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Abstract. We provide an analysis of theory-ladenness in machine learning (ML) in science, where 

‘theory’ (that we call 'domain-theory') refers to the domain knowledge of the scientific discipline where 

ML is used. By constructing an account of ML models based on a comparison with phenomenological 

models, we show (against recent trends in philosophy of science) that ML model-building is mostly 

indifferent to domain-theory. This claim, we argue, has far-reaching consequences for the 

transferability of ML across scientific disciplines, and shifts the priorities of the debate on theory-

ladenness in ML from descriptive to normative.  

1. INTRODUCTION 

The development of data-intensive methods in the sciences (from Big Data, data science, to 

AI) has been often associated with the idea that these can function without inputs from 

scientific expertise, or without appealing to domain knowledge of the scientific fields in which 

they are used. This idea has its origin in the debate on the so-called ‘two cultures of statistical 

modeling’ (Breiman 2001), where ‘predictive modeling’ (what later became Big Data, data 

science, machine learning, and then contemporary AI) is characterized by a level of 

independence from considerations coming from the domain of implementation which is just 

absent in more ‘traditional’ statistical modeling practices (Shmueli 2010). Such independence 

has been even popularized as a new scientific paradigm which came to be known, infamously, 

as the ‘End of Theory’ (Anderson 2008).  

Gauging whether data-intensive methods are independent from theoretical 

considerations coming from the scientific domain of implementation means asking a question 

about the theory-ladenness of data-intensive methods. By ‘theory-ladenness’, we mean here 

the idea that, in data-intensive science, engaging in essential activities of scientific practice 

requires either the implicit assumption of, or the explicit appeal to, scientific theories. We 

understand the term ‘theory’ in a broad sense (specified in more detail below) to include  

domain knowledge and expertise of the given scientific field in which data-intensive methods 
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are used. While in data-intensive science - and especially in machine learning (ML) - there 

might be ideas coming from statistical learning theory that can reasonably count as ‘theory’, 

here theory-ladenness is restricted to the ‘domain-theory’ belonging to the scientific context of 

implementation of the model.   

With few exceptions (Napoletani et al. 2020), philosophers of science have been 

systematically arguing in favor of theory-ladenness (Callebaut 2012; Kitchin 2014; Leonelli 

2016; Boon 2020; Knusel and Baumberger 2020; Hansen and Quinon 2023), by pointing to its 

inevitability and showing the subtle ways in which theoretical considerations (broadly 

conceived) inform the construction and use of these data-intensive methods.  

The aim of this article is to argue against the inevitability of theory-ladenness when 

applied to the specific case of ML. In particular, we argue against this inevitability in the case 

of practices related to the construction of ML models (MLM), and we point to neglected 

consequences that arguments in this context might lead to. Asking the question of theory-

ladenness (and arguing against the inevitability of theory-ladenness) has a number of 

implications, as we will show. If ML-based data-intensive methods are indeed theory-

independent, then data scientists/AI practitioners do not need much information coming from 

scientific expertise, and they can potentially transfer their tools and methods across a number 

of scientific contexts seamlessly. If data-intensive science based on, say, cutting-edge AI 

methods is not theory-laden, then the training of future scientists should be especially focused 

on theory-agnostic and engineering aspects of data-intensive methods, rather than highly 

discipline-specific curricula (e.g., computational biology). Finally, if data-intensive science is 

theory-agnostic, perhaps it can be considered as a strong case of a scientific unifier (Hacking 

1996), which allows the treatment of an impressive variety of scientific phenomena through 

the same methodological lens. What we aim to show in this paper is that MLM-building 

practices are ‘theory-indifferent’ (a specific way of thinking about theory-independence 

introduced and explained later), and that the issues raised above need to be thoroughly 

scrutinized rather than dismissed with ‘but ML is necessarily theory-laden, so this discussion 

is pointless’. 

The structure of the article is as follows. After a brief introduction on the status 

quaestionis of theory-ladenness of ML and a precise characterization of terms like ‘theory’  

(Section 2), we show that the investigation of this topic requires an analysis of the interactions 

between ML and scientific domain knowledge based on a precise account of what MLMs are. 

We construct an account of MLMs by comparing them to phenomenological models (PMs), 

and we show that this comparison can illuminate the role that theory plays in ML-based science 
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(Section 3). Because of their similarities with PMs, MLMs can have a high-degree of what we 

call theory-indifference in the way they are constructed (Section 4), while still remaining 

theory-dependent in the way they are used. While we largely agree with current literature (Ratti 

2020; Hansen and Quinon 2023; Gross 2024; Andrews 2023) on the inevitability of theory-

ladenness in the use of MLMs in scientific practice, we claim that no reference to domain-

theory nor scientific expertise is necessary in the various steps that undertake the construction 

and training of MLMs. This, we argue, has two specific implications (Section 5). First, our 

analysis sets ML modelling practices apart from more traditional modelling methods, 

especially for what concerns the nature of the ‘transferability’ of ML methods across contexts. 

Second, the debate on the theory-ladenness of ML should shift from descriptive (i.e., how is 

ML theory-laden?) to normative goals (i.e. should ML be theory-laden?). 

2 MACHINE LEARNING AND THEORY-LADENNESS 

There is a notable trend in philosophy of science according to which fundamental aspects of 

scientific practice are theory-laden. By ‘theory-ladenness’, here we mean the idea that it is not 

possible to engage in specific scientific activities without appealing to a number of theoretical 

considerations, both implicit and explicit (Boon 2020; Longino 2020). ‘Theory-ladenness’ 

covers a broad spectrum of intensity, from theory-directed to theory-informed, passing through 

‘theory-mediated’. Even ‘data’, which seemed to have immediate relation to phenomena in the 

world, has been recently absorbed into specific categories of theory-ladenness (Leonelli 2016). 

Whether it is meant that everything is necessarily theory-laden, or just possibly theory-laden is 

unclear, but works on experimentation and modelling have often given the impression that 

theory is always present, especially in subtle ways. We call this the blanket view of theory-

ladenness. Before characterizing the blanket view, let us  specify in more detail what we mean 

by ‘theory’. 

We understand ‘theory’ along the lines of the characterization provided by Douglas and 

Magnus (2013) and further developed by Ratti (2020). Douglas and Magnus (2013) distinguish 

four levels across which scientists make inferences. Data is the first level, where ‘data’ is 

understood broadly to encompass traditional notions (Bogen and Woodward 1988), as well as 

more recent accounts (Leonelli 2016). Phenomena is the second level, and here as well this 

notion is understood along the lines of Bogen and Woodward’s characterization (1988). The 

third and the fourth level - the ones we are especially interested in here - include ‘theory’, and 

‘framework’ respectively.  
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Douglas and Magnus (2013) understand ‘theory’ as a set of models and laws that 

explain and predict a broad class of phenomena pertaining to a specific domain, while the 

‘framework’ refer to a set of assumptions, auxiliary hypotheses, and theoretical commitments 

that characterize the specific domain to which models and laws apply. In the context of, e.g., 

mechanistic sciences like cell biology, neuroscience, chemistry, or some subsets of physics, 

‘theory’ could be understood as the set of the mechanistic models that are used to explain 

natural phenomena within a specific scientific domain. ‘Framework’ can be understood in 

various (often equivalent) ways. One can conceptualize ‘framework’ as the ‘theoretical’ 

components of the toolbox of science, which offer “the tools for constructing representations” 

provided by models (Suarez and Cartwright 2008, p 65). An alternative formulation of 

‘framework’ relies on the notion of ‘store of the field’ (Darden 2006), understood as a set “of 

established and accepted components out of which mechanisms [i.e. mechanistic models] can 

be constructed” (p 51), as well as accepted modules, namely “organized composites of the 

established entities and activities” (p 51) that are relevant to construct models. For instance, in 

cell biology examples of components include DNA or RNA molecules, activities include 

phosphorylation or acetylation, and modules might be ribosomes. Another way of 

understanding ‘framework’ is by using Longino’s concept of ‘explanatory model’, which is a 

characterization of the sort of items that are contained in scientific explanations, and the 

relationships between them (1990, p 134). This can include a number of different components, 

from auxiliary assumptions to highly specific terms and ways of using them within a given 

scientific context. In this article, the ‘theory’ of ‘theory-ladenness’ is broadly conceived to 

include the third and the fourth levels of Douglas and Magnus’ account (namely, ‘theory’ and 

‘framework’). This means that ‘theory’ is not just the totality of the knowledge of a scientific 

domain expressed in explicit models and/or laws, but it also includes the theoretical 

commitments, auxiliary assumptions, and vocabulary used to talk about the phenomena of that 

domain. From now on, we use the term ‘domain-theory’ to refer to both Douglas and Magnus’ 

notions of ‘theory’ and ‘framework’ (unless otherwise specified). The blanket view of theory-

ladenness is then the idea that in order to engage with scientific activities, a commitment to 

domain-theory is necessary. 

In the context of experimentation, there has been an explosion of analyses supporting 

the blanket view. For instance, exploratory experiments have been seen as only loosely guided 

by domain-theories (Steinle 1997). This could be expressed by saying that experiments are 

theory-informed (Waters 2007), or that they are loosely guided by the theoretical background 

of scientists involved (Heidelberg 2003; Elliott 2007), or even that theoretical interpretation is 
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necessary for executing a given experiment (Radder 2003). In the terminology introduced 

above, the idea is that exploratory experiments necessarily make use of the ‘framework’ (or 

store of the field, or explanatory model, or ‘theory as a toolbox’). This is unlike stronger theory-

directed experiments (Waters 2007), where “a theory generates expectations about what will 

be observed” (p. 277). In this case, theory is assumed in the strict sense of ‘theory’ as the third 

level of Douglas and Magnus’ hierarchy, since a ‘model’ or a ‘hypothesis’ as it appears in the 

set of models of the theory is scrutinized, and the outcomes of an experiment are evaluated on 

its basis. What this literature has tried to establish is that scientific activities like 

experimentation cannot possibly be independent from domain-theory (Radder 2003).  

The strict connection between models and theories has been a topic of interest at least 

since the early formulations of the semantic view of theories. In addition to traditional ideas 

where models are derived directly (and solely) from theories, more recent views recognize that 

the construction of models at least requires the appeal to components coming from domain-

theories. A classic strategy is to say that the choice of parameters, variables, model descriptions 

and structures (Weisberg 2013), as well as metrics for what counts as a successful output, etc, 

are based on a pre-existing understanding of the phenomena to investigate, of the scientific 

goals, and based on scientific norms that seem to rely significantly on domain-theory. In this 

case, one can say that models are at least theory-informed, or ‘mediated’ by domain-theories. 

In the debate on `models as mediators’ (Morgan and Morrison 1999), even if models maintain 

a partial independent status from both theory and data, models are still theory-mediated, since 

models “typically involve some of both [i.e. theory and data]” (p. 11), where ‘involving theory’ 

can be understood along the lines of theoretical commitments of the forms described above. 

There are also stronger cases: it is often taken as a truism that ‘traditional statistical modeling’ 

is, indeed, not only theory-informed by the framework, but theory-directed in a number of 

important ways (Shmueli 2010). Therefore, even in the case of models the question is not 

whether they are theory-laden, but rather how, and which role domain-theory plays2.  

 With few exceptions (Napoletani et al. 2020), the ‘blanket view’ trend seems to be 

leading philosophical discussions on ML. A significant number of works have been making 

the claim that ML methods, and/or MLMs, are at least (domain) theory-informed. Sometimes 

the claim of theory-ladenness is particularly weak, as in the case of Pietsch (2015), who shows 

that, even if ML methods can be internally theory-free, they still are externally theory-laden 

(even though the consequences of this for the structure of ML systems is not explored in detail). 

 
2 The only exception, as we will see, comes from the discussion on phenomenological models 
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Knusel and Baumgarter (2020) entertain the idea that ‘data-driven’ models can retain a level 

of independence from scientific domain knowledge, but in the end they seem to claim that 

domain-theory is needed to build better models, even though it is not clear how. But most of 

the literature seems to imply that ML is inevitably theory-laden. For instance, Callebaut (2012) 

argues that Big Data methods (and hence what are now known as ML methods) require 

significant appeals to scientific perspectives, which usually come from domain-theories. 

Kitchin (2014) argues that domain-theory is inevitable, even though he does not distinguish 

neatly between scientific domain knowledge and engineering practices. Boon (2020) has 

argued that empiricists fantasies of a science theory-empty in ML are just doomed to fail, 

because every “tiny step in these intricate research processes involve epistemic task (...) for 

which all kinds of practical and scientific knowledge is crucial” (p 61). Hansen and Quinon 

(2023) argue that “theoretical background is involved in data generation, problem formulation, 

and algorithm evaluation” (p. 16). Moreover, they also argue that even ‘engineering’ activities 

like the construction of model architectures necessarily require domain-theory. Andrews 

(2024) shifts back and forth between the idea that ML should be theory-laden and stronger 

claims that ML is necessarily theory-laden (‘The Necessity of Theory’). Ratti (2020) stresses 

the impossibility of using MLMs in biology without resorting to an interpretation that is shaped 

by domain-theory. Finally, Gross (2024) shows a strict interplay between MLM construction 

and mechanistic approaches in biology, where the ‘mechanistic approaches’ are, indeed, laden 

with the so-called ‘store of the field’. And these are just representative examples of a much 

longer list. What is important about these examples is that theory-ladenness is assumed, and 

the conceptual work left to do for philosophers is to identify an increasing number of theory-

laden facets of ML model components or practices, spanning across the third and fourth level 

of Douglas and Magnus’ hierarchy. 

In what follows, we show that this blanket view is problematic, and that this has 

important implications for the nature of ML as a modelling strategy, as well as for the nature 

of the debate on theory-ladenness in ML-assisted science. 

  

3. MACHINE LEARNING MODELS: A PHENOMENOLOGICAL ACCOUNT  

In order to grasp the relation between domain-theory and MLMs, it is important to characterize 

more precisely what MLMs are in the first place. In this section, we first clarify the meaning 

we attribute to the term ‘model’ in ML, and then provide an account of MLMs based on a 

comparison with PMs. 
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3.1 Machine Learning Models and Machine Learning Systems 

In literature, MLM is used quite ambiguously to denote a variety of different things. For 

example, the term MLM is often used as a synonym for ML algorithm, i.e. an algorithm capable 

of learning patterns from data. These algorithms produce data-fitting curves, which are also 

commonly referred to as MLMs, as are the computer architectures that implement such 

algorithms. To solve this terminological ambiguity, we propose to make a fundamental  and 

explicit distinction between the term MLM and the term ML system.  The latter is used broadly 

to refer to any computational artifact capable of learning information from data and adapt its 

behaviour accordingly. ML systems share all a general architectural framework, which 

encompasses three main modules (adapted from Facchini & Termine 2022): 

1. the training sample 

2. the training engine 

3. the learned model. 

The training sample is the repository of observational/synthetic data that the system uses as the 

source of information to learn and adapt its behaviour. The individual data-points of this 

sample denote specific instances of the system’s target-phenomenon of interest and are 

composed of features, i.e., mathematical representations encoding specific measurable 

magnitudes of the target-phenomenon (for example, the color of a given pixel in an image or 

the age of a given patient in a biomedical study). Selecting and constructing the proper features 

have a crucial impact on the predictive performances of a ML system, notably as predictions 

are generated by analysing the correlations between the single features in the training sample 

and occurrence, or the probability of occurrence, of the specific target-phenomenon. This 

process is usually referred to as features engineering and requires the analysis of different 

possibilities and a suitable combination of statistical techniques. The process starts with 

sampling relevant properties of a target-phenomenon from pre-processed data, which are thus 

mapped into measurable variables called raw-features. The latter are further processed through 

the iterative application of several data-transformations, which eventually lead to derived 

features (also called embeddings) better suitable for prediction. More specifically, the process 

of selecting and constructing derived features can be ‘hand-made’ or performed automatically 

through appropriate feature learning algorithms, this being mostly the case for advanced 

contemporary ML systems, such as deep neural networks (Baldi 2021).  

 The training engine is the computational machine that allows a ML system to ‘learn’ 

from its training data. This machine implements a ML algorithm, i.e., a computational 

procedure that performs an iterative adjustment of the system’s input-output behaviour with 
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the goal of optimizing its predictive performance at test time. The training engine performs this 

iterative adjustment by updating a vector of parameters w that governs the overall system’s 

behavior. This updating is driven by an optimisation function f related to the parameters vector 

w and that accounts for the predictive performance of the system. The goal of the training 

engine is, thus, to approximate the global maximum/minimum of f  by iteratively tuning the 

parameters in w via a suitable optimisation procedure. Both the specific nature of f and of the 

optimisation procedures used to maximize/minimize it varies depending on the learning 

paradigm adopted (e.g., supervised learning, unsupervised learning, reinforcement learning, 

self-supervised learning). For example, in supervised learning, f is usually a loss function that 

measures the predictive error of the system over the training sample, and that has to be 

minimized. A common example of loss function is the mean squared error of the system, which 

measures the distance between the correct prediction y associated with an instance x (according 

to the information included in the training sample) and the prediction m(x) that the system m 

assigns to x as the (average) squared difference between y and m(x). There exists a variety of 

optimization procedures to minimize loss functions: one of the most widely adopted, especially 

in deep learning, is the stochastic gradient descent, an heuristic of search based on the 

computation of the gradient of the loss with respect to the parameters w The procedure exploits 

a basic concept of differential calculus, namely the equivalence between the partial derivative 

and the slope degree of the tangent line to the loss function at each of its points. As one 

approaches the point of minimum (see Fig. 1), the derivative will tend to decrease (i.e. the 

tangent line gradually decreases its slope) until it reaches a point of minimum.  

The third component of an ML system we consider in our analysis is the learned model. 

This is a mathematical representation of the statistical patterns that the system learns from data 

and uses to formulate predictions on the target-phenomenon. At an abstract level, this 

representation is a fitting curve defined in a n-dimensional space, called features space, whose 

axes codify the values of the features3.  

 
3 Notice that this function can be practically implemented, at the level of the algorithm architecture design, in different 

formats. For example, a linear classifier can be equivalently implemented both by a decision-tree, a neural network, a 

support-vector machine etc. This is a consequence of the fact that computational models (including MLMs) can be 

represented at different levels of abstraction (on this point, see, Floridi 2008, Angius et al. 2021, Primiero 2019, Facchini & 

Termine 2022). In the specific context of scientific research, however, what is relevant is the most abstract level of 

abstraction, where all MLMs can be represented as fitting curves in the features space. 
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Figure 1: A simplified representation of the gradient descent procedure obtained by assuming the loss function to be defined over a single-

element parameter vector. The curve represents the value of the loss for different values of the weights. Dotted lines represent the tangents of 

the loss for different values of the gradient of the loss with respect to. the weight. 

 

This curve is what scientists commonly denote with the term MLM in the context of 

scientific research. Understood in these terms, a MLM seems to not substantially differ in 

nature from the more ‘traditional’ examples of statistical models used in scientific practice, 

such as linear or multiple regression (Dobson & Barnett 2018)4: both kinds of models are 

essentially data-fitting curves. However, there are important differences between `traditional’ 

statistical models (and the `traditional’ way of doing statistical modelling) and MLMs.  

The first difference concerns who fits the data (i.e., the agent responsible for finding the 

data-fitting curve): in traditional statistical modelling practices, the fitting of data is mostly an 

hand-made task performed by a domain-expert with extensive statistical competences (such as 

a bio-statisticians, or an expert in statistics for econometrics etc.). In ML-based modelling, the 

operation of fitting the data is completely automated and the ‘agent’ responsible for it is the 

training engine. As we will clarify more in detail in the following sections, this has fundamental 

consequences for theory-ladenness of MLMs compared to that of traditional statistical models.  

Another relevant point of difference concerns the usual high dimensionality of MLMs 

compared to that of traditional statistical models. Notice that the term ‘dimensionality’ 

possesses a very specific meaning in this context, i.e., it refers to the number of dimensions of 

the model's feature space. In ‘traditional’ statistical models, the number of features (i.e., 

variables) considered is limited and this allows these models to be easily represented 

graphically as lines or planes in low-dimensional spaces. For contemporary MLMs, and 

 
4 Note that linear regression can be considered either as a traditional statistical model or as an MLM. The difference between 

a traditional linear regression and a linear regression understood as an MLM lies in the way the parameters and hyperparameters 

of the model are specified. In a 'traditional' linear regression, the parameters are fitted with the help of a domain expert, who 

usually relies on both statistical analysis and domain theory, making it a theory-informed task. In ML-based linear regression, 

on the other hand, the parameter learning is performed by a standard optimisation algorithm (which may vary depending on 

the specific ML system used to implement the linear regression), so it is a theory-independent task 
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particularly in deep learning, the number of features considered is typically very large, making 

it impossible to represent the learned models in a suitable and humanly understandable manner 

(see Fig. 2). 

 A third difference is a consequence of the second. High dimensionality severely limits 

the transparency and interpretability of MLMs (Selbst and Barocas 2018), by preventing them 

to be representable in suitable graphical (e.g., curves in a plane) or analytic (e.g. linear 

equations) formats that make it easy for scientists to get access to and survey the statistical 

information these models include5. To clarify this issue, consider a simple example (Fig. 2). 

Take a traditional linear regression model that analyses the correlation between age and cancer 

risk6. This model can be easily represented graphically as a curve in a two-dimensional plane 

(Fig. 2a), or analytically as a linear equation Y = rX + b (where r measures the “relevance” of 

X for Y). Both these two formats of representation make it easy for scientists to grasp the 

statistical information the model embeds: one has just to observe the slope of the regression 

line in Fig. 2 to realize that the model identifies a positive correlation between the feature age 

and the target-phenomenon cancer risk (the greater the age, the greater the cancer risk). 

Similarly, it is sufficient to observe the weight (parameter r) of the variable X (representing 

age) to understand the degree of statistical correlation existing between this feature and the 

target-phenomenon of interest. Now consider the graphical representation of an MLM provided 

in Fig. 2b. In this case, it is clearly challenging to capture any statistical pattern between 

features and target-phenomena by looking at this type of graphical representation, since it is 

far too complex. Likewise, it is impossible to identify the relevance of the various  features by 

simply observing their parameters. As we shall see in the course of the paper, these issues have 

profound epistemological implications for the integration of MLMs in scientific practices and 

mark a substantial gap between the latter and other types of statistical models commonly used 

in scientific research. 

 
5 This issue has been widely discuss in the philosophical literature, especially within the debate on the opacity of MLMs 

(Burrel 2016, Duran and Formanek 2018, Paez 2019, Creel 2020, Sullivan 2022, Zednik 2021, Zednik and Boelsen 2022, 

Boge 2022, Facchini and Termine 2022).  
6 In some cases, linear regression models can be also considered a simple instance of MLMs, notably when their parameters 

are learned automatically via optimisation procedures. However, we are focusing in this example on the case of a more 

‘traditional’ linear regression model, whose parameters are manually fitted. 
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Figure 2: A graphical representation of a linear regression model (a) compared with a low-dimensionalised graphical representation of a 

MLM learned by a deep neural network (b). Image (b) borrowed from https://losslandscape.com/gallery/. 

 

3.2 Machine learning models and phenomenological models 

In the Introduction we mention that a specific understanding of MLMs through the lens of 

phenomenological models (PM), can shed light on the intricate theory-ladenness in ML 

practices. Now, in which sense PMs can provide a useful lens to understand what a MLM - i.e., 

the learned model as described in Section 3.1 - is really about?7 Let us start by clarifying the 

nature of PMs first.  

In philosophy of science, PMs have been seen as either models of phenomena, or 

models that are not-theory-driven, or simply as models derived from measurements (Cartwright 

and Suarez 2008). Underneath these disagreements, philosophers of science tend to agree on 

four basic characteristics of PMs.  

The first characteristic (C1) is to be found in an article by McMullin (1968), where he 

distinguishes between theoretical laws or explanations, and PMs. A theory, in his account, is 

not just a description of the evidence, but it goes beyond the evidence by entertaining the 

existence of “a postulated physical structure that could provide a causal account of the data to 

be explained” (1968, p. 388). The theoretical model is the (representation of the) postulated 

structure. A PM is different: it is “an arbitrarily chosen mathematically-expressed correlation 

of physical parameters from which the empirical laws of some domain can be derived” (p. 391). 

As such, PMs account for evidence “in convenient [mathematical] form” (p. 391), but they do 

not postulate any physical structure, like theoretical models. As an example, he considers a 

data set of cosmic ray showers. In order to bring the data into a single array, one can just 

hypothesize that they follow a general distribution function of, let’s say, nucleon collisions, 

and then try to fit the data by varying the parameters – the model will account for the data in 

an arbitrarily-chosen mathematical form (that is, C1).  

 
7 We are not claiming that MLMs are identical to PMs. As we will show, we just point to some notable similarities between 

MLMs and PMs, and we argue that these similarities are useful to shed light on the relations between MLMs and theory. 

https://losslandscape.com/gallery/
https://losslandscape.com/gallery/
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The second characteristic (C2) pertains to how PMs are built. Cartwright et al. (1995) 

claim that paradigmatic examples of phenomenological model-building are characterized by 

“independence from theory, in methods and aims” (p 148). In particular, PM-building is mostly 

based on phenomenological considerations8, and on ad hoc varying of the mathematical 

conditions to fit the data adequately, where these ‘moves’ are not licensed by theory, nor follow 

from theory de-idealisation.  

The third characteristic identifies the origin of PMs (C3), and was explicitly pointed out 

by Wilholt (2005), when defining PMs as models that are built starting from measurements and 

observations, with little theoretical input or information. He looks at the provenance of models 

as one reason to retain McMullin’s distinction between theoretical and PMs, where PMs’ 

history starts with a mathematical description of observed properties/behaviour.  

Finally, a fourth characteristic (C4) is about the goals of PMs. Bokulich (2011) has 

more recently characterized PMs (built through ad hoc fitting to empirical data) as being useful 

for predictions, but not for explanations (C4). 

MLMs, we claim, fulfil all conditions C1-C4, and can be treated as akin to PMs, in 

particular as derived from measurements and ad hoc adaptations of some mathematical 

formalism for a given (non-explanatory) purpose. Consider C3 first. A key step in building a 

MLM is to collect training data sets. In science, data sets are usually constructed from 

measurements9 (except for certain types of synthetic data); therefore, the starting point for 

constructing MLMs - their provenance - is the same as the one of PMs: measurements. 

C1 is also central in the construction of MLMs. As we have said, MLMs are 

mathematical representations of the statistical regularities that a ML system learns from its 

training data, and that it uses to formulate predictions on the target-phenomenon of interest. In 

other words, the goal of building a MLM is to describe the relation between selected features 

in a mathematical (and computational) form that allows, in the case of ML, predictive tasks 

like regression or classification. This is similar to the dynamics that McMullin describes for 

C1. 

Condition C2 is relevant too. The construction of MLMs is shaped by technical and 

engineering-related considerations that are justified by the proximate goal of ‘selecting’ the 

 
8 These are ‘phenomenological’ in the sense of being purely descriptive lacking any theoretical justification (Wilholt 2005) 
9 It is important to stress that we are talking about ML in science - in other contexts, the origin of data sets might not be 

‘measurements’ (e.g., images of cats and dogs). One might also make the claim that certain medical imaging outputs are not 

strictly speaking measurements, and they are more akin to actual photographs (e.g., the pictures taken by a colonoscopy 

camera). These might be cases where the ‘measurement lens’ is a stretch, but in many cases these imaging technologies 

require extensive measurement procedures. 
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model that fits the data better. For instance, whether one chooses between discriminative (e.g. 

nonlinear kernels, decision tree, convolutional neural network, etc) or generative (e.g. 

variational autoencoders, transformers, etc) algorithms will not only depend on the problem, 

but also by the type of data one is dealing with. We mean this not in terms of the data domain 

(e.g. biomedical, financial, etc), but rather in the more technical sense of data modality (i.e., 

image, text, etc). Each ML algorithm will come ‘pre-packaged’ with a number of assumptions 

about the nature of the dataset it can be applied to, which are mostly independent in nature and 

not related in any obvious way to the specificities of the context of implementation. Put it 

differently, MLMs describe a function mapping input labels to output labels. However, the 

mapping, per se, receives inputs for the most part from the mathematical nature of the used 

algorithmic tools (i.e., they are ‘ad hoc’). For instance, in early cases of cancer genomics using 

support vector machines (SVM), classifiers were often built to distinguish between cancer-

causing vs cancer-neutral somatic mutations. Those classifiers (see, e.g., Capriotti and Altman 

2011) had continuous outputs from 0 to 1, where 0 was ‘cancer-neutral’ and 1 was ‘cancer-

causing’. Given the continuous values, thresholds for classification had to be chosen. But the 

choice of thresholds (e.g. 0.5) was usually motivated on the basis of technical considerations, 

and from the point of view of its ‘theoretical’ justification can be considered ad hoc.  

Finally, central to MLMs are predictions. These are essential to measure the 

performance of models on the test set, and they are taken to be one of the things that ML can 

do very well. Moreover, it is exactly the attention to ‘predictive modeling’ that has been seen 

as characterizing the central features of methods like ML, and that differentiates ML from more 

traditional statistical modeling practices, which are focused explicitly on causality and 

explanation (Breiman 2001; Shmueli 2010). The centrality of predictions for the identity of 

ML aligns MLMs with C4 in ways that can hardly be overestimated. 

To sum up, the PM-lens can indeed shed light on the specificities of MLMs. First, given 

that algorithms are trained on data, the provenance of MLM is from measurements (at least in 

science). Second, ML models describe a dependency relation between labels by means of a 

carefully chosen mathematical form, as much as PMs do, and, as PMs, are built by resorting to 

ad hoc varying of mathematical conditions. Finally, MLMs are notoriously used for tasks of 

prediction and classification, which is compatible with the role that is usually ascribed to PMs. 

 

4. MACHINE LEARNING MODELS AND THE ROLE OF THEORY 

Seeing MLM through the lens of PMs, we argue, is useful for understanding the theory-

ladenness of MLM-building practices. Let us elaborate this in more detail. 
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Morrison (1999) distinguishes between aspects of PM construction from aspects of PM 

use. This distinction, in particular, is advocated to disentangle the complex and intricate relation 

between theory and PMs. Unlike in C1-C4, where there is agreement on the main points, this 

relation has been a topic of heated disagreements. For instance, McMullin (1968) takes an 

extreme position, by conceiving PMs as derived completely from measurement and being 

theory-free, while drawing a sharp separation from theoretical models, which are explanatory 

and theory-laden. Cartwright et al. (1995) see PM-building as not theory-driven, where this 

would grant a high-level of independence from theory. Wiholt (2005) claims that PMs are built 

with little theoretical input, even though the point is not developed in detail. But the relation 

between PMs and theory, Morrison says, is much more complicated than ‘clear-cut’ 

separations. PMs should not be seen as completely independent from theories: even though 

they provide a model of a phenomenon, and they seem to be based on fitting data to various 

mathematical formulations, they “can also be reliant on high level theory” (1999, p 46), 

especially in the way they are applied. For example, in discussing the model of the boundary 

layer describing the motion of a fluid, Morrison notices that two different theories are required 

to solve the hydrodynamic nonlinear equations: the fluid is divided conceptually into two 

regions, each requiring different approximations and different theoretical descriptions, such 

that the model “relies on two different theories for its applicability” (p 46). 

In this section – and despite the differences between the context of the debate on PMs 

and the present context - we resume this suggestion of separating model construction from 

model use, and apply it to the analysis of the relation between domain-theory (understood in 

the sense described in Section 2) and MLM. We will not discuss ‘model-use’, since we tend to 

agree with the relevant literature: in order to use MLM in science for a number of different 

tasks (explorative, generative, etc), scientists necessarily have to resort to scientific categories 

informed by domain knowledge. This theory-ladenness can be both in terms of the third level 

and the fourth level of Douglas and Magnus’ account. Without these aspects of theory-

ladenness, MLMs would be simply irrelevant to science (Ratti 2020; Hansen and Quinon 

2023). But model construction hinges especially upon C1-4 and because of this, we claim, 

reveals theory-independent features of MLM that have been neglected in the literature, and that 

lead to crucial consequences for scientific practice and the methodology of research. Focusing 

on model construction and C1-4 will allow us to identify new categories of ‘theory-ladenness’ 

for MLM, which we define as follows: 
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● Theory indifference: a specific activity x in the process of building a model m within a 

domain D is theory-indifferent when no reference to domain-theory of D is required for 

the execution of tasks prescribed by x.  

● Theory-infection: a model m is theory-infected with domain-theory T, when T is 

implicitly slipped into one of m’s components, but this is unrelated to m’s construction.  

Before showing the dynamics underpinning theory-indifference and theory-infection in the 

practice of ML, two remarks about these definitions are in order.  

First, as an attribute of MLM-building practice, theory-indifference can be seen as  

departing from most senses of theory-ladenness discussed in the literature, especially on 

scientific experimentation. If an activity is theory-indifferent, modelers need not make any 

assumption that is informed by the theory (Waters 2007), nor they need to bring any theoretical 

repertoire that will be used explicitly to execute or plan that activity (Franklin 2005). Moreover, 

modelers need not use theory as a starting point or as a foil for that activity (Elliott 2007). 

However, it should be noted that theory can still inform, in some specific cases, but it needs 

not to: it is not explicitly and fundamentally required for implementing the process under 

consideration. This leads us to our crucial point. While for the ‘model-use’ theory does indeed 

play an explicit and necessary role (i.e., fundamental tasks cannot be accurately executed 

without reference to theory), for model construction we offer a different perspective.  

The second remark is about the term theory-infection, which is here conceived as an 

attribute of the model rather than an attribute of the process of building or using a model. One 

might think that, if the process of building a model is theory-indifferent, then the model is free 

of theory. However, this is not necessarily (and also is not usually) the case; models can be 

‘infected’ with aspects of domain-theory in various ways, even if these play no role in the 

model construction phase. 

In what follows, we illustrate more in detail the extent to which MLM construction is 

theory-indifferent (4.1, 4.3) and why, even if MLM can be theory-infected, the modeling 

practices remain theory-indifferent nonetheless (4.2).  

 

4.1 The role of theory in the construction of machine learning models 

To understand the level of theory-ladenness in the construction process of a MLM, and clarify 

the ‘new’ senses of theory-ladenness we previously introduced, it is useful to examine such a 

process in comparison with the construction process of other kinds of models commonly used 

in scientific practice. Consider for example the well-known SIR model used in epidemiology 

to study the dynamic evolution of an infectious disease in a population (Milgroom 2023). The 



 16 

model relies on three state variables, namely S (i.e. individuals in the population susceptible to 

contracting the infectious agent, such as a virus), I (i.e. individuals in the population who have 

contracted the infectious agent and can transmit it), and R (i.e. individuals in the population 

who have contracted the infectious agent and can no longer either contract or transmit it). In 

addition, the model introduces two parameters of precise biological significance, which are the 

average infectious rate β (denoting how many susceptible individuals in the population get 

infected daily on average), and the average removal rate γ (denoting how many infected 

individuals in the population recover or die daily on average). These variables and parameters 

are combined to obtain a compact mathematical description of the system’s dynamic in terms 

of a system of three differential equations: 

 

The specification of such an equation system is a theory-directed process where experimental 

data play a marginal role. In particular, the choice of variables and functional dependencies to 

be considered are essentially the result of theoretical considerations based on background 

knowledge (i.e., domain theory) of the target phenomenon at stake, i.e. the spread of epidemics. 

The assumptions informing the equations are not induced from data but they are the result of 

theoretical considerations following from immunology. In fact, the construction of the model 

is directed by a formulation of ‘laws’ or other ‘models’ coming from the ‘theory’ of 

immunology (understood in the sense of the third level of Douglas and Magnus’ account) as 

well as the ‘framework’ (understood in the sense of the fourth level of Douglas and Magnus’ 

account). The only relevant task where data play a role is the estimation of the parameters β 

and γ, which is based on experimental observations and measurements. However, note that this 

parameter estimation is usually obtained by performing experimental tasks designed on the 

basis of hypotheses that are drawn from theory (understood in the sense of the third level of 

Douglas and Magnus’ account), hence it remains a theory-directed task in essence. The 

experimental estimation of parameters in ‘traditional’ statistical models (in opposition to the 

automatic learning of parameters in MLMs, as we will argue in the following sections) is a 
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theory-directed task too. In this case, theory is indeed fundamentally required, because without 

theory one has no starting point for conceptualizing the relations between parameters and 

variables. Theory can thus be qualified as necessary because, in order to construct an accurate 

and reliable model of epidemics spread, the theory of the specific domains of epidemiology 

and immunology (in the sense of both the third and fourth level of Douglas and Magnus’ 

account) cannot be ignored. 

Different considerations emerge instead if we examine the construction process of 

MLMs, where essential aspects of this process are theory-indifferent: one need not to provide 

any interpretation of MLM components in terms of domain knowledge coming from the 

scientific context in which MLM is intended to be used. Theory is not necessary because, to 

have MLMs, theory (in the sense specified in Section 2) can be ignored. This is not to say that 

domain-theoretical considerations are always absent in scientific practice; rather, they are not 

necessary to obtain accurate models, in contrast to more 'traditional' kinds of scientific models 

(e.g. the SIR model), which necessarily require domain-theoretical considerations for their 

specification. In the next section, we will show more in detail how the fundamental steps of 

MLM construction are substantially theory-indifferent. 

 

4.1.1 Theory-indifference in the selection of parameters and hyperparameters 

A MLM is specified by two sets of mathematical entities called hyper-parameters and weight-

parameters (or simply parameters). Hyper-parameters are the parameters that determine the 

skeleton of the model, thereby constraining its possible final structure within certain given 

borders. The term is taken from Bayesian statistics, where a hyper-parameter is a parameter of 

the prior distribution fixing the set of possible posterior distributions that a model can fit (see, 

e.g., Bovens and Hartmann 2004). In the context of ML, the nature of hyper-parameters vary 

depending on the specific kind of architecture and framework considered. In the case of deep 

neural networks (Baldi 2021), for instance, hyper-parameters describe the topology of the 

network (fully connected, convolutional, recurrent, etc.), the kind of activation function used 

(linear, sigmoid, tan-h, etc.), etc. Beyond their specific nature, hyper-parameters play the same 

very specific role in all ML contexts, i.e., they fix the set of all possible models (i.e., predictive 

function/distribution) that the ML system can learn from the training data. Given a class of 

possible MLMs, determined by the hyper-parameters, the actual model is specifically 

determined by the weight-parameters. 

 The construction that leads to a MLM requires a sharp specification of both the weight-

parameters and the hyper-parameters. As we have seen in Section 3, the specification of weight-
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parameters is a fully-automated process that ultimately consists of solving an optimisation task, 

i.e., finding the minimum/maximum of a function accounting for some statistical magnitude 

(e.g., prediction error, variance, etc.) relative to the interaction between the model and the 

training sample – this is, in essence, the characteristic C1 that MLMs share with PMs. The 

performance of this optimization task requires no reference to the theoretical background of 

the specific domain to which the model is applied, and it can be therefore qualified as 

substantially theory-indifferent. This is shown by the fact that the same optimisation functions 

and procedures can be exported and applied in different domains without requiring any 

theoretical adaptation and without implications for the model’s predictive performances. For 

example, the loss function means absolute error can be identically applied in all the application 

domains that require learning a ML regression model, independently of whether this model 

describes the relation between age and cancer risks or the relation between the financial hazard 

and the long-term income of an economic agent. Theory-indifference is also evident if we 

consider the heuristic strategies used to implement the optimisation procedures that underlines 

the learning of weight-parameters. In non ML-based science, the heuristics that guide the 

scientific model-building process make a fundamental use of hypotheses that are formulated 

with the support of the existing corpus of domain-specific background knowledge, in the sense 

of the ‘store of the field’. Consider the paradigmatic case of decomposition and localisation, 

two important heuristic strategies that guide the construction process of mechanistic models 

(Bechtel and Richardson 2010). Both rely on a fundamental contribution of domain-theory10 

for the formulation of hypotheses regarding the specific component-parts of a mechanism and 

the functions they perform. On the contrary, the heuristic strategies used in weight-parameters 

learning just exploit fundamental mathematical properties of the optimisations task they are 

supposed to solve – and this is because of the characteristic C2 that MLMs share with PMs. 

Consider in this regard the stochastic gradient descent described in Section 3. This heuristic 

strategy exploits a fundamental mathematical property of differentiable functions, which 

guarantees that their global minimum can be effectively approximated by following the value 

path of its gradient: no domain-theory is required for the application of this heuristic strategy: 

all one has to know is the value path of the loss function - stochastic gradient descent is ad hoc 

in the sense specified in Section 3. 

 Similar considerations hold for the hyper-parameters’ specification. The latter, 

differently from the learning of weight-parameters, is not usually a fully automated task but 

 
10 The contribution can be specified as a weakly directed theoretical contribution (Franklin 2005; Waters 2007) 
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requires a suitable combination of automation and hand-made work. In general, a hand-made 

pre-selection of the hyper-parameters of the model is performed before the training phase, 

while automatic optimisation procedures (analogous in nature to those used for the learning of 

parameters) are typically used in validation to fine-tune the hyper-parameter values and reach 

the best predictive performance (and avoid notorious problems, such as overfitting). Domain-

theoretical considerations can (and sometimes do) come into play in the hand-made 

preselection of the hyper-parameters. However, they are not strictly necessary to this task, 

because, even without theoretical considerations, hyperparameters’ specification can be 

performed accurately (i.e., leading to models that have good predictive performances according 

to the available metrics). Necessary to the hyper-parameters’ specification are instead 

considerations of mathematical and engineering nature, e.g., related to the specific predictive 

task at stake (e.g., regression, classification, as required by C4) and the format of the data to be 

processed (e.g., tabular data, time series, etc). These are necessary because, without resorting 

to those considerations, hyper-parameters’ specification cannot be done properly. Again, 

attributing C2 to MLMs is central here, given that the emphasis is on ‘ad hoc’ moves not 

licensed by theory. For example, in the analysis of time-series with neural networks, modelers 

typically select the recurrent topology due to its ability to support the processing of sequential 

data (Goodfellow et al. 2016), independently on whether these data represent fluctuations of 

energy market or brain signal. Similarly, convolutional topology is commonly used in the 

analysis of images for its ability to process different regions of the image in parallel, 

independently on whether the images represent cats and dogs or nevus and melanomas. In 

support of the claim that hyper-parameters specification is substantially a theory-indifferent 

task, we can also mention the increasing diffusion of fully automated procedures for the pre-

selection of the hyper-parameters based on the application of meta-learning algorithms 

(Vanschoren 2019): these are optimisation procedures substantially analogous (and hence 

theory-indifferent) to those adopted in the learning of weight-parameters.  

 Before going any further, please note that the claim that the specification of parameters 

and hyperparameters is a theory-indifferent task does not imply that this task is always 

performed by modelers without mediation from the theory of the scientific domain of 

implementation. The ML literature is replete with examples of MLMs whose hyper-parameters 

have been selected also based on domain-theoretic considerations, or whose training is 

executed via optimisation algorithms opportunistically constrained with domain-specific 

background knowledge (and therefore partially theory-directed). A classic example is 
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AlphaFold11, the deep learning model developed by Google DeepMind for addressing  the 

protein-folding protein. The hyper-parameters specification of this model is replete with 

theoretical considerations. Among the many theory-laden aspects,  the topological structure of 

the AlphaFold network has been blueprinted explicitly considering the fact that the protein-

folding process consists of three consequent prediction steps (primary-to-secondary, 

secondary-to-tertiary, and tertiary-to-quaternary structure of the protein), hence following 

explicit domain-theoretical considerations.  

However, what we claim here is different: considerations that appeal to domain-theory 

(understood in the encompassing sense described in Section 2), although they can sometimes 

be used in the hyper-parameters specification or to constrain the weight-parameters learning, 

they are not necessary for these tasks, as instead they are in more ‘traditional’ model-building 

practices. Predictively accurate MLMs can be constructed - and this is the common practice  - 

with no reference to domain-theory at all.  

Now, one might be tempted to argue that domain-theory still results essential for two 

tasks that are fundamental in MLM-building practice, notably the sampling and preparation of 

training data, and the so-called process of features engineering (Duboue 2020). The next 

section analyses this point in more detail.  

 

4.2 Theory infection in Data and Database Curation 

As noticed in Section 3, MLMs are constructed by data sets, which are collections of 

measurements (i.e., C3 applies here). It is well-known that ‘measurements’ - especially in 

contemporary science - are never ‘direct’ or ‘raw’ observations devoid of theory. This applies 

even more to data sets used in ML, which are highly processed and idealized versions of 

scientific measurements. As a consequence, theory, in both forms corresponding to the third 

and fourth level of Douglas and Magnus’ account, is already present in the data sets acquired 

to construct the training sample before any data processing procedure is done by ML 

specialists. In this regard, Leonelli (2016) has documented the epistemic subtleties behind the 

construction of databases in biology, in particular for what concerns data curation practices. 

Since biological databases have to be used by biologists, and biologists need to be in the right 

position to judge whether a given data-set can be used to achieve a given research goal, then 

databases have to be constructed to reflect, at least partially, biological knowledge. Indeed, 

“terms used for data classification should be the ones used by biologists to describe their 

 
11 For an updated overview of the model’s architecture, see (Yang et al. 2023) 
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research interests - that is, terms referring to biological phenomena” (Leonelli 2016, p 116). 

This means that a theoretical, pre-conceived understanding of biological phenomena is already 

embedded in the data-sets that are drawn from biological databases (or of any other discipline). 

In this sense, database curation is a theory-informed process: theory provides constraints on 

how the data must be curated. From this, one may conclude that the ‘blanket view’ to theory-

ladenness is still valid: theory is necessarily slipped in the models, and hence MLM 

construction is theory-laden. However, the consequences of data curation practices are not as 

straightforward as it may seem. 

First, it should be noted that data collection and curation practices cannot be considered 

an integral part of the MLM-building process. This is shown by the fact that the datasets on 

which we train MLMs are typically prepared separately by data specialists who are almost 

never the same as the ML scientists responsible for MLMs’ specification and training. 

Furthermore, the same datasets can used to train and fine-tune a variety of different MLMs: 

think, for instance, to the well-known datasets used as standard benchmarks for most MLMs 

of a certain type (e.g., dSprites12 a standard dataset by Google DeepMind to compare 

performances of image classification models, which has been used so far in more than 150 

publications). Thus, although data collection and curation practices are fundamental for 

building an MLM, they precede the actual model-building process. These practices remain 

theory-indifferent despite the inevitable implicit presence of domain-theory in datasets. In fact, 

the theory used in databases’ curation is not used in any explicit or implicit way in setting the 

hyperparameters, nor in learning the weight-parameters. 

Nonetheless, the theory is still there. In particular, it is 'implicitly embedded’ in the 

MLM itself. Are MLMs theory-laden after all? It is unclear what kind of theory-ladenness we 

are dealing with. One can interpret it as yet another case of ‘theory-informed’ (Waters 2007). 

However, in theory-informed contexts, such as exploratory experimentation, theory is used to 

set up experiments explicitly. In other words, being theory-informed is an attribute of the 

practices, not of ‘entities’ like models. In the case of the trained MLM, theory is first passively 

passed to the data sets used by the training engine, and then eventually (like an ‘infection’) 

propagates to the trained model. This is the reason why we coined the term theory-infection to 

denote the kind of theory-ladenness associated with a MLM. In cases of theory-infection, 

theory is not explicitly embedded within a model (as in the case of the SIR model mentioned 

 
12 https://github.com/google-deepmind/dsprites-dataset 

https://github.com/google-deepmind/dsprites-dataset


 22 

above), but it is implicitly inherited by the model. However, it does not play any specific role 

in its construction practices - the infection is, so to speak, asymptomatic. 

 

4.3 Features engineering: from theory-directed to theory-indifferent 

The second step where theory seems to play an important role is features engineering, i.e., the 

construction process of the features composing the training sample. This process is based on 

the collection of large amounts of observational data, which are finely pre-processed and 

sampled to obtain raw features. These data may come either from databases (as discussed in 

the previous paragraph), or from more direct measurements taken by a given scientific group. 

These are then subjected to various manipulation processes directly by ML specialists, which 

ultimately result in derived features that are used as input for training procedures. Theory seems 

to play a non-negligible role in the process of feature construction. After all, deciding which 

variables of a target-phenomenon to consider for predictive purposes, and how to combine 

them in suitable representation formats, is a task that requires an extensive knowledge of the 

phenomenon under investigation. This is certainly true for more traditional - and older - kinds 

of MLMs, like decision-trees or random forests, which operate with hand-made features. 

However, the advent of automatic feature learning algorithms, whose operation is 

essentially based on the execution of optimisation tasks similar to those used to train MLMs, 

are gradually eliminating any role for domain theory in the feature construction process. 

Examples of this path from theory-informed to theory-indifferent features engineering can be 

found in various domains of scientific investigations using deep learning systems. These 

systems are capable of generating predictions directly from ‘raw-data’ (e.g., images), and 

incorporate features engineering as a step of the predictive inferences they perform.  

 To illustrate and exemplify these considerations on features engineering, let us 

consider the case of MLMs in neuroimaging-based psychiatric research (Eitel et al. 2023). The 

detection of psychiatric disorders is a notoriously challenging task because the underlying 

mechanisms of these pathologies, with a few exceptions such as Alzheimer's disease, remain 

mostly unknown or only partially understood. This makes traditional ‘theory-directed’ 

modelling techniques, such as mechanistic models and simulations, difficult to apply. On the 

contrary, MLMs have proven to be easier to implement, in particular due to the independence 

of their training from theoretical considerations.  

The analysis of literature (see, e.g., Eitel et al. 2023) not only shows that neuroscientific 

theory has a limited influence on the MLM construction process applied in this domain, but it 

also displays a trend towards an increasing theory-indifference of all model-building steps, 
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including features engineering. This is particularly evident in the shift from more classical ML 

architectures (e.g., decision-trees), which require the use of hand-crafter high-level features, to 

deep learning systems, which can instead learn their features directly from raw-data (see, Fig. 

3) in a fully automatic manner, akin to C2. Let us clarify this point a bit more in detail. 

 

Figure 3 (from Eitel et al. 2023) 

 

Both for ‘classical’ and deep learning models the model-building process starts with 

the collection of brain images, which are here represented as grids of pixels encoded in the 

form of numerical matrices. Each cell of the matrix (i.e., each pixel) represents a single low-

level ‘raw’ feature. These features must be converted into high-level features that allow for 

predicting the target psychiatric disorder. This is, in substance, the features engineering 

process. Differences between ‘classical’ and more contemporary deep learning models emerge 

exactly at the level of this process. Typically, scientists select and extract manually from images 

a number of high-level variables (features), such as cortical thickness, fractional anisotropy 

etc., and thus use ‘raw-data’ to determine their values. The choice of the variables depends on 

explicit domain-theoretical considerations (it is weakly theory-directed): for example, 

modelers focus on cortical thickness because they are aware (from domain-theory) of the 

relevance of this feature for the prediction of specific psychiatric disorders. In more 

contemporary MLMs things go differently. Consider for example the case of Convolutional 

Neural Networks (CNN). CNNs do not require hand-made high-level features but are able to 

automatically extract these features from ‘raw-data’ through the application of a mathematical 

operation known as convolution (Fig. 4). 
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Figure 4: Representation of a 2-dimensional convolution operation (image from Eitel et al. 2023) 

 

 The latter is a linear transformation based on the application of a kernel of parameters 

to the input. The various regions of the input are processed through a filter unit that computes 

the weighted sum of the input-features (i.e., the pixels of the image encoded in the matrix) in 

the region and kernel parameters, hence mapping the result into a feature map. In general, data 

are processed through iterative convolution operations, which eventually produce the high-

level features the model uses for predicting the target, technically called ‘embeddings’. 

Differently from hand-made high-level features, embeddings may not possess a clear 

interpretation and represent magnitudes of the input that do not possess any clear meaning for 

the domain-experts. Furthermore, and more importantly, the construction and selection of 

embeddings do not require any theoretical considerations related to the specific application 

domain. On the contrary, they rely only on the execution of pure mathematical operations based 

on numerical parameters, which are learned via standard optimization procedures analogous to 

those used for weight-parameters learning. With CNNs, feature engineering can be therefore 

qualified as a theory-indifferent process. This consideration can be generalized to the majority 

of the deep learning architectures used in the various domains of scientific research (Baldi 

2021). In general, we can say that a trend exists in the ML community towards the increasing 

use of theory-indifferent automatic features extraction procedures, thereby eliminating any 

necessary dependance of the MLM-building process on domain-theory and contributing to 

make it a completely theory-indifferent activity .  

 

 5. CONSEQUENCES OF OUR ANALYSIS 

What emerged from this analysis is that the role of domain knowledge in model construction 

in ML seems to be very limited: MLM construction looks indeed mostly (and increasingly) a 

theory-indifferent activity, and no reference to domain-theory is necessarily required in the 

various steps of the MLM-building process. But what consequences should we draw from this 

analysis? Here we discuss two far-reaching consequences. 
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 The first consequence pertains to the differences between ML strategies and other more 

traditional modelling strategies. If the blanket-view of theory-ladenness applied to ML 

modelling practices as it applies to other modeling strategies, those arguing in favour of 

continuity would take this as an additional reason to support continuity itself. However, in the 

case of ML, we have shown that, even if in a small number of cases theoretical considerations 

can play important roles in MLM-building (Hansen and Quinon 2023; Gross 2024; Andrews 

2024), this is not necessarily the case: one can construct a MLM with optimal performances in 

terms of the standardly adopted metrics13 without making any reference to the domain theory. 

The fact that theory is not necessary marks, we argue, an important discontinuity between 

MLM-building and other modeling strategies used in scientific research. This can be 

appreciated by emphasizing the as-is transferability of ML architectures and MLMs 

construction practices across different domains as a direct consequence of theory-indifference. 

By ‘as-is’, we mean that a MLM can be exported from one domain to a different domain 

without the necessity of either re-adapting the model’s inner structure to the theoretical 

background of the new domain, or to theoretically justify the model’s implementation in the 

new domain on the basis of relevant domain-theory. For exporting successfully a MLM the 

only thing we need is a new training sample on which to re-train the model (i.e., on which to 

automatically adjust its weight-parameters and fine-tune its hyper-parameters). To better 

understand this point, consider a convolutional deep neural network (call it Netty) for image 

recognition as the one depicted in Fig. 3. Suppose Netty is initially trained to predict potential 

neurological symptoms of Alzheimer's using a sample of neuroimages with a given resolution, 

and thus achieves a certain desirable accuracy on test. Now imagine that the ML scientist 

responsible for building Netty is asked to build another ML predictive model for detecting 

signs of arthritis in the knee, using MRI-produced images with a resolution and format similar 

to the neuroimages used to train Netty. Without the necessity to advance any theoretical 

consideration about the new domain of application, the ML scientist will take Netty and re-

train it on the new training sample of knee images. Hence, if they find some issues in the 

predictive accuracy of the re-trained model on the new dataset, perhaps due to slight differences 

in the format or resolution of the new images, they will perform a slight adjustment of the 

hyperparameters. Again, this operation will be arguably done without any reference to domain 

theory but just appealing to mathematical and/or engineering-related considerations. What 

 
13 In particular, we refer here to the standard notion of predictive accuracy (i.e., rate of correct predictions) 

measured on independently and identically distributed data, i.e., data that share the same underlying distribution 

of the data in the training sample (see, Schölkopf et al. 2021). 
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makes this possible is the substantial ‘indifference’ of ML architectures and related model-

building practices with respect to different domain theories. In other words, a convolutional 

neural network with a certain structure can work well for all images with a similar format, 

regardless of what they represent (and therefore regardless of the domain from which they 

come). This, we claim, is an almost unique character of MLM construction practices14, which 

differentiate them from the other typologies of models usually involved in scientific practice, 

and it is a direct result of the thesis of theory-indifference.  

One could certainly counter-argue to this claim by pointing out that exportability across 

different domains is common also with other kinds of scientific models. For instance, 

philosophers of science have been debating the transferability of scientific models across 

different domains (Herfeld 2024). However, in most cases of model transfer, there is a 

significant amount of work that needs to be done to adapt the model to the next context, and 

this requires the use of domain theory, especially in the form of framework/store of the field/ 

explanatory model/toolbox, etc. An example is given by a recent adaptation of the SIR model 

introduced in Section 4.1 to analyse risk contagion among financial players (see, Aliano et al. 

2024). In this work, the authors demonstrate that a SIR model can effectively describe the 

dynamics of risk contagion and propagation among financial players, provided that the 

variables of the model are interpreted as representing individuals subject to- infected by- or 

immune to financial risk. We can be tempted to claim that the SIR model is nothing but a 

powerful mathematical instrument that can be easily re-adapted to different contexts by 

providing the opportune semantic translation of the variables involved and the re-tuning of the 

model’s parameters. However, things are not so simple. In order to export the SIR model from 

the field of epidemiology to that of financial risk analysis, researchers must assume that the 

two phenomena (epidemics and the contagion and propagation of financial risk) have 

analogous dynamics, i.e. that they behave very similarly over time, so that the theoretical 

considerations from the field of epidemiology that were used to develop the original SIR model 

also apply to  financial risk contagion. This represents a strongly theory-directed assumption 

that can be advanced only by an expert in financial risk analysis, with an extensive knowledge 

of the dynamics of financial risk contagion. Things are instead radically different for MLMs, 

whose translation from one domain to another do not require any domain-theoretical expertise 

but only considerations concerning the format and structure of the data to be analysed. As said 

 
14 The only other case of as-is transferability seems to be network science, as explained by Humphreys (2019). 

In these cases, the formal network models are indeed used to model a number of different domains. 
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before, a neural network for image classification work can be equivalently applied to either 

distinguish images of cats and dogs or of naevus and melanoma. The only operation required 

to export the model from one domain to the other is the retraining of weight-parameters, which 

is a completely theory-indifferent activity, as we extensively argued in the previous sections. 

On the other hand, the only kind of considerations requires to perform this model-exportation 

concerns the format and accuracy of the data involved: a neural network constructed for 

classifying images cannot clearly applied to tabular data, as well as its performances can change 

if the granularity and accuracy of the data involved is different. 

One could also say that it is not new either that practitioners move from one domain to 

another. For instance, the history of molecular biology or bioinformatics is characterized by 

physicists migrating to biological research projects (Kay 2000; Stevens 2013). But what is 

happening in ML-based science is different. As in the case of model transfers, in all cases of 

practitioners migrating, there is a significant amount of theoretical work (viz, pertaining to 

domain knowledge) to adapt to the new field. A classic example is Gamow’s contribution to 

biology. As a physicist, he pursued the biological question of the relation between DNA and 

amino acids by using the tools of cryptography (Kay 2000): famously, he hypothesized that the 

problem of the relation between DNA-amino acids could be treated as a coding problem. But 

he could not just use his expertise in cryptography as-is: in fact, his ideas and expertise had to 

be painfully adapted to the specificities of the biological domain. If the thesis of theory-

indifference is true, then transferability and migration in ML works differently than in the cases 

mentioned above. Given that ML practitioners can build models without knowing anything 

about the domain of implementation, then their expertise, practice, and ML architectures 

seamlessly can potentially travel from one domain to another as-is.  

The second consequence of our analysis pertains to the debate on theory-ladenness 

itself, independently of the previous point. Our results suggest that the debate on theory-

ladenness in ML (or, similarly, Big Data and data science) has to shift its focus. In particular, 

the interesting philosophical question should be a normative rather than a descriptive question. 

It is not enough to show that there are some successful cases of theory-ladenness to argue in 

favor of theory-ladenness in principle: there are equally successful cases, we argue, of ML 

systems built without any reference to domain knowledge at all. The new task is now to show 

whether we ought to use theory to make better systems, rather than passively accepting theory-

ladenness because it is inevitable (since it is not). We do not have the space to provide an 

argument in favor or against theory-ladenness from this normative perspective, and we plan to 

do this in future work. However, for the time being it is important to point out that this debate 
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is already happening in the ML community, between supporters of fully-automated and 

general-purpose MLMs, and scholars asking for more verticalization and a step back to 

domain-anchored models. Some scholars argue, indeed, that the explicit use of domain theory 

can help make MLMs more robust and/or generalisable in out-of-distribution contexts (Pearl 

2019, Schölkhopf et al. 2021, Kaddour et al. 2022), while, on the other hand, the increasing 

use of meta-learning and the success of generally purposed and domain non-specific models 

suggests that theory-indifference could become a gold standard. It is important to point out that 

the debate on the role of scientific domain knowledge in constructing MLMs date back to the 

‘perceived’ differences between the traditional culture of statistics that see modeling as 

significantly theory-laden, in contrast with the culture of predictive modeling, where theory-

ladenness is indeed something that stand in the way of the predictive accuracy of models 

(Breiman 2001). This is to say that the debate is not recent, but it has its history. 

 

6. CONCLUSION 

In this article, we have proposed an in-depth analysis of the relation between MLMs and the 

domain-theory of the scientific context in which they are implemented. Looking at MLMs 

through the lens of the debate on PMs, we have identified new dimensions of theory-ladenness. 

We have confirmed what most of the literature says on the theory-ladenness of how MLMs are 

used, but we have argued against a blanket view of theory-ladenness that also covers the 

construction of MLM, which is instead a substantially theory-indifferent process (especially 

for contemporary deep learning models), in the sense that theory is not necessarily required in 

any proper step of the construction process of MLM models. Finally, we have discussed two 

far-reaching consequences for the thesis of theory-indifference, and suggested the objective of 

philosophical analysis here is normative rather than descriptive: what needs to be argued for is 

whether an explicit reference to domain-theory in MLM-construction should be required to 

address other epistemic desiderata of MLMs different from usual predictive accuracy, such as 

explainability, robustness and reliability. We do not have the space to discuss this normative 

issue, but we see it as being at the top of the list of priorities of debates on the epistemic 

significance of ML in the sciences. 
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