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Abstract
One justification for preregistering research hypotheses, methods, and analyses is 
that it improves the transparent evaluation of the severity of hypothesis tests. In 
this article, I consider two cases in which preregistration does not improve this 
evaluation. First, I argue that, although preregistration may facilitate the transpar-
ent evaluation of severity in Mayo’s error statistical philosophy of science, it does 
not facilitate this evaluation in Popper’s theory-centric approach. To illustrate, I 
show that associated concerns about Type I error rate inflation are only relevant 
in the error statistical approach and not in a theory-centric approach. Second, I 
argue that a test procedure that is preregistered but that also allows deviations in 
its implementation (i.e., “a plan, not a prison”) does not provide a more transparent 
evaluation of Mayoian severity than a non-preregistered procedure. In particular, I 
argue that sample-based validity-enhancing deviations cause an unknown inflation 
of the test procedure’s Type I error rate and, consequently, an unknown reduction 
in its capability to license inferences severely. I conclude that preregistration does 
not improve the transparent evaluation of severity (a) in Popper’s philosophy of 
science or (b) in Mayo’s approach when deviations are allowed.

Keywords  Critical rationalism · Error statistics · p-hacking · Preregistration · 
Popper · Severity

Preregistration involves the time-stamped documentation of a study’s planned 
hypotheses, methods, and analyses. The preregistered document is then made avail-
able with the final research report to allow others to identify any deviations from the 
planned approach (Nosek et al., 2018, 2019).
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Previous justifications for preregistration have argued that its primary role is to 
distinguish between “confirmatory” and “exploratory” analyses (e.g., Nosek & Lak-
ens, 2014). However, there are unresolved questions about the meaningfulness of 
this distinction. For example, the distinction does not have an agreed formal defini-
tion in either statistical theory or the philosophy of science. In addition, critics have 
questioned related concerns about the “double use” of data and “circular reason-
ing” (Devezer et al., 2021; Rubin, 2020a, 2022; Rubin & Donkin, 2024; Szollosi & 
Donkin, 2021; see also Mayo, 1996, pp. 137, 271–275; Mayo, 2018, p. 319).

More recently, Lakens and colleagues have provided an alternative justification 
for preregistration based on Mayo’s (1996, 2018) error statistical philosophy of sci-
ence (Lakens, 2019, 2024; Lakens et al., 2024; see also Vize et al., 2024). In par-
ticular, Lakens (2019) argues that “preregistration has the goal to allow others to 
transparently evaluate the capacity of a test to falsify a prediction, or the severity of 
a test” (p. 221).

In this article, I consider two cases in which preregistration does not improve the 
transparent evaluation of severity. First, I highlight some differences between Mayo’s 
(1996, 2018) error statistical account of severity and Popper’s (1962, 1983) theory-
centric account, and I argue that although preregistration may improve the transpar-
ent evaluation of Mayoian severity, it does not improve the transparent evaluation of 
Popperian severity. To illustrate my argument, I show that associated concerns about 
Type I error rate inflation are only relevant in an error statistical approach and not in 
a theory-centric approach.

Second, I argue that a preregistered test procedure that allows deviations (i.e., “a 
plan, not a prison”; Nosek et al., 2019, p. 817) does not provide a more transparent 
evaluation of Mayoian severity than a non-preregistered procedure. In particular, I 
argue that a test procedure that permits sample-based validity-enhancing deviations 
from its preregistered plan will include an unknown number of deviations during a 
hypothetical long run of its repetitions. These deviations cause an unknown inflation 
of the procedure’s Type I error rate and, consequently, an unknown reduction of its 
capability to license inferences with Mayoian severity. I conclude that preregistration 
does not improve the transparent evaluation of severity (a) in Popper’s philosophy of 
science or (b) in Mayo’s approach when deviations are allowed.

1  Preregistration does not improve the transparent evaluation of 
Popperian severity

In Mayo’s (1996, 2018) error statistical approach, a hypothesis passes a severe test 
when there is a high probability that it would not have passed, or passed so well, if it 
was false (Mayo, 1996, p. 180; Mayo, 2018, p. 92; Mayo & Spanos, 2006, pp. 328, 
350; Mayo & Spanos, 2010, p. 21; Mayo & Spanos, 2011, pp. 162, 164). Hence, 
severity is a characteristic of “the test T, a specific test result x0, and a specific infer-
ence H (not necessarily predesignated)” (Mayo & Spanos, 2011, p. 164, italics occur 
in the original text for all quotes).
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A test procedure’s pre-data error probabilities play an important role in evaluat-
ing severity (Mayo & Spanos, 2006, p. 330).1 In particular, “pre-data, the choices 
for the type I and II errors reflect the goal of ensuring the test is capable of licensing 
given inferences severely” (Mayo & Spanos, 2006, p. 350; see also Mayo & Spanos, 
2011, p. 167). For example, a test procedure with a nominal pre-data Type I error 
rate of α = 0.05 is capable of licensing specific inferences with a minimum “worst 
case” severity of 0.95 (i.e., 1 – α; Mayo, 1996, p. 399). Importantly, low error prob-
abilities are necessary but not sufficient to license inferences severely (Mayo, 2018, 
pp. 13–14, 236, 396; Mayo & Spanos, 2011, p. 163). Error probabilities must also be 
relevant to the current inference (Mayo, 2018, pp. 194, 236, 429; Mayo & Spanos, 
2006, p. 349), and statistical model assumptions must be approximately satisfied 
(Mayo, 2008, pp. 863–864; Mayo, 2018, p. 94; Mayo & Spanos, 2006, p. 349; Mayo 
& Spanos, 2011, pp. 189–190).

“Biasing selection effects” in the experimental testing context can lower the capa-
bility of a test procedure to license inferences severely by increasing the error prob-
ability with which the procedure passes hypotheses (Mayo, 2018, pp. 40, 196). For 
example, data dredging, fishing, cherry-picking, selective reporting, and p-hacking 
can represent biasing selection effects that increase a test procedure’s error prob-
ability and, consequently, lower its capability for severe tests (e.g., Mayo, 1996, pp. 
303–304; Mayo, 2008, pp. 874–875; Mayo, 2018, pp. 92, 274–275).

From an error statistical perspective, the goal of preregistration is to allow a more 
transparent evaluation of the capability of a test procedure to perform severe tests 
(e.g., Lakens, 2019; Lakens et al., 2024). In particular, preregistration reveals a 
researcher’s planned hypotheses, methods, and analyses and enables a comparison 
with their reported hypotheses, methods, and analyses in order to identify any biasing 
selection effects in the experimental testing context that may increase the test proce-
dure’s error probabilities and lower its capability for severe tests.

Note that the more precisely specified a preregistered plan, the greater its potential 
to identify biasing selection effects. A vaguely specified preregistration that allows a 
lot of flexibility in the implementation of a planned test procedure has less potential 
to identify biasing selection effects and so will be less effective in allowing a trans-
parent evaluation of the procedure’s capability to perform severe tests (Lakens, 2019, 
pp. 226–227; Lakens et al., 2024, p. 16). Hence, it has been proposed that, ideally, 
preregistered research protocols should include machine-readable code that limits 
undisclosed analytical flexibility by automatically analyzing the data and evaluating 
the results (Lakens & DeBruine, 2021, pp. 10–11; Lakens et al., 2024, p. 16).

Importantly, Mayo’s (1996, 2018) error statistical approach provides only one of 
several different conceptualizations of severity. Other conceptualizations have been 
proposed by Bandyopadhyay and colleagues (Bandyopadhyay & Brittan, 2006; Ban-
dyopadhyay et al., 2016), Hellman, 1997, p. 198), Hitchcock and Sober (2004, pp. 
23–25), Horwich (1982, p. 105), Lakatos (1968, p. 382), Laudan (1997, p. 314), Pop-

1 The error statistical approach also considers post-data error probabilities based on observed p values 
(Mayo, 2018, p. 440; Mayo & Spanos, 2006, pp. 333–334). Consistent with previous work in this area 
(Lakens, 2019; Lakens et al., 2024), I focus on pre-data error probabilities, and Type I error rates in par-
ticular, because they provide the clearest justification for the use of preregistration (see also Ditroilo et al., 
2025, p. 1109).
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per (1962, 1983), and van Dongen et al. (2023). Furthermore, preregistration may 
not improve the transparent evaluation of these other types of severity. In the present 
article, I illustrate this point by showing that preregistration may only improve the 
transparent evaluation of Mayoian severity, not Popperian severity.

I focus on Popperian severity because Popper’s philosophy of science is relatively 
popular, and it has been used to support the case for preregistration. For example, 
Lakens et al. (2024) claimed that “preregistration is a methodological procedure that, 
given a specific philosophy of science (i.e., Popper’s methodological falsification-
ism), improves one part of the research process – the evaluation of the test severity of 
hypothesis tests” (p. 5; see also Lakens, 2019, p. 227; Lakens, 2024, p. 1). Contrary 
to this view, I argue that Mayo’s error statistical conceptualization of severity does 
not fit Popper’s theory-centric philosophy of science (see also Mayo, 1996, pp. 240, 
412; Mayo, 2018, p. 83), and that preregistration does not improve the evaluation of 
severity in Popper’s approach. I begin by explaining Popperian severity and consid-
ering its differences with Mayoian severity.

1.1  Popperian severity

Popperian severity is measured as the conditional probability of a statement of sup-
porting evidence (e) given the conjunction of a hypothesis (h) and background knowl-
edge (b) divided by the conditional probability of e given b alone. In other words, 
severity (e, h, b) = p(e, hb)/p(e, b) (Popper, 1962, p. 391; Popper, 1966b, p. 288; see 
also Popper, 1983, pp. 238–239). Hence, the more probable is e given hb relative to 
e given b alone, the more severe the test of h. Note that “background knowledge” 
(b) refers to the initial conditions of a particular test together with relevant auxiliary 
hypotheses and theories that have been tentatively and temporarily accepted as being 
unproblematic during the test (Popper, 1962, pp. 238, 390; Popper, 1966b, p. 287).

As explained previously, a test procedure’s capability to license inferences with 
Mayoian severity can be reduced by biasing selection effects in the experimental 
testing context. In particular, unplanned changes to the way in which a researcher 
constructs and selects hypotheses and evidence during the implementation of a test 
procedure may increase its error probability and decrease its capability for severe 
tests. Hence, the evaluation of Mayoian severity requires a consideration of the 
impact of any biasing selection effects (e.g., Mayo, 1996, pp. 303–304; Mayo, 2008, 
pp. 874–875; Mayo, 2018, pp. 274–275; Mayo & Cox, 2010, pp. 267–270). In con-
trast, the measurement of Popperian severity does not take account of the potentially 
biased way in which a researcher constructs or selects e, h, and/or b in the experi-
mental testing context. As Mayo (1996) explained, in the case of Popperian severity, 
“there is no demand that a specific testing context be delineated, there are just…
requirements in terms of the logical relationships between statements of evidence and 
hypotheses” (p. 209; see also Lakatos, 1978, p. 114; Mayo, 1996, pp. 206–207, 255, 
330; Popper, 2002, pp. 64, 68, 267).

Popper would likely agree with Mayo’s assessment. He argued that a researcher’s 
private psychologically biased reasons for constructing and selecting particular e, h, 
and b for inclusion in a test (e.g., “because I want to get a significant result”) belong 
to the subjective “World 2” context of discovery and, consequently, they do not enter 
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into a deductive method of testing. In contrast, a researcher’s public formal specifi-
cation of a hypothesis test belongs to the autonomous objective “World 3” context 
of justification, which is open to logical and critical scrutiny (Popper, 1962, p. 140; 
Popper, 1974a, pp. 74, 118; Popper, 1983, p. 36; Popper, 1994, pp. 149–150; Popper, 
2002, p. 7; see also Reichenbach, 1938, pp. 6–7).2 Of course, a researcher’s public 
World 3 approach may also be biased. However, as Popper (1994, p. 7) pointed out, 
“it need not create a great obstacle to science if the individual scientist is biased 
in favour of a pet theory,” because science proceeds on the basis of the collective 
criticism of World 3’s arguments and theories by other scientists (e.g., peer review, 
further tests, etc.; see also Dang & Bright, 2021). Hence, “if you are biased in favour 
of your pet theory, some of your friends and colleagues (or failing these, some work-
ers of the next generation) will be eager to criticize your work – that is to say, to 
refute your pet theories if they can” (Popper, 1994, p. 93; see also Popper, 1966a, pp. 
218–219). This collective “critical rationalist” approach is an essential part of Pop-
per’s philosophy of science (Popper, 1966a, pp. 229–231; Popper, 1994, p. 159), and 
it may be described as “theory-centric” because it occurs between and within relevant 
theories in World 3 (Popper, 1962, p. 26; Popper, 1974a, pp. 15, 82; Popper, 1983, pp. 
28–30, 32; see also Musgrave, 2010).3

Although Popper was not concerned about psychological bias in researchers’ con-
struction and selection of hypotheses and evidence, he was concerned about an epis-
temological bias during testing. In particular, he argued that evidence e could only 
corroborate hypothesis h “if e is the result of genuine or sincere attempts to refute 
h” (Popper, 1983, p. 235; see also Popper, 2002, pp. 437–438). Note that sincer-
ity “is not meant in a psychologistic sense” (Popper, 1974b, p. 1080). Hence, it is 
not intended to address psychologically motivated biasing selection effects (Popper, 
1974b, p. 1080). Instead, Popper’s “requirement of sincerity” (Popper, 2002, p. 437) 
represents a “methodological rule” (Popper, 1974b, p. 1080) that is intended to sup-
port his falsificationist epistemology over that of verificationism (Popper, 1983, p. 
235). He proposed two ways of implementing this rule.

First, “we can partly formalize…[the requirement of sincerity] by demanding that 
our empirical test statements should be unexpected or improbable in the light of our 
background knowledge; that is to say, their probability, given the background knowl-
edge, should be (considerably) less than ½” (Popper, 1983, p. 253). In other words, 
“p(e, b) ≪ ½” (Popper, 1983, p. 238). The more improbable is e given b alone, the 
more severe and sincere the test.

2 Popper (1974a, pp. 74, 108–109) distinguished between three worlds. World 1 is the physical world. World 
2 is the private psychological world of subjective beliefs, intentions, and experiences. Finally, World 3 is 
the public epistemological world of objective problems, theories, and reasons. Similar to Worlds 2 and 3, 
Reichenbach (1938, pp. 6–7) distinguished between (a) “processes of thinking in their actual occurrence” 
in the psychological “context of discovery” and (b) the “rational reconstruction” or “logical substitute” of 
these subjective thought processes in an epistemological “context of justification.”
3 The term “theory-centric” is intended to denote a consideration of theories as the starting point for any 
scientific investigation. This consideration is not necessarily impartial (Popper, 1962, pp. 14–18; Popper, 
1966a, p. 219; Popper, 1994, pp. 22, 93), and it does not necessarily refer to high-level theories such as the 
theory of relativity. It may also refer to simple theories such as “all swans are white” (e.g., Popper, 1983, 
p. xx) and background theories such as auxiliary theories about measurement (Popper, 1962, pp. 238, 390; 
Popper, 1966b, p. 287).
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Second, we should design “crucial” tests in “which the theory to be tested predicts 
results which differ from results predicted by other significant theories, especially by 
those theories that have been so far accepted” (Popper, 1983, p. 235). In particular, 
we must pit our primary hypothesis h against a significant, accepted, rival hypothesis 
h′ that predicts conflicting results given the same background knowledge (Popper, 
1962, pp. 112, 197, 246; Popper, 1974a, pp. 13–15, 354, Footnote 7; Popper, 1974b, 
p. 995; Popper, 1983, pp. 188, 233–236; Popper, 1994, p. 7; Popper, 2002, p. 277; 
see also Bandyopadhyay & Brittan, 2006, p. 276; Bandyopadhyay et al., 2016, pp. 
127–128; Lakatos, 1968, p. 380; Lakatos, 1978, p. 24, Footnote 1). It is only the 
refutation of h′ that allows a sincere corroboration of h (Popper, 1974a, pp. 14–15; 
Popper, 1974b, pp. 995, 1009; Popper, 2002, pp. 66–67, 82).

In summary, Popper’s “requirement of sincerity” represents a methodological rule 
that we should “try to construct severe tests, and crucial test situations” (Popper, 
1974a, p. 14). The more severe and crucial the test, the more it is “sincere,” and the 
less biased it is towards a “cheap” (verificationist) corroboration (Popper, 1983, pp. 
130, 163, 257).

Popper argued that “the severity of our tests can be objectively compared; and if 
we like, we can define a measure of their severity” (Popper, 1962, p. 388; Popper, 
1966b, p. 287; see also Popper, 1962, pp. 220, 390–391; Popper, 1983, pp. 238–239). 
However, he conceded that “the requirement of sincerity cannot be formalized” (Pop-
per, 2002, p. 437), because “sincerity is not the kind of thing that lends itself to 
logical analysis” (Popper, 1983, p. 236; see also Popper, 1962, p. 288; Popper, 1983, 
pp. 244, 254; Popper, 2002, p. 419). Nonetheless, it remains possible to undertake 
an informal assessment of sincerity given the current state of World 3 knowledge 
(Popper, 1974b, p. 1080). In particular, collective critical rationalism may be used to 
evaluate the sincerity of a test by assessing the extent to which (a) p(e, b) ≪ ½ and 
(b) h′ represents a significant accepted theory that predicts contradictory results to h 
(e.g., Lakatos, 1968, 1978; Laudan, 1997, pp. 314–315; see also Bandyopadhyay & 
Brittan, 2006, p. 264; van Dongen et al., 2023, p. 521). Hence, in Popper’s approach, 
an informal critical rational evaluation of sincerity can be used to contextualize and 
interpret a more formal measure of severity.4 Importantly, and in contrast to Mayo’s 
error statistical approach, neither assessment requires a consideration of researchers’ 
private World 2 construction or selection of e, b, h, or h′ in the experimental testing 
context.

4 Popper (1962, pp. 247–248) argued that, for scientific knowledge to grow, theories must replace one 
another based on their successful predictions of new effects in crucial tests. However, determining which 
effects are “new” (i.e., p[e, b] ≪ ½) and which tests are “crucial” (h vs. h′) requires a conjectural recon-
struction of problem-situations within their original historical contexts (see also Popper, 1974a, p. 176). 
There are two points to note here. First, different conjectural reconstructions that refer to different histori-
cal contexts will yield different conclusions (Lakatos, 1968, p. 387; Lakatos, 1978, pp. 79, 86). Hence, 
contrary to the error statistical approach, judgements of Popperian sincerity may vary depending on their 
historical context (Chalmers, 2010, p. 60). Second, conjectural reconstructions in World 3 do not require a 
consideration of a researcher’s subjective experiences in World 2. Indeed, a researcher’s conscious expe-
rience of a problem-situation may be quite different from a conjectural reconstruction of that situation 
(Popper, 1974a, pp. 179, 242).
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1.2  Mayoian severity

Mayo was not satisfied with Popper’s measure of severity (e.g., Mayo, 1996, p. 207; 
Mayo, 2006, p. 11), and she felt that his “theory-dominated” critical rational assess-
ment of sincerity was inadequate (Mayo, 1997, p. 331; see also Mayo, 1996, pp. 59, 
264; Mayo, 2006, p. 11; Mayo, 2018, pp. 40–41; Mayo & Spanos, 2006, p. 328). In 
her view, “it is impossible to assess reliability or severity with just statements of data 
and hypotheses divorced from the experimental context in which they were gener-
ated, modeled, and selected for testing” (Mayo, 2006, p. 36).

In response to these perceived deficiencies, Mayo (1996) developed an account of 
severity that refers to a test procedure’s experimental testing context and its frequen-
tist error probabilities across a hypothetical series of its repetitions (Mayo & Spanos, 
2010, p. 21; see also Mayo, 1996, p. 72; Mayo, 2018, pp. 72–73; Mayo & Spanos, 
2006, p. 328).5 As she explained:

We must look at the particular experimental context in which the evidence 
was garnered and argue that its fitting a hypothesis is very improbable, if that 
hypothesis is false. This relativity to an experimental testing model and the 
focus on (frequentist) probabilities of test procedures distinguish my account, 
particularly from others that likewise appeal to probabilities to articulate the 
criterion for a good or severe test – even from accounts that at first blush look 
similar, most notably Popper’s (Mayo, 1996, pp. 206–207).

Importantly, Mayo’s (1996) concept of an “experimental context” includes the poten-
tially unreported and psychologically biased process by which researchers might 
construct and select hypotheses and evidence during the implementation of a test 
procedure. To be clear, like Popper, Mayo (1996) accepts that it does not matter that 
a researcher’s psychologically biased intentions may influence the specification of 
a test procedure (Mayo, 1996, p. 409; see also Mayo, 1996, pp. 148, 263; Mayo, 
2018, pp. 9–10). However, unlike Popper, she argues that it does matter that the 
researcher’s psychological intentions may cause biasing selection effects during the 

5 Following the Neyman-Pearson approach to statistical hypothesis testing, Mayo (1996) conceptualizes 
error probabilities as occurring “in a long series of trials of this experiment” (p. 181; see also Mayo & 
Spanos, 2011, p. 162). The problem with this approach is that it assumes that we know the theoretically rel-
evant and irrelevant aspects of “this experiment” (Staley, 2002, pp. 288–289). Mayo (1996, pp. 172–173, 
298–299) did not consider this reference class problem to be a difficulty for her approach. However, Fisher 
(1955, p. 71; 1956, pp. 77–78, 82, 91) saw it as a fatal flaw in the scientific application of the Neyman-
Pearson approach because, as scientists, we must concede that we do not fully understand the relevant and 
irrelevant aspects of our experimental procedures (Rubin, 2020b; Schaller, 2016, p. 108). Popper would 
agree that our experimental procedures are “impregnated” with fallible theories (Popper, 1974a, p. 145; 
Popper, 1983, p. 312; Popper, 2002, p. 94; see also Lakatos, 1978, p. 54; Popper, 1962, pp. 230, 238). As he 
noted, “any single case has so many properties that we cannot say, just by inspection, which of them are to 
be included among the specifications defining what should be taken as ‘our’ experiment, and as ‘its’ repeti-
tion” (Popper, 1967, pp. 38–39; see also Popper, 1983, p. 308). We may unintentionally exclude theoreti-
cally important specifications (Popper, 1962, p. 230). Hence, we must imagine that “a long series of trials 
of this experiment” will contain currently unknown, theoretically relevant variations of “this experiment” 
(i.e., relevant subsets differentiated by hidden moderators) that imply different error probabilities (Fisher, 
1955, p. 71; Fisher, 1956, p. 33).
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implementation of that procedure. It matters, she argues, because biasing selection 
effects may increase the procedure’s frequentist error probability and lower its capa-
bility to license inferences severely (e.g., Mayo, 1996, p. 349). Consequently, we 
must check or “audit” (Mayo, 2018, Tour III) the entire experimental testing context, 
including its unreported parts, in order to pick up on any biasing selection effects 
during the implementation of the test procedure and meet a minimal requirement 
for severity (Mayo, 1996, p. 298; Mayo, 2018, pp. 5, 9, 49, 92). In contrast, Pop-
per (1967, pp. 34, 39) argued that hypothetical probability distributions are defined 
relative to a researcher’s formal public World 3 specifications of an experiment and, 
consequently, they are not affected by unspecified (unreported and unknown) issues 
that may occur during the implementation of that experiment.

At a more general level, Mayo rejects Popper’s “theory-dominated” approach 
and develops a philosophy of science in which “what we rely on…are not so much 
scientific theories but methods for producing experimental effects” (Mayo, 1996, p. 
15; see also Mayo, 1996, pp. 11–12, 17 Footnote 3, 59; Mayo, 1997, p. 331). These 
experimental effects warrant only low-level local claims that are limited to specific 
experimental contexts (Mayo, 2006, pp. 37–38). The error statistical approach does 
not allow an individual test to logically refute universal, generalizable, theories or 
hypotheses (e.g., “all swans are white”; Chalmers, 2010, pp. 60–63; Musgrave, 2010, 
p. 6). Hence, the error statistical approach does not entail Popperian theory testing 
(see also Bandyopadhyay et al., 2016, p. 87), and it “does not find its home in a Pop-
perian framework” (Mayo, 1996, p. 412). Instead, Mayo’s approach is more consis-
tent with the New Experimentalist view that “experiments, as Ian Hacking taught us, 
live lives of their own, apart from high level theorizing” (Mayo, 1996, pp. xiii, 12, 17, 
190, 213; Musgrave, 2010, pp. 108–109). Again, this view conflicts with Popper’s 
theory-centric approach in which “theory dominates the experimental work” (Pop-
per, 2002, p. 90; cf. Mayo, 1996, pp. 59, 264; Mayo, 1997, p. 331; Mayo, 2006, p. 
11; Mayo, 2018, pp. 40–41; see also Popper’s, 1983, pp. 47–48, 50, contrast between 
“inductivist” and theory-centric styles of reporting research).

Nonetheless, Mayo argues that the piecemeal testing of local, experiment-bound 
claims may inform decisions about higher-level theories (Mayo, 1996, p. 191; Mayo, 
2010, pp. 35–36; Mayo & Spanos, 2010, p. 83). As she explained, “when enough is 
learned from piecemeal studies, severe tests of higher-level theories are possible” 
(Mayo, 1996, p. 191). Following a Bayesian conceptualization of severity, Bandyo-
padhyay et al. (2016, pp. 80–82) criticise Mayo’s piecemeal approach, arguing that 
it falls foul of a “probability conjunction” error: If a higher-level theory is taken to 
pass a severe test only when all of its constituent local claims pass severe tests, then, 
following the conjunction rule in probability theory, the probability of observing all 
of the test results that support the theory will always be lower than the probability 
of observing a result that supports any single claim, with this discrepancy increasing 
as more claims are added. Hence, a piecemeal approach leads to the counterintuitive 
conclusion that, “the more local hypotheses that pass severe tests, the less probable 
on the data would be the global theory that comprises them” (Bandyopadhyay et al., 
2016, p. 82). For a further discussion of this issue, please see Bandyopadhyay (2019).
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1.3  Illustrating the differences between Mayoian and Popperian severity

To provide a more concrete illustration of the differences between Mayoian and Pop-
perian severity, consider a researcher who conducts multiple uncorrected and unre-
ported tests in order to find and report a single significant result (i.e., p-hacking). 
They then secretly hypothesize after their significant result is known in order to con-
struct a hypothesis that they report as if it was generated before they conducted their 
analysis (i.e., HARKing). In this case, the researcher has been biased in the selection 
of their reported evidence (i.e., in favor of a test that yields a significant result) and 
the construction of their reported hypothesis (i.e., in favor of a hypothesis that is cor-
roborated by that result). These biasing selection effects have made it easier for the 
researcher to pass false hypotheses during repetitions of their (partially unreported) 
test procedure. Consequently, their method has a relatively low capability to license 
inferences with Mayoian severity.

In contrast, these biasing selection effects do not affect Popperian severity or sin-
cerity because they occur in the experimental testing context, and Popper’s approach 
does not take account of the experimental testing context (Mayo, 1996, p. 209). Pop-
perian severity is measured as the conditional probability of a result (e) given the 
conjunction of a hypothesis (h) and background knowledge (b) relative to the prob-
ability of e given b per se. The researcher’s privately biased selection of e, h, and/or 
b via p-hacking and HARKing does not enter into this measurement.

Popperian sincerity requires that (a) p(e, b) ≪ ½ and (b) h′ represents a significant 
accepted theory that predicts contradictory results to h. Certainly, this requirement 
may not be met, leading to a “cheap” (verificationist) corroboration (Popper, 1983, 
pp. 163, 257). However, the resulting bias is epistemological rather than psycho-
logical, and it can be evaluated via a critical rational discussion of publicly available 
information independent from any biasing selection effects that may be hidden in the 
experimental testing context (Popper, 1974b, p. 1080).

More generally, the researcher’s private psychological reasons for conducting and 
reporting their specific test (i.e., because their previous tests did not yield a significant 
result) and for constructing their specific hypothesis (i.e., because it was passed by 
the current result) belong to Popper’s World 2 of subjective intentions rather than his 
World 3 of objective specifications (Popper, 1974a, pp. 74, 108–109, 299). From a 
Popperian perspective, what is relevant is the researcher’s formal, public, scientific 
specification of their hypothesis test, and they can rationally reconstruct this specifi-
cation in World 3 in a way that is epistemically independent from their private psy-
chological intentions in World 2 (Popper, 1974a, pp. 179, 242; see also Rubin, 2022, 
pp. 540–542; Rubin & Donkin, 2024, pp. 2023–2024).6 Furthermore, the researcher’s 

6 Popper (1974b) also argued that researcher deception does not pose a fundamental difficulty for science. 
He noted that even researchers who believe they are reporting the truth may, in fact, be making objectively 
false statements (see also Dang & Bright, 2021, p. 8196). Consequently, science must always proceed via 
questioning, critical discussion, and decision making rather than by attempting to discern whether particu-
lar researchers are reporting what they believe to be the truth. As Popper (1974b) explained, “I assert that, 
however different, psychologically, lying may be from speaking what is subjectively felt to be the truth, it 
is not this psychological difference that science is ultimately based on, but the critical tests by which we 
try to discern the objective difference between truth and falsity” (p. 1113).
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psychologically biased reasoning and behavior in World 2 does not imply an incor-
rect, invalid, or unsound hypothesis test in World 3. Consequently, in the Popperian 
approach, even unplanned and subjectively biased hypothesis tests may be objec-
tively severe and sincere.

Mayo and Cox (2010, pp. 268, 271–272) provide a further example. A researcher 
intends to conduct a linear regression analysis of y on x. However, they make the 
post-data decision to conduct a regression of log y on log x. According to Mayo and 
Cox, if the researcher makes this decision because they conducted both tests and the 
second test provides “the more extreme statistical significance…, then adjustment for 
selection is required” (p. 271). On the other hand, if the researcher makes this decision 
because “inspection of the data suggests that it would be better to use the regression 
of log y on log x,…because the relation is more nearly linear or because second-
ary assumptions, such as constancy of error variance, are more nearly satisfied” (p. 
268), then “no allowance for selection seems needed…[because] choosing the more 
empirically adequate specification gives reassurance that the calculated p-value is 
relevant for interpreting the evidence reliably” (p. 272). However, consider a situa-
tion in which the selected test provides both the more extreme statistical significance 
and the more empirically adequate specification. In this case, an error statistician 
should attempt to ascertain the researcher’s subjective World 2 intentions because 
those intentions may indicate the operation of a biasing selection effect that alters 
the test procedure’s capability to perform severe tests in its hypothetical repetitions 
(Mayo, 1996, pp. 348–349; Mayo, 2018, pp. 49, 286). Hence, critics have argued 
that error statisticians need to take account of private World 2 intentions “locked 
up in the scientist’s head” (Mayo & Spanos, 2011, p. 186; see also Mayo, 1996, pp. 
346–350; Mayo, 2008, pp. 860–861). In contrast, a theory-centrist would only refer 
to the researcher’s public objective World 3 specifications because “science is part of 
world 3, and not of world 2” (Popper, 1974b, p. 1148). Consequently, following the 
principle of “relativity to specification” (Popper, 1967, p. 35), they would limit their 
inference to the formally reported test, including its “selected repeatable conditions” 
(Popper, 1983, p. 312) and its associated hypothetical sampling distribution (Fisher, 
1955, p. 75; Fisher, 1956, pp. 29, 44, 77–78, 82; Rubin, 2024c).

Mayo (1996, 2018) would argue that Popper’s approach is insufficient to address 
his requirement of sincerity in the above examples. As she explained:

If you engage in cherry picking, you are not ‘sincerely trying,’ as Popper puts 
it, to find flaws with claims, but instead you are finding evidence in favor of 
a well-fitting hypothesis that you deliberately construct – barred only if your 
intuitions say it’s unbelievable. The job that was supposed to be accomplished 
by an account of statistics now has to be performed by you. Yet you are the 
one most likely to follow your preconceived opinions, biases, and pet theories 
(Mayo, 2018, pp. 40–41).

However, from a Popperian perspective, even a “cherry-picked” hypothesis that is 
deliberately chosen because it is corroborated can be said to have undergone a sincere 
test as long as other researchers agree that (a) p(e, b) ≪ ½ and (b) h′ represents a sig-
nificant accepted theory that predicts contradictory results to h. The “cherry-picking” 
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that concerned Popper occurs in a public, transparent manner at the epistemological 
level in World 3, rather than in a private, unreported manner at the psychological 
level in World 2.

Finally, it is important to reiterate that the Popperian requirement of sincerity is 
established via a public, theory-centric, critical rationalist appraisal given the current 
state of World 3 knowledge rather than via “your intuitions” (Mayo, 2018, p. 40). Of 
course, Mayo (2018, p. 41) is correct that this appraisal may be affected by “your pre-
conceived opinions, biases, and pet theories.” However, it is not only “performed by 
you” (Mayo, 2018, p. 40). Again, critical rationalism is a collective process in which 
researchers’ opinions and biases are pitted against those of other researchers in an 
ongoing critical discussion in the scientific community (Popper, 1966a, pp. 217–219; 
Popper, 1974b, p. 1080; Popper, 1994, pp. 7, 93; Schaller, 2016, p. 111). As Popper 
(1974b) explained:

I have always tried to show that sincerity in the subjective sense is not required, 
thanks to the social character of science which has (so far, perhaps no further) 
guaranteed its objectivity. I have in mind what I have often called ‘the friendly-
hostile cooperation of scientists’ (p. 1080).

This friendly-hostile cooperation “does not require that scientists be unbiased, only 
that different scientists have different biases” (Hull, 1988, p. 22; see also Popper, 
1962, pp. 14–18; Popper, 1966a, p. 219; Popper, 1994, pp. 22, 93). Hence, for Pop-
per, an objective evaluation of the requirement of sincerity is not “supposed to be 
accomplished by an account of statistics” (Mayo, 2018, p. 40). It is supposed to be 
accomplished through a well-conducted critical discussion among scientists (Popper, 
1966a, pp. 217–218; Popper, 1974a, p. 22; Popper, 1983, p. 48). As Popper (1983) 
explained, “objectivity is not the result of disinterested and unprejudiced observation. 
Objectivity, and also unbiased observation, are the result of criticism” (p. 48; see also 
Lakatos, 1978, p. 15; Popper, 1994, p. 93).

1.4  Using preregistration to transparently evaluate severity

The differences between Mayoian and Popperian severity are particularly relevant 
in the context of preregistration. A well-specified preregistration may improve the 
transparent evaluation of Mayoian severity by allowing others to check for any bias-
ing selection effects that have occurred in the otherwise hidden experimental testing 
context during the implementation of a test procedure (e.g., Lakens, 2019, 2024; 
Lakens et al., 2024; see also Mayo, 1996, p. 296; Mayo, 2018, p. 319; Staley, 2002, 
p. 289). However, the same rationale does not apply in the case of Popperian severity.

A valid measurement of Popperian severity can be made using a potentially 
p-hacked result (e), a potentially HARKed hypothesis (h), and potentially biased 
background knowledge (b). In addition, the requirement of sincerity can be transpar-
ently evaluated via a public, collective, critical rational discussion of p(e, b) and h 
vs. h′ given the current state of World 3 knowledge. Preregistration does not facili-
tate transparency in either case because neither evaluation requires knowledge of the 
researcher’s planned hypothesis test or unreported biasing selection effects. Indeed, 
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Popper’s “theory-dominated” approach can be applied retrospectively via a ratio-
nal reconstruction of an unplanned test based on the e, b, h, and h′ that we have to 
hand and in the context of the current state of scientific knowledge (Mayo, 1996, pp. 
67–68; see also Lakatos, 1978, p. 114; Popper, 1967, pp. 35–36; Reichenbach, 1938, 
p. 5; cf. Mayo, 1996, p. 17).7

1.5  Type I error rate inflation

The differences between the error statistical and theory-centric approaches can also 
be illustrated in relation to Type I error rate inflation. The error statistical approach 
distinguishes between two types of Type I error rate. The “computed” error rate is 
based on the number of formally reported tests, whereas the “actual” error rate is 
based on the number of reported tests and unreported tests in the experimental test-
ing context. If some tests are unreported, then the “actual” error rate will be higher 
than the “computed” error rate. Hence, uncorrected multiple testing and selectively 
reported significant results (i.e., p-hacking) may cause an inflation of the “actual” 
Type I (familywise) error rate above the “computed” error rate (Mayo, 1996, pp. 
303–304; Mayo, 2008, pp. 874–875; Mayo, 2018, pp. 274–275; Mayo & Cox, 2010, 
pp. 267–270).

From this error statistical perspective, a well-specified preregistered plan is help-
ful because it can be used to transparently verify the number of tests in the planned 
experimental testing context, which may include some tests that were conducted dur-
ing the implementation of the test procedure but not reported (Nosek et al., 2018, 
p. 2601; Nosek et al., 2019, p. 816). The “actual” number of tests (k), can then be 
used to compute the planned test procedure’s “actual” familywise error rate (i.e., 1 − 
[1 − α]k) and determine whether it is higher than the “computed” error rate.

For example, imagine that a researcher preregisters three tests (i.e., k = 3), each 
with a nominal alpha level of 0.05, but then selectively reports only one of these 
tests because it was the only one to yield a significant result (i.e., a biasing selection 
effect). In this case, the “actual” familywise error rate would be 0.14 (1 − [1 − 0.05]3) 
even if the “computed” error rate for the reported test was 0.05 (1 − [1 − 0.05]1). 

7 Popper argued that “a hypothesis can only be empirically tested…after it has been advanced” (Popper, 
2002, p. 7). However, he made this point to distinguish between inductivism and deductivism rather than 
the pre- and post-designation of specific tests, and predictions (basic statements) can be deduced from 
hypotheses and background knowledge after viewing corroborating or refuting results (i.e., “retrodiction” 
& “explicanda”; Popper, 2002, p. 38, Footnote *2; see also Brush, 2015, p. 78; Lakatos, 1978, pp. 35, 
72–73, 114, 185; Rubin & Donkin, 2024). Popper also argued that a hypothesis test requires agreement 
among investigators about what constitutes (a) unproblematic background knowledge (Popper, 1962, p. 
237; Popper, 1983, p. 244), (b) an intersubjectively testable experiment (Popper, 1974b, p. 970; Popper, 
2002, p. 63, 86), and (c) “criteria of refutation…laid down beforehand” (Popper, 1962, p. 38, Footnote 3). 
However, this agreement is temporary, tentative, and open to challenge and revision “at any time” (Popper, 
1962, p. 238; Popper, 1974a, p. 34; Popper, 1994, p. 160; see also Lakatos, 1978, pp. 42–45; Popper, 2002, 
p. 63). Consequently, pre-data agreements can be criticized and superseded by post-data agreements that 
incorporate new information and better interpretations (Popper, 1983, pp. xxx, Footnote 10; 188–189; 189, 
Footnote 3; Popper, 2002, p. 63; see also Lakatos, 1978, p. 45), even if one or more parties to the agree-
ment are guided by hidden (World 2) agendas. Only naïve methodological falsificationism prohibits this 
revisionism (Lakatos, 1978, p. 42), and Popper (1983, pp. xxii-xxiii, xxxv) rejected this naïve approach 
because it is divorced from collective critical rationalism.
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Correspondingly, the “actual” minimum level of severity (1 − 0.14 = 0.86) would be 
lower than the “computed” minimum level (1 − 0.05 = 0.95; Mayo, 1996, p. 399). 
Preregistration is useful in this type of situation because it allows the identification of 
Type I error rate inflation and the associated reduction in the test procedure’s capabil-
ity to perform severe tests.

Importantly, however, this error statistical perspective does not apply in a “theory 
first” approach (Rubin, 2024a). In this case, the “actual” Type I error rate does not 
necessarily refer to the “experiment-wide significance level” of the “entire experi-
mental testing context” and its associated “experimental distribution” (Mayo, 2018, 
p. 275; Mayo, 1996, pp. 143, 298), because not all of the tests in the experimental 
testing context may be logically related to a reported statistical inference (Rubin, 
2021b, 2024c). Instead, the “actual” (relevant) Type I error rate is the familywise 
error rate of the tests that are formally used to make a statistical inference about a 
(potentially unplanned) hypothesis, and the number of these tests (k) can be logically 
deduced from the formally reported statistical inference.

For example, if a statistical inference is made about a single individual null 
hypothesis H0,1 based on a single test of that hypothesis (i.e., k = 1) using an α of 0.05, 
then the “actual” Type I error rate for that inference will be the same as the “com-
puted” (reported) nominal error rate (0.05 or 1 − [1 − 0.05]1), even if the researcher 
performed multiple other planned or unplanned tests, secretly or transparently, during 
their implementation of the experiment (Hitchcock & Sober, 2004, pp. 23–25; Rubin, 
2017a, 2021b, 2024b, c). In this case, it would be illogical to argue that these other 
tests (e.g., tests of H0,2, H0,3, H0,4, etc.) contribute to the error rate for the statistical 
inference about H0,1 because they are not logically related to this inference, which is 
about H0,1 per se.

Similarly, if an inference is made about a joint intersection null hypothesis that 
is composed of three constituent null hypotheses {H0,1 & H0,2 & H0,3} (i.e., k = 3), 
then the “actual” familywise error rate can be logically deduced from the formally 
reported statistical inference as being 0.14 (i.e., 1 − [1 − 0.05]3).8 In this case, it would 
be illogical to use a familywise error rate that included a test of H0,4, even if H0,4 was 
planned and/or conducted, because a familywise error rate that includes H0,4 warrants 
a different statistical inference to the one that is reported (i.e., an inference about 
{H0,1 & H0,2 & H0,3 & H0,4} rather than {H0,1 & H0,2 & H0,3}; Rubin, 2024b, c).

Error statisticians might argue that theory-centrists are “using the wrong sampling 
distribution” in these examples because it does not reflect the “actual” test procedure 
(Spanos & Mayo, 2015, p. 3546). However, this argument depends on how we define 
the “actual” test procedure (Mayo, 1996, p. 304). In the error statistical approach, 
the “actual” procedure includes a researcher’s unreported tests in the experimental 
testing context. For example, if a researcher tests null hypotheses H0,1 and H0,2 and 
then makes an inference about H0,1 (because p < 0.05) but does not report their test 
of H0,2 (because p > 0.05), then their “actual” test procedure includes the unreported 

8 Joint hypotheses are indicated within braces { } throughout. Also note that, like individual hypotheses, 
joint hypotheses are statistical hypotheses (study-specific predictions) rather than substantive hypotheses 
(universal statements). This point is important because Type I error rates only refer to inferences about 
statistical hypotheses, not substantive hypotheses. In particular, they do not cover the wide range of infer-
ential errors that may occur over and above random sampling error (Rubin, 2024c, p. 49).
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test of H0,2, and the “right” sampling distribution is given under the joint intersection 
null hypothesis {H0,1 & H0,2} (i.e., the “global” or “universal” null; Mayo, 2008, p. 
875; Mayo & Cox, 2010, p. 269; Mayo, 2018, p. 276). In contrast, in a theory-centric 
approach, the “actual” test procedure only includes tests that are logically related to 
the formally reported statistical inference. If that inference is restricted to H0,1, then 
the test of H0,2 is not part of the “actual” test procedure, and the “right” (relevant) 
sampling distribution is given under H0,1, not {H0,1 & H0,2} (Rubin, 2024b, c; see also 
Popper, 1967, p. 36). Figure 1 illustrates this point.

In summary, in the error statistical approach, the “actual” Type I error rate is based 
on the tests in the experimental testing context, and it is inflated above the “com-
puted” error rate when the computed error rate does not refer to all of these tests. 
Consequently, preregistration can be a useful way of revealing the planned testing 
context to identify any biasing selection effects, Type I error rate inflation, and corre-
sponding reduction in a test procedure’s capability to perform severe tests. In contrast, 
in a theory-centric approach, the “actual” Type I error rate can be logically deduced 
from the formally reported statistical inference, even if that inference was unplanned 
and selectively reported. In this case, any Type I error rate “inflation” will be the 
result of a logical inconsistency between a formally reported statistical inference and 
a formally computed familywise error rate rather than the result of undisclosed tests 
in the experimental testing context. This inconsistency can be identified and rectified 
through a logical analysis of the relation between the reported inference and error rate 
without needing to consult a preregistered plan (for examples, see Rubin, 2024b, c).

Fig. 1  Illustration of error statistical and theory-centric approaches to Type I error rates
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2  Preregistration does not improve the transparent evaluation of 
Mayoian severity when deviations are allowed

So far, I have argued that preregistration does not improve the transparent evaluation 
of Popperian severity, but that a well-specified preregistration can improve the trans-
parent evaluation of Mayoian severity. In this section, I add an important caveat to 
this argument: A well-specified preregistration can only improve the transparent eval-
uation of Mayoian severity if the associated test procedure does not permit deviations 
in its implementation. The deviations that I refer to here are those that are intended 
to maintain or increase the validity of a test procedure in light of unexpected issues 
that arise in particular samples of data. I argue that a test procedure that allows these 
sample-based validity-enhancing deviations during its implementation will suffer an 
unknown inflation of its Type I error rate and, consequently, an unknown reduction 
of its capability to license inferences with Mayoian severity.

2.1  Sample-based validity-enhancing deviations cause an unknown inflation of 
the Type I error rate

A researcher who preregisters their test procedure may encounter an unforeseen event 
or an unexpectedly violated assumption or falsified auxiliary hypothesis in their cur-
rent sample. Assuming that they treat their preregistration as “a plan, not a prison” 
(Nosek et al., 2019, p. 817), they may then deviate from their preregistration in order 
to adapt their test procedure to maintain or increase its validity in light of this unan-
ticipated issue (Nosek et al., 2018, p. 2602; Lakens, 2024, pp. 2, 7; Mayo & Cox, 
2010, p. 268, Example 4; Rubin, 2017b, p. 326; Rubin & Donkin, 2024, p. 2030). 
For example, a researcher may adhere to a preregistered Student’s t-test when the 
assumption of homogeneity is met in one sample. However, they may deviate from 
their plan and use Welch’s t-test when this assumption is unexpectedly violated in 
another sample, because Welch’s test provides a more valid approach in this situation 
(Lakens, 2024, p. 8). Consequently, in a hypothetical long run of random sampling, 
the researcher’s test procedure would use two different tests to test the same joint 
intersection null hypothesis (i.e., Student’s t-test & Welch’s t-test). This “forking 
path” in the experimental testing context inflates the test procedure’s “actual” Type I 
(familywise) error rate due to the multiple testing problem (Gelman & Loken, 2013, 
2014; Rubin, 2017b; see also García-Pérez, 2012, pp. 4–5).

Note that sample-based validity-enhancing deviations do not represent Mayoian 
biasing selection effects because they are based on reasonable and/or conventional 
analytical principles with the aim of making a valid inference rather than a “desired 
inference” (Mayo, 2018, p. 105; see also Mayo & Cox, 2010, pp. 271–272). Nonethe-
less, during a hypothetical long run of repetitions of a test procedure that allows these 
deviations, the experimental testing context will include multiple tests that inflate 
the procedure’s Type I (familywise) error rate. Hence, as Gelman and Loken (2013) 
explained, this multiplicity “can be a problem, even when there is no ‘fishing expedi-
tion’ or ‘p-hacking’” (p. 1; see also Rubin, 2017b, p. 324).

Also note that the forking paths issue is separate from the concern about the dou-
ble use of data when checking test assumptions (e.g., when testing the assumption 
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of homogeneity). Mayo is correct that, when researchers check test assumptions, the 
data can be considered to be “remodelled” to address a different question to the one 
addressed by the primary hypothesis (Mayo, 1996, pp. 137, 271–275; Mayo, 2018, p. 
319). Hence, there is no circular reasoning in this case (see also Popper, 1962, p. 288; 
Popper, 1983, p. 133; Rubin & Donkin, 2024, p. 2023). Again, however, it remains 
the case that the introduction of a new test (e.g., Welch’s t-test) based on sample-spe-
cific (data-dependent) information creates a forking path in the experimental testing 
context, and the uncorrected multiple testing in repetitions of the forked test proce-
dure inflates its “actual” Type I (familywise) error rate.

A single sample-based validity-enhancing deviation opens up a single forking path 
in the experimental testing context. However, the error statistical approach operates 
on the basis of frequentist counterfactual reasoning that considers how a test proce-
dure would perform given many different samples of data (Mayo, 2018, pp. 52–53). 
Consequently, during a hypothetical long run of random sampling, we must imagine 
that different samples may require different validity-enhancing deviations based on 
different unforeseen events, violated assumptions, and falsified auxiliary hypotheses. 
A test procedure that allows such deviations in its implementation will include an 
unknown number of deviation-based tests in its experimental testing context. Given 
that k is unknown in this case, we cannot compute the test procedure’s “actual” Type 
I (familywise) error rate using 1 − [1 − α]k, and the error rate becomes “uncontrolled” 
(for related points, see Ditroilo et al., 2025, p. 1111; Nosek & Lakens, 2014, p. 138; 
Nosek et al., 2018, p. 2601; Nosek et al., 2019, p. 816; Rubin, 2017a, 2024c). Con-
sequently, when a preregistered test procedure is treated as a “plan, not a prison,” we 
cannot transparently evaluate the procedure’s capability to license inferences with 
Mayoian severity (see also Mayo, 1996, pp. 313–314; Mayo, 2018, pp. 200–201; 
Staley, 2002, p. 289).

Contrary to this view, Lakens (2024) proposed that peers can evaluate whether 
sample-based validity-enhancing deviations increase or decrease Mayoian severity 
by considering (a) a researcher’s flexibility with regards to other “plausible” and 
“defensible” analyses and (b) the results that follow from these alternative analy-
ses (i.e., sensitivity analyses). Certainly, from a Popperian perspective, theories that 
allow a wider “range” (“Spielraum,” “scope”) of predictions in any given study 
will have lower “empirical content” and should therefore be downgraded a priori as 
being less “severely testable” (Popper, 2002, pp. 95, 108; see also Lakatos, 1968, pp. 
375–376; Lakens, 2019, p. 224; Szollosi & Donkin, 2021, pp. 2–3; Rubin, 2017c, 
p. 316; Rubin, 2020a, p. 378; Rubin & Donkin, 2024, p. 2035). However, as dis-
cussed earlier, preregistration does not improve the evaluation of Popperian severity. 
Furthermore, it is important not to confuse Popperian and Mayoian severity here. 
From an error statistical perspective, if a test procedure allows sample-based validity-
enhancing deviations in its implementation, then its capability for severe tests will be 
reduced by an unknown extent because each new sample may necessitate the addition 
of a new “plausible” and “defensible” test in the experimental testing context, lead-
ing to an unknown inflation of the procedure’s Type I (familywise) error rate. Lakens 
(2024) does not consider this forking paths problem in his approach to sample-based 
deviations.
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In summary, a test procedure that is preregistered but that also permits sample-
based validity-enhancing deviations in its implementation will suffer an unknown 
inflation of its “actual” Type I (familywise) error rate and, consequently, an unknown 
reduction in its capacity to licence inferences with Mayoian severity. In this case, 
the only conclusion we can draw is that Mayoian severity is “low because we don’t 
have a clue how to compute it!” (Mayo, 2018, p. 201; see also Mayo, 1996, p. 313; 
Mayo, 2018, p. 280), which is a conclusion that could also be reached in the absence 
of preregistration. Hence, if preregistration is treated as “a plan, not a prison,” then it 
will not improve the transparent evaluation of Mayoian severity beyond that of a non-
preregistered procedure (for related points, see Devezer et al., 2021, p. 17; Navarro, 
2020, p. 8).

2.2  Conditional inference

One solution to the forking paths problem is to limit inferences to the single ana-
lytical path that has been followed in relation to the current sample (e.g., Welch’s 
t-test) rather than the two paths that would be followed in a hypothetical long run of 
repeated random sampling (e.g., Student’s t-test & Welch’s t-test; Rubin, 2017b, p. 
327; 2020a, 2024c). This conditional inference approach is consistent with Fisher’s 
(1955, 1956) theory of significance testing, which refers to a hypothetical population 
that is assumed to represent the currently observed sample “in all relevant respects” 
(Fisher, 1955, p. 72). To allow the opportunity for scientific progress and “learning 
by observational experience” (Fisher, 1956, pp. 99–100; see also Fisher, 1955, p. 73; 
Popper, 1983, pp. 40, 46), Fisher’s approach also assumes that we do not yet fully 
understand all of the “relevant” aspects of the population, and that it contains undis-
covered “relevant subsets” (subpopulations) that represent exceptions to the current 
conditional inference (Fisher, 1956, pp. 32–33, 55, 57, 80, 85–88; see also Popper, 
1967, p. 39; Rubin, 2020b, 2021a). In this respect, Fisherian conditional inference is 
incompatible with the Neyman-Pearson theory of hypothesis testing, which assumes 
that Type I and II error rates apply unconditionally across a long run of random sam-
ples that are drawn from the same or equivalent fixed, fully-known, and well-speci-
fied population(s) (Fisher, 1955, p. 71; Rubin, 2021a, p. 5825). As Lehmann (1993) 
explained, this issue of conditional versus unconditional inference “seems to lie at 
the heart of the cases in which the two theories disagree on specific tests” (p. 1246).

In an attempt to bridge the gap between the Fisherian and Neyman-Pearson theo-
ries, Mayo (2014) proposed that we use a “weak conditionality principle” to condi-
tion Neyman-Pearson long-run error rates on “the experiment actually run” (p. 232; 
see also Mayo & Cox, 2010; Mayo, 2018, pp. 171–173). This weak conditionality 
principle is supposed to avoid the Type I error rate inflation caused by forking paths 
because it limits Neyman-Pearson error rates to tests that are “actually run” (e.g., 
Welch’s t-test, not Student’s t-test). However, unlike Fisher’s single-sample version 
of conditionality, the weak conditionality principle continues to imply hypothetical 
repetitions of “the experiment actually run” and repeated random sampling from the 
associated population. Hence, consistent with the Neyman-Pearson approach, we 
must consider how “the experiment that did happen.…would behave in general, not 
just with these data, but with other possible data sets in the sample space” (Mayo, 
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2018, pp. 52–53). Furthermore, to be consistent with prior experience and a com-
mitment to scientific progress, we must imagine that this experiment will sometimes 
encounter samples that necessitate deviations. Consequently, the weak conditionality 
principle does not prevent Neyman-Pearson error rates from becoming inflated to an 
unknown extent because “the experiment that did happen” is also prone to sample-
based validity-enhancing deviations during a hypothetical long run of its repetitions.

To illustrate, imagine that a researcher deviates from a preregistered experiment 
E1 in order to maintain or enhance the validity of their test following an unexpected 
event in the current sample. Based on the weak conditionality principle, they may 
exclude E1 from their test procedure and condition their Neyman-Pearson long-run 
error rate on “the experiment actually run” (Mayo, 2014, p. 232), which we can 
denote as E2 (e.g., Mayo & Cox, 2010, pp. 271–272, Example 4). Consistent with 
a theory-centric approach, this conditioning allows us to treat E2 as an individual 
test rather than a union-intersection test of a “mixture experiment” (i.e., {E1 & 
E2}; Mayo, 2014, p. 228; Rubin, 2021b, 10973–10974). However, in this case, the 
researcher must also imagine that, as per their experience with E1, a long run of rep-
etitions of E2 would sometimes encounter random samples that necessitate further 
validity-enhancing deviations. They may approach this fractal forking paths problem 
in one of two ways.

First, the researcher may prohibit any further sample-based validity-enhancing 
deviations during E2’s implementation. In other words, they may permanently fix 
the current specification of E2. This approach would preserve the applicability of 
E2’s conditional long-run error rate. However, it would contradict the researcher’s 
previous “plan, not a prison” rationale for deviating from their preregistration of E1 
to conduct E2. Furthermore, permanently fixing E2’s current specification implies 
that it will lack validity in relation to some of the samples that it encounters during 
its hypothetical repetitions (e.g., Lakens, 2024, p. 5; Rubin, 2017b, p. 326; Rubin & 
Donkin, 2024, p. 2030; see also García-Pérez, 2012, p. 5). Mayoian severity requires 
that a test procedure’s statistical assumptions are approximately satisfied during test-
ing because violated assumptions may inflate the procedure’s “actual” error prob-
ability (Mayo, 2008, pp. 863–864; Mayo, 2018, p. 94; Mayo & Spanos, 2006, p. 349; 
Mayo & Spanos, 2011, pp. 189–190). E2’s fixed test procedure is designed to fail 
this criterion because it cannot be modified when statistical assumptions are violated 
in particular samples. Consequently, consistent with the error statistical approach’s 
frequentist counterfactual reasoning (Mayo, 2018, pp. 52–53), E2 will have a low 
capability to license specific inferences severely in its hypothetical repetitions.

Second, the researcher may continue to allow sample-based validity-enhancing 
deviations of E2’s test procedure. However, as discussed previously, this approach 
will open up an unknown number of forking paths in the experimental testing con-
text, with each path specifying a new experimental test (i.e., E3, E4, … Ek). E2’s “com-
puted” conditional Neyman-Pearson error rate will not apply across this “garden of 
forking paths” (Gelman & Loken, 2013; i.e., the mixture experiment {E2 & E3 & E4 
& … Ek}). Furthermore, it will not be possible to compute an “actual” unconditional 
Neyman-Pearson error rate for the test procedure because the number of tests in the 
experimental testing context (k) will be unknown (for related points, see Mayo, 1996, 
p. 317; Mayo, 2018, p. 39). Figure 2 illustrates this situation.
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In summary, the decision to deviate from a preregistration often entails a trade-
off between the goals of validity and error control (see also Lakens, 2024, p. 5). If 
a test procedure disallows sample-based validity-enhancing deviations in its imple-
mentation, then it will lack validity in some samples, and if it allows them, then 
its “computed” conditional error rate will become inapplicable and it will suffer an 
unknown inflation of its “actual” unconditional error rate. Mayoian severity will be 
compromised in both cases because it requires a method to be both valid and reliable 
(Mayo, 2008, pp. 863–864; Mayo & Spanos, 2006, pp. 349–350; Mayo & Spanos, 
2011, p. 167).

2.3  Do researchers treat preregistration as a plan, not a prison?

My argument implies that even a well-specified preregistration that results in no 
deviations when testing a particular sample will not improve the transparent evalu-
ation of Mayoian severity if it is treated as an adjustable plan, rather than a fixed 
test procedure, because adjustable plans do not control the Type I error rate during a 
hypothetical long run of random sampling. However, the question remains as to how 
likely it is for researchers to treat their preregistrations as plans rather than prisons. 
This question can be addressed descriptively and normatively.

From a descriptive perspective, there is evidence that, in practice, researchers 
from several different fields tend to treat preregistrations as adjustable plans rather 
than fixed procedures because they deviate from those preregistrations. For example, 
in psychology, the percentage of studies that include at least one deviation (disclosed 
or undisclosed) ranges from 59% (Cheng, 2022; N = 98 studies) to 93% (Claesen et 
al., 2021; N = 27 studies). In neuroscience, the estimate is 84% (Clayson et al., 2025; 
N = 92 articles); in exercise oncology trials, it is 87% (Singh et al., 2021; N = 31); 
and in gambling studies it is 65% (Heirene et al., 2024; N = 20, undisclosed devia-
tions only). Finally, a meta-analysis of articles that looked at 1,113 (mainly) clini-
cal trials found 41%-75% of studies with at least one outcome discrepancy (TARG 
Meta-Research Group and Collaborators, 2023). On average, across these five fields, 
around three-quarters of preregistered studies included at least one deviation, sug-

Fig. 2  Illustration of the application of the weak conditionality principle
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gesting that, in practice, researchers regard preregistrations as adjustable plans, rather 
than fixed test procedures.

From a normative perspective, the above evidence is unsurprising given that lead-
ing proponents of preregistration encourage researchers to treat preregistration as 
“a plan, not a prison” (Chambers, 2019, pp. 188, 189; DeHaven, 2017; Nosek et 
al., 2019, p. 817). As discussed above, however, this approach makes preregistration 
ineffective for transparently evaluating Mayoian severity because, following the error 
statistical approach’s frequentist counterfactual reasoning (Mayo, 2018, pp. 52–53), 
adjustable plans do not control the Type I error rate (see also Navarro, 2020, p. 8).

3  When is preregistration useful and when is it detrimental?

So, when is preregistration useful, and when is it detrimental? According to my 
argument, a well-specified preregistration will improve the transparent evaluation 
of Mayoian severity when it is treated as a fixed test procedure rather than an adjust-
able plan (see also Staley, 2002, p. 289). However, test users are unlikely to treat 
preregistrations in this way unless they are confident that they will not encounter any 
unforeseen events, assumption violations, or falsified auxiliary hypotheses in any of 
their samples. In other words, for preregistration to be useful for evaluating Mayoian 
severity, test users must have a high degree of confidence about the applicability of 
the background knowledge that underlies their test, perhaps as a result of extensive 
assumption testing. This level of confidence might occur in areas such as quality 
control testing during industrial production (Fisher, 1955, pp. 69–70; Fisher, 1956, 
pp. 99–100; Rubin, 2020b). Here, test users know the relevant and irrelevant aspects 
of their tests, the smallest effect size of interest, and the actual costs of Type I and 
II errors. However, as Popper (1962) explained, this high degree of confidence is 
inappropriate in scientific contexts, where researchers do “not accept…background 
knowledge; neither as established nor as fairly certain, nor yet as probable…[and 
they know] that even its tentative acceptance is risky, and…that every bit of it is open 
to criticism” (p. 238). Failure to fully embrace this critical attitude to background 
knowledge leads to naïve methodological falsificationism (Lakatos, 1978, p. 42), 
which Popper (1983, pp. xxii-xxiii, xxxv) rejected.

Preregistration may even be detrimental in scientific contexts. I consider two pos-
sibilities here. First, the preregistration of a test procedure may increase a researcher’s 
commitment to that procedure relative to a situation in which it was not preregis-
tered (Rubin & Donkin, 2024, p. 227). In turn, this researcher commitment bias may 
unconsciously deter the researcher from (a) considering high-quality criticisms of 
their preregistered approach, (b) deviating from their preregistration to adopt more 
valid tests, and (c) exploring their data to discover more informative results.9

9 Lakens et al. (2024, p. 13) appear to characterize the researcher commitment bias as a conscious bias. 
However, the various cognitive biases that are thought to underlie the researcher commitment bias are not 
restricted to conscious reasoning (i.e., the automation bias, plan continuation bias, commitment bias, and 
first-is-best bias; Rubin & Donkin, 2024, p. 227). Hence, like many other researcher biases, the researcher 
commitment bias may operate at an unconscious level. Lakens et al. (2024) go on to argue that the best 
way to mitigate the researcher commitment bias is through education and reporting templates. However, 
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Second, preregistration may add unwarranted epistemic value to a prediction 
that owes its success to a researcher’s atheoretical guesswork rather than a theory’s 
predictive power (Rubin & Donkin, 2024, p. 2028; for related work, see Grüning 
& Mata, 2024). Transparently hypothesising after the results are known (THARK-
ing; Hollenbeck & Wright, 2017) serves to eliminate this researcher prophecy bias 
(Rubin & Donkin, 2024).

4  Summary and conclusion

Preregistration represents a somewhat contentious solution to an ill-defined prob-
lem. Previous justifications for this research practice have focused on the distinction 
between “exploratory” and “confirmatory” research. However, this distinction lacks 
an agreed statistical or philosophical basis (Devezer et al., 2021; Rubin, 2020a, 2022; 
Rubin & Donkin, 2024; Szollosi & Donkin, 2021).

Lakens and colleagues provide a more coherent justification based on Mayo’s 
(1996, 2018) error statistical approach (Lakens, 2019, 2024; Lakens et al., 2024; see 
also Vize et al., 2024). From this perspective, the goal of preregistration is to allow 
others to transparently evaluate the capability of a test procedure to license inferences 
severely.

However, Mayo’s (1996, 2018) error statistical conceptualization of severity is 
only one of several conceptualizations (Bandyopadhyay & Brittan, 2006; Bandyo-
padhyay et al., 2016; Hellman, 1997; Hitchcock & Sober, 2004; Horwich, 1982; 
Lakatos, 1968; Laudan, 1997; Popper, 1962, 1983; van Dongen et al., 2023). In the 
present article, I focused on Popper’s conceptualization and showed that preregistra-
tion does not improve the transparent evaluation of either severity or sincerity in his 
theory-centric approach.

It is possible that a consideration of other approaches to severity may also reveal 
the redundancy of preregistration. For example, preregistration may not improve the 
transparent evaluation of Bayesian formulations of severity (e.g., Bandyopadhyay & 
Brittan, 2006; Bandyopadhyay et al., 2016; van Dongen et al., 2023) given that prior 
probability distributions are transparent (Rubin, 2022, pp. 540–542). Future work 
should consider this issue in greater depth.

I also showed that preregistration does not improve the transparent evaluation 
of Mayoian severity when deviations are allowed. In particular, I argued that a test 
procedure that is preregistered but that allows sample-based validity-enhancing 
deviations in its implementation will have an unknown inflation of its Type I (fami-
lywise) error rate and an unknown reduction of its capability to license inferences 
with Mayoian severity. Consequently, if preregistration is treated as only a plan, and 
not a prison, then it will not improve the transparent evaluation of Mayoian severity 
beyond that of non-preregistered research because potential deviations from that plan 
will inflate the procedure’s “actual” Type I error rate by an unknown extent.

it is unclear whether this approach is sufficient to address an unconscious bias that, like the confirmation 
and hindsight biases, may fall into a “bias blind spot” (Pronin & Hazel, 2023; see also Nosek et al., 2018, 
p. 2601).
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In conclusion, Mayo’s (1996, 2018) error statistical approach justifies the use of 
a well-specified preregistered research plan to allow others to evaluate the capability 
of a fixed test procedure to license inferences severely. However, preregistration does 
not improve the transparent evaluation of severity in Popper’s philosophy of science 
or in Mayo’s approach when deviations are allowed.
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