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Abstract 
 
We present a causal model for the EPR correlations. In this model, or better 
framework for a model, causality is preserved by the direct propagation of causal 
influences between the wings of the experiment. We show that our model generates 
the same statistical results for EPR as orthodox quantum mechanics. We conclude that 
causality in quantum mechanics can not be ruled out on the basis of the EPR-Bell-
Aspect correlations alone. 
 
 

1. Conditional Statements and the EPR Correlations 
 
 
The Einstein-Podolski-Rosen gedankenexperiment (Einstein, Podolski and Rosen, 
1983) describes two individual systems, S1 and S2, originally in pure states, φ1 and φ2, 
that come into interaction with each other. The composite system, S1+2, remains in a 
pure state. However, the two subsystems, S1 and S2, individually taken, have gone 
into mixtures. The mixtures represent virtual ensembles of pure states with 
corresponding statistical weights. When a measurement is performed, according to the 
projection postulate, one of the pure states is selected. 
 

                                                 
1 This paper has been long in the making. The first draft dates from May 1992, and we presented it at 
the International Quantum Structures Association meeting in Castiglioncello in September 1992. 
Improved versions were presented by NC in Cambridge in 1993; and by MS in Milan and in 
Cambridge in 1994, and in St Andrews in 1996. We delivered the definitive version during the 
conference in honour of Arthur Fine at Ohio State University in May 1999. We thank these audiences 
and all the individuals who have given us comments and feedback on previous drafts. We would like to 
thank the Modelling in Physics and Economics Project, at the Centre for the Philosophy of the Natural 
and Social Science at the LSE, for its support throughout. MS would also like to thank the Arts Faculty 
Research Fund of the University of Bristol for its financial support. 



After interaction, the global system can be represented by the entangled state: Φ1+2 = 
Σi ci ui〉 vi〉. The subsystems, S1 and S2, are represented by the statistical operators: 
 

W1 = Σi ci2 ui〉 〈ui, 
 

W2 = Σi ci 2  vi〉 〈vi , 
 
where theci 2 indicate the weights ascribed to each element of the mixture. 
 
The description offered by Φ1+2 contains maximal knowledge of both systems. 
However, W1 and W2 represent mixtures: somehow we seem to have lost knowledge. 
Schrödinger quickly realised that such “portion of the combined knowledge” was 
“squandered on conditional statements that operate between the sub-systems” 
(Schrödinger, 1983, page 161). Schrödinger’s conditional statements are as follows: If 
we were to measure some observable on S1 and to find that the outcome is the 
eigenvalue corresponding to, say, uk, then a measurement of the same observable on 
S2 would give the eigenvalue corresponding to vk. Hence once a measurement is 
performed on, say, S1, some consequences seem to follow for measurements on S2. 
These conditional statements are at the heart of the EPR correlations.   
 
It is worthwhile to emphasize that the nature of the Schrödinger’s conditional 
statements is nomological, as opposed to physical. The quantum mechanical treatment 
of EPR does not provide physical processes for the transmission of information from 
one system to another. There is only the nomological necessity that results from the 
peculiar way in which statistics for the combined systems are calculated in the 
quantum mechanical formalism. Therefore a causal explanation of the EPR 
correlations would need to introduce some physical mechanism in order to ground 
Schrödinger’s conditional statements. In a causal model of the EPR experiment, the 
“extra” portion of knowledge would not be “squandered on conditional statements”. 
For instance, in a model where causes operate directly between the wings of the 
experiment, the “extra” portion of knowledge is explicitly carried from one subsystem 
to another by “mark-transmitters”, or carriers. 
 
 

2. Fine’s argument 
 

Arthur Fine (Fine, 1989) has argued that no essentialist explanation of the EPR 
correlations is forthcoming. And more specifically he has argued that the 
experimental refutation of the Bell inequalities provides no grounds for explanations 
involving faster-than-light influences between the wings of an EPR experiment. We 
find the logic of Fine’s argument impeccable. But we believe that it is possible to take 
the empirical violation of the Bell inequalities to provide evidence in favour of, rather 
than against, causal models of the EPR correlations. So we have some explaining to 
do. How can Fine’s argument be reconciled with our claim that it is possible to take 
the violation of the inequalities as evidence for causal models? 

 
Fine begins by stating a principle that he calls the Strong Locality Condition (SLOC): 
“ a principle denying any influence between happenings in different wings [of the 
EPR experiment]” (Fine, 1989, page 183). He then argues that this principle is built 
into the quantum theoretical description of the EPR experiment, “according to which 
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there is no physical influence between the two wings of the experiment, that is, no 
physical interaction of any sort that is represented by terms in the Hamiltonian of the 
composite system at the time one or the other component is measured”. 
 
Fine shows that (SLOC) is consistent with the denial of the Bell inequalities. This is 
consistency relative to the quantum theory itself, at least in its present form. For 
quantum mechanics both predicts the failure of the Bell inequalities and adheres to 
(SLOC). As a result, any weaker principle –any principle strictly entailed by (SLOC), 
must also be consistent with the denial of the Bell inequalities. In particular the 
principle that denies the existence of faster-than-light influences (LOC) is entailed by 
the stronger principle (SLOC) and hence is consistent with the denial of the Bell 
inequalities. But the experimental refutation of the Bell inequalities cannot be used to 
provide evidence against any principle that is consistent with their denial. Therefore, 
Fine concludes, for all we know the denial of faster-than-light influences is perfectly 
consistent with experiment, and we are not entitled to invoke the EPR experimental 
results as evidence for faster-than-light influences. 
 
The reasoning is correct. But here as anywhere else, one person’s modus tollens is 
another person’s modus ponens. It is possible to turn the logical machinery of Fine’s 
argument around, in order to provide ammunition against (SLOC) and in favour of 
faster-than-light, or superluminal, influences. 
 
The crucial premise in Fine’s argument is the thought that, because the standard 
quantum model for the EPR experiment has no term in the Hamiltonian representing a 
physical interaction between the two distant particles, (SLOC) is “built into the 
quantum theory”. What can this possibly mean? It may mean first that a quantum 
theoretical description of the EPR experiment representing superluminal influences is 
impossible. Or it may mean that no such description has been developed to date. On 
what grounds could the stronger, impossibility, claim be asserted? It would be, for 
instance, mistaken to conclude that no description of this type is possible because no 
such description has been developed to date. The history of science is full of examples 
of surprising and novel applications of established scientific theories to well known 
phenomena.2 

 
This indicates that we could only know that (SLOC) is built into the quantum theory 
on a priori grounds, as it would be impossible to infer this from the present state of 
knowledge. Among contemporary philosophers of quantum mechanics, Arthur Fine is 
possibly the least likely to want to argue on a priori grounds. A driving motive behind 
Fine’s 1982 theorems was to show that no ‘a priori’ reasoning could ever establish the 
impossibility of local realistic models for the EPR correlations. With some ingenuity 
such models could always be constructed, and Fine himself advanced two types of 
models that, he claimed, satisfied conditions of physical locality: the prism and the 
synchronisation models (Fine, 1982). 
 

                                                 
2 To give but one example that we are familiar with: all electromagnetic accounts of superconductivity 
prior to the discovery of the Meissner effect in 1933 assumed that a superconductor is a ferromagnet. 
There were moreover, some “theorems” at the time that purported to show that an electromagnetic 
treatment of superconductivity as a diamagnetic phenomenon would be impossible. But a few months 
after Meissner’s discovery, and against all odds, Fritz and Heinz London provided an electromagnetic 
description of the Meissner effect. For the details, see Suárez (1999). 
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Fine’s meaning must then be that a quantum theoretical description of the EPR 
experiment involving superluminal influences has not yet been developed. And it 
would be a fallacy of classical logic to conclude from the fact that x has not been 
proved to date that x is not true. Whether such a description is actually available then 
becomes an empirical matter, to be decided by doing some physics. Fine’s own logic 
points the way. For his argument shows that any attempt to ground superluminal 
influences on the experimental violation of the Bell inequalities must involve a denial 
that (SLOC) is built into every quantum mechanical description. Otherwise the 
experimental results can have no bearing whatsoever on the existence of superluminal 
influences. Thus any such attempt must begin by building a framework for the EPR 
experiment that is capable of representing the physical interaction between the two 
particles. This is precisely what we aim to do in this paper. 

 
 
3. Causality 
  

We follow the sufficient conditions proposed by Salmon (Salmon, 1985, chapter 5) 
for the propagation of causal influences. Salmon’s two principles (the principle of 
structure transmission and the principle of propagation of causal influences) can be 
reformulated as follows, in a single, more condensed, statement: 

 
If a process is capable of transmitting changes in structure due to 
marking interactions, then that process can be said to be capable of 
propagating a causal influence from one space-time locale to another. 

 
Our aim is to produce a formal framework for EPR in which some sort of “mark-
transmittors”, or carriers, are responsible for the transmission of causal influences 
between the separated subsystems. Our model makes three assumptions: 

 
i) Separability: quantum systems can be assigned individual states of their 

own after having interacted, even if formally treated as subsytems of a 
“composite” system. These individual states will generally not be 
represented by idempotent operators; i.e. they will be mixed rather than 
pure states. 

ii) Stochasticity: measurements on a subsystem result in a stochastic outcome 
with the usual Born probabilities. 

iii) Causal Locality: causality is preserved by physical transmission of 
information. 

 
Every one of these assumptions has sometimes been contested. But we think that they 
are reasonable assumptions to impose on a physical theory. Quantum mechanics 
satisfies assumption ii) fully. And it satisfies assumption i) in a qualified form, by 
providing a procedure (that of tracing over the degrees of freedom) that enables one to 
derive uniquely the state of each individual particle from the state of the composite. It 
has however, been claimed that the third assumption is ruled out by the EPR 
correlations alone. As these correlations are predicted by quantum mechanics, it 
follows that quantum mechanics does not satisfy assumption iii). For instance Van 
Fraassen claims that “no causal model can fit the phenomena that violate Bell’s 
inequalities” (Van Fraassen, 1993, chapter 5).  
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Chang and Cartwright (Chang and Cartwright, 1993) and Cartwright (Cartwright, 
1989, chapter 6) have argued against this claim. They have provided a description of 
the features that a possible causal account of the EPR correlations would need to 
possess. The two simplest causal accounts of the EPR correlations are a common-
cause model and a direct-cause model. The common-cause model only seems 
impossible when one does not take genuinely probabilistic causality seriously 
enough.3 In this paper we develop a framework for models of the latter kind: causality 
is preserved via the direct propagation of causal influences between the wings. 

 
Although we refer to our framework as a “model” we emphasise that this is a rather 
abstract kind of model –one that sets the general formal conditions that could be met 
by more concrete, physical direct-cause models of the EPR correlations. It is a widely 
accepted result of the Aspect et al. experiments that any possible direct causal 
connection in the EPR set-up must be transmitted at a speed larger than light. We 
stress that we do not provide here a physical model for these superluminal 
connections. Rather we provide a formal framework in which such physical models 
may be embedded. And we show that physical models that fit our formal framework 
will ipso facto replicate precisely the quantum mechanical statistics for all possible 
measurements of correlated quantities in the EPR experiment. 
 
 

4. A Causal Model for EPR 
 

4.1. Carriers. 
 

The conventional representation of the EPR set-up in quantum mechanics already 
presupposes that there is no causal (or physical) transmission between the systems. In 
a case like EPR, neither an interaction Hamiltonian is used to model the relation 
between cause and effect, nor is a third system –a field or a photon for instance-- 
introduced to mediate the interaction. In order to work out the results, the combined 
state is always used and the individual mixtures are ignored. In the simplified EPR 
case that we are concerned with, the state of the composite is the singlet: 

 
Φ1+2 = √(1/2)  +x〉1 -x〉2 - √(1/2) -x〉1 +x〉2  (4.1) 

 
According to (4.1.), the results of possible measurements of spin are correlated. If we 
measure the spin on system S1 along the x direction and find spin “up”, then we can 
infer that the result of a measurement of spin of system S2 will be “down”. 
Conversely, when the spin of system S1 is “down” the spin of system S2 will be found 
to be “up”.  
 
Hence the conventional formalism already presupposes Schrödinger’s counterfactuals. 
Something must be added to the formalism in order to make physical transmission 
possible. In our direct-cause model, the “mark” transmitters or carriers, are 

                                                 
3 Previous discussions of causality in EPR have tried to rule out particular causal connections on the 
basis of the probabilities alone. But this strategy will not work, because any single causal connection is 
consistent with any arrangement of probabilities. Which particular probabilistic relation can serve as a 
criterion for a given causal relation depends very sensitively not only on the entire causal structure in 
which that causal relation is embedded, but also on the details of how the causes in that structure are 
supposed to operate (see (Nancy Cartwright, 1989), for a discussion.) 
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responsible for causal transmission. Carriers both record and transmit information. A 
carrier attached to a system records two kinds of information about the system: 
 
• Information about measurements made on the system. A carrier might say, for 

example, whether a measurement of spin along a particular direction x has taken 
place and what is the result of this measurement. 

 
• Information about the history of the system since its separation from its partner 

system. Since, in the simple case of spin states we are considering, any outside 
influence on the system can be represented as a rotation, the carrier records 
whether the associated system has been subject to some specified rotation R. 

 
Carriers also contain information about their own “internal states”. A carrier can exist 
in three different “states”: it can be bound to its system, unbound, or in the ground 
state (the state such that information contained in the carrier is not relevant anymore.) 
Carriers become unbound when a measurement is made on their associated systems. 
They are then free to interact with other systems. Once a carrier goes into its ground 
state, it is no longer capable of transmitting causal information. 
 
We ascribe quantum states to the carriers, which we write as follows: 
 

 j; k; R; w; τ〉 i,n,  
 
where j is the internal state of the carrier: it can take the value b for bound, u for 
unbound, and g for ground. k records the initial state of the system to which this 
carrier is attached. R is the total rotation the system has undergone. w is a record of 
the result just after a measurement has occurred on the associated system. τ is a 
placeholder for the further quantum characteristics the carrier will have to be assigned 
in any genuinely physical model. The τ’s matter because they are where the real 
physics will be represented, but for ease of presentation we shall omit them in the rest 
of the paper. The first superscript, i = 1,2, indicates which Hilbert space, H1 or H2, the 
state of the carrier’s associated system is represented in. The second superscript, n, 
identifies those carriers that are attached to systems that have interacted in the past. 
(EPR predicts correlations between particles that have interacted in the past only). n 
takes the same value for those and only those particles that have interacted in the past. 
 
For convenience of notation, we will record only the final result of all the rotations. A 
typical carrier state will then look like this:  b; +x; R1; +y〉1,n. This carrier would be 
bound to a system S1 originally in an “up” state of spin along the x direction that has 
been rotated by R1, then projected by a measurement into state +y〉.  
 
Carrier states obey two sets of orthogonality relations. First, independently of whether 
bound or unboud, and independently of what system they are attached to, two carriers 
are orthogonal if they record at any point information about orthogonal states of some 
system:  m; k, R; y〉 ⊥ m’; k’, R’; y’〉 if k ⊥ k’ or Rk ⊥ Rk’ or y ⊥ y’. Second, 
carriers in any one of the possible carrier-states (bound, unbound, ground) are 
orthogonal to carriers in any other carrier-state, i.e. b; y〉 ⊥ u; y’〉 ⊥ g; y’’〉. 
 
4.2. EPR in a Causal Framework. 
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Let us now consider the EPR case within this framework. We assume that the state of 
the composite (S1 + S2) at any one time is given by (4.1), appropriately modified in 
order to account for each system’s carrier states. It is then possible to work out the 
individual states of the physically separated systems S1 and S2. The state of S1, for 
instance, can be derived from (4.1) by tracing over the degrees of freedom of S2. And 
vice-versa: the state of S2 can be found by tracing over the degrees of freedom of S1. 
The resulting states of S1 and S2 are the following mixtures, represented by statistical 
operators W1 and W2 respectively: 
 

W1: 1/2+x〉1n 〈+x1n ⊗ b; +x〉1n 〈b; +x1n +  
 

 -x〉1 〈-x1n ⊗ b; -x〉1n 〈b; -x1n        (4.2) 
 
 

W2: 1/2+x〉2n 〈+x2n ⊗ b; +x〉2n 〈b; +x2n +  
 

 -x〉2n 〈-x2n ⊗ b; -x〉2n 〈b; -x2n.        (4.3) 
 
 
In principle, however, the states of S1 and S2 do not necessarily have to be as simple 
as those given here: the systems may have been subjected to physical rotations, the 
overall effect of which may be represented by operators R1 and R2. These take a 
system in +x into +w, a system in –x into –w, etc; and they record the total effect of 
whatever physical rotations the systems have been subject to.  
 
But note that, as is well known, the mixtures W1 and W2, are improper –they are not 
the result of a preparation procedure, but merely of a formal derivation from the state 
of the composite—, and thus they cannot be given the ignorance interpretation. Indeed 
in our account, reduction occurs only on measurement, and the reduction only affects 
the measured system and not its partner system.  
 
In our causal model, a measurement of S1’s spin has two effects. First, the 
measurement has a stochastic outcome; and we may assume that the state of S1 
reduces to an eigenstate of spin, up or down, just as in conventional quantum 
mechanics. So we are not postulating any sort of hidden variables: there need be no 
“possessed values” for the main dynamical quantities of S1.  
 
Secondly, a measurement performed on S1 releases the associated carrier, which 
travels to the other wing of the experiment and interacts with the companion system, 
S2 and its own associated carrier. However, unlike conventional quantum mechanics, 
and due to our assumptions of separability and causal locality, the state of system S2 
(plus its associated carrier, plus the attached carrier initially associated to system S1) 
evolves quantum mechanically, in accordance with the Schrödinger equation. This 
state evolution occurs whether or not a measurement is ever performed on S2. 4 (If a 

                                                 
4 The labels S1 and S2 are conventional, and do not necessarily refer to “the system on the left” and “the 
system on the right”. S1 is rather the system that is measured first, in the rest frame of the experimental 
set up. 
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measurement of S2 is subsequently performed, it will then reduce this state of S2 to an 
eigenstate corresponding to the measured outcome.) 
 
In our model then only the state of the system measured, say S1, represented by the 
corresponding density matrix, is reduced when it is measured. In the next section, we 
provide a specific “reduction rule” to represent this process. On the other hand, the 
dynamics of the triplet (S2 – carrier bound to S2 – carrier unbound from S1) is in our 
model given by a quantum Hamiltonian. We do not provide a specific Hamiltonian 
here, but we offer a General Rule of Evolution that constrains the action of possible 
Hamiltonians in any genuinely causal model of EPR within our framework. 
 
4.3. The Rules of a Causal Model 
 
We have already explained that, according to our model the first measurement on 
system S1 has a double effect: the states of S1 and of its associated carrier are reduced; 
and the associated carrier is ejected. We may represent this dual process by means of 
the following “Reduction Rule”: 
 

RR: On measurement of spin along the y direction on system S1, the states of 
S1 and its associated carrier undergo the following transition: 
 
 γ〉1n  b; k; R〉1n →  φ〉1n u; k; R; φ〉1n, with probability: 〈φ γ〉 2. (Or, more 
generally, if the initial state of S1 is not the pure state  γ〉1n, but rather the 
mixture W1 the transition occurs with probability Tr (Pφ W1).) 
 

On the other hand, the evolution of the trio (S2 + carrier bound to S2 + carrier 
unbound from S1) is quantum mechanical and will be given by a specific quantum 
Hamiltonian. The main constraint on this Hamiltonian is that it must yield the same 
statistics for the measurement outcomes as conventional quantum mechanics in all 
possible experimental set-ups. We propose the following “General Rule of Evolution 
for EPR”: 
 

GREPR: The Hamiltonian for the system-carrier-carrier interaction on S2 must 
satisfy the following constraint: 
 
 R2 α〉 2m   b; α; R2〉 2m  u; δ; R1; φ〉 1n → 
 
→ ψ〉 2m  g; α; R2; ψ〉 2m  g; δ; R1; φ〉1n,  
 
if m=n; otherwise the Hamiltonian has no effect.  
 
In this expression,  ψ〉 2 (the resulting, evolved, state of system S2) is defined 
as follows:  
 
 ψ〉 2 =df  〈φ  R1 R2  Φ1+2〉 / √{〈R1 R2 Φ1+2 φ〉1 I2 1〈φ R1 R2 Φ1+2〉}. 

 
Here R1, R2 are rotation operators that include information about the whole 
history of the systems previous to any measurements, φ is the outcome of the 
measurement upon S1, I2 is the identity operator on H2. 
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It is important to remark that this rule describes a unitary transformation. That this is 
so is guaranteed by the orthogonality relations that we have defined between carrier 
states. Consider for example when the left-hand side of the expression for GREPR 
involves orthogonal states of the system S2, because R2 α〉 ⊥ R2 α⊥〉, and therefore it 
represents orthogonal states of the system2-carrier2-carrier1 composite. Then the right-
hand side expression involves orthogonal states of the carrier2, because carriers 
recording orthogonal states are in orthogonal states, and it therefore also represents 
orthogonal states of the composite system2-carrier2-carrier1. 
 
 

5. Comparison of the Statistics 
 
The function of RR and GREPR in our model is analogous to that of the statistical 
algorithm in conventional quantum mechanics: together these rules enable us to 
calculate the statistics for measurement outcomes. In this section we show that the 
statistics predicted by our model are in agreement with the quantum mechanical 
predictions for measurement outcomes in EPR situations. 
 
Suppose that the state of the composite is then given by the singlet Φ1+2 (see equation 
(4.1)). We are interested in conditional probabilities for outcomes of measurements of 
spin on such entangled systems, such as: 
 

P (-x2 / +x1) = P (-x2 & +x1) / P (+x1).                                            (5.1) 
 
This is the conditional probability of obtaining a “-” in a measurement of spin along 
the x direction on system S2, given that a previous measurement along the x direction 
on system S1 has yielded outcome “+”. 
 
In quantum mechanics the joint probability is given by: 
 

P (-x2 & +x1) = 〈Φ1+2  J1+2 Φ1+2 〉,                                                            (5.2) 
 
where J1+2 is the following operator in the tensor product Hilbert space ( H1 ⊗ H2 ):  
 

J1+2 =  +x〉1 〈+x1 ⊗-x〉2 〈-x 2. 
 
Furthermore quantum mechanics requires P (+x1) (the probability of outcome “+” in a 
measurement of system S1 only) to be worked out in the tensor product Hilbert space 
as well: 
 

P (+x1) = 〈Φ1+2  O1+2 Φ1+2〉,                                                                     (5.3) 
  
where O1+2 is the following operator on the tensor product Hilbert space:  
 

O1+2 = ( +x〉 〈+x ) ⊗ I2,  
 

and I2 is the identity operator on the Hilbert space H2 of S2. 
 
A range of possible statistical cases can be derived for EPR by considering 
combinations of the two possible operations that may be performed upon the 
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separated systems. These two operations are: a) rotations, and b) measurements of 
spin along specified but arbitrary directions. In this section we only consider two 
cases, the simplest and the most general. The first case illustrates the workings of RR 
and GREPR; the second proves that the model always generates the same statistics as 
quantum mechanics. 
 
5.1. The Simplest Case 
 
Suppose that systems S1 and S2 are a matched pair that have in no way been rotated, 
and suppose that we make straightforward measurements of spin on them along the 
direction x.   
 
Quantum Mechanical Prediction. We can then easily calculate, by means of (5.3), that 
the quantum mechanical probability for a “+” outcome on an unconditional 
measurement on S1 is P (+x1) = ½. And, by means of (5.2), we can calculate the joint 
probability for a “+” outcome of the measurement on S1 and a “-” outcome of the 
measurement on S2. This is: P (-x2 & +x1) = ½. And we obtain for the conditional 
probability: P (-x2 / +x1) = 1. 
 
Causal Model Prediction. We take the individual states of S1 and S2, with their 
associated carriers, to be represented by (4.2) and (4.3). Suppose that we make a 
measurement of S1 and obtain the outcome “+”. According to RR the state of S1 is 
then reduced into +x〉1, and the associated carrier is then ejected in the state  u; +x; 
+x〉. The action of this carrier on system S2 is given by GREPR. Suppose that n=m, 
and suppose that there are no rotations; then GREPR takes the simple form5: 
 

± x〉2  b; ± x〉2  u; +x; +x〉1 → φ〉2 g; ± x〉2 g; +x; +x〉1, 
 

where φ〉2 =df  1〈 + x Φ1+2〉 / √{〈Φ1+2 +x〉1 I2  1〈+x  Φ1+2 〉} =    
 

= √(1/2) -x〉2 /√(1/2) =  -x〉2. 
 
Hence the result of any Hamiltonian that obeys GREPR is the following dynamically 
evolved state of the S2 system: 
 

W2 (t): ½  -x〉2 〈-x 2 ⊗ g; +x〉2 〈g; +x; +x 2 ⊗  g; +x; +x〉1 〈g; +x; +x1  
 

+ ½  -x〉2 〈-x2 ⊗ g; -x〉2 〈g; -x2 ⊗ g; +x; +x〉1 〈g; +x; +x1. 
 
A measurement of spin along the x direction on a system in a state W2 (t) will yield 
outcome “-” with probability one. Thus our model predicts that P (-x2 / +x1) =1, and 
therefore yields the same perfect statistical anticorrelation in this case as quantum 
mechanics. 
 
5.2.The Most General Case 
 

                                                 
5 We suppress the superscript indicating that the systems are a matched pair for notational simplicity. 
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Suppose that first we rotate both S1 and S2 by R1 and R2 where R1 and R2 need not be 
equal. We then set to measure spin in S1 along some direction y, and in S2 along some 
direction z, where y and z need not be equal. 
 
First, we may consider the case where n ≠ m, i.e. the two systems are unmatched, in 
the sense that they have not interacted in the past. Although quantum mechanics does 
not provide a formal notation for situations in which measurements are made on 
systems from non-matched pairs, it is clear that the predictions will agree with our 
causal model. For in the causal model: P (-z2 & +y1) = P (-z2) × P (+y1) = ½ × ½ = ¼, 
which is just what we would naturally expect in quantum mechanics. 
 
We now show that the predictions of our causal model agree with quantum mechanics 
also in the case n = m. (We again drop the superscripts n, m.) 
 
Quantum Mechanical Prediction. The rotation on S1 is given by: 

W1: ½ ( +x〉1 〈+x1 ⊗ b; +x〉1 〈b; +x1) + ½ ( -x〉1 〈-x1 ⊗ b; -x〉1 〈b; -x1) → 

→ ½ ( +w〉1 〈+w1 ⊗ b; +x; R1〉1 〈b; +x; R11) +   

+ ½ ( -w〉1 〈-w1 ⊗ b; -x; R1〉1 〈b; -x; R11), 

where: 

 +w〉1 = Γ1 +x〉1 + √ {1- Γ1
2} eiθ1 -x〉1  

 -w〉1 = √ {1- Γ1
2} e-iθ1 +x〉1 + Γ1 -x〉1.                                       (5.4) 

But we shall make measurements on S1 along the y direction, given by the 
transformations: 

+x〉1 = α1 +y〉1 + √{1- α1
2} eiδ1 -y〉1 

-x〉1 = √{1 - α1
2} e-iδ1 +y〉1 + α1 -y〉1.                                      (5.5) 

Analogously, the rotation on S2 is given by: 

W2: ½ ( +x〉2 〈+x2 ⊗ b; +x〉2 〈b; +x2) + ½ ( -x〉2 〈-x2 ⊗ b; -x〉2 〈b; -x2) → 

→ ½ ( +v〉2 〈+v2 ⊗ b; +x; R2〉2 〈b; +x; R22) +   

+ ½ ( -v〉2 〈-v2 ⊗ b; -x; R2〉2 〈b; -x; R22), 

where: 

 +v〉2 = Γ2 +x〉2 + √ {1- Γ2
2} eiθ2 -x〉2  

 -v〉2 = √ {1- Γ2
2} e-iθ2 +x〉2 + Γ2 -x〉2.                                       (5.6) 

 

But then again, the measurements on S2 will be along a different direction z given by: 
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 +x〉2 = α2  +z〉2 + √{1- α2
2} eiδ2 -z〉2 

 -x〉2 = √{1 - α2
2} e-iδ2+z〉2 + α2 -z〉2.                                      (5.7) 

 

Now we substitute in the entangled state (4.1), both +x〉1 by  +w〉1 and -x〉1 by 
+w〉1; also we substitute +x〉2 by +v〉2 and -x〉2 by -v〉2 (i.e. we perform rotations 
on both S1 and S2). Then we do the appropriate substitutions of basis vectors, by 
means of (5.5) and (5.7). And we calculate on the resulting state the conditional 
probability P (-z2 / +y1). 

First, it can be shown that the probability of obtaining outcome “+” in the singlet state 
always remains ½ whatever the rotation: P (+y1) = ½. By applying (5.2) we find that  

P (-z2 & +y1) =  

= ½ {Γ1 α1 + √{1 - Γ1
2} √{1- α1

2} ei(θ1 - δ1)} × 

× { √{1- Γ2
2} {√{1 - α2

2} ei(δ2 - θ2) +  Γ2 α2} + 

+ {α1 √{1 - Γ1
2} e-iθ1 + Γ1 √{1 - α1

2} e-iδ1} ×  

× {Γ2 √{1 - α2
2} eiδ2 + α2 √{1 - Γ2

2 eiθ2}2. 

 

Hence, according to (5.2), 

P (-z2 / +y1) =  

= {Γ1 α1 + √{1 - Γ1
2} √{1- α1

2} ei(θ1 - δ1)} × 

× { √{1- Γ2
2} {√{1 - α2

2} ei(δ2 - θ2) +  Γ2 α2} + 

+ {α1 √{1 - Γ1
2} e-iθ1 + Γ1 √{1 - α1

2} e-iδ1} ×  

× {Γ2 √{1 - α2
2} eiδ2 + α2 √{1 - Γ2

2} eiθ2}2.                                       (5.8) 

 

Causal Model Prediction 

We write the mixtures representing the rotated states of S1 and S2 together with their 
associated carriers. These are: 

W1: ½ ( R1 +x〉1 〈 R1 +x1 ⊗ b; +x; R1〉1 〈b; +x; R11) +  

+ ½ ( R1 -x〉1 〈 R1 -x1 ⊗ b; -x; R1〉1 〈b; -x; R11), 

W2: ½ ( R2 +x〉2 〈 R2 +x2 ⊗ b; +x; R2〉2 〈b; +x; R22) +   
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+ ½ ( R2 -x〉2 〈 R2 -x2 ⊗ b; -x; R2〉2 〈b; -x; R22). 

Suppose next that a measurement is made of spin on S1. According to RR the 
probability for an outcome “+” is given by Tr (W1 P+y) = ½. Once the measurement is 
performed and the outcome “+” is found, RR further entails that the state of S1 is 
reduced into +y〉1, and a carrier is then ejected in the mixed state: 

C1:  ½  u; +x; R1; +y〉1 1〈 u; +x; R1; +y  + ½  u; -x; R1; +y〉1 1〈 u; -x; R1; +y. 

We can then write the state of the composite (system S2 + carrier2 + carrier1) as 
follows: 

W2: 

¼ ( R2 +x〉2 〈R2 +x2 ⊗ b; +x; R2〉2 〈b; +x; R22 ⊗ u; +x; R1; +y〉1 〈u; +x; R1; +y1)  

+ ¼ ( R2 +x〉2 〈R2 +x2 ⊗ b; +x; R2〉2 〈b; +x; R22 ⊗ u; -x; R1; +y〉1 〈u; -x; R1; +y1) 

+ ¼ ( R2 -x〉2 〈R2 -x2 ⊗ b; +x; R2〉2 〈b; +x; R22 ⊗ u; +x; R1; +y〉1 〈u; +x; R1; +y1) 

+ ¼ (R2 -x〉2 〈R2 -x2 ⊗ b; +x; R2〉2 〈b; +x; R22 ⊗ u; -x; R1; +y〉1 〈u; -x; R1; +y1). 

The interaction between these three systems is then given by GREPR, and the state of 
S2 becomes W2’ (for ease of notation, we do not fill in the “bra” parts in the following 
expression): 

W2’: 

¼ ( ψ〉 〈ψ ⊗ g; +x; R2, ψ〉2 〈… ⊗ u; +x; R1; +y〉1〈… ) +  

+ ¼ (ψ〉 〈ψ ⊗ g; +x; R2, ψ〉2 〈… ⊗ u; -x; R1; +y〉1 〈… ) + 

+ ¼ (ψ〉 〈ψ ⊗ g; +x; R2, ψ〉2 〈… ⊗ u; +x; R1; +y〉1 〈… ) + 

+ ¼ (ψ〉 〈ψ ⊗ g; +x; R2, ψ〉2  〈… ⊗ u; -x; R1; +y〉1 〈… ),  

where  ψ〉 = 1〈+yR1R2 Φ1+2〉 / √(〈R1 R2 Φ1+2  +y〉1 I2  1〈+y R1 R2 Φ1+2〉) 

Thus according to our model: P (-z2 & +y1) = P ( -z2〉 / ψ〉) =  〈-z2 ψ〉 2.  

And P (-z2 / +y1) = P (-z2 & +y1) / P (+y1). A brief calculation shows that this 
probability is identical to its quantum mechanical counterpart (5.8). 

 

6. Why Robustness is no Objection 

A number of authors have argued that a causal account for the EPR correlations is 
impossible, invoking one version or another of an invariance condition for causal 
links. Very roughly, these invariance conditions suppose that a given pattern of 
association between two quantities expresses a causal link from one of the quantities 
to the other just in case the right kind of manipulations of the cause leave the pattern 
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of association intact. So, as the cause changes under manipulation, the effect follows 
in train according to the given pattern. In this section we will explain why these 
objections misfire. They do not rule out plausibly formulated hypotheses about how 
measurement results in one wing of the experiment might cause results in the other 
wing, so ipso facto they do not rule out models that fit the structure that we describe. 

The invariance conditions begins from the assumption that if one quantity Q causes 
another R, then, for each arrangement of values of the other causes of R, there is some 
fixed related pattern of association between Q and R – what we might think of as the 
“natural expression” of Q’s effect on R. Consider, for example, Einstein and Infeld’s 
claim that “forces cause motions”. In this case the pattern of association is given by 
the equation a = f / m. Exponential decay can provide an example where the pattern is 
probabilistic. In this case when we consider “The excited state at t=0 causes the de-
excited state at t” the pattern of association is given by the familiar exponential rule 
for conditional probability: P (de-excited state at t / excited state at 0) = e-λt. 
Alternatively, looking at “The transition from the excited state (of energy Eex) to the 
de-excited state (energy: Ed) causes a photon of energy Eex - Ed”, the related pattern of 
association is given by the conditional probability: P (photon of energy E = Eex – Ed / 
transition from excited to de-excited state) = 1.  

A number of authors have discussed invariance criteria6 -- Michael Redhead’s 
“robustness condition” is probably the central example in the EPR literature. 
Although there is some debate about what exactly a correct condition should require, 
for the purposes of our discussion we shall assume the following, which we take to be 
both plausible and defensible. (Here [] → is an arrow of counterfactual implication: 
A[]→ means “if A were to be the case, then B would be the case”): 

Causal Invariance Condition: A pattern of association between Q and R 
expresses a causal effect of Q on R iff (an intervention affects Q) [] → (R is 
still in accord with that pattern).  

Clearly a good deal of the plausibility of this condition depends on how the term 
“intervention” is understood. Interventions are generally meant to fix either the level 
or the probability of the putative cause arbitrarily, without changing anything else 
relevant. That is, an intervention fixes the level / probability of the cause without 
affecting the level / probability of the effect in any other way. But a lot depends on 
how we explicate “in any other way”, and how to do so for any specific case will 
depend on the specific kind of causal structure involved. In all cases, though, two 
conditions have to be worked out explicitly for the causal structure at hand. An 
intervention i) does not simultaneously affect “other” causes of the effect, and ii) does 
not change any causal laws involved, except those fixing the cause and anything that 
follows from that.7  

In particular, where the pattern of association is given by a conditional probability, 
changing the probability of the cause Q should change the probability of the effect, 

                                                 
6 We are familiar with the discussion in the economics and physics literature. There, see for example, 
(Simon, 1977), (Redhead, 1987), (Cartwright and Jones, 1993), (Cartwright, 1995), (Hoover, 2000), 
(Hausman and Woodward, 2000). See also (Spirtes, Glymour and Scheines, 1993). 
7 Point ii) is the basis of the criticism of Michael Redhead’s argument against a causal connection 
between the wings of an EPR experiment in (Cartwright and Jones, 1993). 
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but the conditional probability of the effect on the cause (holding fixed the 
appropriate other causal factors) does not change. Clearly this is the central 
assumption underlying the methodology of the randomised treatment / control 
experiment, which is the gold standard for establishing causal hypotheses in medicine 
and widely throughout the social sciences. In discussions of the treatment / control 
experiments, though, the focus is on the fact that the (marginal) probability of the 
effect is different when the probability of the cause is different, whereas most of the 
deployment of this kind of condition in the EPR literature focuses on the constancy of 
the conditional probability between the two.  

For instance, let us look at Michael Redhead’s specific use of invariance conditions to 
argue against the claim that outcomes in one wing cause those in the other. Redhead 
takes the invariance condition to require that, for a disturbance d of the right kind (i.e. 
what we have called an “intervention”), Pψ (±x2 / ±y1 & d) = Pψ (±x2 / ±y1). That 
means that the causal hypothesis entertained for a causal link between the first wing 
and the second in the EPR described must be: 

C: An outcome “±x” in a measurement of the first member S1 of a pair prepared in the 
singlet state Φ1+2 causes an outcome “±y” in a measurement of the second member S2 
of the pair, where the associated pattern of association is given by PΦ =  (±x2 / ±y1). 

How then would we test C using the invariance condition? Note first that we cannot 
arbitrarily set the level of the cause because of the quantum indeterminism of 
measurement outcomes. So we try to change the probability by a physical interaction. 
Physical interactions on the spin states look in this set-up like rotations. That means 
that, under the interaction Hamiltonian H: 

  +x〉1 →  +w〉1 = Γ1 +x〉1 + √ {1- Γ1
2} eiθ1-x〉1  

-x〉1 →  -w〉1 = √ {1- Γ1
2} e-iθ1 +x〉1 + Γ1-x〉1. 

 

So under H, Φ1+2 → Φ’1+2, where: 

 
Φ’1+2  = √(1/2) +w〉1 -x〉2 - √(1/2) -w〉1 +x〉2. 

 
Consider then, for example, PΦ (-x2 / +x1). This equals 1. But PΦ’ (-x2 / +x1) equals 
Γ1

2. So invariance would seem to be violated. 
 
The intuition behind Redhead’s argument is surely the reasonable idea that if “+x” on 
S1 is causing “-x” on S2, then when S1 is rotated, it should drag S2 along with it, which 
is not what happens. How do we know that S2 is not dragged along?  We are not able 
to tell this from the marginal probabilities, because PΦ (+x1) = PΦ’ (+x1) =1/2 = PΦ 
(+x2) = PΦ’ (+x2), but we can tell it from the conditional probabilities. If rotations of 
S1 were always accompanied by identical physical rotations of S2, the conditional 
probability PΦ’ (-x2 / +x1) should remain unchanged, and that is not what happens.   
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Why then does invariance not show that models that fit our framework are 
impossible? First we should notice that it is frequently pointed out – and by Redhead 
himself—that Redhead’s proposed intervention would destroy the singlet state. How 
then can we be assured that the rotation on the first system is a proper intervention? 
The answer, we think, involves a very plausible physical intuition. 
 
Consider the two requirements that we singled out that all interventions must satisfy: 
i) the rotation on the first member of the pair is a purely local interaction, both 
physically and in its mathematical representation. So it is reasonable to suppose that 
indeed it cannot affect the outcome on the second member except via the 
hypothesized causal link between outcomes on the first and outcomes on the second 
system. ii) As for the second requirement, the interaction is, after all, just a rotation. 
So it is reasonable to suppose that it cannot affect the capacity of outcomes on one 
wing to cause outcomes on the other (if such capacity exists). And there seems no 
other way that any of the relevant laws could be affected either. 
 
These are good physical intuitions, and ones not to be ignored. But they must be 
carefully distinguished from those intuitions underpinning the Causal Invariance 
Condition. This Condition states that if we were able to manipulate the cause so as to 
change its probability, while making sure that in so doing we are not in any way 
affecting the connection between the cause and its effect, then the probability of the 
effect should change in accordance with the pattern of association. And notice that in 
the EPR case the antecedent of this condition is not satisfied: the only possible local 
disturbance on system S1 is a rotation that does not change the probabilities of a “+” 
or “-” outcome of a measurement of S1’s spin. 
 
If matters were left here, it seems it would be hard to say how heavily invariance 
counts against the possibility of a causal influence from one wing to the other. But let 
us look more closely at the kind of causal framework we have described. In particular, 
notice that when a rotation is executed on the first system, the state of the carriers 
attached to that system changes, since the state of the carriers records the full history 
of interactions undergone by their associated system. Since the carriers are affected, 
and since they are responsible for the transmission of causal influence from outcomes 
on one wing to outcomes in the other, condition ii) on interventions is in danger. So 
there may good reason to think that the rotation cannot after all count as an 
intervention, and the invariance condition cannot be applied as Redhead has proposed.   
 
In fact, this is not really what goes wrong with the argument from the invariance 
principle to the impossibility of a causal influence between the wings. The state of the 
carriers is indeed affected, which does raise worries about whether the intervention 
affects the capacity of the results in one wing to cause those in the other wing. But 
more importantly, it points out a fundamental problem that besets this kind of 
argument in general, whether it is directed against the models that fit our framework 
or against any others that claim a causal connection between the wings. The problem 
is that the wrong causal hypothesis is put to the test. 
 
Granting the physical intuitions that guarantee that rotations can count as 
interventions, the invariance argument correctly rules out the causal hypothesis we 
have so far entertained, hypothesis C. But that is not the natural starting hypothesis. 
For notice: if you think correlations need causal explanation, you have a problem with 

 16



any systems that have ever interacted. Consider the joint state of any two such 
systems: 
 

Φ1+2 = Σi,j  ui〉1vj〉2. 
 
In general for this kind of state, 
 

P ( vj〉2 /  uj〉1) ≠ P ( vj〉2). 
 
So for cases where two systems have interacted, the appropriate causal hypothesis for 
a causal link between the two must be one that includes this conditional probability as 
its associated pattern of association. 
 
In the EPR case we are considering then, the natural starting hypothesis is more 
elaborate than C, with a number of co-operating conditions that must be met both in 
the cause and in the effect: 
 
C’:  
 
c1: preparing a system as the “first” member of a pair (n) jointly in state Φ1+2, 
c2: and then subjecting it to rotation R1, 
c3: and then obtaining a measurement result with outcome “±x1”, 
c4: and preparing a system as the “second” member of a pair (n) jointly in state Φ1+2, 
c5: and then subjecting it to rotation R2, 
c6: and then measuring it for spin along the z axis 
 
causes 
 
e: outcomes “±z2”. 
 
with the following rule of association: P (e / c1 & c2 & c3 & c4 & c5 & c6) =  
= 〈± z 〈± x R1 R2 Φ1+2〉 2 /  〈± x R1 R2 Φ1+2〉 2. 
 
We may ask now whether this causal hypothesis for EPR can be tested using standard 
experimental methodology: if we intervene to change the probability of the cause, will 
the effect change according to the prescribed rule of association? And will the 
conditional probability given in this rule remain unchanged? That depends on exactly 
what question we are asking. The answer for a number of obvious questions is, 
trivially, “yes”. We can create Φ1+2 or not at will, set R1 and R2 as we wish, or look at 
will either at particle pairs created together at the source or at ones artificially 
matched up by us. For all these experiments we already know, given that we believe 
quantum predictions, what the outcome will be. For instance, we know trivially that if 
we have no other source of “±z2” outcomes on the second wing, and we want them, 
then creating pairs in the singlet state and measuring in the second wing is one way to 
get them, though perhaps not the most efficient. 
 
There is, though, one factor in the conjunctive cause whose efficacy we cannot test in 
this kind of controlled experiment: we can set neither the outcome of the first 
measurement nor its probability arbitrarily. What worry might this raise though? 
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Usually the concern is spurious correlation. So perhaps, after ψ, R1 and R2, n and m 
are all in place, there is still a common cause operating to bring about the correlated 
results on measurement. But if we want to resolve that issue, we will have to look to 
some different methodology. 
 
Of course these are not the questions that the invariance condition was invoked to 
answer in the first place. But the point is that the invariance condition is not equipped 
to deal with the real question at issue. For once the correct kind of causal hypothesis 
is formulated – one that goes along with rules of association that actually obtain – 
then the question at stake turns out to be essentially this: are the EPR correlations, 
which pass all standard statistical tests for expressing causal relations between the 
wings, really the result of a causal connection or are they instead just fixed to occur? 
This is a question that the methodology of the controlled experiment is not geared to 
answer. 
 
 
7. Conclusion 
 
Let us review the main features of the model. Each partner system of an EPR pair has 
an associate carrier. These carriers are released when a measurement is made upon 
their associated system, say S1. The outcome of this measurement is stochastic. The 
mixed state of system S1 is reduced and the probabilities for the different possible 
outcomes are given by the standard Born interpretation. The released carrier interacts 
quantum mechanically with the system S2 (with its corresponding carrier) on the other 
wing of the experiment according to the general rule GREPR. The evolution of S2 is 
guaranteed to be quantum mechanical via the orthogonality relations for the carrier 
states, and is not stochastic in any way. The correlations are generated by the first 
measurement only, together with a causal influence transmitted from one wing to the 
other. 
 
Our causal model for EPR is intended to provide an abstract framework within which 
questions about causality can be seriously considered and discussed. We believe that 
this framework can shed light on what a possible physical model will look like. The 
framework also shows that proofs ruling out causal influence as the source of the EPR 
correlations are wanting. We believe that the situation as regards causal explanations 
of the EPR correlations bears similarities with the history of the so-called 
impossibility proofs for hidden variable theories. For some time impossibility proofs 
exerted powerful pressure against attempts to construct empirically adequate hidden-
variable theories for quantum phenomena. But eventually these proofs regularly met 
the same fate: once the issues involved in the discussion were more widely discussed 
and clarified, the proofs were seen not to support the strong conclusions originally 
claimed for them. This dialectic seems to have been fruitful in the development of 
hidden variable theories. We see no reason why a similar heuristics should not prove 
similarly fruitful for developing causal models for quantum phenomena. 
 
In this spirit, we approach Fine’s argument. If Fine’s Strong Locality Condition 
(SLOC), prohibiting any influence between spatially separated wings of an EPR 
experiment, is not built into the quantum theory, is there any other –weaker – 
condition that is so built in? In investigating this question, we will be ipso facto 
clarifying the notion of causality in modern physics. 
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