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Abstract  
 
This paper revisits Schrödinger’s 1927 concept of a particle as a spatially diffuse "cloud," redefining it 
as a true spacetime entity equipped with its own intrinsic metric. Each cloud-like entity is structured by 
constant proper time slices, across which mass density is continuously distributed, while a single world 
line threading these slices carries all gauge charges. The intrinsic metric is determined by the mass 
density via a Poisson-like equation, with a Green kernel that exhibits two distinct phases. In the free 
phase, the kernel has a non-local Coulomb-like form that links every point within the cloud-like entity. 
During measurement, however, the detector imposes a time-dependent boundary condition, smoothly 
deforming the kernel into a sharply localized monopole well. This defines a finite "collapse window," 
during which the wave packet’s width contracts, avoiding singularity and allowing for potential re-
expansion if the detector pulse ceases prematurely. The formalism provides specific, testable 
predictions: mass-dependent localization times (of the order of 10 ps for electrons), reversible loss and 
revival of interference patterns, gradual decay of Bell correlations, and an ultra-weak, transient metric 
force on nearby probes. Together, these results offer a deterministic yet non-separable framework that 
bridges quantum non-locality with relativistic causality. 
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1. Introduction 
 

Einstein’s theory of relativity recast physics around two foundational principles: the invariance of the 
speed of light and the dynamic interplay between mass-energy and the geometry of spacetime. Relativity 
eliminated the concept of a preferred reference frame and unified space and time into a four-dimensional 
structure, constrained in its causal order by the speed of light [1] [2]. General relativity extended this 
framework by demonstrating that mass-energy curves spacetime, with free motion following the 
geodesics of this curvature. In both theories, locality remains a guiding principle, as influences propagate 
continuously through fields or spacetime curvature, without crossing spacelike separations. 

 
In contrast, quantum mechanics challenges these principles, particularly the concept of locality, with 
phenomena that defy classical intuition. Through the principle of superposition, a system can exist in a 
spectrum of mutually exclusive states, while entanglement creates correlations between distant 
measurements that cannot be accounted for by any local hidden variables. This tension became clear 
through the EPR argument [3] and Bell's inequality [4], and experiments such as Aspect's photon tests 
[5] have consistently confirmed the nonlocal predictions of quantum theory, without violating the 
relativistic no-signalling condition. 
 
To address these quantum challenges, various interpretations have emerged [6]. The Copenhagen 
interpretation [7], treats quantum mechanics as a pragmatic tool for predicting observable outcomes 
rather than describing an underlying reality. Quantum Bayesianism QBism [8] reframes wavefunction 
collapse as a Bayesian update of subjective knowledge rather than an objective event [9]. Everett’s 
Many-Worlds Theory [10], endorsed by contemporary advocates like Wallace [11] [12], posits that 
every quantum event spawns a branching of worlds, providing a deterministic but highly counterintuitive 
perspective. The de Broglie-Bohm pilot-wave theory introduces hidden variables, asserting that particles 
follow deterministic trajectories guided by a wavefunction [13]. Alternatively, GRW's wavefunction-
collapse theory [14] incorporates stochastic elements into Schrödinger's equation, offering simplicity 
but facing issues with relativistic simultaneity. 
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A central and unresolved issue remains the reconciliation [15] of quantum mechanics with the relativistic 
doctrine of locality. The dilemma is intensified by the recognition that multi-particle wavefunctions 
reside within a high-dimensional configuration space. This abstraction raises significant questions about 
the connection between wavefunctions and the familiar three-dimensional world. The ontological status 
of the wavefunction continues to spark debate [16], dividing views between those who see it as a tool 
for knowledge (epistemological) and those who regard it as a real, physical entity (ontological). 
 
In his 1927 Solvay lecture, Schrödinger proposed a shift away from the classical notion of point 
particles, suggesting instead a continuous entity that permeates space [17]. While this idea is compelling, 
modelling a particle as an extended mass or charge density introduces significant challenges in the 
realms of general relativity (GR), quantum field theory (QFT), and continuum mechanics. 
 
For example, treating an electron as a smeared charge cloud faces the problem of divergent self-
interaction energies. Experimental evidence, ranging from the photoelectric effect to high-energy 
scattering, restricts the electron’s charge radius to scales no larger than approximately 10⁻²² m. This 
strongly supports point-like behaviour during energy–momentum exchanges. 
 
In GR, an extended mass distribution generates a gravitational field that curves spacetime beyond the 
object's boundaries. A smoothly decaying mass density complicates the particle’s internal dynamics, as 
gravitational time dilation causes different regions to experience varying proper times. These variations 
introduce internal stresses—such as pressure and tension—that contribute to the particle’s total mass-
energy. 
 
In quantum mechanics, a particle’s position is described by a wavefunction that spreads across space 
until measurement collapses it into a sharply localized state. Extending this idea to a particle's mass 
density implies a nonlocal collapse of its entire distribution, raising challenges for compatibility with 
relativity since instantaneous collapse could violate causality. 
 
Despite these difficulties, Schrödinger’s vision of "cloud-like" quantum entities has inspired various 
research directions. Wavefunction realism holds that the wavefunction, defined in configuration space, 
represents the fundamental ontology from which three-dimensional structures arise [18]. Objective-
collapse theories, like GRW and CSL, modify quantum dynamics with stochastic elements to ensure 
spatial localization [19]. Schrödinger-Newton models, developed by Diosi and Penrose, incorporate 
gravitational self-interactions to limit wavefunction spreading [20]. Stochastic electrodynamics 
proposes a Lorentz-invariant random vacuum field—analogous to quantum vacuum fluctuations—to 
stabilize spread-out charge distributions [21]. The Diosi-Penrose model further explores gravity-induced 
mechanisms for spontaneous wavefunction collapse based on gravitational energy differences [22]. 
Each of these approaches aims to reconcile the spatial extension of quantum systems with empirical 
localisation and finite self-energies. 
 
Building on this intuition, our approach takes a geometric perspective. Each quantum entity is attributed 
a non-local spacetime geometry, determined by its diffused mass density. This geometry includes a 
proper-time foliation, marking a single world-line on which the particle’s charge is confined. Within 
this intrinsic geometry, the Schrödinger–Newton potential emerges naturally—not as an external 
semiclassical correction but as a property intrinsic to the quantum entity itself. In this framework, 
quantum mechanics becomes a tool for probing the fine-grained, relational structure of spacetime, while 
relativity continues to describe its global architecture. Together, these insights create a unified 
framework that accommodates quantum non-locality and relativistic causality. 

 
 
 

2. Fermi–Walker Coordinates around an Arbitrary World-line 

We work on a smooth, connected, four-dimensional differentiable manifold 𝑀, equipped with a 

Lorentzian metric 𝑔𝜇𝜈(𝑋) where we adopt the (+, −, −, −) signature. This metric is a position-

dependent, symmetric tensor field that defines the invariant line element: 
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 𝑑𝑠2 = 𝑔𝜇𝜈(𝑋)𝑋𝜇𝑋𝜈 (1) 

This line element allows for the measurement of proper time along time-like curves and spatial distances 

within spacelike hypersurfaces. Since the metric 𝑔𝜇𝜈 is completely general—without assuming any 

specific coordinate system or symmetry—it can describe any local curvature and any distribution of 

matter and energy consistent with Einstein's field equations. Throughout what follows, this metric is 

treated as the underlying geometric framework for constructing specific coordinate systems, such as the 

Fermi–Walker system, which will be introduced next. 

The Fermi–Walker coordinates are a local coordinate system defined in the neighbourhood of a smooth 

time-like world-line in an arbitrary spacetime with metric 𝑔𝜇𝜈. They provide a natural framework for 

describing the geometry in the vicinity of a reference observer following the world-line, regardless of 

whether this observer is inertial or undergoing arbitrary acceleration. 

Let 𝛾: 𝜏 → 𝑋𝜇(𝜏) be the time-like world-line—inertial or accelerated—in the arbitrary spacetime with 

metric 𝑔𝜇𝜈. 

An Orthonormal tetrad {𝑒0, 𝑒𝑖} can be associated with the world-line 𝛾, where: 𝑒(0)
𝜇

= 𝑢𝜇 = 𝑋̇𝜇 =

𝑑𝑋𝜇 𝑑𝜏⁄  is the 4-velocity of the reference observer, satisfying 𝑢𝜇𝑢𝜇 = −1. The spatial triad {𝑒𝑖} (where  

𝑒𝑖 are the basis vectors of the spatial triad) satisfies 𝑒𝑖
𝜇

𝑒𝑗𝜇 = 𝛿𝑖𝑗 and is transported along 𝛾 according to 

Fermi–Walker transport: 

 𝐷𝑒𝑖
𝜇

𝑑𝜏
= (𝑎𝜈𝑒𝑖

𝜈)𝑢𝜇 − (𝑎𝜈𝑢𝜈)𝑒𝑖
𝜇

  
(2) 

 

where 𝑎𝜈 = 𝐷𝑢𝜈 𝑑𝜏⁄   is the proper acceleration of the world-line 𝛾. 

Fermi–Walker coordinates are defined as follows: For any point 𝑃 sufficiently close to the reference 

world-line 𝛾, there exists a unique  spacelike geodesic 𝜎 connecting 𝑃 to 𝛾(𝜏) that is orthogonal to 𝑢𝜇(𝜏) 

at its initial point. Let ξ𝜇 be the unit tangent to 𝜎 at 𝛾(𝜏) and let 𝜎 also denote the geodesic distance from 

𝛾(𝜏) to 𝑃. Then the Fermi–Walker coordinates (𝑥0, 𝑥𝑖) of 𝑃 are   𝑥0 ≡ 𝜏, 𝑥𝑖 ≡ 𝜎(ξ𝜇𝑒𝑖𝜇).  

Thus, 𝑥0 ≡ 𝜏 is the proper time along the reference world-line 𝛾, while 𝑥⃗ = (𝑥1, 𝑥2, 𝑥3) are the proper 

distances measured in the transported triad, where the spacelike geodesic connecting 𝑃 to 𝛾(𝜏) is 

orthogonal to 𝑢𝜇(𝜏). 

𝑥𝑖 ≡ 𝜎(ξ𝜇𝑒𝑖𝜇) are the components of the signed spatial displacement of 𝑃 along the geodesic with 

tangent ξ𝜇, where 𝜎 is the geodesic distance and  𝑒𝑖 are the basis vectors of the spatial triad. 

In these coordinates, the metric admits the standard canonical Fermi expansion to quadratic order in 𝑥𝑖 

(components of the Riemann tensor evaluated on 𝛾 and projected on the tetrad): 

 𝑔00 = −(1 + 𝑎𝑘𝑥𝑘)2 − 𝑅0𝑖0𝑗𝑥𝑖𝑥𝑗 + 𝑂(𝑥3)

𝑔0𝑖 = −
2

3
𝑅0𝑗𝑖𝑘𝑥𝑗𝑥𝑘 + 𝑂(𝑥3)                         

𝑔𝑖𝑗 = 𝛿𝑖𝑗 −
1

3
𝑅𝑖𝑘𝑗𝑙𝑥𝑘𝑥𝑙 + 𝑂(𝑥3)                    

 

(3) 

 

where 𝑎𝑘 = 𝑎𝜇𝑒𝑘
𝜇

 represents the components of the proper acceleration of the world-line 𝛾 and 𝑅𝑖𝑘𝑗𝑙 are 

the Riemann curvature tensor components evaluated on 𝛾. In the special case of a geodesic world-line 

𝛾 (𝑎𝑘 = 0) in a flat spacetime, the 𝑂(𝑥2) curvature corrections vanish, and the metric 𝑔𝜇𝜈 reduces to 

the Minkowski form. 
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At each constant value of 𝑥0 ≡ 𝜏, the Fermi–Walker coordinates define a spacelike hypersurface 𝑆𝜏 

(Fermi slice), given by: 

 𝑆𝜏 = {(𝜏, 𝑥⃗)   |  𝑥𝜖𝑅3} (4) 

which satisfies the following conditions: 

𝑢𝜇∇𝜇= 1, implying that the time coordinate is equal to proper time; 

𝑢𝜇∇𝜇𝑥𝑖 = 0, meaning that the spatial coordinates remain constant along 𝛾; and 

𝑢𝜇n𝜇 = 0, where n𝜇 = −∇𝜇𝑥0 represents the normal to 𝑆𝜏. 

These surfaces are intrinsically simultaneous for the observer following the world-line 𝛾, and the 

induced spatial metric on the slice 𝑆𝜏 is: 

 
𝑑𝑠2|𝑆𝜏

= ℎ𝑖𝑗(𝜏, 𝑥⃗)𝑑𝑥𝑖𝑑𝑥𝑗  , ℎ𝑖𝑗 = 𝛿𝑖𝑗 −
1

3
𝑅𝑖𝑘𝑗𝑙𝑥𝑘𝑥𝑙 + 𝑂(𝑥3) 

(5) 

where ℎ𝑖𝑗 remains positive-definite. 

All curvature components in Equations (3)-(5) are defined in the tetrad basis associated with 𝛾. The 

domain of validity is limited to the tubular neighbourhood where the orthogonal geodesic from 𝛾 to 

point 𝑃 is unique, ensuring the absence of conjugate points. 

We propose that spacetime emerges from the integration of intrinsic spacetimes linked to elementary 

objects. For each world-line 𝛾, the intrinsic spacetime is represented by the Fermi–Walker (FW) tubular 

neighbourhood, equipped with an FW coordinate chart. Interactions ensure overlaps between such 

neighbourhoods. The global GR manifold (𝑀, 𝑔) is then constructed as the union of these 

neighbourhoods, ensuring consistency through standard atlas constraints. These include metric 

agreement through pullbacks, frame matching up to local Lorentz transformations, and gauge 

consistency up to gauge transformations, as described further in the next Section. 

Given the Fermi–Walker–transported spatial triad {𝑒𝑖
𝜇(𝜏)}

𝑖=1

3
, associated with the reference world-line 

𝛾: 𝜏 → 𝑍𝜇(𝜏), the FW intrinsic coordinates (𝜏, 𝑥⃗) 𝜖 𝑅 × 𝑅3, referred to as ‘intrinsic coordinates’, can be 

related to arbitrary spacetime coordinates (𝑡, 𝑋⃗), referred to as ‘extrinsic coordinates’, by a smooth, 

locally bijective (diffeomorphic) coordinate transformation: 

 𝜒: (𝜏, 𝑥⃗) → 𝑋𝜇(𝑡, 𝑋⃗) = (𝑡(𝜏, 𝑥⃗), 𝑋⃗(𝜏, 𝑥⃗)) = 𝑒𝑥𝑝𝑍(𝜏)[𝑥𝑖𝑒𝑖
𝜇(𝜏)] (6) 

Here 𝑋𝜇 represents the extrinsic coordinates of an event in the laboratory frame, while 𝑍𝜇(𝜏) represents 

the specific world-line chosen as the Fermi origin. Specifically, 𝑍𝜇(𝜏) (where  𝑍𝜇(𝜏) = 𝑋𝜇(𝜏, 𝑥⃗ = 0) =

𝜒(𝜏, 0)) indicates to an external observer the position of the particle's world-line 𝛾 at each proper time 

𝜏. From the intrinsic perspective, the particle’s world-line 𝛾 is simply represented as (𝜏, 𝑥⃗) = (𝜏, 0). 

The mapping described above indicates that, starting from the event 𝑍(𝜏) on the world-line 𝛾, we follow 

the unique spacelike geodesic with an initial tangent vector 𝑥𝑖𝑒𝑖
𝜇(𝜏). The endpoint of this geodesic is 

given in standard extrinsic coordinates as 𝑋𝜇(𝑡, 𝑋⃗). 

 

3. Intrinsic hypersurface basis and four-dimensional ‘world-block’ 

Each intrinsic proper-time slice 𝑆𝜏 in the intrinsic FW chart (𝜏, 𝑥⃗), may be conceptualised as providing 
a basis {|𝑥⃗⟩} associated with a rigged Hilbert space (Gel’fand triple) 𝑆𝜏 ⊂ ℋ𝜏 ⊂ 𝑆𝜏

′. Here, 𝑆𝜏 represents 
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the space of smooth, rapidly decaying test functions, ℋ𝜏 the usual Hilbert space, and 𝑆𝜏
′ its distributional 

dual, which includes Dirac 𝛿-functions and plane-wave eigenstates. 

 

The elements of this space, denoted as |𝑥⃗⟩, are indexed by a continuous variable 𝑥⃗. These elements are 
normalized using the Dirac 𝛿-function, ensuring orthonormality within the space. The Dirac-normalised 
basis on every hyperplane slice 𝑆𝜏, is expressed as follows: 

 
 {|𝑥⃗⟩}𝑥𝜖𝑅3   ;     ⟨𝑥⃗|𝑥⃗′⟩ = 𝛿(3)(𝑥⃗ − 𝑥⃗′) √ℎ(𝜏, 𝑥⃗)⁄  (7) 

 
where ℎ(𝜏, 𝑥⃗) ≡ 𝑑𝑒𝑡ℎ𝑖𝑗(𝜏, 𝑥⃗) represents the determinant of the induced spatial metric on the slice. Thus 

a complete basis—and its distributional extension—resides on every slice 𝑆𝜏. The completeness relation 
for any given slice 𝑆𝜏 is expressed as: 
 
 

∫ 𝑑 3𝑥√ℎ(𝜏, 𝑥⃗) |𝑥⟩⟨𝑥| = 1 
(8) 

 
Since the evolution from one proper-time slice to the next is unitary, all Hilbert spaces associated with 
these slices can be considered equivalent and identified as a single, abstract Hilbert space 𝓗𝝉. 
 
A single particle at a given proper time 𝜏 is represented by its state vector in this Hilbert space: 
 
 

|𝜑(𝜏)⟩ = ∫ 𝑑 3𝑥√ℎ(𝜏, 𝑥⃗) 𝜑(𝜏, 𝑥⃗) |𝑥⃗⟩;      𝜑(𝜏, 𝑥⃗) =  ⟨𝑥⃗|𝜑(𝜏)⟩ 
(9) 

 

The normalisation condition ⟨𝑥⃗|𝜑(𝜏)⟩ = 1 is expressed as: 
 
 

∫ 𝑑 3𝑥√ℎ(𝜏, 𝑥⃗) |𝜑(𝜏, 𝑥⃗)|2 = 1 
(10) 

 
All points 𝑥⃗ within the same proper-time slice 𝑆𝜏 are intrinsically simultaneous, meaning the entire 
function 𝜑(𝜏, 𝑥⃗) corresponds to a single "instant" of proper time 𝜏. 
 
Proper-time evolution is governed by the slice-dependent Hamiltonian density 𝐻(𝜏), through the 
equation: 
 
 𝑖ℏ𝜕𝜏|𝜑(𝜏)⟩ = 𝐻(𝜏)|𝜑(𝜏)⟩   (11) 

 
and the evolution operator, or propagator, is given by: 
 
 

𝑈(𝜏2, 𝜏1) = 𝑒𝑥𝑝 [−
𝑖

ℏ
∫ 𝑑𝜏′𝐻(𝜏′)

𝜏2

𝜏1

] 
(12) 

 
Proper time 𝜏 thus provides an intrinsic, observer-invariant ordering of the slices without requiring any 
external clock variable. 
 
Following Schrödinger’s "cloud" model of a free particle, the mass density on each proper-time slice 𝑆𝜏 
is expressed as: 
 
 𝜇(𝑥⃗, 𝜏) = 𝑚|𝜑(𝜏, 𝑥⃗)|2 (13) 

 
The total mass 𝑚 on each proper-time slice 𝑆𝜏 is conserved and is expressed as: 

 
 

∫ 𝑑 3𝑥√ℎ(𝜏, 𝑥⃗) 𝜇(𝜏, 𝑥⃗) = 𝑚 
(14) 
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When all slices are combined, they form a four-dimensional world-block 𝑏 ≡ ⋃ 𝑆𝜏𝜏𝜖𝑅 , which constitutes 
a smooth manifold. Each point in this manifold is characterized by the scalar field 𝜇(𝑥⃗, 𝜏). In the Fermi–

Walker coordinate system, every point of the world-block is uniquely identified by its proper time 𝜏 and 
spatial Fermi coordinates 𝑥⃗. 
 
For simplicity, we absorb the constant 𝑚 into the scalar field and work instead with the dimensionless 
density: 
 
 

𝜌(𝜏, 𝑥⃗) = |𝜑(𝜏, 𝑥⃗)|2  ;  ∫ 𝑑 3𝑥 √ℎ(𝜏, 𝑥⃗) 𝜌(𝜏, 𝑥⃗) = 1 
(15) 

 
For a free Gaussian wave packet, the width 𝜎(𝜏) increases with proper time 𝜏, causing 𝜌(𝜏, 𝑥⃗) to spread 
and dilute, precisely as envisioned by Schrödinger’s equation.  
 

On each proper-time slice 𝑆𝜏, there exists a unique centroid 𝑥⃗𝑐(𝜏) ∈ 𝑅3 such that the first mass dipole 
moment on the slice 𝑆𝜏, vanishes. This condition is expressed as: 

 
 

∫(𝑥⃗ − 𝑥⃗𝑐(𝜏))𝜌(𝜏, 𝑥⃗)𝑑3𝑥 = 0 
(16) 

 
Here, the centroid 𝑥⃗𝑐(𝜏) represents the intrinsic centre of mass-energy for the world-block on the slice 
𝑆𝜏. The reference world-line anchoring the world-block is therefore, the curve 𝛾, which passes through 
the centroids of the slices (𝑆𝜏)𝜏∈𝑅 sequentially. Thus, the world-line 𝛾 is redefined as: 

 
 𝛾: 𝜏 → 𝑋𝜇(𝜏) = (𝜏, 𝑥⃗𝑐(𝜏)) 𝜖 𝑏 (17) 

 

The reference world-line 𝛾 represents the intrinsic centre-of-mass line of the world-block and serves as 

its anchor, carrying all associated gauge charges. Notably, for a particle with charge 𝑒, the charge-

density 𝜌𝑒(𝑥⃗, 𝜏), unlike the mass-density 𝜌(𝑥⃗, 𝜏), is entirely confined to the reference world-line 𝛾. This 

confinement arises as a consequence of local gauge symmetry, renormalizability, and scattering bounds. 

Consequently, the intrinsic charge density is formulated as: 

 𝜌𝑒(𝑥⃗, 𝜏) = 𝑒𝛿(3)(𝑥⃗ − 𝑥⃗𝑐(𝜏)) (18) 

 
More generally, the reference world-line 𝛾 serves as the carrier of all strictly conserved point-like 
quantum numbers, such as electric charge, baryon number, lepton number. In contrast, the mass density 
is free to form an extended cloud distributed over each proper-time slice 𝑆𝜏, surrounding the world-line. 
This distinction arises naturally from symmetry and effective field theory considerations.  
 
Gravity couples to the stress–energy tensor 𝑇𝜇𝜈, which can reflect the spatial spread of a quantum state 

(e.g., ⟨𝜓|𝑇̂𝜇𝜈|𝜓⟩), provided ∇𝜇𝑇𝜇𝜈 = 0. In contrast, gauge charges couple through local conserved 

currents 𝑗𝜇, which transform covariantly under the gauge group and are confined to a single world-line.  
 
Renormalisation clarifies this distinction. The UV consistency of Quantum Electrodynamics (QED) 
requires point-like charge sources, while allowing mass-energy to be spatially distributed in gravity 
aligns with low-energy effective field theory. Experimentally, electromagnetic scattering limits the 
electron’s charge radius to less than 10−22 𝑚, consistent with a world-line current. At the same time, 
effects like interferometric phase shifts are sensitive to the spatial distribution of mass-energy. 
 
A consistent framework emerges: Einstein’s equations are sourced by the (possibly smeared) mass-
energy 𝑇𝜇𝜈 of the quantum state, while Maxwell or Yang–Mills equations are sourced by a conserved 

current confined to the world-line. Standard conservation laws ∇ ∙ 𝑇 = 0 and 𝜕 ∙ 𝑗 = 0 ensure 
consistency across overlapping intrinsic spacetimes. Electromagnetic phenomenology remains 
unchanged, while gravity, in principle, can probe wave-packet widths through Schrödinger–Newton-
type effects. This approach leads to testable predictions without requiring ad hoc assumptions. 
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Thus the world-block 𝑏 represents the complete ontic entity. its slices carry the extended mass density, 
its centre-of-mass line 𝛾 carries all gauge charges, and the intrinsic proper time 𝜏 sequentially orders the 
slices independently of any external clock. It is important to note that variations in initial conditions, 
external fields, or experimental set-ups yield different coordinate transformations 𝜒, but none of them 
alters the intrinsic foliation {𝑆𝜏}: all points of a given slice always share the same proper time 𝜏. 
 

We note that the Fermi-Walker coordinates are applicable within the normal-convex tube surrounding 

the reference world-line 𝛾, with the radius of this tube determined by the smaller of two scales: the tidal-

curvature scale 𝑙𝑐𝑢𝑟𝑣 and the proper acceleration scale 𝑙𝑎𝑐𝑐. These coordinates are well-suited to describe 

the mass-density distribution 𝜌(𝜏, 𝑥⃗) = |𝜑(𝜏, 𝑥⃗)|2 of a particle with a wavefunction, such as a three-

dimensional Gaussian: 

 
𝜌(𝜏, 𝑥⃗) = (

1

2𝜋𝜎2
)

3 2⁄

𝑒−𝑟2 2𝜎2⁄ ;          𝑟 = √𝛿𝑖𝑗𝑥𝑖𝑥𝑗 
(19) 

 

provided that the effective support 𝑟𝑒𝑓𝑓 ≡ 𝑁𝜎 (with 𝑁 = 3 for a Gaussian) satisfies the following 

condition: 

 𝑟𝑒𝑓𝑓 ≡ 𝑁𝜎 = 𝑚𝑖𝑛 {𝑙𝑐𝑢𝑟𝑣 ≡ |𝑅𝑖𝑘𝑗𝑙|
−1 2⁄

, 𝑙𝑎𝑐𝑐 ≡ 𝑐2 |𝑎|⁄  } 
(20) 

 

where 𝑙𝑐𝑢𝑟𝑣 ≡ |𝑅𝑖𝑘𝑗𝑙|
−1 2⁄

 is the local curvature radius, 𝑙𝑎𝑐𝑐 ≡ 𝑐2 |𝑎|⁄  is the inverse-acceleration length, 

and 𝑁 is chosen to define the "edge" of the wave packet (for a Gaussian, 𝑁 = 3 already encloses 99.7 

% of the density 𝜌). 

In practice, this condition is easily satisfied. For a free proton or electron in the lab, with typical wave 

packet width 𝜎 ≈ 1 − 100 𝜇𝑚 and 𝑙𝑐𝑢𝑟𝑣 > 104 𝑚, the inequality 𝑁𝜎 ≪ 𝑙𝑐𝑢𝑟𝑣 holds by at least eight 

orders of magnitude. For a proton in the Large Hadron Collider (LHC), where strong bending occurs, 

the typical width is 𝜎 ≈ 10 − 50 𝜇𝑚 and the acceleration magnitude |𝑎| ≈ 1.8 × 1021𝑚𝑠−2 leads to a 

proper acceleration scale 𝑙𝑎𝑐𝑐 ≈ 50 𝜇𝑚. In this case, 3𝜎 ≈ 𝑙𝑎𝑐𝑐, and the inequality still holds. For an 

electron, the proper acceleration scale 𝑙𝑎𝑐𝑐 ≈ 20 𝑚 and thus the inequality is largely satisfied. 

Thus, for modern laboratory wave packets, the effective support 𝑟𝑒𝑓𝑓 ≡ 𝑁𝜎 lies comfortably within the 

region where the exponential map along spacelike geodesics orthogonal to the world-line γ remains 

injective and the canonical Fermi-normal metric of Equation (3) remains a good approximation. 

Although a Gaussian never truly vanishes, the coordinate expansion only breaks down beyond a finite 

𝑁𝜎, where the tails of the wavefunction extend. This presents no physical issues, as the density 

contribution from these tails is exponentially small. If necessary, spacetime can be patched smoothly 

with another normal chart without losing accuracy. All meaningful observables, where the density 𝜌 is 

significant, are fully captured within the Fermi tube. 

Ultimately, for any realistic Gaussian-like density distribution of an elementary particle, present-day 

accelerators and laboratory fields satisfy 𝑁𝜎 ≪ 𝑚𝑖𝑛{𝑙𝑐𝑢𝑟𝑣 , 𝑙𝑎𝑐𝑐  }. As a result, Fermi coordinates 

provide a valid and efficient framework for describing both the metric and the density profile throughout 

the entire region where the particle’s wavefunction has a significant amplitude. 

When two intrinsic Fermi–Walker neighbourhoods 𝑈𝛼 and 𝑈𝛽  overlap, their stitching is governed by 

the physics of interactions. Let 𝑔(𝛼) and 𝑔(𝛽) represent the metrics in the 𝛼 and 𝛽 charts respectively. 

On the overlap 𝑈𝛼 ∩ 𝑈𝛽, the intrinsic coordinates are related by a 𝐶2 transition map 𝜒𝛽𝛼 = 𝜒𝛽ₒ𝜒𝛼
−1, 

which transforms 𝛼-coordinates into 𝛽-coordinates. 
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To ensure metric compatibility—required for all local charts to describe the same global spacetime—

the 𝛽-metric, when pulled back along 𝜒𝛽𝛼, must equal the 𝛼-metric: 𝑔(𝛼) = 𝜒𝛼𝛽
∗ 𝑔(𝛽). Specifically, let 

𝜒𝛼: 𝑈𝛼 → 𝑅4 and 𝜒𝛽: 𝑈𝛽 → 𝑅4 be the FW charts, and 𝑔 the single spacetime metric on 𝑀. The 

coordinate metrics are then given by pullbacks of 𝑔 using the inverse charts: 

 𝑔(𝛼) = (𝜒𝛼
−1)∗𝑔,    𝑔(𝛽) = (𝜒𝛽

−1)
∗
𝑔 (21) 

 

It follows that: 

 𝜒𝛽𝛼
∗ 𝑔(𝛽) = (𝜒𝛽ₒ𝜒𝛼

−1)
∗
((𝜒𝛽

−1)
∗
𝑔) = (𝜒𝛼

−1)∗𝑔 = 𝑔(𝛼) (22) 

 

Thus both charts describe the same geometry on the overlap. Equivalently, 𝑔(𝛽) = 𝜒𝛼𝛽
∗ 𝑔(𝛼), where 

𝜒𝛼𝛽 = 𝜒𝛼ₒ𝜒𝛽
−1. Additionally, orthonormal frames match up to a local Lorentz transformation, 

determined by parallel transport along the unique orthogonal spacelike geodesic. 

On common slices, conserved currents are consistent under pullback and the probability measure 

remains invariant: 

 𝜌(𝛼)√ℎ(𝛼)𝑑3𝑥𝛼 = 𝜌(𝛽)√ℎ(𝛽)𝑑3𝑥𝛽 (23) 

 

With a single stress–energy tensor 𝑇𝜇𝜈  defined by the matter and fields of all objects, the Einstein–matter 

equations 𝐺𝜇𝜈[𝑔] = 8𝜋𝑇𝜇𝜈 along with ∇𝜇𝑇𝜇𝜈 = 0 enforce these identifications across overlaps, ensuring 

a unique global metric 𝑔. 

Therefore, the atlas of intrinsic Fermi–Walker charts generated by interacting world-blocks is 

mathematically sufficient to reconstruct a single, smooth general-relativistic spacetime: the stitched 

global manifold. 

 

4. Intrinsic non-separable metric 

Within the Fermi chart, every point in the world-block is identified by its proper-time coordinate 𝜏 and 
spatial Fermi coordinates 𝑥⃗. On each proper-time slice 𝑆𝜏, we consider the induced metric ℎ𝑖𝑗(𝜏, 𝑥⃗) with 

its determinant given by ℎ = 𝑑𝑒𝑡ℎ𝑖𝑗. At a given proper time 𝜏, the one–particle state |𝜑(𝜏)⟩  is defined 

as: 
 

 
|𝜑(𝜏)⟩ = ∫ 𝑑 3𝑥√ℎ(𝜏, 𝑥⃗) 𝜑(𝜏, 𝑥⃗) |𝑥⃗⟩;         ∫ 𝑑 3𝑥√ℎ |𝜑|2 = 1      

(24) 

 

The mass density is given by 𝜇(𝜏, 𝑥⃗) = 𝑚|𝜑(𝜏, 𝑥⃗)|2 = 𝑚𝜌(𝜏, 𝑥⃗). Under the hypothesis that the world-
block represents a distribution of mass density, it is natural to relate the intrinsic metric to the density 
𝜌(𝜏, 𝑥⃗). Since proper time 𝜏 has already been identified as the temporal parameter, the action 𝑆 can be 
reformulated as an integral over proper time, involving a purely spatial Lagrangian density 𝐿, which 
may encode the intrinsic geometry and dynamics of the world-block. This decomposition can be 
expressed as: 
 
 

𝑆 = ∫ 𝑑𝜏 ∫ 𝑑3𝑥 √ℎ𝐿 (ℎ𝑖𝑗(𝜏, 𝑥⃗), 𝜌(𝜏, 𝑥⃗), 𝜑(𝜏, 𝑥⃗)) 
(25) 
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where ℎ(𝜏, 𝑥⃗) is the determinant of the induced metric ℎ𝑖𝑗(𝜏, 𝑥⃗) on the proper-time slice 𝑆𝜏.This 

decomposition incorporates the intrinsic geometry and dynamics of the world-block in the context of 
proper-time evolution. 

 

A minimal form for the Lagrangian density 𝐿, which couples the intrinsic geometry to the cloud density 
and recovers ordinary Schrödinger dynamics, is described as:  

 
 

𝐿 = 𝐴D𝑘ℎ𝑖𝑗𝐷𝑘ℎ𝑖𝑗 + 𝐵ℎ𝑖𝑗ℎ𝑖𝑗𝜌 −
ℏ2

2𝑚
ℎ𝑖𝑗𝜕𝑖𝜑∗𝜕𝑗𝜑 + 𝑖ℏ𝜑∗𝜕𝜏𝜑 

(26) 

 
where D𝑖 denotes the covariant derivative associated with the intrinsic spatial metric ℎ𝑖𝑗. The first term 

𝐴D𝑘ℎ𝑖𝑗𝐷𝑘ℎ𝑖𝑗, represents the "metric stiffness," which characterises the ‘elastic energy’ of the intrinsic 

spatial metric ℎ𝑖𝑗, quantifying how the geometry resists deformation. The second term 𝐵ℎ𝑖𝑗ℎ𝑖𝑗𝜌, 

introduces a ‘geometry-matter’, linking the intrinsic geometry of the slice to the mass/energy density. 
The third and fourth terms represent the standard Schrödinger kinetic energy term and the proper time-
derivative term, respectively. 
 

This formulation establishes a unified and consistent framework that connects the intrinsic geometry, 
the mass/energy distribution, and the quantum matter dynamics within a single world-block. 

 
To derive the Euler-Lagrange equations, we calculate variations of the Lagrangian (26) with respect to 

ℎ𝑖𝑗 and 𝜑∗. 
 

The variation with respect to ℎ𝑖𝑗 yields a Poisson-type constraint, linking the intrinsic spatial geometry 
to the mass/energy density. This constraint takes the general form: 
 
 

D2ℎ𝑖𝑗(𝜏, 𝑥⃗) =
𝐵

2𝐴
ℎ𝑖𝑗𝜌(𝜏, 𝑥⃗) 

(27) 

 
The left-hand side of the equation represents the spatial Laplacian of the intrinsic metric ℎ𝑖𝑗, which 

captures the spatial variation of the geometry on a constant proper time slice 𝑆𝜏. The right-hand side 
provides the ‘self-source term’ responsible for modifying the intrinsic geometry. This constraint can be 
interpreted as an equation governing the evolution of the intrinsic geometry ℎ𝑖𝑗 in response to the density 

𝜌(𝜏, 𝑥⃗). 
 
When ℎ𝑖𝑗 ≈ 𝛿𝑖𝑗 the Laplacian simplifies to the flat ∇2 and Equation (27) is solved by: 

 
 

ℎ𝑖𝑗(𝜏, 𝑥⃗) = −
𝐵

2𝐴
𝛿𝑖𝑗[𝜑𝐶(𝜏, 𝑥⃗) + ℎ𝐻(𝜏, 𝑥⃗)] 

(28) 

 
where 𝜑𝐶(𝜏, 𝑥⃗) is a Coulomb-type integral, and ℎ𝐻(𝜏, 𝑥⃗) is a harmonic solution, satisfying the following: 
 
 

𝜑𝐶(𝜏, 𝑥⃗) = ∫ 𝑑3𝑦
𝜌(𝜏, 𝑥⃗)

4𝜋|𝑥⃗ − 𝑦⃗|
;              ∇2ℎ𝐻(𝜏, 𝑥⃗) = 0 

(29) 

  

The intrinsic metric is structurally non-local because each value of ℎ𝑖𝑗(𝜏, 𝑥⃗) is determined by convolving 

the mass-density 𝜌(𝜏, 𝑥⃗) with the Green’s kernel of the slice Laplacian. The integral over 𝑦⃗ indicates 
that the metric ℎ𝑖𝑗 at 𝑥⃗ depends on the density distribution 𝜌(𝜏, 𝑥⃗) across the entire slice. In other words, 

it is influenced by contributions from all other points 𝑦⃗ within the world-block. This does not involve 
direct action-at-a-distance but rather reflects an elliptic, instantaneous relationship. 
 
Furthermore, the intrinsic metric is non-separable, as it cannot be decomposed into a product or sum of 
independent sub-metrics corresponding to disjoint spatial regions within the world-block. This non-
separability implies that any disturbance in the intrinsic metric in one region cannot be described 
independently of its effects on other regions. Consequently, this introduces a form of acausal 



10 
 

dependence, where changes in one part of the metric affect the entire system without a causal 
propagation. 
 
On the other hand, the variation of the Lagrangian with respect to 𝜑∗(𝜏, 𝑥⃗) results in the standard 
Schrödinger-Newton equation [22] [23] which can be expressed as: 

 
 

𝑖ℏ𝜕𝜏𝜑(𝜏, 𝑥⃗) = −
ℏ2

2𝑚
∇2𝜑(𝜏, 𝑥⃗) +

3𝐵2

2𝐴
[𝜑𝐶 + ℎ𝐻]𝜑(𝜏, 𝑥⃗) 

(30) 

 
In this formalism, the Schrödinger-Newton equation provides a self-consistent description of the 
quantum dynamics of the wavefunction 𝜑(𝜏, 𝑥⃗), while the intrinsic metric ℎ𝑖𝑗 evolves under the 

constraints imposed by the Poisson-type Equation (27) derived earlier. This coupled system ties the 
quantum dynamics to the geometry of a single world-block. 
 
It is to be noted that Equation (30) is not a Newtonian approximation. In this equation the wavefunction 
𝜑(𝜏, 𝑥⃗) evolves in the particle’s own proper time 𝜏 like a Schrödinger equation. The first term represents 
the standard quantum kinetic energy term, while the second acts as an effective geometric potential 
(3𝐵2 2𝐴⁄ )[𝜑𝐶 + ℎ𝐻], which arises from the way gravity shapes space on each slice. 
 

The spacetime foliation is expressed as 𝑑𝑠2 = 𝑑𝜏2 − ℎ𝑖𝑗𝑑𝑥𝑖 𝑑𝑥𝑗, written in proper-time gauge with 

unit lapse and vanishing shift, assuming time-symmetric slices (𝐾𝑖𝑗 = 0). In this configuration, the exact 

Hamiltonian constraint of general relativity reduces to a curved-space Poisson equation ∇ℎ
2 𝜙𝐺 = 4𝜋𝐺𝜇, 

where ∇ℎ
2  is the Laplacian constructed from the spatial metric ℎ𝑖𝑗. The scalar 𝜙𝐺 determines the 

conformal factor of the spatial metric ℎ𝑖𝑗, and solving this constraint provides the geometric potential 

that influences the evolution of 𝜑(𝜏, 𝑥⃗). 
 

The world-block operates in an extremely weak, non-radiative regime, with |𝜙𝐺| 𝑐2⁄ < 10−20  for 𝜎 >
10 𝑛𝑚. In this regime, higher-order GR terms are entirely negligible for all proposed tests. The coupling 
between matter and geometry is fully consistent with GR. The proper-time Schrödinger dynamics 
govern the evolution of the matter state, while the Hamiltonian constraint simultaneously updates the 
spatial metric on each proper-time slice. Therefore, Equation (30) represents the exact Hamiltonian 
constraint for the slices, not a severe approximation. 
 
To derive the Madelung equations (the continuity and the Hamilton-Jacobi equation) from the given 

Schrödinger-Newton-like Equation (30) we substitute the polar representation 𝜑 = √𝜌𝑒𝑖𝑆 ℏ⁄  of the 

wavefunction, into the Schrödinger-Newton Equation (30) and then separate it into its real and 
imaginary parts. 
 
The imaginary part results in the continuity equation: 

 
 𝜕𝜏𝜌 + ∇⃗⃗⃗ ∙ (𝜌 𝛻⃗⃗𝑆 𝑚⁄ ) = 0 (31) 

 
On the other hand, the real part of Equation (30) leads to the following Hamilton-Jacobi equation: 
 
 

𝜕𝜏𝑆 +
1

2𝑚
(𝛻⃗⃗𝑆)

2

+ 𝑄 +
3𝐵2

2𝐴
[𝜑𝐶 + ℎ𝐻] = 0 

(32) 

 
where the quantum potential is given by: 
 
 𝑄(𝑥⃗, 𝜏) = −(ℏ2 2𝑚⁄ ) ∇2√𝜌 √𝜌⁄  (33) 

 
Nonlocality is inbuilt in the intrinsic metric, as manifested by the equations of continuity and Hamilton-
Jacobi. In fact, when the quantum potential term 𝑄 is expressed in terms of ℎ𝑖𝑗, it involves a nonlocal 

convolution. Consequently, the potential 𝑄, and therefore the dynamics of the phase 𝑆, depend 



11 
 

nonlocally on the distribution of the density 𝜌, and is non-separable across the slice, reflecting the 
intrinsic, geometry-induced non-locality of the world-block. 
 
To determine the coefficients 𝐴 and 𝐵, we first observe that the dimension of the metric gradient term 

in the Lagrangian Equation (26) is [D𝑘ℎ𝑖𝑗𝐷𝑘ℎ𝑖𝑗] = 𝐿−2. Consequently, the coefficient 𝐴 must have the 

dimension of energy per unit length. Furthermore, 𝐴 determines the stiffness of the metric, making it 
reasonable to choose 𝐴 as the particle’s rest energy 𝑚𝑐2 per Compton wavelength 𝜆𝑐: 

 
 𝐴 = 𝑚𝑐2 𝜆𝑐⁄ = 𝑚2𝑐3 ℏ⁄  (34) 

 
To replicate the standard Newton-Schrodinger kernel, and given the above choice for 𝐴, we pose the 
following expression for the coefficient 𝐵: 

 
 𝐵 = 𝑚√8𝜋𝐴𝐺 = 𝑚2√8𝜋𝐺𝑐3 ℏ⁄  (35) 

 
For simplicity, we retain the symbols A and B to track the algebraic factors. 

 
 

5. Two-phase intrinsic metric 
 
Quantum dispersion on each slice 𝑆𝜏 is driven by the gradient term in the Lagrangian. In the Madelung 

representation, this produces the quantum-pressure potential 𝑄(𝜏, 𝑥⃗), whose force −𝛻⃗⃗𝑄(𝜏, 𝑥⃗), drives the 
outward spreading of the density distribution. 
 
When left undisturbed, a free world-block continues to expand or dilate from slice to slice. However, 
the introduction of a detector reverses this trend by imposing a harmonic contribution ℎ𝐻 to the intrinsic 
metric in the general solution: 
 
 

ℎ𝑖𝑗(𝜏, 𝑥⃗) = −
𝐵

2𝐴
𝛿𝑖𝑗[𝜑𝐶(𝜏, 𝑥⃗) + ℎ𝐻(𝜏, 𝑥⃗)]

∇𝑥
2𝜑𝐶 = 4𝜋𝜌  , ∇2ℎ𝐻(𝜏, 𝑥⃗) = 0 𝑜𝑢𝑡𝑠𝑖𝑑𝑒 𝑡ℎ𝑒 𝑑𝑒𝑡𝑒𝑐𝑡𝑜𝑟

 

(36) 

 
This harmonic term ℎ𝐻(𝜏, 𝑥⃗) is directly affected by the presence of a detector. However, its Laplacian 
must remain zero outside the boundary of the detector's domain. This constraint means that the detector 
domain must be specifically defined as a small spherical region centred at 𝑥⃗0, with a radius 𝑟𝑑 beyond 
which the Poisson equation holds. This requirement can be enforced by introducing a Dirichlet boundary 
𝜕𝐷 condition: 
 
 ℎ𝐻(𝜏, 𝑥⃗ ∈ 𝜕𝐷) = −𝐼(𝜏)𝐶0;              0 ≤ 𝐼(𝜏) ≤ 1  (37) 

 
where 𝐼(𝜏) is a smooth transition function (or switch function), and 𝐶0 is a constant. 
 
The aforementioned condition should ensure that ℎ𝐻 remains harmonic everywhere except at the fixed 

detector surface. Specifically, the condition ∇𝑥
2ℎ𝐻 = 0 should be satisfied within the region where the 

Poisson equation is applicable. This requirement can be accomplished by introducing a harmonic 
‘monopole well’ located outside the boundary 𝜕𝐷 of the detector, defined as follows: 
 
 

ℎ𝐻(𝜏, 𝑥⃗) = −𝐼(𝜏)
𝐶0𝑟𝑑

|𝑥⃗ − 𝑥⃗0|
𝛿𝑖𝑗;         |𝑥⃗ − 𝑥⃗0| > 𝑟𝑑    

(38) 

 
The detector domain radius 𝑟𝑑  defines the surface 𝜕𝐷 of the sphere around a detector focus 𝑥⃗0. The 
constant 𝐶0 > 0  is dimensionless and represents the strength of the harmonic monopole, chosen such 
that the post-collapse size is on the order of the radius 𝑟𝑑. Specifically, 𝐶0𝑟𝑑 corresponds to the depth of 
the monopole well, which is fixed by the detector’s active potential: 𝑟𝑑 is the detector’s effective capture 
radius and 𝐶0 (where 𝐶0~1) is the bias energy required to register one charge. The switch 𝐼(𝜏) 𝜖 [0,1] 
modulates the amplitude of the harmonic monopole. 
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Equation (38) demonstrates that the presence of the detector focus 𝑥⃗0 imposes a Dirichlet-type boundary 
condition on the intrinsic metric ℎ𝑖𝑗 by constraining it on a small surface. When the detector is idle, the 

switch 𝐼(𝜏) is at its lowest level (𝐼(𝜏) = 0), and no constraints are applied. Conversely, when the 
detection ramp generated by the detector reaches a high level 𝐼(𝜏) ≈ 1, the boundary 𝜕𝐷 enforces the 
intrinsic metric ℎ𝑖𝑗 to conform to the monopole form. 

 
It is important to note that the switch function 𝐼(𝜏) cannot take the form of a simple step function. A 
sudden jump (𝛿-spike) would result in an infinite time derivative, which would correspond to infinite 
energy. Instead, it must exhibit a smooth profile, transitioning gradually from 0 to 1 over a finite proper-
time interval ∆𝜏.  

 
A convenient smooth profile is the logistic form: 

 
 𝐼(𝜏) = 1 (1 + 𝑒−(𝜉(𝜏)−1) 𝜀⁄ )⁄ ,   𝜉 ≪ 1 (39) 

 

where 𝜉(𝜏) represents the driving ratio between the pulse or ramp applied by the detector and the 
quantum pressure: 
 
 

𝜉(𝜏) =
𝑉𝑑𝑒𝑡(𝜏)

ℏ2 (𝑚𝐿2)⁄
 

(40) 

 
The numerator 𝑉𝑑𝑒𝑡(𝜏) represents the detector energy scale, which increases as the ramp progresses. 
The denominator ℏ2 (𝑚𝐿2)⁄  corresponds to the quantum pressure of a free wave packet with a size 
𝐿(𝜏) prior to any interaction with the detector. 

 
For 𝐼(𝜏) ≈ 0, the quantum-pressure dominates, reaching its minimum at infinity. Consequently, as long 
as the detector remains weak, with 𝜉(𝜏) < 1, the wave packet continues to expand freely, following 
Schrödinger-Newton-like dynamics. 

 
A critical threshold time 𝜏𝑐 is reached when the logistic switch 𝐼(𝜏) crosses its midpoint 𝐼(𝜏𝑐   ) = 1 2⁄ , 
which corresponds to 𝜉(𝜏𝑐  ) = 1. At this moment, the detector energy 𝑉𝑑𝑒𝑡(𝜏𝑐  ) becomes equal to the 
quantum-pressure ℏ2 (𝑚𝐿2)⁄ . This relationship provides a means to estimate the collapse window ∆𝜏, 
as detailed in the next Section. 
 
Once the driving ratio 𝜉(𝜏) surpasses the critical threshold (𝜉(𝜏) = 1), a second global minimum 
emerges within the monopole well. When 𝐼(𝜏) ≈ 1, the quantum-pressure is significantly suppressed, 
allowing the detector energy to dominate. As a result, the wave packet collapses into the monopole well, 
whose depth is 𝐶0𝑟𝑑. 
 
Putting together the free and monopole contributions results in an interpolating kernel that effectively 
transitions between the two regimes: 
 
 

𝐾(𝜏; 𝑥⃗, 𝑦⃗) = (1 − 𝐼(𝜏))
1

4𝜋|𝑥⃗ − 𝑦⃗|
− 𝐼(𝜏)

𝐶0𝑟𝑑

|𝑥⃗ − 𝑥⃗0|
 

(41) 

 

The interpolating kernel 𝐾(𝑥, 𝑦⃗; 𝜏) serves as an intrinsic solver, redistributing the ‘geometric weight’ 
through the weighting factor 𝐼(𝜏). This kernel transitions smoothly between the non-local Coulomb-
type free kernel 𝐾𝑓𝑟𝑒𝑒 (free spreading when 𝐼(𝜏) ≈ 0) and the sharply localised kernel 𝐾𝑙𝑜𝑐 (monopole 

well when 𝐼(𝜏) ≈ 1). Importantly, the inclusion of 𝐼(𝜏) in the interpolating kernel is not an additional 
postulate but a natural result of enforcing the detector boundary condition while maintaining the solution 
to the same Poisson-like equation. 
 
Both kernels 𝐾𝑓𝑟𝑒𝑒 and 𝐾𝑙𝑜𝑐 are Green functions of the same Laplace–Beltrami operator D2ℎ𝑖𝑗  that 

appears in the Hamiltonian constraint of Equation (27). The Coulomb free kernel 𝐾𝑓𝑟𝑒𝑒 is the free-space 
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solution, acting as the inverse of D2ℎ𝑖𝑗 on an unbounded slice. The localised kernel 𝐾𝑙𝑜𝑐, on the other 

hand, is the solution in the presence of a point-source image placed just outside the detector boundary. 
 
Both kernels are inherently spatial and act within the intrinsic metric, derived from the same variational 
action (mass term + curvature term) that leads to Equation (27). They are not ad hoc constructions but 
natural outcomes arising consistently from the intrinsic geometric framework. 
 
The intrinsic metric throughout the collapse window for the world block can thus be expressed as 
follows: 
 
 

ℎ𝑖𝑗(𝜏, 𝑥⃗) = −
𝐵

2𝐴
𝛿𝑖𝑗 ∫ 𝑑3𝑦𝜌( 𝜏, 𝑦⃗)𝐾( 𝜏; 𝑥⃗, 𝑦⃗) 

(42) 

 
The integration of the density 𝜌( 𝜏, 𝑦⃗) over the entire spatial domain of the world-block signifies the 
inherent non-separability between all its points. The two-phase behaviour of the intrinsic metric is 
controlled by the smooth measuring switch function 𝐼(𝜏), which dynamically transitions the metric 
between the free phase and the localising phase within the collapse window  ∆𝜏. 

 
For 𝐼 ≈ 0, the kernel 𝐾 reduces to the non-local Coulomb form, and the metric remains in the free phase. 
Conversely, for 𝐼 ≈ 1, only the localising monopole term persists, and the metric enters the collapsed 
phase. Since the interpolating kernel 𝐾 incorporates both the density 𝜌 and the switch function 𝐼(𝜏), this 
transition represents an intrinsic geometric response—not an external rule—and remains compatible 
with the Poisson constraint, the continuity equation, and the Hamilton–Jacobi dynamics on every slice. 
 

 
6. Measurement-induced localisation 

 
Assume that the initial intrinsic wave packet is described by a free Gaussian with an initial width 𝜎0. At 
𝜏 = 0, let: 

 
 

𝜑0(𝑥⃗) = (
1

𝜋𝜎0
2)

3 4⁄
𝑒−|𝑥|2 2𝜎0

2⁄ ;            𝜌 = |𝜑0|2   
(43) 

 
Assuming the wave packet remains Gaussian, with 𝜎(𝜏) evolving due to the variational energy 
contributions from quantum pressure and the detector-induced monopole well potential. The variational 
energy 𝐸(𝜎, 𝐼) of the Gaussian packet, as a function of its width 𝜎 and the switch 𝐼(𝜏), is expressed as: 

 
 

𝐸(𝜎, 𝐼) =
3ℏ2

4𝑚𝜎2
− 𝐼(𝜏)

2𝑉0

√𝜋𝜎
;     𝑉0 =

3𝐵2𝐶0𝑟𝑑

2𝐴
 

(44) 

 

The first term of Equation (44) represents the gradient energy of the amplitude, commonly referred to 
as quantum pressure. The second term corresponds to the monopole well potential. The first term is 
positive and promotes spreading, as the energy decreases for larger 𝜎. Conversely, the second term is 
negative and promotes contraction, as the energy decreases for smaller 𝜎, however, this term is only 
present when the detector switch 𝐼(𝜏) is not zero. 

 
When the detector is off, 𝐼(𝜏) = 0, the variational energy 𝐸(𝜎, 𝐼) has its global first minimum at 𝜎 →
∞, causing the world-block to expand (free phase). As 𝐼(𝜏) increases from 0 to 1, the variational energy 
𝐸(𝜎, 𝐼) rises monotonically. Initially, when 𝐼(𝜏) is small, 𝐸(𝜎, 𝐼) develops a shallow local minimum at 
a finite 𝜎, indicating that the monopole attraction starts to compete with the gradient energy but does 
not yet dominate, maintaining the global minimum at infinity. Once 𝐼(𝜏) becomes sufficiently large, the 
finite 𝜎 well sinks below the 𝜎 → ∞ plateau. This results in the emergence of a new global minimum at 
𝜎~𝑟𝑑. Consequently, the world-block transitions from the free minimum to the confined minimum, 
leading to collapse. 

 
More specifically, by substituting the Gaussian profile into the bulk Lagrangian Equation (26) and 
integrating over space, we derive the effective single-variable Lagrangian: 



14 
 

 
 

𝐿𝑒𝑓𝑓(𝜎, 𝜎̇; 𝜏) =
𝑚

2
𝜎̇2 −

3ℏ2

4𝑚𝜎2
+ 𝐼(𝜏)

2𝑉0

√𝜋𝜎2
 

(45) 

 

By computing the Euler Lagrangian derivative, 𝜕𝐿𝑒𝑓𝑓 𝜕𝜏⁄ = 𝐼2̇𝑉0 √𝜋𝜎⁄ , we derive the following 

dynamical equation: 
 

 
𝑚𝜎̈ =

3ℏ2

2𝑚𝜎3
− 𝐼(𝜏)

2𝑉0

√𝜋𝜎2
+ 𝐼(̇𝜏)

2𝑉0

√𝜋𝜎
 

(46) 

 
The first two terms on the right-hand-side of Equation (46) represent the gradient of the effective 
potential associated with the variational energy 𝐸(𝜎, 𝐼) of Equation (44). The final term accounts for the 
time-dependent driving force, which injects energy into the system during the ramping of the detector 

(𝐼(̇𝜏) ≠ 0). 
 

In the adiabatic regime, where 𝐼(̇𝜏) ≈ 0, the equilibrium width 𝜎𝑒𝑞 can be determined by setting 𝜎̈ = 0 

in the Equation (46). This leads to the following expression for the equilibrium width, 𝜎𝑒𝑞: 

 
 

𝜎𝑒𝑞(𝜏) =
3ℏ2√𝜋

4𝑚𝑉0𝐼(𝜏)
 

(47) 

 
For 𝐼(𝜏) → 0, the equilibrium width 𝜎𝑒𝑞(𝜏) → ∞, indicating a free spreading regime. 

 
The onset of collapse occurs when 𝜎𝑒𝑞(𝜏) becomes comparable to the free spreading width 𝐿(𝜏). Based 

on the definition of the logistic switch (39), the threshold instant 𝜏𝑐 is determined when the driving ratio 
𝜉(𝜏𝑐) = 1. Using the relationship of Equation (40), this implies: 

 
 𝑉𝑑𝑒𝑡(𝜏𝑐) = 𝑉𝑐 = ℏ2 (𝑚𝐿2(𝜏𝑐))⁄  (48) 

 
To estimate the collapse window ∆𝜏, we linearise 𝑉𝑑𝑒𝑡(𝜏) around the threshold instant 𝜏𝑐 as: 

 
 𝑉𝑑𝑒𝑡(𝜏) ≈ 𝑉𝑐 + 𝑠(𝜏 − 𝜏𝑐) (49) 

 
where 𝑠 = [𝑉𝑑𝑒𝑡 𝑑𝜏⁄ ]𝜏𝑐

 is the slope of  𝑉𝑑𝑒𝑡(𝜏) at the threshold instant 𝜏𝑐. 

 
Substituting  𝑉𝑑𝑒𝑡(𝜏) into the expression for 𝜉(𝜏), and then differentiating with respect to 𝜏, one finds: 

 
 𝑑𝜏 = [ℏ2 (𝑚𝐿2𝑠)⁄ ]𝑑𝜉 (50) 

 
By selecting a practical criterion where the collapse window is defined as the time interval during which 
the driving ratio 𝜉(𝜏) transitions from 10% to 90%, one can estimate the collapse window ∆𝜏: 

 
 ∆𝜏 = 4.4 𝜀ℏ2 (𝑚𝐿2𝑠)⁄  (51) 

 
This provides an estimate for the duration of the collapse process based on the rate of change of the 
driving potential. For example, considering an electron with a free width 𝐿 = 100 𝑛𝑚, a ramp slope of 
𝑠 = 10−4 𝑒𝑉/𝑝𝑠, and a small dimensionless parameter 𝜀 = 0.01, the collapse duration is estimated as 
∆𝜏~7𝑝𝑠. 

 
To analyse the behaviour of the system within the collapse window, i.e. for |𝜏 − 𝜏𝑐| < ∆𝜏, we simplify 
the governing Equation (46) by neglecting the 1 𝜎3⁄  term once 𝜎 has shrunk to a value smaller than 
1 𝐿2⁄ . Under this approximation, Equation (46) can then be integrated to yield: 

 
 𝜎(𝜏) ≈

𝜎0

√1 + (𝜏 − 𝜏𝑐) ∆𝜏⁄
 ;  𝜏𝑐 ≤ 𝜏 ≤ 𝜏𝑐 + 3∆𝜏 

(52) 
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So the width decreases approximately as the inverse square-root of the elapsed proper time, scaled by 
the collapse window ∆𝜏. After three logistic e-folds, the collapse process is nearly complete, and the 
width reaches: 

 
 𝜎∞ ≈

𝜎0

√1 + 3
=

𝜎0

2
 

(53) 

 
The with 𝜎∞ asymptotically approaches 𝑟𝑑 as 𝐼 → 1. 

 
A notable feature of the finite collapse window ∆𝜏 is the fact that if the detector is abruptly switched off 
(i.e. 𝐼 → 0) while the system is still within or near the collapse window, (i.e. at 𝜏𝑜𝑓𝑓 < 𝜏𝑐 + ∆𝜏), then 

Equation (46) reduces to describing the dynamics driven solely by quantum pressure, leading to: 
 

 
𝑚𝜎̈ =

3ℏ2

2𝑚𝜎3
 

(54) 

 
Integrating Equation (54) twice yields the following expression for the width 𝜎: 

 
 

𝜎2(𝜏) = 𝜎∞
2 +

3ℏ2

𝑚2𝜎∞
2 (𝜏 − 𝜏𝑜𝑓𝑓)

2
 

(55) 

 
This result illustrates the free re-expansion of the wave packet's width driven by quantum pressure after 
the detector is abruptly turned off, leading to the possible reappearance of interference patterns. This 
behaviour is a distinctive signature of the finite-window collapse process and stands in contrast to 
instantaneous projection scenarios, where such re-expansion and the revival of interference patterns do 
not occur. 
 
The revival takes place only if the detector bias is turned off before the logistic switch reaches a value 
of approximately 𝐼(𝜏) ≈ 0.9. In the case of an electron, as described in the above example, the revival 
happens within a proper-time interval that is shorter than the collapse window, ∆𝜏 ≈ 7 𝑝𝑠. 
 

 
7. Example of the double-slit experiment 

 
In the double-slit experiment a single quantum particle—for example, an electron—approaches an 
opaque plate with two narrow slits. The particle’s wave packet, upon reaching the plate, is constrained 
to pass through the slits. The following analysis uses proper time to explore how the particle's intrinsic 
wave packet splits, evolves, and ultimately generates the well-known interference pattern, all while the 
particle’s localized charge follows one of the resulting lobes. 
 
Before interacting with the plate, the particle is solely characterised by its intrinsic wave packet 

𝜑(𝜏, 𝑥⃗) = √𝜌𝑒𝑖𝑆 ℏ⁄  on each slice 𝑆𝜏, valid for for 𝜏 < 𝜏𝑃, where 𝜏𝑃 denotes the proper time at which the 

particle encounters the plate. Prior to reaching the plate, the intrinsic wave packet takes the form of a 
single Gaussian centred at 𝑥⃗𝐶(𝜏) and evolves according to free dynamics. The squared magnitude 𝜌 of 
the intrinsic wave packet represents the mass-density distribution, while the centroid world-line 𝑥⃗𝐶(𝜏) 
carries the particle’s charge and remains within the support of the intrinsic wave packet. 
 
At the proper time 𝜏𝑃, the particle interacts with the plate, positioned on the intrinsic 3-surface 𝑆𝜏𝑃

. At 

𝜏 = 𝜏𝑃, the plate imposes a boundary condition on the wave packet with a potential 𝑉𝑀. Specifically, 
𝑉𝑀 is set to zero within two narrow windows W𝐴 and W𝐵, centred at 𝑥⃗𝐴 and 𝑥⃗𝐵, respectively, while it is 
very large everywhere else. This interaction causes the particle’s wave packet to split as it propagates 
through the windows defined by the slits. 
 
Multiplying the intrinsic wave packet 𝜑 by the respective window indicator functions θ𝐴 and θ𝐵 gives, 
immediately after the plate: 
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 𝜑(𝜏𝑃

+, 𝑥⃗) = 𝜑(𝜏𝑃
−, 𝑥⃗)[θ𝐴 + θ𝐵] = 𝜑𝐴 + 𝜑𝐵 (56) 

 
Thus, immediately after interacting with the mask, the single intrinsic wave packet 𝜑(𝜏𝑃

+, 𝑥⃗) develops 
two amplitude peaks (lobes) corresponding to the two windows. Despite this, the intrinsic wave-packet 
𝜑(𝜏𝑃

+, 𝑥⃗) remains a single, complex function, although its support is now split into two distinct lobes. 
Importantly, phase coherence is preserved across the two lobes since both components inherit the same 
global phase of the incoming wave-packet. The reference charge world-line 𝑥⃗𝐶(𝜏) is entirely confined 
within one of the lobes, either 𝜑𝐴 or 𝜑𝐵. 
 
For 𝜏 > 𝜏𝑃, the intrinsic wave-packet resumes free evolution. At the detector slice, defined by 𝜏𝐷, the 
wave-packet is described as: 
 
 𝜑(𝜏𝐷 , 𝑥⃗) = 𝜑𝐴(𝜏𝐷 , 𝑥⃗) + 𝜑𝐵(𝜏𝐷 , 𝑥⃗) (57) 

 
where each component evolves independently under the same free propagation dynamics. However, due 
to differences in optical path lengths, the two components acquire a relative phase, such that: 
 
 𝜑𝐵(𝜏𝐷 , 𝑥⃗) = 𝑒𝑖∆𝛼(𝑥)𝜑𝐴(𝜏𝐷, 𝑥⃗) (58) 

 
The world-line 𝑥⃗𝐶(𝜏) carrying the particle’s charge, remains confined within the same initial lobe that 
was determined after the interaction with the mask. 
 
At the detector, the mass-density distribution of the intrinsic wave-packet is given by: 
 
 |𝜑(𝜏𝐷 , 𝑥⃗)|2 = |𝜑𝐴|2 + |𝜑𝐵|2 + 2𝑅𝑒[𝜑𝐴

∗ 𝜑𝐵] (59) 
 
The final term represents the intrinsic cross-term responsible for interference, which remains non-zero 
because the off-diagonal element of the following density matrix 𝜌(𝜏𝐷; 𝑥⃗, 𝑥⃗′) maintains coherence 
between the two lobes: 
 
 𝜌(𝜏𝐷; 𝑥⃗, 𝑥⃗′) = 𝜑∗(𝜏𝐷 , 𝑥⃗′)𝜑(𝜏𝐷 , 𝑥⃗) (60) 

 
Therefore, the interference pattern, manifested as regions of brightness and darkness, is inherently 
encoded within the space of the intrinsic wave-packet itself.  
 

 

When the particle is detected during a single experimental run, its trajectory ends at a specific absorber 
located at 𝑥⃗ℎ𝑖𝑡𝜖{𝜑𝐴 𝑜𝑟 𝜑𝐵}, corresponding to the lobe within which it resides. This results in the collapse 
of the intrinsic wave-packet 𝜑, as described in Section 7.  
 
Across many identical experimental runs, the initial placement of 𝑥⃗𝐶(𝜏𝑃

+) is statistically sampled from 

the distribution |𝜑(𝜏𝑃
+)|2. Since this distribution already encompasses the interference pattern, the 

histogram of hit positions converges to a profile proportional to |𝜑𝐴 + 𝜑𝐵|2, perfectly matching the 
observed interference fringes. 
 
 

8. Configuration Space 
 

A single, free quantum world-block 𝑏, described by the intrinsic coordinates (𝑥⃗, 𝜏), is defined within a 
Hilbert space ℋ = 𝑠𝑝𝑎𝑛{|𝑥⃗⟩}. Its state |𝜑⟩ is expressed as follows: 

 
 

|𝜑⟩ = ∫ 𝑑3𝑥𝜑(𝑥⃗, 𝜏) |𝑥⃗⟩ 
(61) 

 
More generally, a system consisting of N particles is conceptualized as a collection of N world-blocks. 
To account for the individuality of each world-block, the system of N blocks is represented in an abstract 
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space 𝒮 (or manifold), which is defined as the tensor product of the N individual blocks within the 

Hilbert space ℋ(𝑁): 
 

 𝒮 = 𝑏1 ⊗ 𝑏2 ⊗ ⋯ ⊗ 𝑏𝑁 (62) 
 

where the Hilbert space ℋ(𝑁) is itself the tensor product of the N single-block Hilbert spaces: 
 

 ℋ(𝑁) = ℋ1 ⊗ ℋ2 ⊗ ⋯ ⊗ ℋ𝑁 (63) 

 
The generic case involves one proper time per block. A single world-block is charted by (𝑥⃗𝑖 , 𝜏𝑖), where 
 𝜏𝑖 represents the proper time measured along the reference world-line anchoring block  𝑏𝑖, and 𝑥⃗𝑖 lies 

on the space-like slice 𝑆𝜏𝑖

(𝑖)
. Proper time along a world-line is uniquely defined up to an additive constant 

and a scale factor, both determined by the block’s motion relative to its environment. For two blocks 𝑏1 

and 𝑏2, which exhibit different modes of motion, their proper times 𝜏1 and 𝜏2 accumulate at different 
rates and, consequently, cannot generally be aligned slice-by-slice. 

 

In the case of an N-block system, the configuration space is characterized by coordinates in 𝑅3𝑁 × 𝑅𝑁. 
Thus, the system involves N proper-time parameters: 

 
 (𝑥⃗1, 𝜏1; 𝑥⃗2, 𝜏2; ⋯ ; 𝑥⃗𝑁, 𝜏𝑁) 𝜖 𝑅3𝑁 × 𝑅𝑁 (64) 

 
This system can also be described by a wavefunction that encapsulates the entire ensemble. 
Consequently, the wavefunction of the N-particle system is defined in the 4N-dimensional configuration 

space 𝑅3𝑁 × 𝑅𝑁. The general state of the system is thus represented as a multi-time wavefunction Ф: 
 

 Ф(𝑥⃗1, 𝜏1; 𝑥⃗2, 𝜏2; ⋯ ; 𝑥⃗𝑁, 𝜏𝑁) (65) 
 
We can work with the N proper-time parameters. However, it is also possible to adopt the standard 
formalism of “Tomonaga–Schwinger gauge’’ [24] to introduce a global time parameter for the N-block 
system, replacing the N individual proper times. This involves selecting a monotonic real parameter 𝜆 

with 𝜆̇ > 0. For instance, 𝜆 can be chosen as the proper time of one reference world-block. For each 
individual world-block 𝑏𝑖, we then define a smooth, strictly increasing clock map: 

 
 𝜏𝑖 = 𝜏𝑖(𝜆) ;  𝜏̇𝑖(𝜆) = 𝑑𝜏𝑖 𝑑𝜆⁄ > 0   (66) 

 

The global parameter 𝜆 is used solely to label composite slices (𝑆𝜏1(𝜆)
(1)

, ⋯ , 𝑆𝜏𝑁(𝜆)
(𝑁)

) corresponding to the 

N world-blocks. Importantly, this formalism does not assume a common tick rate for the proper times 
of the individual blocks. 

 

The configuration space is thus reduced to 𝑅3𝑁 × 𝑅, where all the world-blocks are evaluated on the 
same global slice defined by 𝜆 = 𝑐𝑜𝑛𝑠𝑡. Consequently, the multi-time wavefunction ϕ and the 
configuration-space density 𝜌 can be redefined as follows: 

 
 𝜑(𝑥⃗1, 𝑥⃗2, ⋯ , 𝑥⃗𝑁, 𝜆) = ϕ(𝑥⃗1, 𝜏1(𝜆); 𝑥⃗2, 𝜏2(𝜆); ⋯ ; 𝑥⃗𝑁 , 𝜏𝑁(𝜆)) 

𝜌(𝑥⃗1, 𝑥⃗2, ⋯ , 𝑥⃗𝑁 , 𝜆) = |𝜑|2 

(67) 

 

For a single world-block, the wavefunction’s density 𝜌(𝑥⃗, 𝜏) = |𝜑|2and the mass density 𝜇(𝑥⃗, 𝜏) are 
equivalent up to a proportionality constant: 

 
 𝜇(𝑥⃗, 𝜏) = 𝑚𝜌(𝑥⃗, 𝜏) (68) 

 
However, for a system of N world-blocks, it is necessary to distinguish between the global 
configuration-space density 𝜌(𝑥⃗1, 𝑥⃗2, ⋯ , 𝑥⃗𝑁), defined in the configuration space 𝑅3𝑁, and the total mass 
density 𝜇(𝑥⃗1, 𝑥⃗2, ⋯ , 𝑥⃗𝑁), defined in ordinary physical space 𝑅3. While the mass-density of each block 
and the total mass-density can be derived from the global configuration-space density, the reverse 
derivation is generally not possible. 
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The total mass-density operator 𝜇̂(𝑥⃗) = 𝜇̂(𝑥⃗1, 𝑥⃗2, ⋯ , 𝑥⃗𝑁), defined in ordinary space 𝑅3, for N world-
blocks of masses 𝑚𝑘 is: 

 
 

𝜇̂(𝑥⃗) = ∑ 𝑚𝑘𝛿(3)(𝑥⃗ − 𝑥𝑘)
𝑁

𝑘=1
 

(69) 

 
where 𝑥𝑘 represents the position operator acting on the world-block 𝑏𝑘 

 
For any normalised wavefunction 𝜑(𝑥⃗1, 𝑥⃗2, ⋯ , 𝑥⃗𝑁 , 𝜆), with configuration-space density 
𝜌(𝑥⃗1, 𝑥⃗2, ⋯ , 𝑥⃗𝑁 , 𝜆) = |𝜑|2, the total mass-density in ordinary space can be expressed in terms of the 
global configuration-space density as follows: 
 
   𝜇𝑡𝑜𝑡(𝑥⃗, 𝜆) = ⟨𝜑|𝜇̂(𝑥⃗)|𝜑⟩ = ∑ 𝑚𝑘𝜌𝑘

(𝑚𝑎𝑟)
(𝑥⃗, 𝜆)𝑁

𝑘=1  

𝜇𝑡𝑜𝑡(𝑥⃗, 𝜆) = ∑ 𝑚𝑘 ∫ 𝑑3𝑁𝑥 𝜌(𝑥⃗1, 𝑥⃗2, ⋯ , 𝑥⃗𝑁)𝛿(3)(𝑥⃗ − 𝑥𝑘)
𝑁

𝑘=1
 

(70) 

 

where 𝜌𝑘
(𝑚𝑎𝑟)(𝑥⃗, 𝜆) is the marginal density associated with world-block 𝑏𝑘. The marginal density is 

defined in terms of the global configuration-space density 𝜌, as: 
 
 

𝜌𝑘
(𝑚𝑎𝑟)(𝑥⃗, 𝜆) = ∫ 𝑑3𝑁𝑥 𝜌(𝑥⃗1, 𝑥⃗2, ⋯ , 𝑥⃗𝑁)𝛿(3)(𝑥⃗ − 𝑥𝑘) 

(71) 

 

In essence, 𝜌𝑘
(𝑚𝑎𝑟)(𝑥⃗, 𝜆) is obtained by performing the 3N-3 integrals over all coordinates 𝑥⃗𝑙 ≠ 𝑥⃗𝑘, 

effectively marginalizing over the degrees of freedom associated with all other world-blocks. 
 

Equation (70) demonstrates that the physical 3-space mass-density is the sum of the N marginal 
densities, each weighted by their respective masses 𝑚𝑘. No cross-terms appear in this expression 

because each Dirac delta function 𝛿(3)(𝑥⃗ − 𝑥𝑘) acts as a projection operator that isolates the diagonal 
part of the configuration-space density. 

 
Phase correlations between world-blocks, while critical for two-point or higher-order observables, do 
not influence the one-body mass density. Even in cases of full quantum entanglement, the one-body 

marginal densities 𝜌𝑘
(𝑚𝑎𝑟)

(𝑥⃗, 𝜆) contain all of the information required to compute the real-space mass 

distribution. This is because mass is an additive, one-body observable. Although entanglement impacts 
multi-point correlations and the geometric structure of the configuration space, it does not hinder the 
recovery of the physical-space mass-density, which can still be obtained through the summation 
provided in Equation (70). 
 

 
9. Two-phase intrinsic metric in configuration space 

 
In configuration space, the two-phase intrinsic metric for the N-block system can be formalised, as 
follows: 

 
 

ℎ𝑖𝑗 = −
𝐵

2𝐴
𝛿𝑖𝑗 ∫ 𝑑3𝑁𝑦𝜌(𝑦⃗1, ⋯ , 𝑦⃗𝑁; 𝜆) ∏ 𝐾𝑘

(𝐼𝑘(𝜆))
(𝑥⃗𝑘, 𝑦⃗𝑘; 𝜆)

𝑁

𝑘=1

 

(72) 

where the index 𝑘 refers to the 𝑘𝑡ℎ world-block; 𝐼𝑘(𝜆) is the per-block switch; and 𝐾𝑘

(𝐼𝑘(𝜆))
 represents 

the following intrinsic metric Kernel: 
 
 𝐾𝑘

(𝐼𝑘(𝜆))
(𝑥⃗𝑘, 𝑦⃗𝑘; 𝜆) = [1 − 𝐼𝑘(𝜆)]𝐾𝑘

(0)(𝑥𝑘, 𝑦⃗𝑘) + 𝐼𝑘(𝜆)𝐾𝑘
(1)(𝑥⃗𝑘) 

(73) 
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where 𝐾𝑘
(0)

 and 𝐾𝑘
(1)

 are referred to as the free Poisson kernel and the harmonic monopole kernel, 

respectively, and are formulated as: 
 
 

𝐾𝑘
(0)(𝑥⃗𝑘 , 𝑦⃗𝑘) =

1

4𝜋|𝑥⃗𝑘 −  𝑦⃗𝑘|
  ;  𝐾𝑘

(1)(𝑥⃗𝑘) = −
𝐶0𝑘𝑟𝑑𝑘

4𝜋|𝑥⃗𝑘 −  𝑥⃗0𝑘|
 

(74) 

 
where 𝑥⃗0𝑘 and 𝑟𝑑𝑘 are the detector focus and radius for world-block 𝑘; 𝐶0𝑘 is the dimensionless depth 
(of order 1). 
 
The smooth logistic switch 𝐼𝑘(𝜆) 𝜖 [0,1], undergoes a rise when the driving ratio 𝜉(𝜆) crosses 1, where 

𝜉(𝜆) = 𝑉𝑑𝑒𝑡,𝑘(𝜆) ℏ2 (𝑚𝑘𝐿𝑘
2 )⁄⁄  . 

 

The product kernel ∏ 𝐾𝑘
(𝐼𝑘)

(𝑥⃗𝑘, 𝑦⃗𝑘)𝑁
𝑘=1  acts on ℎ𝑖𝑗(𝑥⃗1, ⋯ , 𝑥⃗𝑁; 𝜆) with the configuration-space Laplacian 

∑ ∇𝑘
2

𝑘 . For each 𝑘 the Laplacian acting on 𝐾𝑘
(0)

 produces 𝛿(3)(𝑥⃗𝑘 −  𝑦⃗𝑘). Acting on 𝐾𝑘
(1)

 yields 0 

because it is harmonic in 𝑥⃗𝑘. Therefore, we precisely obtain the required multi-block Poisson equation: 
 

 
(∑ ∇𝑘

2
𝑁

𝑘=1
) ℎ𝑖𝑗 =

𝐵

2𝐴
𝛿𝑖𝑗𝜌(𝑦⃗1, ⋯ , 𝑦⃗𝑁; 𝜆) 

(75) 

 

For the free phase, where 𝐼𝑘(𝜆) ≈ 0, the kth factor corresponds to the Posson kernel 𝐾𝑘
(0)(𝑥⃗𝑘, 𝑦⃗𝑘), and 

the metric consequently couples every point of block k to every other point. 
 
In the localized (measurement) phase, where 𝐼𝑘(𝜆) ≈ 1, the influence of the long-range kernel 

𝐾𝑘
(0)(𝑥⃗𝑘 , 𝑦⃗𝑘) vanishes, leaving only the block’s local monopole kernel 𝐾𝑘

(1)(𝑥⃗𝑘). This results in a 

confining metric well that is centred on the detector focus 𝑥⃗0𝑘, forcing the marginal density for block k 
to contract toward 𝑟𝑑𝑘. 
 

For an intermediate 𝐼𝑘(𝜆) between the two phases, both kernels 𝐾𝑘
(0)

(𝑥⃗𝑘, 𝑦⃗𝑘) and 𝐾𝑘
(1)

(𝑥⃗𝑘) contribute 

continuously. The collapse window is characterized by ∆𝜆 ≈ 𝜀ℏ2 (𝑚𝑘𝐿𝑘
2 𝑠𝑘)⁄ , where 𝑠𝑘 represents the 

detector ramp slope. 
 
 

10. Dependent and independent world-blocks 
 
In the case where the wavefunction of N world-blocks, factorises as: 

 
 

𝜑(𝑥⃗1, 𝑥⃗2, ⋯ , 𝑥⃗𝑁, 𝜆) = ∏ 𝜑𝑘(𝑥⃗𝑘, 𝜆)
𝑁

𝑘=1
 

(76) 

 
Then, the global configuration-space density 𝜌(𝑥⃗1, 𝑥⃗2, ⋯ , 𝑥⃗𝑁 , 𝜆) can correspondingly be expressed as 
the product of the individual densities: 

 
 

𝜌(𝑥⃗1, 𝑥⃗2, ⋯ , 𝑥⃗𝑁 , 𝜆) = ∏ 𝜌𝑘(𝑥⃗𝑘, 𝜆)
𝑁

𝑘=1
 ; 𝜌𝑘(𝑥⃗𝑘, 𝜆) = |𝜑𝑘|2   

(77) 

 
In this case, the marginal density corresponds exactly to the individual density for each block. 
Specifically, integrating over the coordinates of all blocks except k yields exactly 𝜌𝑘(𝑥⃗𝑘, 𝜆): 

 
 𝜌𝑘

(𝑚𝑎𝑟)(𝑥⃗, 𝜆)  

= ∫ 𝑑3𝑥⃗1, ⋯ , 𝑑3𝑥⃗𝑘−1, 𝑑3𝑥⃗𝑘+1, ⋯ , 𝑑3𝑥⃗𝑁 𝜌(𝑥⃗1, 𝑥⃗2, ⋯ , 𝑥⃗𝑁) 

𝜌𝑘
(𝑚𝑎𝑟)(𝑥, 𝜆) = 𝜌𝑘(𝑥⃗𝑘 , 𝜆) ∏ ∫ 𝑑3𝑥𝑙  𝜌𝑙(𝑥⃗𝑙, 𝜆)

𝑙≠𝑘
= 𝜌𝑘(𝑥⃗𝑘, 𝜆) 

(78) 
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With this product density, the Poisson equation for the metric decouples additively, and consequently, 
Equation (72) factorises into a direct sum of single-block metrics: 

 
 

ℎ𝑖𝑗(𝑥⃗1, ⋯ , 𝑥⃗𝑁 , 𝜆) = ∑ ℎ𝑖𝑗
(𝑘)(𝑥⃗𝑘, 𝜆)

𝑁

𝑘=1
 

where ℎ𝑖𝑗
(𝑘)(𝑥⃗𝑘, 𝜆) = −

𝐵

2𝐴
𝛿𝑖𝑗 ∫ 𝑑3𝑦𝑘𝜌𝑘(𝑦⃗𝑘 , 𝜆) 𝐾𝐼𝑘(𝜆)(𝑥⃗𝑘, 𝑦⃗𝑘) 

(79) 

 

with each ℎ𝑖𝑗
(𝑘)

 having its own monopole switch. 

 
Thus, if the individual densities are uncorrelated (i.e. total density 𝜌(𝑥⃗1, 𝑥⃗2, ⋯ , 𝑥⃗𝑁 , 𝜆) can be expressed 
as the product of the individual densities), then the intrinsic metrics are separable, and the N blocks are 
independent. 
 
As a result, each world-block collapses or expands independently based on its own monopole switch 
𝐼𝑘(𝜆). An operation on world-block 𝑘 does not affect world block 𝑙 ≠ 𝑘. 
 
On the other hand, if the wavefunction of N world-blocks does not factorise, then the global 
configuration-space density 𝜌(𝑥⃗1, 𝑥⃗2, ⋯ , 𝑥⃗𝑁 , 𝜆) cannot be expressed as a product of individual densities: 

 
 

𝜌(𝑥⃗1, 𝑥⃗2, ⋯ , 𝑥⃗𝑁, 𝜆) ≠ ∏ 𝜌𝑘(𝑥⃗𝑘 , 𝜆)
𝑁

𝑘=1
 

(80) 

 
In this case, it is not possible to reconstruct the global configuration-space density, 𝜌(𝑥⃗1, 𝑥⃗2, ⋯ , 𝑥⃗𝑁, 𝜆), 

from the set of marginal densities {𝜌𝑘
(𝑚𝑎𝑟)(𝑥⃗, 𝜆)}

𝑘=1

𝑁
. This is because the marginal density 𝜌𝑘

(𝑚𝑎𝑟)(𝑥⃗, 𝜆) 

associated with block k does not contain any information about its correlation with the other blocks. 
Consequently, the integral (78) couples all coordinates, and therefore, cannot be factorised into a direct 
sum of single-block metrics: 

 
 

ℎ𝑖𝑗(𝑥⃗1, ⋯ , 𝑥⃗𝑁, 𝜆) ≠ ∑ 𝑔𝑖𝑗
(𝑘)

(𝑥⃗𝑘, 𝜆)
𝑁

𝑘=1
 

(81) 

   
Correlations in the density 𝜌(𝑥⃗1, 𝑥⃗2, ⋯ , 𝑥⃗𝑁 , 𝜆) create a geometric interdependence among the N world-
blocks. A measurement on any world-block 𝑏𝑖 (flipping 𝐼𝑖(𝜆) from 0 to 1), alters the convolution weight, 
subsequently modifying the global intrinsic metric ℎ𝑖𝑗(𝑥⃗1, ⋯ , 𝑥⃗𝑁 , 𝜆), as a function of all the coordinates 

𝑥⃗𝑘. This modification represents the intrinsic signature of entanglement, yet the evolution remains 
unitary in  𝜆.  

 
Thus, if the individual densities are correlated (i.e. the global density 𝜌(𝑥⃗1, 𝑥⃗2, ⋯ , 𝑥⃗𝑁 , 𝜆) cannot be 
expressed as a product of the individual densities), the intrinsic metrics become inseparable, and the N 
world-blocks are inherently interdependent. 
 

 
11. Entangled world-blocks in the intrinsic–extrinsic framework 

 
We consider two entangled world-blocks (labelled 𝑏1 and 𝑏2) and model a position-selective 
measurement performed exclusively on block 𝑏1. The reasoning can be generalized to an arbitrary 
number of world-blocks. 

 
For two world-blocks, the full quantum state is described by 𝜑(𝑥⃗1, 𝑥⃗2; 𝜆), and the configuration-space 
density is given by 𝜌12(𝑥⃗1, 𝑥⃗2; 𝜆) = |𝜑|2, where 𝜆 serves as the global clock. 

 
In the case of entanglement, the state 𝜑 cannot be factorised into a product of separate wavefunctions 
for each block. This, equivalently, implies that 𝜌12 ≠ 𝜌1𝜌2, where 𝜌1 and 𝜌2 correspond to the marginal 
densities of blocks 𝑏1 and 𝑏2, respectively. 
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When both blocks are in the free phase (i.e., 𝐼1 = 𝐼2 = 0), the intrinsic configuration-space metric is 
determined by the product kernel: 

 
 

ℎ𝑖𝑗(𝑥⃗1, 𝑥⃗2, 𝜆) = −
𝐵

2𝐴
𝛿𝑖𝑗 ∫ 𝑑3𝑦1𝑑3𝑦2

𝜌12(𝑦⃗1, 𝑦⃗2; 𝜆)

4𝜋|𝑥⃗1 − 𝑦⃗1|4𝜋|𝑥⃗2 −  𝑦⃗2|
 

(82) 

 
Each point in block 𝑏1 is geometrically linked to all points in block 𝑏2 through the double non-local 
Coulomb kernel. 

 
When the position-selective detector is activated for block 𝑏1, with a focus at 𝑥⃗01 and radius 𝑟𝑑,1, the 

corresponding logistic switch 𝐼1(𝜆) is given by: 
 

 𝐼1(𝜆) = 1 (1 + 𝑒−(𝜉1(𝜆)−1) 𝜀⁄ ) ;⁄  

𝜉1(𝜆) = 𝑉𝑑𝑒𝑡,1(𝜆) (ℏ2 (𝑚1𝐿1
2)⁄ )⁄   ; 𝜀 ≪ 1 

(83) 

 
Block 𝑏2 remains unaffected, and its logistic switch is fixed at: 𝐼2(𝜆) = 0. Thus, the per-block kernels 
are given by: 

 
 

𝐾1

(𝐼1(𝜆))
(𝑥⃗1, 𝑦⃗1; 𝜆) =

[1 − 𝐼1(𝜆)]

4𝜋|𝑥⃗1 −  𝑦⃗1|
−

𝐼1(𝜆)𝐶01𝑟𝑑,1

|𝑥⃗1 −  𝑥⃗01|
; 

𝐾1

(𝐼2(𝜆))
= 𝐾2

(0)(𝑥⃗2, 𝑦⃗2) =
1

4𝜋|𝑥⃗2 −  𝑦⃗2|
 

(84) 

 

The kernel  𝐾1

(𝐼1(𝜆))
 of block 𝑏1 is a combination of the long-range Coulomb-like kernel 𝐾1

(0)
(𝑥⃗1, 𝑦⃗1) =

1 4𝜋|𝑥⃗1, 𝑦⃗1|⁄  and the harmonic monopole kernel 𝐾1
(1)(𝑥⃗1) = − 𝐶01𝑟𝑑1 4𝜋|𝑥⃗1 −  𝑥⃗01|⁄ . In contrast, the 

kernel  𝐾1

(𝐼2(𝜆))
 of block 𝑏2 is composed only of the long-range Coulomb-like kernel 𝐾2

(0)
. 

 
The intrinsic metric during the collapse window is given by: 

 
 ℎ𝑖𝑗(𝑥⃗1, 𝑥⃗2, 𝜆)

= −
𝐵

2𝐴
𝛿𝑖𝑗 ∫ 𝑑3𝑦1𝑑3𝑦2𝜌12(𝑦⃗1, 𝑦⃗2; 𝜆)𝐾1

(𝐼1)
(𝑥⃗1, 𝑦⃗1; 𝜆)𝐾2

(0)(𝑥⃗2, 𝑦⃗2) 

(85) 

 

As 𝐼1(𝜆) increases during the collapse window ∆𝜆 = 𝜀ℏ2 (𝑚1𝐿1
2𝑠1)⁄ , the long-range Coulomb kernel 

𝐾1

(𝐼1(𝜆))
 of block 𝑏1 gradually loses weight, while the harmonic monopole kernel, proportional to 

1 |𝑥⃗𝑘 −  𝑥⃗01|⁄  gains weight. 
 

Block 𝑏2, however, continues to experience a time-dependent Coulomb-like weight (1 − 𝐼1(𝜆)) 𝐾1
(0)

 of 

block 𝑏1 in its effective potential until the collapse window ∆𝜆 ends. After the collapse window closes, 

the product kernel retains only the monopole factor 𝐾1
(1)

from block 𝑏1 and the Coulomb factor 𝐾2
(0)

 

from block 𝑏2. The coupling weight between the two blocks decreases from its maximum value to nearly 
zero over the duration of the collapse window ∆𝜆, signalling the onset of decoherence. 
 

 
12. Experimental signatures 

 
The proposed interpretation of quantum mechanics introduces several experimental predictions that 
distinguish it from other interpretations. A key prediction is the existence of a finite collapse window 

∆𝜏 ≈ 𝜀ℏ2 (𝑚𝐿2𝑠)⁄  with 𝜀 ≪ 1. For electrons, the collapse time is approximately 10 ps, while for heavy 
atoms, it is around 100 ns. This finite collapse duration is a central feature of the model. 

 
Closely related to this finite collapse time is the prediction of wave-packet re-expansion and the revival 
of interference patterns if the detector pulse ends before full localization is achieved. This phenomenon 
is not accounted for by interpretations based on the projection postulate or by spontaneous collapse 
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models with a constant rate. For example, in an electron double-slit interferometer, placing a 50 nm 
radius electrostatic "tip" just behind one slit and pulsing it for about 20 ps results in a visibility decay 
that follows the logistic curve. Furthermore, the model predicts that a second, delayed pulse can recover 
part of the lost contrast, meaning the interference fringes reappear if the detector is turned off before the 
collapse time ∆𝜏 is complete. This behavior is fundamentally inconsistent with the instantaneous 
projection interpretation, which does not allow for fringe revival. 

 
Another distinct feature is the mass dependence of the collapse time, where localization begins only 
when the detector potential satisfies 𝑉𝑑𝑒𝑡 ≥ ℏ2 (𝑚𝐿2)⁄ . As a result, lighter quantum wave-packets 
require a stronger detector energy for localization compared to heavier ones. 

 
Additionally, the model predicts a gradual decay of Bell-type correlations between two entangled 
systems over the finite collapse window, as opposed to an abrupt and instantaneous jump. 

 
The model also anticipates a transient, metric-induced force acting on nearby test masses. This effect 
manifests as a weak, prompt acceleration outside the detector’s influence zone, synchronized with the 
collapse process. The magnitude of this acceleration is extremely small and is estimated to be of the 
order of 𝑎(𝑟) = 12𝜋𝐺𝑚2𝐶0𝑟𝑑 𝑟2⁄ , depending solely on the world-block's mass and geometry. Despite 
its small magnitude, this effect is theoretically measurable using optomechanical instruments. For 
example, a world-block represented by a mesoscopic molecule with a mass on the order of 𝑚~10−21𝑘𝑔 
coupled with a micro-cantilever probe located approximately 𝑟 = 5 𝜇𝑚 from the detector's focal point 
(with a width of 𝑟𝑑 = 50 𝑛𝑚), would generate a small, distance-dependent acceleration of 
approximately 𝑎~10−14𝑚𝑠−2. This acceleration coincides with the visibility drop occurring during the 
collapse window. The force acts only during the interval when 𝐼(𝜏) is rising. Notably, a cryogenic SiN 
cantilever exhibits a thermal noise-limited acceleration sensitivity of approximately 𝑎𝑡ℎ~10−15𝑚𝑠−2, 
which is within an order of magnitude of the predicted signal. Furthermore, using optical interferometric 
readout over the duration of the collapse window (∆𝜏~10𝑝𝑠 − 10𝑛𝑠), the transient acceleration signal 
could, in principle, be resolved. 

 
These experimentally testable predictions provide a clear framework for differentiating this 
interpretation of quantum mechanics from others and offer a means for its potential falsification. 

 
 

13. Conclusion 
 

Re-examining Schrödinger’s concept of a diffuse “cloud” through geometric tools suggests a new 
perspective in which a quantum entity is not a point-like particle residing in pre-existing spacetime, but 
rather an extended four-dimensional “world block” whose intrinsic geometry encodes the wavefunction. 
In this framework, the mass density spread across each proper time slice generates a metric, via a 
Poisson-like relation, that non-locally links all parts of the block. Measurement emerges when an 
external apparatus imposes a smooth, time-dependent boundary condition, distorting the Green kernel 
of this metric from its free Coulomb-like form into a sharply localized monopole well. Since this 
deformation occurs continuously over a finite “collapse window,” localisation becomes a gradual 
geometric phase transition rather than a sudden, stochastic event. 

 
The contraction of the mass distribution during the collapse window, remains finite, and can re-expand 
if the detector's pulse ends prematurely—allowing interference patterns to revive. This approach 
naturally integrates entanglement: multiple world blocks share a composite configuration space metric 
that only decouples when the overall density factorizes. Otherwise, a measurement on one block 
gradually diminishes the non-local Coulomb-like correlation with others, resulting in a smooth decay of 
Bell-type correlations. 

 
This interpretation offers specific, testable predictions that depend on mass, including picosecond-scale 
localisation for electrons, sub-microsecond scales for larger molecules, logistic (rather than step-like) 
visibility loss, revivable interference fringes, and a transient ultra-weak acceleration of nearby probes 
during the collapse window. These effects are, in principle, measurable with current ultrafast 
interferometry and optomechanical sensing technologies. 

 



23 
 

By treating the wavefunction as the relational fabric of a particle’s own spacetime, this interpretation 
provides a deterministic yet non-separable framework that reconciles quantum non-locality with 
relativistic causality, avoiding the need for hidden variables or many-worlds interpretations. 
Furthermore, it invites experimental verification through its unique dynamical and gravitational 
predictions. 
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