In what he calls the ‘hybrid scenario’ (a scientific scenario where 

humans and machines coexist), humans’ and computational tools’ perspectives are kept close, 

by ‘translating’ the relevant parts of computational procedures and outputs into the ‘grammar’ 

of a specific scientific human perspective. This means that there is push to subsume the tool’s 

perspective onto the human’s perspective. As a consequence, human scientists can track and 

trace what a given computational tool is doing on their own terms, and evaluate and/or amend 

the conduct of the tool itself on the basis of methodological and epistemic criteria that are 

accepted by a given community of human scientists. However, according to Humphreys some 

computational systems do not allow this translation – and ML is the most prominent case.  

 

2.3 Opacity 

 
3 See my paper (2020) for how this would work in a specific discipline (i.e., molecular biology) 
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But why there are cases where the translation does not obtain? Humphreys makes the 

convincing point that this is sometimes not possible because of the phenomenon of (essential) 

epistemic opacity.  

In the context of computer simulations, Humphreys says that a process is (essentially) 

epistemically opaque “relative to a cognitive agent X at time t (…) if and only if it is impossible, 

given the nature of X, for X to know all of the epistemically relevant elements of the process” 

(2011, p 139). This preliminary characterization refers especially to computer simulations.  

How does Humphreys adapt this conception to ML4?  

Humphreys characterizes the opacity of ML systems like DNN as ‘representational 

opacity’ (2021). The ‘representation’ is the actual content of the model that the DNN system 

builds. But this ‘representational opacity’, in the way Humphreys talks about it, refers to more 

than just the content of the model. In particular, it is about two things.  

First, we do not know much about how DNNs construct their models. While at a basic 

level DNN is a function approximation device, functions between layers are nonlinear and 

complex to the extent that no human can really interpret nor understand what is going on. We 

do know the forms of the generic architectures that DNNs can possibly take, but more relevant 

details are beyond our reach. For instance, Humphreys mentions that we do not know the 

relevant details of the algorithm for updating during the training procedure. But the opacity can 

also lie in modeling activities in the ML pipeline that are taken over by the ML system itself, 

and that were typically done by humans. Take feature engineering, which is a central procedure 

for well-functioning ML systems. This is a manual process done by human scientists to extract 

derived features from raw features of data sets, and that will be used as inputs for training 

procedures. However, there is an interesting trend towards automating feature engineering by 

turning it into an optimization procedure like the one leveraged for weight-parameters learning 

(Termine et al 2024). It has been shown that one can extract useful derived features by using 

convolution, which is a linear transformation based on the application of a kernel of parameters 

to the input. What happens is that the various regions of the input are processed through a filter 

computing the weighted sum of the input-features (i.e., the pixels of the image) in the region 

and kernel parameters, thereby mapping the result into a feature map. The high-level features 

produced are called ‘embeddings’, which the ML system uses, as it happens for human-

constructed features, for predicting the target. Take the example of psychiatry (Eitel et al 2023). 

 
4 The literature on opacity has exploded in the past few years. Landmark contributions include (Creel 2020; 

Boge 2022; Sullivan 2022). Given that here I am engaging with Humphreys’ view, I will just discuss his ideas 

on opacity. This does not mean that other views on opacity are not important. 
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In the case of hand-made high-level features, a psychiatrist will help ML practitioners to craft 

features on the basis of what is relevant to psychiatry as a field. For instance, one can select 

from images high-level variables like cortical thickness, fractional anisotropy, etc, then 

determine their values from raw data, and finally end up with new features. This will facilitate 

tracking and tracing, because this process can be monitored and explained by appealing to 

discipline-specific standards and criteria. But in the case of machine-constructed features, 

tracking and tracing is challenging because it is difficult to understand how the features are 

constructed, and whether these procedures reflect discipline-specific considerations. 

The opacity lies also at the level of the representation itself, as Humphreys stresses. He 

characterizes DNN representations as implicit and distributed. When a representation is 

implicit, we need inferences or transformations to identify the referential content of the 

representation, but often in DNN “the methods for making the required inferences are 

unknown” (p 12). This is reflected also in machine-constructed features: embeddings might 

represent magnitudes of the input that do not possess any clear meaning for the scientists in the 

relevant domain. In (Alvarado and Humphreys 2017), it is argued that opaque representations 

“have features that do not correspond to familiar linguistic concepts, [and] we are faced with 

the questions of whether some of those representations are permanently unknowable” (pp 742-

743). DNN’s internal representations may refer to aspects of reality, though it is entirely 

possible that these are aspects “to which humans are not accustomed, and perhaps not even 

able to interpret” (2020, p 22). In turn, this implies a lack of epistemic control over outputs, 

because no one is able to tell how the model ‘represents’ or ‘accounts for’ a phenomenon of 

interest. The fact that human scientists might not be accustomed to ML’s representations, 

depends also on the fact that these are distributed. This has to be contrasted with ‘local’, which 

is when most elements of a model (e.g., variables, parameters, etc) represent an element of the 

phenomenon that the model is targeting (where this is mediated by background scientific 

knowledge). Scientific models are, often, local (or element-wise representational as 

Freiesleben et al 2024 say), and components are characterized through the lens of well-defined 

terms and concepts which refer to relevant aspects of natural phenomena5. But in the case of 

DNNs, a feature can be represented by many nodes, and each node participates in representing 

many features. This means that the representation is ‘distributed’ (Freiesleben 2025), unlike in 

traditional scientific models where representations tend to be ‘local’. How a human scientist 

 
5 A caveat is important. There might be components that do not refer to anything specific or refer to something 

unknown. This is the case of, e.g., ‘noise’. Models are also characterized by idealizations, and some components 

might not refer to things that ‘exist’ (e.g. infinite populations). 
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interprets this ‘distributed representation’ in light of the typical scientific categories used within 

a context, remains an open question. 

  

2.4 What about epistemic control? 

How do considerations about epistemic perspectives and opacity, in the way understood by 

Humphreys, are connected to my notion of epistemic control? The reasoning flows as follows. 

First, ML provides a new epistemic perspective: there is a new point of view on the object of 

knowledge belonging to ML systems, which emerge in particular in the characteristics of the 

representations constructed, as well as in the way these are constructed. This new perspective 

is opaque in the way indicated above, and this opacity challenges the process of ‘translation’ 

of this new perspective into human’s perspective. This leads to a lack of epistemic control: the 

opacity of how DNNs construct their models and what their models ‘represent’ decreases 

human’s ability, within a given scientific context, to track to what ‘reasons’ these systems are 

responsive to, and it makes difficult to trace their rationale.  

 

 

3. A BALANCED VIEW ON EPISTEMIC CONTROL IN ML-BASED SCIENCE 

Does ML-based science really undermine epistemic control in the way Humphreys has argued? 

In this section, I argue that epistemic control is not impaired in exactly that way. I start first by 

highlighting two problems with Humphreys’ view (3.1 and 3.2). Next, I propose a more 

balanced view of how epistemic control relates to ML-based science. I will say that scientists 

can avoid the misplacement Humphreys (i.e. the total loss of epistemic control) talks about (3.1 

and 3.2). This is because the ‘perspective’ of ML-based science is wider than just ML internal 

representations; in fact, many components of ML systems are shaped in light of human 

scientists’ own cognitive values, which limit the issues raised by essential epistemic opacity. 

However, the human perspective is also constrained by what I call the ‘normativity’ of ML-

based science (3.3), which is the fact that the use of ML in science can shape the range of 

desiderata of the discipline to which ML is applied to. 

 

3.1 ML-based Science and Opacity 

The first problem with Humphreys’ view is about the extent to which opacity stands in the way 

of the epistemic control required to achieve specific scientific goals. While it might be true that 

opacity diminishes epistemic control in the way highlighted above, the type of control it impairs 
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is problematic only for certain goals, and not others. Let me unpack this, specifically for the 

problem of the opacity of representations6.  

In (Lopez-Rubio and Ratti 2021), I have shown that in cancer genomics ML models 

can be opaque, in the sense that they cannot be interpreted according to the explanatory criteria 

used for biological models (i.e. the criteria of mechanistic explanations). For a mechanistic 

model to be explanatory, it has to layout the organization (i.e. ‘causal connectivity’) between 

relevant entities and activities involved in that particular mechanistic phenomenon. Pinpointing 

the organization is done in various ways, but in general it is a procedure that requires the model 

to be intelligible, which is understood in the mechanistic literature in terms of ‘usability’ or 

‘built-it’ tests (Craver and Darden 2013). A corollary of these considerations is that the more a 

mechanistic model is complex in terms of number of entities involved, the more it will be 

difficult for us to grasp the organization between them, and hence the model will be less and 

less explanatory. ML models perform better when the number of features increases7 – and this 

increases the size of models too. This means that good ML models are large, and this clash 

with our norms concerning the construction of mechanistic explanations. This is because in 

order to construct a mechanistic explanation out of a ML model, we need (a) to identify the 

components of the ML model and to what components of possible explanations (e.g. biological 

entities and processes) these might be associated to, and (b) understand the relation between 

the components of ML model, and then ‘translate’ these into appropriate relations between the 

components of possible explanations (i.e. the organizational aspects of mechanistic models). 

But, as I show in my paper with Lopez-Rubio (2021) this is an impossible task (especially (b)). 

Therefore, using better performing ML models in biology decreases our ability to evaluate and 

learn from their representations, and hence impairs tracking and tracing, with bleak 

consequences for epistemic control. But while this lack of epistemic control is real, it is still 

relative to a certain goal, and in particular explanatory goals. If we change goal, 

considerations of epistemic control change too. In particular, what we need to ‘track’ and 

‘trace’ will depend especially on the goal that we have in mind . In cancer genomics, explaining 

cancer mechanistically is one goal among many. Another important goal is, for instance, 

molecular stratification of cancer. In this case, the task of classifying does not depend on 

 
6 The argument addressing the opacity of the way representations are constructed is analogous, but I do not have 

enough space to cover it here 
7 This is a classic consideration that was made by pioneers of ML. For instance, in commenting SVM, Breiman 

notices that in order to increase the chances of separability by a hyperplane, the trick is to add more features – 

“[t]he higher the dimensionality of the set of features, the more likely it is that separation occurs [up to a point, 

though]” (2001, p 209) 
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anything related to the nature of the components of ML models, and how their relations 

translate into an organizational picture sensitive to the biological context and responsive to 

biological criteria. The ML system will just classify tumors in different classes, and 

classification outputs will be evaluated by comparing them to a number of available clinical 

and laboratory measures, to make sure that they are coherent and really grasp stable conditions. 

Therefore, for the sake of classifying, the epistemic and methodological criteria necessary to 

track and trace are available. This means that epistemic control is not impaired.  

Similar points have been made recently, especially concerning the relation between 

opacity, accuracy, and explanations (London 2019). However, they are not new at all. In fact, 

they go way back to early debates on the goals of ML, understood as a distinct type of statistical 

modeling. For instance, Breiman (2001), the inventor of random forests, characterizes the 

‘algorithmic modeling culture’ (which significantly overlaps with ML) in opposition to a 

‘traditional’ way of doing statistics. While more ‘traditional’ statistics leads often to “a simple 

and understandable picture of the relationship between the input variables and the response” (p 

203) and this is its goal, in algorithmic modeling the goal is simply to find a function that 

predicts well, independently of what the underlying model is telling us about the relations 

between variables and - I would add without distorting Breiman’s views- of whether the 

information contained in the model can be organized into an explanation. Vapnik (2006), one 

of the creators of SVM, explicitly connects ML to an instrumentalist perspective, emphasizing 

that the important goal is prediction (and generalization). In his view, understanding what these 

models tell us about the world and, as in the case of Breiman, their explanatory nature, are not 

central aspects.  

To sum up, Humphreys’ idea that because of opacity humans are pushed away from the 

epistemological center of ML-based science may have been overstated, as opacity only impairs 

epistemic control related to a narrow set of scientific goals. 

 

3.2 ML-based Automated Science is Enveloped in Human Values 

A second problem with Humphreys’ conception is that opacity characterizes only a part of a 

given ML system. As highlighted above, sometimes Humphreys identifies the ‘machine’ 

perspective with something quite broad. However, in most cases,  Humphreys sees opacity as 

an unsurmountable problem because the entire perspective of ML-based science is reduced to 

ML internal representations and how these are built by the ML system itself. But if we 

explicitly take the notion of epistemic perspective on board, then representations are just one 

dimension of the ‘point of view’ of ML-based science. If we think about epistemic perspectives 
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as encompassing epistemic interests, problems and questions, hypotheses, theories and models, 

presuppositions, methods, etc, then we should consider not just how ML systems build their 

representations, but also how systems themselves are built.   

Consider what it takes to build a ML system. A typical pipeline for training and 

deploying a ML tool in science (Figure 1) would go through an initial phase where the scientific 

problem to solve is defined and adapted to the ML context; a phase where data are acquired, 

and curated; another phase where models are developed, validated, and interpreted, and finally 

a phase of deployment. The shape of a ML system will not depend solely on the  internal 

representations (most likely making an appearance only in the phase of model development); 

rather, design and training choices constitute significant factors in shaping how ML systems 

look like. For the most part it is the human perspective that molds ML systems, as it is the 

human subject who shapes systems by making specific design and training choices.  

 

Figure 1. An idealized pipeline to build ML systems. Adapted from (Ratti and Graves 2021) 

 

 Saying that algorithmic systems are ‘made’ by human subjects implies that the technical 

choices made to build these systems are value-laden. Technical choices are value-laden 

because they tend to promote certain characteristics of the systems we are building that we 

think are desirable or valuable. With this I mean not only that moral and political values shape 

the training of algorithm. That these non-cognitive values are relevant in algorithmic systems 

is a widely shared view in all disciplines investigating data science tools, and their problems 

have been thoroughly investigated also in philosophy of science (Biddle 2020; Johnson 2021). 

What I am interested here is that, in addition to non-cognitive values, the procedure to construct 

algorithmic systems is characterized by technical choices that are motivated by cognitive 

values. The analysis of how cognitive values impact the construction of algorithmic systems 

has been largely neglected8. This is unfortunate, because cognitive values shape ML systems 

deeply. This process is replete with difficulties requiring extensive human deliberation, well 

beyond concerns about the opacity of internal representations. In particular, deliberation on 

 
8 (Hancox-Li and Kumar, 2021) and (Birhane et al, 2020) are two exceptions 



 14 

cognitive values require data scientists going through two types of procedures, which I call 

value specification and value choice9.  

Let me start with value specification. The criteria we value in the different phases of 

training algorithms are usually vague and they can be specified in radically different ways. 

Take a straightforward valuable characteristic of data sets used to train algorithm, namely 

representativeness. This value can be conceived along different lines cutting social, ethnic, and 

technical factors, and depending on which factors you deem important, the data sets that are 

processed and used to train algorithms will look rather differently (Ratti and Graves 2022). 

Another example is related to how, for instance, we measure the performance of ML systems. 

Let’s say we look at ‘resources used’ (e.g. computational), which is often mentioned as another 

important valuable thing that goes into evaluating performances. In other words, one can say 

that we value systems that use resources parsimoniously. But parsimony is difficult to specify. 

For instance, Lindauer and Hutter (2019) mentions that there are at least three different metrics 

that can be used to measure the ‘resources used’: there are wallclock-time, floating point 

operations, and epochs. If we opt for predictive power, then we have a similar problem. 

Consider k-nearest neighbors (kNN) algorithm and how it is evaluated by using Fbeta-measure. 

This metric is calculated by using precision (i.e. the number of correct positive predictions 

made out of all positive predictions) and recall (i.e. the number of correct positive predictions 

made out of all positive predictions that should have been made). However, the measure is 

obtained by deciding how to treat precision and recall, which is not obvious. Intuitively, 

maximizing precision will minimize false positives, while maximizing recall will minimize 

false negatives. In the tradition of inductive risk (Douglas 2009, Johnson 2021), how serious 

are the consequences of making a mistake in classifying a data point as x (e.g. ‘tumor’) rather 

than y (e.g. ‘non-tumor’) can determine our treatment of precision and recall, and hence of 

Fbeta-measure. This is yet another example of a point that should be well-taken: there is a 

significant amount of wiggle-room for specifying the desirable characteristics of ML systems 

(i.e., their ‘values’). 

The second type of deliberation happens at the level of value choice: criteria like values 

are usually in tension or in non-specified relations one with the other, and choosing which value 

to promote is unclear. We can value data quality, but sometimes this value may stay in a 

tradeoff relation with, say, representativeness. For instance, in preparing representative data 

 
9 Value specification and value choice reflects the problems of theory choice that Kuhn discusses (1977), and 

that makes him tend towards the idea that theory choice is a value-laden process. 
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sets in a medical context, these may come from an underserved area, especially if we interpret 

representativeness as cutting across specific social factors, with the result of processing very 

poor data with lots of gaps. In this case, sticking with the value of representativeness comes at 

the expense of data quality. However, things may go also the other way around, in the sense 

that we may deem data quality as too important to be sacrificed for representativeness. What 

is important here is that for both problems (value specification and value choice) there are no 

standardized solutions. Yet, implicitly opting for certain values rather than others will result in 

different ML systems. 

To point to the bigger picture, value-laden choices are an important component of the 

‘epistemic perspective’ of ML systems.. Through these choices specific interests, methods, 

presuppositions, problems and questions, hypotheses, theories, etc are integrated and stabilized 

in a single epistemic perspective characterizing a given ML system. This shows that ML 

systems are far from being non-human: they reflect the values of the human beings who design 

them. Specifying and choosing the ‘virtues’ of ML systems – no matter how opaque their 

internal representations are - requires plenty of value-laden judgements that only human users, 

in fact, exercise. These value judgements bring back human agents to the epistemological 

center of ML-based science, and put scientists in a position of at least partial epistemic control. 

The way these choices are exercised are relevant for tracking conditions: a ML system is 

constructed by adopting strategies that will be responsive to relevant epistemic and 

methodological standards and criteria, which are established by means of value specification 

and value criteria. Tracing conditions also apply: ML practitioners, in collaboration with other 

practitioners, continuously trace and monitor the behavior of ML systems by appealing to 

specific methodological and epistemic criteria, which are the result of value specification and 

value choice dynamics.  

 

3.3 The Values of Human Scientists and the Values of Machine Learning 

Despite this promising strategy, we should not oversell the epistemic control that human 

scientists exercise. A comprehensive account of ML-based science, while including human 

values as fundamental ingredients in shaping ML systems, cannot ignore that these systems – 

taken in isolation - bring their own perspectivity too. Humphreys has conceptualized this 

perspectivity in terms of representational style, and explained why this impairs epistemic 

control. However, even taken in isolation, there is much more to the epistemic perspective of 

ML than just the ‘representational style’ of its models. What I claim here is that there is indeed 

something in ML-based science that impairs human epistemic control, but it is not (only) its 
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style of representation. Here I claim that algorithmic systems have values too, and this can 

constrain or be in tension with human values. However, it is notoriously difficult to argue that 

a technical artifact can embed or contain values (Pitt 2014), which is something more 

controversial than merely say that they are value-laden. What I say instead is that a ML system 

brings its own normativity, and this constrains epistemic control. The notion of ‘normativity’ 

that I employ comes from Radder (2019), and I adapt it to fit scientific practice rather than just 

technology (as he does). 

 According to Radder (2019), a norm is an embedded directive “concerning what people 

should (and should not) say or do” (pp 45-46). The nature of norms presupposes value 

judgements on the desirability of certain actions, and they are, to a certain extent, prescriptive. 

For this reason, norms imply values. Norms vary in their nature, from epistemic to moral. The 

focus of Radder’s work is on how technologies can be normative. For the sake of this article, 

the normativity of a given technological artefact can be seen as the fact that “its realization 

implies one or more norms or normative claims about what to say or do” (Radder 2019, pp 57-

58). Technologies can be normative because their stable functioning in a region of space and 

time “requires that the people in that region should behave in such a way as to enable, and not 

disturb, the intended functioning of the technology” (p 58).  

 This general sense of normativity applies also to ML systems10. To paraphrase Radder, 

if we want to fully practice ML-based science, then conditions for its successful realization 

should be satisfied. But in satisfying these conditions, human beings necessarily have to assume 

certain characteristics of (good) science as given. Accepting these characteristics is, in a sense, 

inevitable (in case we want ML-based science to function properly), and will force human users 

to accept certain implicit norms about scientific practice underlying those characteristics of 

science. These norms lie at several levels, and most important at the level of cognitive values 

informing how science ought to be practiced, in particular at the levels of value specification 

and value choice. 

 Let me start with value specification. How a value ended up being specified by human 

users will be also shaped by characteristics of ML itself. In this sense, ML constrains value 

specification. Take large, pretrained models (Bommasani et al 2021), whose advantage is their 

wide applicability to a variety of contexts. In order to be applied to a context, they have first to 

be adapted, in the sense that users have to create an adapted model, which can reliably reflect 

updated information and constraints of deployment. This is what constitutes the transferability 

 
10 Interestingly, it applies to any scientific methodology 
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of large architectures. For instance, in chemistry (Guo et al 2023) there has been recently 

studies that have evaluated how different large pretrained models are good at specific chemistry 

tasks (e.g., property prediction, reaction prediction, molecule design, etc) – in other words, how 

well can be adapted to a new context with highly specific tasks. Therefore, adaptability is an 

essential value of such large pretrained models (Bommasani et al 2021). But while adaptability 

is an important value promoted by human users, the way adaptability can be specified depends 

also on the characteristics of large pretrained models themselves. Take the case of fine-tuning 

of parameters, which is one important strategy for adapting these systems. Because such 

models have billions of parameters, and fine-tuning them all separately for many tasks may 

require an insane amount of memory and time (Bommasani et al 2021), one solution (among 

many) is low-storage adaptation, which is when only a limited number of parameters are fine-

tuned. Because of the complexity of these large models, users specify the value of adaptability 

by making a choice of which parameters to fine-tune. This is not an obvious task, and it may 

require value-judgement in turn. This makes the relation between human users and the machine 

a two-way relation: humans impose a value, and in return this value is shaped by the machine 

itself. This means that human users cannot specify the scope of values in the way they want, 

but they have to consider how ML tools work. This means that, e.g., ‘tracking’ is not only with 

respect to methodological and epistemic criteria established by scientists; rather, it is also about 

criteria that are ‘imposed’ by the structural characteristics of ML systems themselves. But ML-

based science can have a normative impact on value choice too. As an example, consider again 

the case of cancer genomics. As I explained above, ML models in this context are so complex, 

that no one can build a how-actually mechanistic model out of them. Most notably, what users 

can do with this data is disease stratification and classification at the molecular level. In this 

case, a characteristic of ML systems (opacity in the sense specified above) constrains the aims 

of molecular biologists. While molecular biologists see mechanistic explanations as the goal 

of their discipline (and, with that, the epistemic values of good mechanistic explanations), the 

use of ML tools guides the practice of science towards other goals (e.g. prediction and 

classification), thereby ‘constraining’ which epistemic values biologists will have to prioritize. 

In this case, the values of predictive models ought to be prioritized at the expense of the virtues 

of mechanistic explanations (Craver and Darden 2013). In other words, while a community of 

scientists (e.g. molecular biologists) may promote certain values and aims of science, ML-

based science may dictate its own values because of the way ML tools work. Think about this, 

again, in terms of tracking: the system is responsive to our methodological and epistemic 
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criteria, but in a sense it also tells us which criteria, among the many we have available, it will 

be responsive to. 

 The normative impact of ML-based automated science on value specification and value 

choice implies that human epistemic control can be in principle only partial. Via value 

specification and value choice, scientists can standardize how ML systems are built, and this 

means that algorithmic systems’ processes and outputs will be in principle more predictable. 

At the same time, the way ML tools work poses serious constraints on what can be 

standardized, controlled, and to what aims. The big picture of epistemic control in ML-based 

is therefore one in which scientists have to come to terms with the characteristics of ML.  

 

4. CONCLUSION 

In this article, I have investigated the relation between ML-based science and the idea of 

meaningful human control. First, I have defined what is meaningful human control in the 

scientific context. I called this ‘epistemic control’, and I have defined it in terms of tracking 

and tracing conditions. Next, I have analyzed Humphreys’ view about ML-based science, and 

I have translated his concerns in the language of epistemic control and tracking/tracing 

conditions. But  an analysis of the practice of ML-based science reveals that his pessimism 

about epistemic control is unwarranted. Humans’ perspective is still central because of the way 

cognitive values shape algorithmic systems. At the same time, characteristics of ML-based 

science have a normative impact for value specification and value choice, and such an impact 

limits epistemic control in important ways. This means that ML tools should be used with 

cautious in science. The hype and the excitement surrounding ML methodologies can easily 

obfuscate the fact that these tools are likely to invisibly push scientific communities towards 

certain scientific aims and neglect others. This is already well underway in biology (Lopez-

Rubio and Ratti 2021; Lemberger 2024), and it may as well be in other natural sciences.  

As a closing note, it is also interesting to reflect on two things. First, the normative 

impact of ML-based science is not an outlier – all scientific methodologies likely have this 

impact. Second, to my knowledge this normative impact has not received much attention in the 

philosophy of science, with few exceptions. Literature on inductive and epistemic risks 

(Douglas 2009; Biddle and Kukla 2017) tends to represent idealized value deliberations, where 

scientists can in principle shape scientific methodologies to realize whatever value they have 

in mind. However, how scientific methodologies (metaphorically) respond to human values 

has not received much attention, and neglecting this aspect may have serious repercussions in 

terms of epistemic misalignments (Suarez and Boem 2022; Russo 2021).  



 19 

 

REFERENCES 

 

Alvarado, R., & Humphreys, P. (2017). Big data, thick mediation, and representational 

opacity. New Literary History, 48(4), 729–749. https://doi.org/10.1353/nlh.2017.0037 

 

Biddle, J. B. (2020). On Predicting Recidivism: Epistemic Risk, Tradeoffs, and Values in 

Machine Learning. Canadian Journal of Philosophy, 1–21. 

https://doi.org/10.1017/can.2020.27 

 

Biddle, J., & Kukla, R. (2017). The Geography of Epistemic Risk. In K. Elliott & T. Richards 

(Eds.), Exploring Inductive Risk - Case Studies of Values in Science. Oxford University 

Press. 

 

Birhane, A., Kalluri, P., Card, D., Agnew, W., Dotan, R., & Bao, M. (2021). The Values 

Encoded in Machine Learning Research. http://arxiv.org/abs/2106.15590 

 

Boge, F. J. (2022). Two Dimensions of Opacity and the Deep Learning Predicament. Minds 

and Machines, 32(1), 43–75. https://doi.org/10.1007/s11023-021-09569-4 

 

Bommasani, et al. (2021). On the Opportunities and Risks of Foundation Models. 

http://arxiv.org/abs/2108.07258 

 

Breiman, L. (2001). Statistical Modeling: The Two Cultures. Statistical Science, 16(3), 199–

231. https://doi.org/10.2307/2676681 

 

Citron, D., & Pasquale, F. (2014). The Scored Society: Due Process for Automated 

Predictions The Scored Society: Due Process for Automated Predictions. Washington Law 

Review, 89.  

 

Craver, C., & Darden, L. (2013). In search of Mechanisms. The University of Chicago Press. 

 

Creel, K. A. (2020). Transparency in complex computational systems. Philosophy of Science, 

87(4), 568–589. https://doi.org/10.1086/709729 

 

Danaher, J. (2016). The Threat of Algocracy: Reality, Resistance and Accommodation. 

Philosophy and Technology, 29(3), 245–268. https://doi.org/10.1007/s13347-015-0211-1 

 

Daston, L., & Galison, P. (2007). Objectivity. Zone Books. 

 

de Sio, F. S., & van den Hoven, J. (2018). Meaningful human control over autonomous 

systems: A philosophical account. Frontiers Robotics AI, 5(FEB). 

https://doi.org/10.3389/frobt.2018.00015 

 

Douglas, H. (2009). Science, Policy, and the Value-Free Ideal. University of Pittsburgh 

Press. 

Eitel, F., Schulz, M. A., Seiler, M., Walter, H., & Ritter, K. (2021). Promises and pitfalls of 

deep neural networks in neuroimaging-based psychiatric research. In Experimental 

Neurology (Vol. 339). Academic Press Inc. https://doi.org/10.1016/j.expneurol.2021.113608 

http://arxiv.org/abs/2108.07258


 20 

 

Freiesleben, T. (2025). Artificial Neural Nets and the Representation of Human Concepts 

(Manuscript). 

 

Freiesleben, T., & Grote, T. (2023). Beyond generalization: a theory of robustness in machine 

learning. Synthese, 202(4). https://doi.org/10.1007/s11229-023-04334-9 

 

Gillies, D. (1996). Artificial Intelligence and Scientific Method. Oxford University Press. 

 

Hacking, I. (1992). “Style” for historian and philosophers. Studies in the History and 

Philosophy of Science. 

 

Humphreys, P. (2011). Computational science and its effects. In M. Carrier & A. Nordmann 

(Eds.), Science in the Context of Application (Boston Stu). Springer. 

 

Humphreys, P. (2020). Why automated science should be cautiously welcome. In M. 

Bertolaso & F. Sterpetti (Eds.), A Critical Reflection on Automated Science - Will Science 

Remain Human. Springer. 

 

Humphreys, P. (2021). Epistemic opacity and epistemic inaccessibility. In M. Resch, A. 

Kaminski, & P. Gehring (Eds.), Epistemic Opacity in Computer Simulations and Machine 

Learning. Springer. 

 

Johnson, G. M. (2021). Are Algorithms Value-Free? Feminist Theoretical Virtues in Machine 

Learning. Journal of Moral Philosophy. 

 

Kästner, L. (2018). Integrating mechanistic explanations through epistemic perspectives. 

Studies in History and Philosophy of Science Part A, 68, 68–79. 

https://doi.org/10.1016/j.shpsa.2018.01.011 

 

Kuhn, T. (1977). Rationality, Value Judgment, and Theory Choice. In The Essential Tension 

(pp. 320–339). Chicago University Press. 

 

Laudan, L. (1984). Science and Values. University of California Press. 

 

Leonelli, S. (2016). Data-centric Biology. University of Chicago Press. 

 

Lindauer, M., & Hutter, F. (2019). Best Practices for Scientific Research on Neural 

Architecture Search. http://arxiv.org/abs/1909.02453 

 

London, A. J. (2019). Artificial Intelligence and Black-Box Medical Decisions: Accuracy 

versus Explainability. Hastings Center Report, 49(1), 15–21. https://doi.org/10.1002/hast.973 

 

Longino, H. (1990). Science as Social Knowledge: Values and Objectivity in Scientific 

Inquiry. Princeton University Press. 

 

López-Rubio, E., & Ratti, E. (2021). Data science and molecular biology: prediction and 

mechanistic explanation. Synthese, 198(4), 3131–3156. https://doi.org/10.1007/s11229-019-

02271-0 

 

https://doi.org/10.1016/j.shpsa.2018.01.011


 21 

Megill, A. (1994). Rethinking Objectivity (A. Megill, Ed.). Duke University Press. 

 

Meskó, B., & Topol, E. J. (2023). The imperative for regulatory oversight of large language 

models (or generative AI) in healthcare. Npj Digital Medicine, 6(1). 

https://doi.org/10.1038/s41746-023-00873-0 

 

Nickles, T. (1980). Introductory essay: scientific discovery and the future of philosophy of 

science. In T. Nickles (Ed.), Scientific Discovery: Logic and Rationality (pp. 1–60). Reidel 

Publishing Company. 

 

Pitt, J. C. (2014). “Guns Don’t Kill, People Kill”; Values in and/or Around Technologies. In 

Philosophy of Engineering and Technology (Vol. 17, pp. 89–101). Springer Nature. 

https://doi.org/10.1007/978-94-007-7914-3_6 
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