Recasting Schrodinger’s Cloud-Like Entity within Relativistic Geometry
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Abstract

This paper revisits Schréodinger’s 1927 concept of a particle as a spatially diffuse "cloud," redefining it
as a true spacetime entity equipped with its own intrinsic metric. Each cloud-like entity is structured by
constant proper time slices, across which mass density is continuously distributed, while a single world
line threading these slices carries all gauge charges. The intrinsic metric is determined by the mass
density via a Poisson-like equation, with a Green kernel that exhibits two distinct phases. In the free
phase, the kernel has a non-local Coulomb-like form that links every point within the cloud-like entity.
During measurement, however, the detector imposes a time-dependent boundary condition, smoothly
deforming the kernel into a sharply localized monopole well. This defines a finite "collapse window,"
during which the wave packet’s width contracts, avoiding singularity and allowing for potential re-
expansion if the detector pulse ceases prematurely. The formalism provides specific, testable
predictions: mass-dependent localization times (of the order of 10 ps for electrons), reversible loss and
revival of interference patterns, gradual decay of Bell correlations, and an ultra-weak, transient metric
force on nearby probes. Together, these results offer a deterministic yet non-separable framework that
bridges quantum non-locality with relativistic causality.
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1. Introduction

Einstein’s theory of relativity recast physics around two foundational principles: the invariance of the
speed of light and the dynamic interplay between mass-energy and the geometry of spacetime. Relativity
eliminated the concept of a preferred reference frame and unified space and time into a four-dimensional
structure, constrained in its causal order by the speed of light [1] [2]. General relativity extended this
framework by demonstrating that mass-energy curves spacetime, with free motion following the
geodesics of this curvature. In both theories, locality remains a guiding principle, as influences propagate
continuously through fields or spacetime curvature, without crossing spacelike separations.

In contrast, quantum mechanics challenges these principles, particularly the concept of locality, with
phenomena that defy classical intuition. Through the principle of superposition, a system can exist in a
spectrum of mutually exclusive states, while entanglement creates correlations between distant
measurements that cannot be accounted for by any local hidden variables. This tension became clear
through the EPR argument [3] and Bell's inequality [4], and experiments such as Aspect's photon tests
[5] have consistently confirmed the nonlocal predictions of quantum theory, without violating the
relativistic no-signalling condition.

To address these quantum challenges, various interpretations have emerged [6]. The Copenhagen
interpretation [7], treats quantum mechanics as a pragmatic tool for predicting observable outcomes
rather than describing an underlying reality. Quantum Bayesianism QBism [8] reframes wavefunction
collapse as a Bayesian update of subjective knowledge rather than an objective event [9]. Everett’s
Many-Worlds Theory [10], endorsed by contemporary advocates like Wallace [11] [12], posits that
every quantum event spawns a branching of worlds, providing a deterministic but highly counterintuitive
perspective. The de Broglie-Bohm pilot-wave theory introduces hidden variables, asserting that particles
follow deterministic trajectories guided by a wavefunction [13]. Alternatively, GRW's wavefunction-
collapse theory [14] incorporates stochastic elements into Schrodinger's equation, offering simplicity
but facing issues with relativistic simultaneity.



A central and unresolved issue remains the reconciliation [ 15] of quantum mechanics with the relativistic
doctrine of locality. The dilemma is intensified by the recognition that multi-particle wavefunctions
reside within a high-dimensional configuration space. This abstraction raises significant questions about
the connection between wavefunctions and the familiar three-dimensional world. The ontological status
of the wavefunction continues to spark debate [16], dividing views between those who see it as a tool
for knowledge (epistemological) and those who regard it as a real, physical entity (ontological).

In his 1927 Solvay lecture, Schrodinger proposed a shift away from the classical notion of point
particles, suggesting instead a continuous entity that permeates space [17]. While this idea is compelling,
modelling a particle as an extended mass or charge density introduces significant challenges in the
realms of general relativity (GR), quantum field theory (QFT), and continuum mechanics.

For example, treating an electron as a smeared charge cloud faces the problem of divergent self-
interaction energies. Experimental evidence, ranging from the photoelectric effect to high-energy
scattering, restricts the electron’s charge radius to scales no larger than approximately 107> m. This
strongly supports point-like behaviour during energy—momentum exchanges.

In GR, an extended mass distribution generates a gravitational field that curves spacetime beyond the
object's boundaries. A smoothly decaying mass density complicates the particle’s internal dynamics, as
gravitational time dilation causes different regions to experience varying proper times. These variations
introduce internal stresses—such as pressure and tension—that contribute to the particle’s total mass-
energy.

In quantum mechanics, a particle’s position is described by a wavefunction that spreads across space
until measurement collapses it into a sharply localized state. Extending this idea to a particle's mass
density implies a nonlocal collapse of its entire distribution, raising challenges for compatibility with
relativity since instantaneous collapse could violate causality.

Despite these difficulties, Schrodinger’s vision of "cloud-like" quantum entities has inspired various
research directions. Wavefunction realism holds that the wavefunction, defined in configuration space,
represents the fundamental ontology from which three-dimensional structures arise [18]. Objective-
collapse theories, like GRW and CSL, modify quantum dynamics with stochastic elements to ensure
spatial localization [19]. Schrodinger-Newton models, developed by Diosi and Penrose, incorporate
gravitational self-interactions to limit wavefunction spreading [20]. Stochastic electrodynamics
proposes a Lorentz-invariant random vacuum field—analogous to quantum vacuum fluctuations—to
stabilize spread-out charge distributions [21]. The Diosi-Penrose model further explores gravity-induced
mechanisms for spontaneous wavefunction collapse based on gravitational energy differences [22].
Each of these approaches aims to reconcile the spatial extension of quantum systems with empirical
localisation and finite self-energies.

Building on this intuition, our approach takes a geometric perspective. Each quantum entity is attributed
a non-local spacetime geometry, determined by its diffused mass density. This geometry includes a
proper-time foliation, marking a single world-line on which the particle’s charge is confined. Within
this intrinsic geometry, the Schrodinger—Newton potential emerges naturally—not as an external
semiclassical correction but as a property intrinsic to the quantum entity itself. In this framework,
quantum mechanics becomes a tool for probing the fine-grained, relational structure of spacetime, while
relativity continues to describe its global architecture. Together, these insights create a unified
framework that accommodates quantum non-locality and relativistic causality.

2. Fermi—Walker Coordinates around an Arbitrary World-line

We work on a smooth, connected, four-dimensional differentiable manifold M, equipped with a
Lorentzian metric g,,,(X) where we adopt the (+,—,—,—) signature. This metric is a position-
dependent, symmetric tensor field that defines the invariant line element:



ds? = g, X)X*XY (1)

This line element allows for the measurement of proper time along time-like curves and spatial distances
within spacelike hypersurfaces. Since the metric g, is completely general—without assuming any
specific coordinate system or symmetry—it can describe any local curvature and any distribution of
matter and energy consistent with Einstein's field equations. Throughout what follows, this metric is
treated as the underlying geometric framework for constructing specific coordinate systems, such as the
Fermi—Walker system, which will be introduced next.

The Fermi—Walker coordinates are a local coordinate system defined in the neighbourhood of a smooth
time-like world-line in an arbitrary spacetime with metric g,,,,. They provide a natural framework for
describing the geometry in the vicinity of a reference observer following the world-line, regardless of
whether this observer is inertial or undergoing arbitrary acceleration.

Let y: 7 = X*(7) be the time-like world-line—inertial or accelerated—in the arbitrary spacetime with
metric gy, .

An Orthonormal tetrad {eg, e;} can be associated with the world-line y, where: e(’g) =ukt =Xt =
dX*/dr is the 4-velocity of the reference observer, satisfying u#u, = —1. The spatial triad {e;} (where
e; are the basis vectors of the spatial triad) satisfies ei“ ej, = 6;j and is transported along y according to
Fermi—Walker transport:

De!
d_rl = (a, e} )u* — (a,,u”)ei“

2)

where a¥ = Du" /dt is the proper acceleration of the world-line y.

Fermi—Walker coordinates are defined as follows: For any point P sufficiently close to the reference
world-line y, there exists a unique spacelike geodesic o connecting P to y(7) that is orthogonal to u# ()
at its initial point. Let & be the unit tangent to ¢ at y () and let o also denote the geodesic distance from
y(7) to P. Then the Fermi—Walker coordinates (xo, xi) of Pare x° =1, x' = U(E“eiu).

Thus, x° = 7 is the proper time along the reference world-line y, while ¥ = (x1,x2,x3) are the proper
distances measured in the transported triad, where the spacelike geodesic connecting P to y(t) is
orthogonal to u* (7).

xt = J(E”eiu) are the components of the signed spatial displacement of P along the geodesic with
tangent &, where ¢ is the geodesic distance and e; are the basis vectors of the spatial triad.

In these coordinates, the metric admits the standard canonical Fermi expansion to quadratic order in x!
(components of the Riemann tensor evaluated on y and projected on the tetrad):
9oo = —(1 + axx®)? — Rojojx'x’ + 0(x?) (3)
2 Jok 3
Goi = _gROjikx x*+0(x>)
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gij = 61] —ERikﬂx X +0(x )

where a; = a, e,’: represents the components of the proper acceleration of the world-line y and Ry j; are
the Riemann curvature tensor components evaluated on y. In the special case of a geodesic world-line
¥ (a, = 0) in a flat spacetime, the O(x?) curvature corrections vanish, and the metric Juv reduces to
the Minkowski form.



At each constant value of x° = 7, the Fermi-Walker coordinates define a spacelike hypersurface S,
(Fermi slice), given by:

S, ={(1,%) | xeR3} 4)
which satisfies the following conditions:
u#V, = 1, implying that the time coordinate is equal to proper time;
ut V#xi = 0, meaning that the spatial coordinates remain constant along y; and
u¥n, = 0, where n, = —Vﬂx0 represents the normal to S.

These surfaces are intrinsically simultaneous for the observer following the world-line y, and the
induced spatial metric on the slice S; is:

S 1 5
dSzls_r = hij(T,f)dx‘dxl ) hl] = 511 —§Rikﬂxkxl + 0(x3) ( )

where h;; remains positive-definite.

All curvature components in Equations (3)-(5) are defined in the tetrad basis associated with y. The
domain of validity is limited to the tubular neighbourhood where the orthogonal geodesic from y to
point P is unique, ensuring the absence of conjugate points.

We propose that spacetime emerges from the integration of intrinsic spacetimes linked to elementary
objects. For each world-line y, the intrinsic spacetime is represented by the Fermi—Walker (FW) tubular
neighbourhood, equipped with an FW coordinate chart. Interactions ensure overlaps between such
neighbourhoods. The global GR manifold (M, g) is then constructed as the union of these
neighbourhoods, ensuring consistency through standard atlas constraints. These include metric
agreement through pullbacks, frame matching up to local Lorentz transformations, and gauge
consistency up to gauge transformations, as described further in the next Section.

Given the Fermi—Walker—transported spatial triad {e{‘ (T)}l,zl, associated with the reference world-line
y:T = ZH*(7), the FW intrinsic coordinates (7, X) € R X R3, referred to as ‘intrinsic coordinates’, can be

related to arbitrary spacetime coordinates (t, X ), referred to as ‘extrinsic coordinates’, by a smooth,
locally bijective (diffeomorphic) coordinate transformation:

x: (T, %) - XM (t,X) = (t(r, %), X(z, J'c’)) = expz(p|x'el (7)) (6)

Here X* represents the extrinsic coordinates of an event in the laboratory frame, while Z¥ (1) represents
the specific world-line chosen as the Fermi origin. Specifically, Z¥ (1) (where ZH(t) = X*(t,¥ = 0) =
x(7,0)) indicates to an external observer the position of the particle's world-line y at each proper time
7. From the intrinsic perspective, the particle’s world-line y is simply represented as (7, X) = (z, 0).

The mapping described above indicates that, starting from the event Z(t) on the world-line y, we follow

u

the unique spacelike geodesic with an initial tangent vector xiei (7). The endpoint of this geodesic is

given in standard extrinsic coordinates as X "(t, X )

3. Intrinsic hypersurface basis and four-dimensional ‘world-block’

Each intrinsic proper-time slice S; in the intrinsic FW chart (7, X), may be conceptualised as providing
a basis {|x)} associated with a rigged Hilbert space (Gel’fand triple) S; € 7, c S,. Here, S, represents



the space of smooth, rapidly decaying test functions, 7, the usual Hilbert space, and S; its distributional
dual, which includes Dirac §-functions and plane-wave eigenstates.

The elements of this space, denoted as |X), are indexed by a continuous variable X. These elements are
normalized using the Dirac §-function, ensuring orthonormality within the space. The Dirac-normalised
basis on every hyperplane slice S, is expressed as follows:

IBgers 5 (FIT) =8P @ - %) /Vh(z, D) )
where h(t, X) = deth;;(t, X) represents the determinant of the induced spatial metric on the slice. Thus

a complete basis—and its distributional extension—resides on every slice S;. The completeness relation
for any given slice S; is expressed as:

f d32yh(n %) Jx)(x| = 1 (®)

Since the evolution from one proper-time slice to the next is unitary, all Hilbert spaces associated with
these slices can be considered equivalent and identified as a single, abstract Hilbert space 3.

A single particle at a given proper time 7 is represented by its state vector in this Hilbert space:

() = f 4 hED o@D 1D o@D = (Eem) ®

The normalisation condition (X|¢@ (7)) = 1 is expressed as:

fd S Jh(e %)l )2 = 1 (10)

All points X within the same proper-time slice S, are intrinsically simultaneous, meaning the entire
function ¢ (t, X) corresponds to a single "instant" of proper time .

Proper-time evolution is governed by the slice-dependent Hamiltonian density H(t), through the
equation:

ihd|p(1)) = H@|p(1)) (11)

and the evolution operator, or propagator, is given by:

U(t,,T1) = exp [_%’frsz,H(T,)] (12)

1

Proper time 7 thus provides an intrinsic, observer-invariant ordering of the slices without requiring any
external clock variable.

Following Schrodinger’s "cloud" model of a free particle, the mass density on each proper-time slice S;
is expressed as:

u(x,7) = mlo(t, ¥)|? (13)

The total mass m on each proper-time slice S; is conserved and is expressed as:

J d3x\h(t,%) u(r,¥) =m (14)



When all slices are combined, they form a four-dimensional world-block b = U,z S;, which constitutes
a smooth manifold. Each point in this manifold is characterized by the scalar field p(¥, ). In the Fermi—
Walker coordinate system, every point of the world-block is uniquely identified by its proper time t and
spatial Fermi coordinates X.

For simplicity, we absorb the constant m into the scalar field and work instead with the dimensionless
density:

mLﬂ=waﬁw;fd% h@ D) p(1,2) = 1 (15)

For a free Gaussian wave packet, the width o(7) increases with proper time 7, causing p(t, X) to spread
and dilute, precisely as envisioned by Schrodinger’s equation.

On each proper-time slice S;, there exists a unique centroid X.(7) € R3 such that the first mass dipole
moment on the slice S;, vanishes. This condition is expressed as:

[ G- 2@ dEx =0 (16)

Here, the centroid X, (t) represents the intrinsic centre of mass-energy for the world-block on the slice
S:. The reference world-line anchoring the world-block is therefore, the curve y, which passes through
the centroids of the slices (S;).eg sequentially. Thus, the world-line y is redefined as:

y:t - X¢ (1) = (1,%.(1)) € b (17)

The reference world-line y represents the intrinsic centre-of-mass line of the world-block and serves as
its anchor, carrying all associated gauge charges. Notably, for a particle with charge e, the charge-
density p, (¥, ), unlike the mass-density p(X, 1), is entirely confined to the reference world-line y. This
confinement arises as a consequence of local gauge symmetry, renormalizability, and scattering bounds.
Consequently, the intrinsic charge density is formulated as:

po(®,7) = e6® (% — 2.(1)) (18)

More generally, the reference world-line y serves as the carrier of all strictly conserved point-like
quantum numbers, such as electric charge, baryon number, lepton number. In contrast, the mass density
is free to form an extended cloud distributed over each proper-time slice S;, surrounding the world-line.
This distinction arises naturally from symmetry and effective field theory considerations.

Gravity couples to the stress—energy tensor Ty,

(e.g., (1,D|7A"W|1/J)), provided V,T,, = 0. In contrast, gauge charges couple through local conserved
currents j#, which transform covariantly under the gauge group and are confined to a single world-line.

which can reflect the spatial spread of a quantum state

Renormalisation clarifies this distinction. The UV consistency of Quantum Electrodynamics (QED)
requires point-like charge sources, while allowing mass-energy to be spatially distributed in gravity
aligns with low-energy effective field theory. Experimentally, electromagnetic scattering limits the
electron’s charge radius to less than 10722 m, consistent with a world-line current. At the same time,
effects like interferometric phase shifts are sensitive to the spatial distribution of mass-energy.

A consistent framework emerges: Einstein’s equations are sourced by the (possibly smeared) mass-
energy T),,, of the quantum state, while Maxwell or Yang-Mills equations are sourced by a conserved
current confined to the world-line. Standard conservation laws VT =0 and 0:j =0 ensure
consistency across overlapping intrinsic spacetimes. Electromagnetic phenomenology remains
unchanged, while gravity, in principle, can probe wave-packet widths through Schrédinger—Newton-
type effects. This approach leads to testable predictions without requiring ad hoc assumptions.



Thus the world-block b represents the complete ontic entity. its slices carry the extended mass density,
its centre-of-mass line y carries all gauge charges, and the intrinsic proper time T sequentially orders the
slices independently of any external clock. It is important to note that variations in initial conditions,
external fields, or experimental set-ups yield different coordinate transformations y, but none of them
alters the intrinsic foliation {S;}: all points of a given slice always share the same proper time 7.

We note that the Fermi-Walker coordinates are applicable within the normal-convex tube surrounding
the reference world-line y, with the radius of this tube determined by the smaller of two scales: the tidal-
curvature scale ., and the proper acceleration scale [, ... These coordinates are well-suited to describe
the mass-density distribution p(t,X) = |¢(t,X)|? of a particle with a wavefunction, such as a three-
dimensional Gaussian:

3/2 19
) e~T/20%, r= |8 xix] (19

tj

p(@®) =

2mo?

provided that the effective support 7.rf = No (with N = 3 for a Gaussian) satisfies the following
condition:

_ . _ -1/2 _ 20
Tefr = No = min {lcurv = |Rik]'l| Jdace = C2/|a| } (20)

where Loy = |Rik jl|_1/2 is the local curvature radius, l,.. = c?/|al is the inverse-acceleration length,
and N is chosen to define the "edge" of the wave packet (for a Gaussian, N = 3 already encloses 99.7
% of the density p).

In practice, this condition is easily satisfied. For a free proton or electron in the lab, with typical wave
packet width ¢ =~ 1 — 100 um and l,,, > 10* m, the inequality No < l.y, holds by at least eight
orders of magnitude. For a proton in the Large Hadron Collider (LHC), where strong bending occurs,
the typical width is ¢ ~ 10 — 50 pum and the acceleration magnitude |a| ~ 1.8 X 10?1ms~2 leads to a
proper acceleration scale [ .. = 50 um. In this case, 30 = l .., and the inequality still holds. For an
electron, the proper acceleration scale ;.. = 20 m and thus the inequality is largely satisfied.

Thus, for modern laboratory wave packets, the effective support 7.rs = No lies comfortably within the
region where the exponential map along spacelike geodesics orthogonal to the world-line y remains
injective and the canonical Fermi-normal metric of Equation (3) remains a good approximation.

Although a Gaussian never truly vanishes, the coordinate expansion only breaks down beyond a finite
No, where the tails of the wavefunction extend. This presents no physical issues, as the density
contribution from these tails is exponentially small. If necessary, spacetime can be patched smoothly
with another normal chart without losing accuracy. All meaningful observables, where the density p is
significant, are fully captured within the Fermi tube.

Ultimately, for any realistic Gaussian-like density distribution of an elementary particle, present-day
accelerators and laboratory fields satisfy No < min{l .y, lgcc 3. As a result, Fermi coordinates
provide a valid and efficient framework for describing both the metric and the density profile throughout
the entire region where the particle’s wavefunction has a significant amplitude.

When two intrinsic Fermi-Walker neighbourhoods U, and Ug overlap, their stitching is governed by
the physics of interactions. Let (@ and g‘#) represent the metrics in the @ and B charts respectively.
On the overlap U, N Ug, the intrinsic coordinates are related by a C 2 transition map Xpa = XpoXa 1
which transforms a-coordinates into f-coordinates.



To ensure metric compatibility—required for all local charts to describe the same global spacetime—
the B-metric, when pulled back along xp,, must equal the a-metric: g(“) = )(:;ﬁ g(ﬁ). Specifically, let
Xo:Ugy = R* and xp:Ug = R* be the FW charts, and g the single spacetime metric on M. The
coordinate metrics are then given by pullbacks of g using the inverse charts:

It follows that:

X5a9® = (xpoxa?) ((xzY) 9) = (a9 = 9@ (22)

Thus both charts describe the same geometry on the overlap. Equivalently, g(# = )(:;ﬁ 9@, where
Xap = XaoXp 1 Additionally, orthonormal frames match up to a local Lorentz transformation,
determined by parallel transport along the unique orthogonal spacelike geodesic.

On common slices, conserved currents are consistent under pullback and the probability measure
remains invariant:

p OV R@d3x, = pB\ hBd3x, (23)

With a single stress—energy tensor 7, defined by the matter and fields of all objects, the Einstein—matter
equations G, [g] = 8nT,,, along with V,T,,, = 0 enforce these identifications across overlaps, ensuring
a unique global metric g.

Therefore, the atlas of intrinsic Fermi—Walker charts generated by interacting world-blocks is
mathematically sufficient to reconstruct a single, smooth general-relativistic spacetime: the stitched
global manifold.

4. Intrinsic non-separable metric

Within the Fermi chart, every point in the world-block is identified by its proper-time coordinate T and
spatial Fermi coordinates X. On each proper-time slice S;, we consider the induced metric h;;(t, X) with
its determinant given by h = deth;;. At a given proper time 7, the one—particle state |¢(7)) is defined
as:

(o) = f d %2Rz, 2) (0, 2) 17); j d3xVh |pl? = 1 @4

The mass density is given by u(t,¥) = m|@(t,¥)|? = mp(z, X¥). Under the hypothesis that the world-
block represents a distribution of mass density, it is natural to relate the intrinsic metric to the density
p (7, X). Since proper time T has already been identified as the temporal parameter, the action S can be
reformulated as an integral over proper time, involving a purely spatial Lagrangian density L, which
may encode the intrinsic geometry and dynamics of the world-block. This decomposition can be
expressed as:

S =fdr]d3x\/i_1L (hij(r,f),p(r,f),go(r,f)) (23)



where h(7,X) is the determinant of the induced metric h;;(z,%) on the proper-time slice S;.This

decomposition incorporates the intrinsic geometry and dynamics of the world-block in the context of
proper-time evolution.

A minimal form for the Lagrangian density L, which couples the intrinsic geometry to the cloud density
and recovers ordinary Schrédinger dynamics, is described as:

3 I T (26)
L= AthijthU + Bhi]'h”p - %h”algo*ajgo + tho*ar(p

where D; denotes the covariant derivative associated with the intrinsic spatial metric h;;. The first term
ADy h; jthij , represents the "metric stiffness," which characterises the ‘elastic energy’ of the intrinsic
spatial metric h;;, quantifying how the geometry resists deformation. The second term Bh; jhij P,
introduces a ‘geometry-matter’, linking the intrinsic geometry of the slice to the mass/energy density.
The third and fourth terms represent the standard Schrédinger kinetic energy term and the proper time-
derivative term, respectively.

This formulation establishes a unified and consistent framework that connects the intrinsic geometry,
the mass/energy distribution, and the quantum matter dynamics within a single world-block.

To derive the Euler-Lagrange equations, we calculate variations of the Lagrangian (26) with respect to
hY and @*.

The variation with respect to A%/ yields a Poisson-type constraint, linking the intrinsic spatial geometry
to the mass/energy density. This constraint takes the general form:

B
D?hy;(z, ) = - hyyp (1, %) 27
The left-hand side of the equation represents the spatial Laplacian of the intrinsic metric h;;, which
captures the spatial variation of the geometry on a constant proper time slice S;. The right-hand side
provides the ‘self-source term’ responsible for modifying the intrinsic geometry. This constraint can be
interpreted as an equation governing the evolution of the intrinsic geometry h;; in response to the density

p(T,%).

When h;; ~ §;; the Laplacian simplifies to the flat V2 and Equation (27) is solved by:

B
hy(@,2) = == 8[pc (@ ) + hyy (5, 9)] @

where @ (1, X) is a Coulomb-type integral, and hy; (7, X) is a harmonic solution, satisfying the following:
(29)

p(t, %)

- =yl V2h P-) =0
4‘7T|x—y| H(Tx)

pc(r, %) = f d’y
The intrinsic metric is structurally non-local because each value of h;; (7, ¥) is determined by convolving
the mass-density p(t, X¥) with the Green’s kernel of the slice Laplacian. The integral over y indicates
that the metric h;; at X depends on the density distribution p(7, X) across the entire slice. In other words,

it is influenced by contributions from all other points y within the world-block. This does not involve
direct action-at-a-distance but rather reflects an elliptic, instantaneous relationship.

Furthermore, the intrinsic metric is non-separable, as it cannot be decomposed into a product or sum of
independent sub-metrics corresponding to disjoint spatial regions within the world-block. This non-
separability implies that any disturbance in the intrinsic metric in one region cannot be described
independently of its effects on other regions. Consequently, this introduces a form of acausal
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dependence, where changes in one part of the metric affect the entire system without a causal
propagation.

On the other hand, the variation of the Lagrangian with respect to ¢*(z,X) results in the standard
Schrodinger-Newton equation [22] [23] which can be expressed as:

, R . 3B R (30)
ih0: (1, %) = =5 —V2(7, %) + ——lpc + hulo(z, %)

In this formalism, the Schrodinger-Newton equation provides a self-consistent description of the
quantum dynamics of the wavefunction ¢(t,%), while the intrinsic metric h; ; evolves under the
constraints imposed by the Poisson-type Equation (27) derived earlier. This coupled system ties the
quantum dynamics to the geometry of a single world-block.

It is to be noted that Equation (30) is not a Newtonian approximation. In this equation the wavefunction
¢(1,X) evolves in the particle’s own proper time 7 like a Schrodinger equation. The first term represents
the standard quantum kinetic energy term, while the second acts as an effective geometric potential
(3B?%/2A)[@ + hy], which arises from the way gravity shapes space on each slice.

The spacetime foliation is expressed as ds? = dt? — h; jdxi dx/, written in proper-time gauge with
unit lapse and vanishing shift, assuming time-symmetric slices (K;; = 0). In this configuration, the exact
Hamiltonian constraint of general relativity reduces to a curved-space Poisson equation V2 ¢ = 4mGu,
where V2 is the Laplacian constructed from the spatial metric h; j- The scalar ¢ determines the
conformal factor of the spatial metric h;;, and solving this constraint provides the geometric potential
that influences the evolution of ¢ (7, X).

ij>

The world-block operates in an extremely weak, non-radiative regime, with |¢¢|/c? < 1072° for g >
10 nm. In this regime, higher-order GR terms are entirely negligible for all proposed tests. The coupling
between matter and geometry is fully consistent with GR. The proper-time Schrodinger dynamics
govern the evolution of the matter state, while the Hamiltonian constraint simultaneously updates the
spatial metric on each proper-time slice. Therefore, Equation (30) represents the exact Hamiltonian
constraint for the slices, not a severe approximation.

To derive the Madelung equations (the continuity and the Hamilton-Jacobi equation) from the given
Schrodinger-Newton-like Equation (30) we substitute the polar representation ¢ = \/Ee iS/h of the
wavefunction, into the Schrodinger-Newton Equation (30) and then separate it into its real and
1maginary parts.

The imaginary part results in the continuity equation:
d.p+V-(pVS/m)=0 (1)
On the other hand, the real part of Equation (30) leads to the following Hamilton-Jacobi equation:

0,S ! |752 35 hyl =0 (2
. +ﬁ( ) +Q+ﬁ[<ﬂc+ nl =

where the quantum potential is given by:
QG D) = ~(12/2m) P[5/ P (33)
Nonlocality is inbuilt in the intrinsic metric, as manifested by the equations of continuity and Hamilton-

Jacobi. In fact, when the quantum potential term Q is expressed in terms of h;j, it involves a nonlocal
convolution. Consequently, the potential Q, and therefore the dynamics of the phase S, depend
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nonlocally on the distribution of the density p, and is non-separable across the slice, reflecting the
intrinsic, geometry-induced non-locality of the world-block.

To determine the coefficients A and B, we first observe that the dimension of the metric gradient term
in the Lagrangian Equation (26) is [thi jthij ] = L™2. Consequently, the coefficient A must have the
dimension of energy per unit length. Furthermore, A determines the stiffness of the metric, making it
reasonable to choose A as the particle’s rest energy mc? per Compton wavelength A:

A=mc?/A, =m?c3/h (34)

To replicate the standard Newton-Schrodinger kernel, and given the above choice for A, we pose the
following expression for the coefficient B:

B = mV8mAG = m%\/8nGc3/h (35)

For simplicity, we retain the symbols A and B to track the algebraic factors.

5. Two-phase intrinsic metric

Quantum dispersion on each slice S; is driven by the gradient term in the Lagrangian. In the Madelung

representation, this produces the quantum-pressure potential Q (, X), whose force —|7(2 (1, %), drives the
outward spreading of the density distribution.

When left undisturbed, a free world-block continues to expand or dilate from slice to slice. However,
the introduction of a detector reverses this trend by imposing a harmonic contribution hy to the intrinsic
metric in the general solution:

(36)

- B - -
hij(z,x) = —ﬁ&j[ﬁ%(ﬁ X) + hy(7,x)]

Vip, = 4mp ,V?hy(1,X) =0 outside the detector

This harmonic term hy (7, X) is directly affected by the presence of a detector. However, its Laplacian
must remain zero outside the boundary of the detector's domain. This constraint means that the detector
domain must be specifically defined as a small spherical region centred at X, with a radius r; beyond
which the Poisson equation holds. This requirement can be enforced by introducing a Dirichlet boundary
0D condition:

hy(t,X € D) = —I1(1)Cy; 0<I() <1 37)
where I(7) is a smooth transition function (or switch function), and Cj, is a constant.

The aforementioned condition should ensure that hy remains harmonic everywhere except at the fixed
detector surface. Specifically, the condition V%hH = 0 should be satisfied within the region where the
Poisson equation is applicable. This requirement can be accomplished by introducing a harmonic
‘monopole well’ located outside the boundary dD of the detector, defined as follows:

S Corq N (38)
hy(t,Xx) = _I(T)m6ij; |% — Xo| > 1y

The detector domain radius 74 defines the surface dD of the sphere around a detector focus X,. The
constant Cy > 0 is dimensionless and represents the strength of the harmonic monopole, chosen such
that the post-collapse size is on the order of the radius r,;. Specifically, Cy7,; corresponds to the depth of
the monopole well, which is fixed by the detector’s active potential: r,; is the detector’s effective capture
radius and C, (where Cy~1) is the bias energy required to register one charge. The switch I(7) € [0,1]
modulates the amplitude of the harmonic monopole.
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Equation (38) demonstrates that the presence of the detector focus X, imposes a Dirichlet-type boundary
condition on the intrinsic metric h;; by constraining it on a small surface. When the detector is idle, the
switch I(7) is at its lowest level (I(t) = 0), and no constraints are applied. Conversely, when the
detection ramp generated by the detector reaches a high level I(t) = 1, the boundary dD enforces the
intrinsic metric h;; to conform to the monopole form.

It is important to note that the switch function I(7) cannot take the form of a simple step function. A
sudden jump (&-spike) would result in an infinite time derivative, which would correspond to infinite
energy. Instead, it must exhibit a smooth profile, transitioning gradually from 0 to 1 over a finite proper-
time interval At.

A convenient smooth profile is the logistic form:
I(t1) =1/(1+e C@-D/&) r«1 (39)

where & (7) represents the driving ratio between the pulse or ramp applied by the detector and the
quantum pressure:

Vet (T) (40)
£(r) = —hzj{mLz)

The numerator V. (7) represents the detector energy scale, which increases as the ramp progresses.
The denominator #2/(mL?) corresponds to the quantum pressure of a free wave packet with a size
L(7) prior to any interaction with the detector.

For I(7) = 0, the quantum-pressure dominates, reaching its minimum at infinity. Consequently, as long
as the detector remains weak, with (1) < 1, the wave packet continues to expand freely, following
Schrodinger-Newton-like dynamics.

A critical threshold time 7 is reached when the logistic switch I(7) crosses its midpoint I (7, ) = 1/2,
which corresponds to é(7,.) = 1. At this moment, the detector energy V. (7. ) becomes equal to the
quantum-pressure h2/(mL?). This relationship provides a means to estimate the collapse window AT,
as detailed in the next Section.

Once the driving ratio é(t) surpasses the critical threshold (¢é(7) = 1), a second global minimum
emerges within the monopole well. When I(7) =~ 1, the quantum-pressure is significantly suppressed,
allowing the detector energy to dominate. As a result, the wave packet collapses into the monopole well,
whose depth is Cy1y.

Putting together the free and monopole contributions results in an interpolating kernel that effectively
transitions between the two regimes:

.. 1 Cor 41
K(T;x,}’)=(1—1(T))m—1(ﬂlfi;nl 40

The interpolating kernel K (X, y; T) serves as an intrinsic solver, redistributing the ‘geometric weight’
through the weighting factor /(7). This kernel transitions smoothly between the non-local Coulomb-

type free kernel Ky, (free spreading when I(7) =~ 0) and the sharply localised kernel K;,. (monopole

well when I(t) = 1). Importantly, the inclusion of I(7) in the interpolating kernel is not an additional
postulate but a natural result of enforcing the detector boundary condition while maintaining the solution
to the same Poisson-like equation.

Both kernels Kfpe, and Kj,. are Green functions of the same Laplace-Beltrami operator D2h; ; that
appears in the Hamiltonian constraint of Equation (27). The Coulomb free kernel K¢y, is the free-space
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solution, acting as the inverse of D?h; ; on an unbounded slice. The localised kernel K, on the other
hand, is the solution in the presence of a point-source image placed just outside the detector boundary.

Both kernels are inherently spatial and act within the intrinsic metric, derived from the same variational
action (mass term + curvature term) that leads to Equation (27). They are not ad hoc constructions but
natural outcomes arising consistently from the intrinsic geometric framework.

The intrinsic metric throughout the collapse window for the world block can thus be expressed as
follows:

. B R N 42
(@) = =85 [ Pyp(e DK(5E,5) 42

The integration of the density p( 7, y) over the entire spatial domain of the world-block signifies the
inherent non-separability between all its points. The two-phase behaviour of the intrinsic metric is
controlled by the smooth measuring switch function 1(7), which dynamically transitions the metric
between the free phase and the localising phase within the collapse window At.

For I = 0, the kernel K reduces to the non-local Coulomb form, and the metric remains in the free phase.
Conversely, for I = 1, only the localising monopole term persists, and the metric enters the collapsed
phase. Since the interpolating kernel K incorporates both the density p and the switch function I(7), this
transition represents an intrinsic geometric response—not an external rule—and remains compatible
with the Poisson constraint, the continuity equation, and the Hamilton—Jacobi dynamics on every slice.

6. Measurement-induced localisation

Assume that the initial intrinsic wave packet is described by a free Gaussian with an initial width o,,. At
T=0, let:

1 (43)

3/4 R
) = [— —|x|2/20'§. = 2
®o(X) (ﬂag) e ; p = lool
Assuming the wave packet remains Gaussian, with o(7) evolving due to the variational energy
contributions from quantum pressure and the detector-induced monopole well potential. The variational
energy E (o, 1) of the Gaussian packet, as a function of its width ¢ and the switch I(7), is expressed as:

3h° 2V, _ 3B%Cyry (44)
EoD =gz 1O Vo=—21

The first term of Equation (44) represents the gradient energy of the amplitude, commonly referred to
as quantum pressure. The second term corresponds to the monopole well potential. The first term is
positive and promotes spreading, as the energy decreases for larger o. Conversely, the second term is
negative and promotes contraction, as the energy decreases for smaller o, however, this term is only
present when the detector switch () is not zero.

When the detector is off, I(t) = 0, the variational energy E (o, I) has its global first minimum at ¢ —
oo, causing the world-block to expand (free phase). As I(7) increases from O to 1, the variational energy
E (o, 1) rises monotonically. Initially, when I(7) is small, E (o, ) develops a shallow local minimum at
a finite o, indicating that the monopole attraction starts to compete with the gradient energy but does
not yet dominate, maintaining the global minimum at infinity. Once I(7) becomes sufficiently large, the
finite o well sinks below the 0 — oo plateau. This results in the emergence of a new global minimum at
o~14. Consequently, the world-block transitions from the free minimum to the confined minimum,
leading to collapse.

More specifically, by substituting the Gaussian profile into the bulk Lagrangian Equation (26) and
integrating over space, we derive the effective single-variable Lagrangian:
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m 3K° 2V, (45)

L ,037) = =062 ———+ (1) ——
eff(Cr d;7) 2 o 4mo? ( )\/ﬁaz

By computing the Euler Lagrangian derivative, dLess/0T = 12V, /Nmo, we derive the following
dynamical equation:

. 2V, 46
Jro? * I(T)T(; ()

The first two terms on the right-hand-side of Equation (46) represent the gradient of the effective
potential associated with the variational energy E (g, I) of Equation (44). The final term accounts for the
time-dependent driving force, which injects energy into the system during the ramping of the detector
(I(r) # 0).

3h2 2V,
—1(7) 270

mo =
2ma3

In the adiabatic regime, where I(7) = 0, the equilibrium width 0O¢q can be determined by setting & = 0
in the Equation (46). This leads to the following expression for the equilibrium width, geg:

3h*Vm (47)

9T = T

For I(7) — 0, the equilibrium width o,,(7) — o, indicating a free spreading regime.

The onset of collapse occurs when g, (7) becomes comparable to the free spreading width L(7). Based
on the definition of the logistic switch (39), the threshold instant 7, is determined when the driving ratio
&(t.) = 1. Using the relationship of Equation (40), this implies:

Vaer () = Ve = 12 /(mL?(z.)) (48)
To estimate the collapse window At, we linearise V. (7) around the threshold instant 7. as:
Vaer (@) = Ve +5(1 = 1) (49)
where s = [Vge/dt];, is the slope of V.. (7) at the threshold instant 7.

Substituting V4, (7) into the expression for £(7), and then differentiating with respect to 7, one finds:
dt = [h?/(mL?s)]d& (50)

By selecting a practical criterion where the collapse window is defined as the time interval during which
the driving ratio £(7) transitions from 10% to 90%, one can estimate the collapse window At:

At = 4.4 eh?/(mL?s) (51)

This provides an estimate for the duration of the collapse process based on the rate of change of the
driving potential. For example, considering an electron with a free width L = 100 nm, a ramp slope of
s = 10~* eV /ps, and a small dimensionless parameter £ = 0.01, the collapse duration is estimated as
At~7ps.

To analyse the behaviour of the system within the collapse window, i.e. for |t — 7| < AT, we simplify
the governing Equation (46) by neglecting the 1/03 term once ¢ has shrunk to a value smaller than
1/L2. Under this approximation, Equation (46) can then be integrated to yield:

of
o(t) = 0 ; Te ST <71,+3A7 (52)

J1+ (T —1)/AT




So the width decreases approximately as the inverse square-root of the elapsed proper time, scaled by
the collapse window At. After three logistic e-folds, the collapse process is nearly complete, and the
width reaches:

om0 0 (53)
® Vi+3 2

The with g, asymptotically approaches r; as [ — 1.

A notable feature of the finite collapse window At is the fact that if the detector is abruptly switched off
(i.e. I —» 0) while the system is still within or near the collapse window, (i.e. at T,¢r < T, + A7), then
Equation (46) reduces to describing the dynamics driven solely by quantum pressure, leading to:

3h? (54)

mo=———
2ma3

Integrating Equation (54) twice yields the following expression for the width o

2
2 (55)
o?%(1) = 0 + - (T — Toff)

This result illustrates the free re-expansion of the wave packet's width driven by quantum pressure after
the detector is abruptly turned off, leading to the possible reappearance of interference patterns. This
behaviour is a distinctive signature of the finite-window collapse process and stands in contrast to
instantaneous projection scenarios, where such re-expansion and the revival of interference patterns do
not occur.

The revival takes place only if the detector bias is turned off before the logistic switch reaches a value
of approximately /() ~ 0.9. In the case of an electron, as described in the above example, the revival
happens within a proper-time interval that is shorter than the collapse window, At = 7 ps.

7. Example of the double-slit experiment

In the double-slit experiment a single quantum particle—for example, an electron—approaches an
opaque plate with two narrow slits. The particle’s wave packet, upon reaching the plate, is constrained
to pass through the slits. The following analysis uses proper time to explore how the particle's intrinsic
wave packet splits, evolves, and ultimately generates the well-known interference pattern, all while the
particle’s localized charge follows one of the resulting lobes.

Before interacting with the plate, the particle is solely characterised by its intrinsic wave packet
o(1,%) = \/Ze i8/h on each slice S, valid for for T < Tp, where 7p denotes the proper time at which the
particle encounters the plate. Prior to reaching the plate, the intrinsic wave packet takes the form of a
single Gaussian centred at X (7) and evolves according to free dynamics. The squared magnitude p of
the intrinsic wave packet represents the mass-density distribution, while the centroid world-line X ()
carries the particle’s charge and remains within the support of the intrinsic wave packet.

At the proper time 7p, the particle interacts with the plate, positioned on the intrinsic 3-surface S;,. At
T = Tp, the plate imposes a boundary condition on the wave packet with a potential V,,. Specifically,
Vy is set to zero within two narrow windows W, and Wy, centred at X, and X, respectively, while it is
very large everywhere else. This interaction causes the particle’s wave packet to split as it propagates
through the windows defined by the slits.

Multiplying the intrinsic wave packet ¢ by the respective window indicator functions 6, and 65 gives,
immediately after the plate:
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o(t5,%) = @(15,%)[04 + 03] = 04 + @5 (56)

Thus, immediately after interacting with the mask, the single intrinsic wave packet @ (t},%) develops
two amplitude peaks (lobes) corresponding to the two windows. Despite this, the intrinsic wave-packet
@(t}, %) remains a single, complex function, although its support is now split into two distinct lobes.
Importantly, phase coherence is preserved across the two lobes since both components inherit the same
global phase of the incoming wave-packet. The reference charge world-line X (7) is entirely confined
within one of the lobes, either ¢4 or @p.

For T > tp, the intrinsic wave-packet resumes free evolution. At the detector slice, defined by 7, the
wave-packet is described as:

@(1p, %) = @4(1p,X) + @p(1p, X) (57)

where each component evolves independently under the same free propagation dynamics. However, due
to differences in optical path lengths, the two components acquire a relative phase, such that:

(pB(TDJJ_C)) = eiAa(i)goA(TDﬁf) (58)

The world-line X () carrying the particle’s charge, remains confined within the same initial lobe that
was determined after the interaction with the mask.

At the detector, the mass-density distribution of the intrinsic wave-packet is given by:

lo(Tp, D)% = |@al® + l@g|? + 2Re[@; 5] (59)

The final term represents the intrinsic cross-term responsible for interference, which remains non-zero
because the off-diagonal element of the following density matrix p(7p;X,Xx’) maintains coherence
between the two lobes:

p(TD;flf,) = QD*(TD,)?,)QD(TD,)?) (60)

Therefore, the interference pattern, manifested as regions of brightness and darkness, is inherently
encoded within the space of the intrinsic wave-packet itself.

When the particle is detected during a single experimental run, its trajectory ends at a specific absorber
located at Xp;.€{@, or @y}, corresponding to the lobe within which it resides. This results in the collapse
of the intrinsic wave-packet ¢, as described in Section 7.

Across many identical experimental runs, the initial placement of ¥ (t7) is statistically sampled from
the distribution |@(t#)|?. Since this distribution already encompasses the interference pattern, the
histogram of hit positions converges to a profile proportional to |, + @g|?, perfectly matching the
observed interference fringes.

8. Configuration Space

A single, free quantum world-block b, described by the intrinsic coordinates (¥, ), is defined within a
Hilbert space I = span{|X)}. Its state | @) is expressed as follows:

lp) = f Bxp(i ) |7) 61)

More generally, a system consisting of N particles is conceptualized as a collection of N world-blocks.
To account for the individuality of each world-block, the system of N blocks is represented in an abstract
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space S (or manifold), which is defined as the tensor product of the N individual blocks within the
Hilbert space H MV:

S=b @b, ®Qby (62)
where the Hilbert space H (V) is itself the tensor product of the N single-block Hilbert spaces:
HM =1, @H, ® @ Hy (63)

The generic case involves one proper time per block. A single world-block is charted by (X;, 7;), where
7; represents the proper time measured along the reference world-line anchoring block b;, and ¥; lies
on the space-like slice ST(:). Proper time along a world-line is uniquely defined up to an additive constant
and a scale factor, both determined by the block’s motion relative to its environment. For two blocks b,
and b,, which exhibit different modes of motion, their proper times 7, and 7, accumulate at different
rates and, consequently, cannot generally be aligned slice-by-slice.

In the case of an N-block system, the configuration space is characterized by coordinates in R3Y x RV,
Thus, the system involves N proper-time parameters:

(X1, T15 X0, Tp; 3 Xy, Ty) € R3N x RN (64)

This system can also be described by a wavefunction that encapsulates the entire ensemble.
Consequently, the wavefunction of the N-particle system is defined in the 4N-dimensional configuration
space R3N x RN The general state of the system is thus represented as a multi-time wavefunction ®:

¢(f1,T1;£2,T2;"';£N,TN) (65)

We can work with the N proper-time parameters. However, it is also possible to adopt the standard
formalism of “Tomonaga—Schwinger gauge’’ [24] to introduce a global time parameter for the N-block
system, replacing the N individual proper times. This involves selecting a monotonic real parameter A
with 4 > 0. For instance, A can be chosen as the proper time of one reference world-block. For each
individual world-block b;, we then define a smooth, strictly increasing clock map:

T; = Ti(/l) ; i-i (A) = dTL/d/l >0 (66)
The global parameter A is used solely to label composite slices (51(112/1)' e 51(1’32 ,1)) corresponding to the

N world-blocks. Importantly, this formalism does not assume a common tick rate for the proper times
of the individual blocks.

The configuration space is thus reduced to R3M X R, where all the world-blocks are evaluated on the
same global slice defined by A = const. Consequently, the multi-time wavefunction ¢ and the
configuration-space density p can be redefined as follows:

‘P(fl;fz; ""J_C)N;A) = q)(?_c)l'fl(/l);fz,'fz(l); "';fN,TN(/l)) (67)
p(xlle'""lel) = |‘P|2

For a single world-block, the wavefunction’s density p(¥,7) = |@|?and the mass density u(%,1) are
equivalent up to a proportionality constant:

u(,t) = mp(x, 1) (68)

However, for a system of N world-blocks, it is necessary to distinguish between the global
configuration-space density p(X;, X5, -, Xy ), defined in the configuration space R3", and the total mass
density p(X;, X5, -+, Xy), defined in ordinary physical space R3. While the mass-density of each block
and the total mass-density can be derived from the global configuration-space density, the reverse
derivation is generally not possible.
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The total mass-density operator [i(¥) = [i(¥;,%,,+,Xy), defined in ordinary space R3, for N world-
blocks of masses my, is:

N 69
D =) mdE -2 )

where X, represents the position operator acting on the world-block b,

For any normalised wavefunction ¢(X;,%,,:+,Xy,A), with configuration-space density
p(%,,%,,++, %y, A1) = |@|?, the total mass-density in ordinary space can be expressed in terms of the
global configuration-space density as follows:

eor,2) = @ lAD9) = Ty mep (™ (7, 2) (70)
N
B = Y [ Ve pGiy o )OO~ )
k=1

where p,(cmar) (X, 1) is the marginal density associated with world-block b,. The marginal density is

defined in terms of the global configuration-space density p, as:
P @A) = [ P pl Ty EIODE — ) L)

In essence, p,(cmar) (X, 1) is obtained by performing the 3N-3 integrals over all coordinates X; # Xy,

effectively marginalizing over the degrees of freedom associated with all other world-blocks.

Equation (70) demonstrates that the physical 3-space mass-density is the sum of the N marginal
densities, each weighted by their respective masses m;. No cross-terms appear in this expression
because each Dirac delta function § ) (¥ — x;,) acts as a projection operator that isolates the diagonal
part of the configuration-space density.

Phase correlations between world-blocks, while critical for two-point or higher-order observables, do

not influence the one-body mass density. Even in cases of full quantum entanglement, the one-body

marginal densities p,((mar) (%, 1) contain all of the information required to compute the real-space mass

distribution. This is because mass is an additive, one-body observable. Although entanglement impacts
multi-point correlations and the geometric structure of the configuration space, it does not hinder the
recovery of the physical-space mass-density, which can still be obtained through the summation
provided in Equation (70).

9. Two-phase intrinsic metric in configuration space

In configuration space, the two-phase intrinsic metric for the N-block system can be formalised, as
follows:

iy = =28y [ @ypGi 5w D | [ R G52
k=1
where the index k refers to the k" world-block; I}, (1) is the per-block switch; and K ,EI"(A)) represents

the following intrinsic metric Kernel:

K G 51 2) = 1= L DIKS G 51 + L DK G 7
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where K,EO) and K,El) are referred to as the free Poisson kernel and the harmonic monopole kernel,
respectively, and are formulated as:

5 CokT. 74
KD @) = — okTdk (74)

(0) > o
K Xi» =57, — s s
k ( . yk) Amt|X, — Vil Amt|X, — Xokl

where X, and 7, are the detector focus and radius for world-block k; Cy is the dimensionless depth
(of order 1).

The smooth logistic switch I;, (1) € [0,1], undergoes a rise when the driving ratio £ (1) crosses 1, where

EA) = Vyger D)/ 0%/ (my L) .

The product kernel [[¥_; K. ,EI") (X, Vi) acts on h;j(Xy, -+, Xy; A) with the configuration-space Laplacian

¥ V2. For each k the Laplacian acting on K,EO) produces §®) (%, — V). Acting on K,El) yields 0
because it is harmonic in Xj. Therefore, we precisely obtain the required multi-block Poisson equation:

N B . R 75)
(Zk=1vi> hU = ﬁSl]p(yli YN, /’{)

For the free phase, where I; (1) = 0, the k™ factor corresponds to the Posson kernel K, ,EO)(iZk, ¥i), and
the metric consequently couples every point of block k to every other point.

In the localized (measurement) phase, where I (1) = 1, the influence of the long-range kernel

K ,50) (X, ¥) vanishes, leaving only the block’s local monopole kernel K. ,51)(55,(). This results in a
confining metric well that is centred on the detector focus Xy, forcing the marginal density for block k
to contract toward 7.

For an intermediate I; (1) between the two phases, both kernels K ,50) (Xk, Vi) and K ,51)(55,() contribute
continuously. The collapse window is characterized by A4 ~ eh?/ (kaiSk), where s, represents the
detector ramp slope.

10. Dependent and independent world-blocks

In the case where the wavefunction of N world-blocks, factorises as:

. . N . (76)
q)(xl'xZ' XNy A) = 1_[’(_1(pk(xk'l)

Then, the global configuration-space density p(X;, X,, -+, Xy, A) can correspondingly be expressed as
the product of the individual densities:

. , N . , 2 (77)
p(xl'XZ'""xN'A) = 1_[](—1pk(xk’l) ;pk(xk!ﬂ') = |‘Pk|

In this case, the marginal density corresponds exactly to the individual density for each block.
Specifically, integrating over the coordinates of all blocks except k yields exactly py (Xx, 1):

(mar) (x /1) (78)

3= 32 32 - - -
a? Xp,0,d Xp—1,A°Xgqq, o, d° Xy p(Xy, Xp, -+, Xy)

PG = oG | | [ @5 o) = el )
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With this product density, the Poisson equation for the metric decouples additively, and consequently,
Equation (72) factorises into a direct sum of single-block metrics:

, R N R (79)
hyj(R, - By, A) = Zk_lhfj’.‘)(xk,z)

where hE,’-‘) (X, D) = — %%‘ | Byipr G, D) KD (24, 53
with each hg-‘) having its own monopole switch.

Thus, if the individual densities are uncorrelated (i.e. total density p (X4, X, -+, Xy, 1) can be expressed
as the product of the individual densities), then the intrinsic metrics are separable, and the N blocks are
independent.

As a result, each world-block collapses or expands independently based on its own monopole switch
I,(1). An operation on world-block k does not affect world block [ # k.

On the other hand, if the wavefunction of N world-blocks does not factorise, then the global
configuration-space density p(X;, X,, -+, Xy, A1) cannot be expressed as a product of individual densities:

. , N R (80)
p(‘xlleI.“IxNI/l) * 1_[](—1pk(xk,l)

In this case, it is not possible to reconstruct the global configuration-space density, p(¥;, X5, ==, Xy, 1),
N

from the set of marginal densities {p,ﬁmm) (%, /1)} . This is because the marginal density p,((mar) %,

k=1
associated with block k does not contain any information about its correlation with the other blocks.
Consequently, the integral (78) couples all coordinates, and therefore, cannot be factorised into a direct

sum of single-block metrics:

o N . (81)
hyj (R, By 2) # ZH 98 @ )

Correlations in the density p(X;, X, *+, Xy, A) create a geometric interdependence among the N world-
blocks. A measurement on any world-block b; (flipping I;(4) from 0 to 1), alters the convolution weight,
subsequently modifying the global intrinsic metric h;;(Xy, -+, Xy, A), as a function of all the coordinates
X). This modification represents the intrinsic signature of entanglement, yet the evolution remains
unitary in A.

Thus, if the individual densities are correlated (i.e. the global density p(¥;,X5,:*, Xy, 1) cannot be
expressed as a product of the individual densities), the intrinsic metrics become inseparable, and the N
world-blocks are inherently interdependent.

11. Entangled world-blocks in the intrinsic—extrinsic framework

We consider two entangled world-blocks (labelled b; and b,) and model a position-selective
measurement performed exclusively on block b;. The reasoning can be generalized to an arbitrary
number of world-blocks.

For two world-blocks, the full quantum state is described by ¢(X;,X,; 1), and the configuration-space
density is given by p;,(%;, %5; 1) = |@|?, where A serves as the global clock.

In the case of entanglement, the state ¢ cannot be factorised into a product of separate wavefunctions
for each block. This, equivalently, implies that p;, # p;p,, where p; and p, correspond to the marginal
densities of blocks b; and b,, respectively.
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When both blocks are in the free phase (i.e., I; = I, = 0), the intrinsic configuration-space metric is
determined by the product kernel:

y p12(V1, Y23 ) (82)
247T|9_C)1 - }_}1|47T|9_C)7 - 3_’)7|

hyi (%, % /1)=—£8-- d3y,d?
ij\A1 A2 24 ij V1

Each point in block b, is geometrically linked to all points in block b, through the double non-local
Coulomb kernel.

When the position-selective detector is activated for block by, with a focus at Xy, and radius 74 1, the
corresponding logistic switch 