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Abstract
Probabilism holds that rational credence functions are probability functions defined 
over some probability space (Ω, F , P ). According to some recent philosophical ar-
guments, in some situations, rational credence function must be total, i.e. F = 2Ω, 
a view which I call credence totalism. Arguments for credence totalism are based 
on the premise that non-Lebesgue measurable subsets of R are epistemically sig-
nificant, in the sense that an agent has reasons to assign probability to these sets. 
This paper argues that nonmeasurable sets are not epistemically significant in this 
sense. Consequently, the arguments for credence totalism are not successful. My 
argument is based on a careful consideration of the role of the Axiom of Choice 
in probabilistic practice. I also discuss some topics considered closely related, viz. 
the existence of total chance functions and the truth value of the Continuum Hy-
pothesis. I argue that the role of nonmeasurability in epistemology does not shed 
light on these issues.

Keywords  Probability · Credence · Measurability · Totalism · Axiom of choice

1  Introduction

A probability space is a triple (Ω, F , P ), where the sample space Ω is any set, F  is a 
set of subsets of Ω called the set of probability bearers, and the probability function 
P is a function from F  to some probability range R. In Bayesian epistemology, an 
agent’s credence for propositions is often considered as probability functions living 
in such spaces. Bayesian epistemology investigates formal constraints on credence 
functions placed by epistemic rationality. For example, probabilism holds that epis-
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temic rationality requires an agent’s credence function to be a probability function 
with R = [0, 1] that satisfies the axioms of total probability and finite additivity, or 
to be extendible to such a function. Probabilists have developed arguments which 
aim to show that any agent whose credence function does not satisfy these axioms is 
irrational (Lin, 2024, § 2).

Does epistemic rationality require credence function to satisfy additional formal 
properties beyond these two axioms, especially when Ω is infinite? There are two 
extensively discussed issues in this realm. The first concerns whether finite additiv-
ity should be strengthened to countable additivity, or even full additivity (De Finetti, 
2017; Bartha, 2004; Easwaran, 2013; Stewart & Nielsen, 2021). The second issue 
concerns the nature of the probability range R, for example, whether R should be 
extended beyond standard real numbers to include infinitesimals, or replaced by 
some partially ordered set (Williamson, 2007; Burgess, 2010). In this paper, however, 
we focus on an issue distinctive from these two, namely the proper choice of F , the 
set of probability bearers.

F  is typically required to satisfy some closure properties. The axiom of finite 
additivity naturally requires F  to be an algebra, and countable additivity naturally 
requires F  to be a σ-algebra. Further requirements on F  are uncommon. In particu-
lar, when Ω is infinite, F  is not commonly required to be the full powerset 2Ω. We 
say that a probability P over Ω is total if its domain F  contains all subsets of Ω, i.e. 
F = 2Ω. If some X ⊆ Ω is left out of F , that means P does not assign a probability 
to X. If an agent’s credence is represented by such a P, this means she has no credence 
for X, or she leaves a credence gap on X. A question thus arises: Does epistemic ratio-
nality require an agent’s credence function to be total?

Rationality places some general constraints on credence functions, which are appli-
cable in most, if not all, epistemic situations. We may call them global constraints. 
Examples may include “avoiding Dutch Book” and “avoiding inconsistency”. In 
contrast, local constraints are only derived from and applicable to specific epistemic 
situations. Many have argued that no global constraint implies that credence function 
ought to be total (Lin, 2024, §3; De Finetti, 2017, §3.3.3). However, some philoso-
phers recently proposed that in certain epistemic situations where the sample space Ω 
has cardinality continuum, there are strong reasons to have total credence functions 
(Isaacs et al., 2022; Hoek, 2021). One instructive example is the following.

Box 1
Random Spinner. A spinner points to a random point on a wheel after you spin it. The spinner is mod-
eled as Ω = [0, 2π), each point in Ω corresponds to a point on the wheel. Each subset A ⊆ Ω repre-
sents the proposition that some point x ∈ A is picked. The spinner appears rotationally symmetric.

We make the following definition:

Credence Totalism is the view that for sample spaces with cardinality con-
tinuum (such as the Random Spinner), the credence function of an agent is 
rationally required to be total.

In this case, a total credence function assigns credence to propositions corresponding 
to sets that are not Lebesgue measurable (henceforth abbreviated “nonmeasurable 
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propositions/sets”). According to the totalists, there are important epistemic reasons 
to assign credence to nonmeasurable propositions.1 In contrast, the present paper 
argues that nonmeasurable propositions are not of much epistemic significance, and 
it is rationally permissible to ignore them. In other words, credence gaps on nonmea-
surable sets are rationally permissible. Consequently, the arguments for Credence 
Totalism based on nonmeasurable sets are unmotivated.

The paper is structured as follows: In Sect. 2, I describe nonmeasurable sets 
and explain the mathematical difficulty for giving them credence. I present several 
options to address this problem and give an outline of my position. In Sect. 3, I 
defend my position by giving two main arguments which show that it is in fact ratio-
nally permissible to ignore nonmeasurable propositions. In Sect. 4, I respond to some 
counterarguments in the literature and show that they are unsuccessful. Section 5 is 
an appendix independent from the rest of the paper, which readers can skip without 
losing sight of the main points of the paper. The appendix discusses two topics con-
sidered to be closely related: a) the existence of total chance functions; b) the con-
sistency of certain large cardinals and the truth value of the Continuum Hypothesis 
(CH). I conclude that the role of nonmeasurability in epistemology does not shed 
light on these issues, contra Hoek (2021).

2  Nonmeasurable sets, totality, translation invariance

We begin with presenting the mathematical difficulty underlying assigning credence 
for all nonmeasurable sets. Recall that the Random Spinner is conceived as rota-
tionally symmetric. This condition imposes some rational constraints on an agent’s 
credence P. To begin with, for example, she should think that the semicircles [0, π) 
and [π, 2π) are equally likely to be hit. Such intuition is generalized by the follow-
ing property: we say that P is translation invariant if P (A) = P (A + r) for any 
A ⊆ [0, 2π) and r ∈ R, where A + r = {a + r mod 2π : a ∈ A}.2 For the Ran-
dom Spinner, the intuition thus described suggests that rationality requires P to 
be translation invariant. Translation invariance implies that for any interval [a, b), 
P ([a, b)) = b−a

2π . In turn, this implies that any countably additive P agrees with the 
Borel probability measure over the Borel sets, which are formed by countably many 
iterations of taking countable unions or intersections of open intervals. The Borel 
measure can be canonically extended to the Lebesgue probability measure, defined 
over the measurable sets. The σ-algebra formed by these set is denoted L. These are 
sets whose symmetric difference with some Borel set is null. The Lebesgue probabil-
ity measure assigns probabilities to all these measurable sets and preserves transla-
tion invariance. Furthermore, any translation invariant probability measure agrees 

1 Hoek in fact defends the closely related view that there exists a total chance function. However, as I will 
discuss later, an analysis of Hoek’s central argument reveals that its central premise is epistemological, 
and his defense for the premise supports Credence Totalism.

2 Note that according to our definition, if P is translation invariant, then for any set A in the domain of P, 
all its translates are also in the domain of P.
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with the Lebesgue probability measure over the measurable sets. In this sense the 
Lebesgue probability measure is unique.

On the other hand, the totalists consider totality as another rational constraint on P. 
If we accept both totality and translation invariance, then P needs to be a total exten-
sion of the Lebesgue probability measure (since any translation invariant probability 
measure agrees with the Lebesgue measure over the measurable sets). However, as 
the following well-known theorem shows, such an extension does not exist, assum-
ing the Axiom of Choice (AC):

Theorem 1  (Vitali). Let P be a countably additive probability function over 
Ω = [0 , 2π). Over Zermelo–Fraenkel set theory (ZF), the following are contradic-
tory: i) AC; ii) P is translation invariant; iii) P is total.

At this point, it is helpful to comment on the role of the axiom of countable addi-
tivity. Whether this axiom constitutes a rational constraint on credence function 
(globally or locally) is a topic of active philosophical debate, a debate that we do 
not consider settled. Meanwhile, it is known that there exist finitely additive, total 
extensions of the Lebesgue measure over R which preserve translation invariance. 
Thus weakening additivity is a possible way to accommodate both translation invari-
ance and totality for the Random Spinner where Ω = [0, 2π). However, the following 
well-known theorem (which generalizes to Rn for n ≥ 3) shows that this option is 
not available in more general cases involving spaces of higher dimensions:

Theorem 2  [Banach–Tarski] Let P be a finitely additive (not necessarily countably 
additive) probability measure over the unit sphere S2 ⊆ R3 . Over ZF, the following 
are contradictory: i) AC; ii) P is isometrically invariant3; iii) P is total.

The Banach–Tarski theorem shows that even if one is ready to weaken additivity, 
the tension between totality and translation invariance persists for higher-dimensional 
analogues of the Random Spinner. For this reason, we do not consider weakening 
additivity as an adequate response to the issue at hand. Thus, the totalist must take 
at least one of the following options: i) reject or weaken translation invariance as a 
rational constraint; ii) generalize the notion of probability to avoid Theorem 1; iii) 
reject or weaken AC.

Existing literature on this topic often ignores option iii) and assumes a basic ten-
sion between translation invariance and totality, which necessarily exists under AC. 
For example, taking option i), Hoek (2021) argues that the chance function need not 
be translation invariant, while Goodsell and (2024) argues that translation invariance 
does not apply to all sets. Taking option ii), Isaacs et al. (2022), henceforth “IHH”) 
attempt to accommodate both totality and translation invariance without giving up 
the existence of nonmeasurable sets by admitting interval-valued credence.

3 When P is defined for subsets of Rn (n ≥ 2), translation invariance naturally generalizes to invariance 
under isometry, meaning that P (A) = P (π”A) whenever π : Rn → Rn is a transformation that 
preserves the Euclidean metric. Such transformations include not only translations but also rotations, for 
example.
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Distinct from these approaches, this paper takes a novel approach by carefully 
considering the interaction between option iii) and Credence Totalism. The very 
possibility of this option is based on the following important theorem, which shows 
that if AC is weakened to the axiom of dependent choice (DC), then it is consistent 
that both translation invariance and totality can be satisfied by the Lebesgue measure, 
with a mild large cardinal assumption:

Theorem 3  ([Solovay, 1970]) If there is an inaccessible cardinal, then there is a 
model of ZF + DC such that every subset of the reals is Lebesgue measurable.

The goal of this paper is to evaluate Credence Totalism in light of Theorem 3. 
My overall position can be stated in a disjunctive form. On the one hand of the dis-
junct, if nonmeasurable sets do not exist, then the standard Lebesgue probability is 
already total. In this case, the force of Credence Totalism is trivialized as it does not 
require modifying existing theories of probability and statistics.

On the other more interesting hand of the disjunct, nonmeasurable sets exist. Then 
the most prominent reason for Credence Totalism is the epistemic significance of 
assigning credence to nonmeasurable sets. As I shall argue, there is no such sig-
nificance, so arguments for Credence Totalism cannot be based on it.4 I give two 
arguments for my position: one based on operability (Sect. 3.2) and another based 
on instrumentality (Sect. 3.3). Theorem 3 plays an important role in both arguments. 
First, this theorem gives strong evidence that nonmeasurable sets are nonconstruc-
tive. I argue that this means that they are not empirically operable. In my second 
argument, I introduce an important distinction between two perspectives of math-
ematically conceiving real numbers: the folklore perspective and the logical perspec-
tive. I argue that in applying probability theory to situations such as the Random 
Spinner and statistical inference, we primarily take the folklore perspective. From 
this point of view, axiomatic specifications of set-theory are merely instrumental, and 
the set theory ZF + DC suffices for probabilistic applications. Consequently, by The-
orem 3, this perspective requires no commitment to the existence of nonmeasurable 
sets. I therefore claim that nonmeasurability is merely a vestige of an instrumental 
choice made in probabilistic practice.

Before turning to the discussion, I make two clarifications on my position. First, 
my arguments are independent of whether translation invariance is a rational con-
straint. Hence, my position is not subjected to objections against translation invari-
ance, such as those described by Goodsell and Nebel (2024). Specifically, these 
authors hold that a non-translation invariant extension of the Borel measure can be 
rationally permissible. The failure of translation invariance of these measures is wit-
nessed only by nonmeasurable sets. While I consider translation invariance a natural 
requirement that should hold at least for the open sets, I contend that it needs not 
extend to nonmeasurable sets (if they exist) – in fact, in light of my position just 
described, the issue of whether it extends to nonmeasurable sets does not appear to 
be of much importance, as far as the application of probability theory is concerned.

4 Thus my arguments do not establish the falsity of Credence Totalism but rather conclude that its most 
prominent motivation is invalid.
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Second, my view makes no commitment on whether AC is true, or should be 
considered a fundamental axiom of mathematics. These issues have been extensively 
discussed since Zermelo’s proof of the well-ordering theorem (Hamkins, 2021, §8.8). 
In particular, I do not suggest that full AC is false. Instead, my view is merely based 
on the observation that certain important applications of mathematics either do not 
depend on axiomatizing set theory, or merely commit to set theories weaker than full 
ZFC. This observation is consistent even with versions of set-theoretic universe view 
or Platonism that commit to the absolute truth of AC.

3  The epistemic insignificance of nonmeasurable propositions

3.1  Nonmeasurable sets and statistical inference

We begin with developing our main positive point that nonmeasurable sets can be 
justifiably ignored in statistical inference. In statistical inference, we typically con-
sider a class of statistical models or hypotheses parameterized by some parameter θ, 
formalized as a family of random variables fθ : Ω → R. After empirically observing 
the value of f in multiple trials, we seek to infer a parameter θ such that fθ best fits the 
observed behavior of f. We focus on the following toy example closely related to the 
Random Spinner:

Box 2
Mystery Lamp. A lamp is connected to the Random Spinner via a wire. It is observed that the lamp 
sometimes blinks after a spin of the spinner. The exact relationship between the two devices is unclear.

One may suspect that the two devices are somehow correlated and reasonably ask 
for the probability that the lamp blinks after a spin. To answer this question, one can 
apply statistical inference on a class of hypotheses of the form fθ : [0, 2π) → {0, 1}, 
i.e. we are picking a function that best predicts the correlation between the lamp and the 

spinner. Once a best parameter θ is chosen, the desired probability is then P (f−1
θ (1)).

At this point, the issue of choosing the algebra of probability bearers arises: if 
the set f−1

θ (1) is not included in the algebra, then P (f−1
θ (1)) is undefined. To avoid 

this problem, statistics usually makes the assumption that all random variables are 
measurable functions.5 Which functions are measurable is relative to the choice of 
the underlying algebra. When the algebra is too restrictive, there may be too few 
measurable functions, leading to erroneous inference results. To illustrate, consider 
the following example:

 

Box 3

5 Recall that given measure spaces (X, F), (Y, G), a function f : (X, F) → (Y, G) is measurable if for 
any A ∈ G, f−1(A) ∈ F .
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Suppose the Mystery Lamp is, in fact, triggered by the event that the spinner hits 
[0, π

4 ). However, our probability is defined on a restricted algebra: the algebra generated by 
{[0, π

2 ), [ π
2 , π), [π, 3π

2 ), [ 3π
2 , 2π)}. We consider hypotheses of the form fθ : [0, 2π) → {0, 1}, 

which are assumed to be measurable with respect to the restricted algebra.

In this scenario, clearly, among the functions measurable with respect to the 
restricted algebra, the best hypothesis is the indicator function of the interval [0, π

2 ). 
However, it is still a poor predictor of the behavior of the lamp (with success rate 
0.5). Our result can be improved by enlarging our algebra so that more functions 
become measurable and hence qualify as hypotheses.

In probability and statistics, when the underlying space is Rn, it is standard to 
choose L – the σ-algebra of the Lebesgue measurable sets – as the probability bear-
ers, thus excluding the nonmeasurable sets and nonmeasurable functions from con-
sideration. A natural question is, why not consider all hypotheses? In fact, part of the 
motivation for Credence Totalism is indeed the worry that these “missing hypoth-
eses” result in suboptimal inference results, just as in the previous example (Hoek, 
2021).6 Nevertheless, we think that the credence gaps on nonmeasurable sets are 
not worrisome. To defend this view, our task is the following. In general, we can 
observe that in any context of epistemic representation or investigation, an agent can 
only focus on a rather limited class of propositions or features of interest. In some 
cases such as the previous example, ignoring some propositions which could have 
been engaged with is irrational or erroneous. However, sometimes such omission is 
reasonable, and we shall offer some positive reasons which explain why ignoring 
nonmeasurable sets falls into the second kind.

3.2  Nonmeasurable sets are inoperable

Recall that the existence of nonmeasurable sets were originally proved under the 
assumption of AC. By Solovay’s Theorem 3, this assumption is difficult to eliminate 
in the sense that even DC – a natural weakening of AC – cannot prove that they exist.7 
This is why nonmeasurable sets are often considered nonconstructive.8 AC asserts 
that every family of sets has a choice function: if {As : s ∈ S} is a set of sets, then 
there is F with domain S such that F (s) ∈ As for all s ∈ S. Meanwhile, in Solovay’s 
model where there are no nonmeasurable sets, DC holds. DC states that for any rela-
tion R over any set X which satisfies for all x there is y such that xRy, there is a count-
able sequence F : ω → X  such that F (s)RF (s + 1) for all s ∈ ω. In other words, 
DC preserves a strong fragment of choice which allows us to make countably many 
choices along any relation R. The upshot is, to prove the existence of nonmeasurable 

6 This objection is addressed in Section 4.1.
7 The existence of nonmeasurable sets follows from some strict consequences of AC, for example, the 
existence of a well-ordering of the reals, or the existence of a nonprincipal ultrafilter. These principles 
are generally considered nonconstructive too, so all the points I make in this section also apply to them.

8 The word “constructive” is used differently in constructive mathematics or constructive logic, where a 
constructive approach often requires weakening the base logic. Here I am discussing the constructivity of 
objects, instead of reasoning processes. I simply mean that nonmeasurable sets cannot result from con-
structive processes, or no constructive proof can prove their existence. My usage is of “nonconstructive” 
here is interchangable with “inexplicit” or “intangible”, following Schechter (1996, § 14.77).
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sets, we need a highly nonconstructive choice function not available even in a DC 
universe.

In scientific practice, some hypotheses are justifiably ignored on the ground that 
they are inoperable, meaning that we lack the means to empirically interact with 
them. I claim that because nonmeasurable sets are nonconstructive, nonmeasur-
able propositions are inoperable, and this constitutes a reason why nonmeasurable 
hypotheses can be justifiably ignored.

Some fundamental ways in which we empirically interact with theories include: 
making predictions based on the theory, verifying the accuracy of our prediction, and 
investigating other questions conditionalizing on the theory. All these tasks appear 
impossible for nonmeasurable propositions. For example, consider the proposition 
that the Mystery Lamp blinks iff the Random Spinner hits a nonmeasurable set A. 
We lack a method to conditionalize on this proposition, since standard theories of 
conditionalization only allow us to conditionalize on measurable propositions. But 
even the more basic tasks of prediction and verification seem impossible. If we want 
to predict whether a spin sparks the lamp under this hypothesis, we need to deter-
mine whether the spinner lands in the nonmeasurable set A. If we want to verify 
this hypothesis, we make many trials and record whether the spinner lands in A, and 
whether the lamp blinks. Both of these tasks involve measuring the location of the 
spinner and determine if it lands in A. For the sake of argument, we make the highly 
unrealistic assumption that we are capable of measuring the location of the spinner 
infinitely precisely, in the sense that there is a unique real x ∈ [0, 2π) that can be 
empirically determined to be hit by the spinner. Even then, we are left with the task 
of deciding whether x ∈ A. But the only way we can specify A involves a choice 
function given by AC. For example, the Vitali set is the set formed by choosing an 
element from each element in the group (R/Q, +). AC asserts the existence of such a 
choice function, but does not specify which elements are chosen. Therefore, there is 
no general way to determine whether the x falls into this set. Some fundamental ways 
in which we empirically interact with theories include: making predictions based on 
the theory, verifying the accuracy of our prediction, and investigating other questions 
conditionalizing on the theory. All these tasks appear impossible for nonmeasurable 
propositions. For example, consider the proposition that the Mystery Lamp blinks iff 
the Random Spinner hits a nonmeasurable set A. We lack a method to conditionalize 
on this proposition, since standard theories of conditionalization only allow us to 
conditionalize on measurable propositions. But even the more basic tasks of predic-
tion and verification seem impossible. If we want to predict whether a spin sparks the 
lamp under this hypothesis, we need to determine whether the spinner lands in the 
nonmeasurable set A. If we want to verify this hypothesis, we make many trials and 
record whether the spinner lands in A, and whether the lamp blinks. Both of these 
tasks involve measuring the location of the spinner and determine if it lands in A. For 
the sake of argument, we make the highly unrealistic assumption that we are capable 
of measuring the location of the spinner infinitely precisely, in the sense that there is 
a unique real x ∈ [0, 2π) that can be empirically determined to be hit by the spinner. 
Even then, we are left with the task of deciding whether x ∈ A. But the only way we 
can specify A involves a choice function given by AC. For example, the Vitali set is 
the set formed by choosing an element from each element in the group (R/Q, +). AC 
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asserts the existence of such a choice function, but does not specify which elements 
are chosen. Therefore, there is no general way to determine whether the x falls into 
this set.

Thus we cannot empirically engage with nonmeasurable sets because we cannot 
physically measure them. Another way to make this point (in the contrapositive form) 
is that the sets amenable to physical measurement and empirical investigations are all 
measurable. Here, it is helpful to briefly introduce the projective hierarchy.

Formally, the hierarchy is defined as following: at the lowest end of the hierarchy, 
Σ1

1 denotes the collection of analytic sets: sets of the form {y ∈ R : ∃x ∈ RRxy} 
where {(x, y) : Rxy} is a countable intersection of open sets, i.e. analytic sets are 
formed by projecting the Gδ-sets. Dually, Π1

1 denotes the coanalytic sets, the comple-
ments of analytic sets. One climbs up the hierarchy by alternating applications of 
projections and complementations: Σ1

n+1 sets are projections of Π1
n sets, and Π1

n+1 
sets are complements of Σ1

n+1 sets. The projective sets are the collection of every set 
that appears in the hierarchy: 

∪
n∈ω Σ1

n.

The projective hierarchy is relevant here for the following reason: early results in 
descriptive set theory due to Luzin and Suslin show that the Borel sets are exactly 
the sets that are both analytic and coanalytic (denoted ∆1

1 = Σ1
1 ∩ Π1

1), and that 
there are non-Borel analytic sets, i.e. ∆1

1 ⊊ Σ1
1 (Moschovakis, 2025). This means 

that even a single application of projection enables one to form more complex sets 
than the Borel sets, which themselves can be enormously complex (e.g. countable 
unions of countable intersections of countable unions of closed sets…). However, 
by the definition of measurability, we know that all the open sets and all the Borel 
sets are measurable. Moreover, Luzin went one step further along the hierarchy and 
showed that the analytic/coanalytic sets are measurable. Naturally, he asked whether 
all projective sets are measurable, a question turned out to be independent of ZFC.9 
However, Luzin’s result suffices to show that even under AC, many sets of relatively 
low complexity are measurable.10 It seems reasonable to think that all the sets that 
are physically detectable fall into these classes with low complexity. In fact, any real-
world measurement device has some limited precision, so a single measurement of a 
quantity yields an interval that the true value likely falls in. Our measurements can be 
improved by measuring the same quantity repeatedly. The number of measurements 
can be some large finite number but never countably infinite. Considering this fact, 
we may reasonably think that the empirically detectable subsets are finite unions 
or intersections of open/closed intervals, meaning that the class of measurable sets 
already contains all the sets we might be practically interested in, and many more.

Some philosophers may find the perspective based on operability unsatisfactory. 
For example, Norton writes:

9 For a discussion of the history of this question and some relevant results, see Woodin (2001).
10 Here, one might object that under V = L, there is a well-ordering of the reals low in the projective hier-
archy. So in this situation, there are nonmeasurable sets that are “easy to define”, and so they might not be 
highly nonconstructive after all. See Sect. 4.4 where I address this objection.
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“Should an account of inductive inference be responsible for relations among 
propositions that pertain to nonmeasurable sets? To forego exploring these rela-
tions would require positive reasons for precluding nonmeasurable sets. I do 
not see them unless we are prepared to entertain anthropocentric perspectives 
on the world. This might happen if we were so committed a subjectivist that 
we reduce the scope of inductive inference to relations among things that we 
can construct. This attitude seems quite presumptuous to me”. (Norton, 2021, 
Ch. 14)

Two comments on Norton’s view in order. First, in so far as the purpose of a theory of 
inductive inference is to account for how knowledge is acquired and justified based 
on empirical evidence, propositions that are not amenable to empirical investigation 
appear irrelevant. It is quite natural to stay silent on hypotheses which we lack the 
means to investigate, and it is not clear to me why this is “presumptuous” for Norton. 
Second, Norton appears to assume that nonmeasurable sets admit some status of 
objective existence, therefore focusing on the constructible sets is limiting and “sub-
jectivist”. However, from a choiceless point of view, nonmeasurable sets only exist in 
idealized set-theoretic universes which are themselves constructed by human beings. 
Thus it is not clear which view really is the “anthropocentric” 1, unless we resolve 
the issue of whether AC is objectively true, an issue beyond the scope of this paper.

Norton’s criticism aside, I believe there is a second positive argument for preclud-
ing nonmeasurable sets that does not involve feasibility considerations, thus directly 
addressing Norton’s worry. This argument is to be described in the following section.

3.3  Axiomatic set theory is instrumental

In an iconic paragraph from Science and Hypothesis, Poincaré writes:

“The geometer is always seeking, more or less, to represent to himself the fig-
ures he is studying, but his representations are only instruments to him; he uses 
space in his geometry just as he uses chalk; and further, too much importance 
must not be attached to accidents which are often nothing more than the white-
ness of the chalk”. (Poincaré, 1952, Ch. 2)

I introduce Poincaré’s remark because I think the role of models of set theory in the 
formal representation of belief and credence and the practice of statistical inference 
is analogous to the role of the chalk in mathematical investigations, in that they are 
merely instrumental. These applications may well mention the notion of set. How-
ever, in most cases, sets need not be considered as members of models of axiomatic 
set theory. Instead, users of sets often manipulate them on the basis of naive set 
theory. Moreover, these applications do not require the kind of global description that 
set-theoretic axioms impose on the set-theoretic universe. Even when we do need 
some more rigorous treatment of sets, often some axioms weaker than or different 
from ZFC may well serve our purpose. On this view, sets as members of models of 
ZFC, and full AC in particular, are merely one out of many instruments that can ful-
fill the demands of probability and statistics. The presence of nonmeasurable sets in 
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some specific models of set theory is merely an accidental feature of our instrumental 
choice. We now motivate and explain this view.

The issue of nonmeasurability appears precisely when we decide to use Ω = [0, 2π) 
as the sample space for the Random Spinner and conceive various subsets of the reals 
as events. Importantly, different mathematical contexts or goals call for different per-
spectives on how the real numbers R are conceived. There are two relevant perspec-
tives here: the folklore perspective and the logical perspective.,11 From the folklore 
perspective, the most important properties of R are geometrical. A real number is 
construed as a dimensionless point on a line infinitely extending in both directions, 
deployed with a metric measuring the distance between any two point, in such a way 
that the line “contains no gaps”, in the sense of Cauchy completeness. On the other 
hand, while the logical perspective acknowledges all the folklore properties of R, it 
introduces some additional features. This perspective is characterized by viewing R 
as a set, existing in some universe of set theory V, which satisfies some set-theoretic 
axioms. It also becomes natural in this context to identify R with 2ω, the powerset of 
ω, and a single real number as an infinite path through the tree 2<ω .

Historically, the development of the logical perspective since the late 19th century 
was mathematically fruitful. It settled important open questions, and led to interest-
ing new ones. In particular, set-theoretic questions concerning R, e.g. whether non-
measurable sets exist, whether R is well-orderable, whether CH holds, are decided by 
the existence or nonexistence of certain sets in V. However, despite these landmark 
discoveries in logic and set theory, it does not mean that one should fully embrace 
the logician’s perspective in all mathematical contexts involving the real numbers. 
Instead, the folklore perspective is often all one needs for real-world application, 
and is what we are all familiar with when we were first introduced to mathematics as 
schoolchildren. From the folklore point of view, usually there is no need to consider 
R as living in V. Even though this move is perhaps necessary to answer some deeper 
questions which may well interest the folklore mathematicians too, the conceptual 
origins of the two perspectives are distinct, and many applications of the real num-
bers remain immune to the logical developments.

I suggest that in applications of probability – whether in statistics or philosophy 
– it suffices to take the folklore view, and the logical view is unnecessary. Imagine 
we tell Laplace that the sample spaces he considers are all part of some V, and there 
are different axiom candidates for V, and so on. Chances are that he would find these 
ideas quite irrelevant to his scientific concerns and results, intriguing as they are. In 
fact, even today, I think a majority of statisticians are unable to state the axioms of 
ZFC and have no idea what is a model of set theory. None of this prevents them from 

11 The presence of multiple perspectives on the real or the continuum has been observed by many, includ-
ing Hermann Weyl (1987), §2.6), who contrasts “the intuitively given continuum” and “the concept of 
real number”. Weyl also observes that philosophical confusions can arise if these perspectives are mixed 
up: “I see this pencil lying before me on the table throughout a certain period of time. This observation 
entitles me to assert that during a certain period this pencil was on the table; and even if my right to do so 
is not absolute, it is nonetheless reasonable and well grounded. It is obviously absurd to suppose that this 
right can be undermined by an ‘expansion of our principles of definition’ – as if new moments of time, 
overlooked by my intuition, could be added to this interval, moments in which the pencil was, perhaps, in 
the vicinity of Sirius or who knows where.”
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taking R as granted and freely use some of its basic properties, such as separability 
by Q and Cauchy completeness.

Having distinguished these two perspectives, we can now make sense of the idea 
that nonmeasurable sets are incidental, just as Poincaré’s chalk. Measurability itself 
is a highly set-theoretically entangled phenomenon which only arises once we are 
ready to embrace the logical perspective and perform set-theoretic operations on R, 
e.g. well order R, or pick representatives from equivalence classes of equivalence 
relations on R. The extent to which these operations are available depends on what 
kind of set-theoretic choice principles one adopts. However, once we accept that 
probability and statistics can be done merely from the folklore perspective, we see 
that the probabilist needs not decide these issues.

Furthermore, even if the probabilist is ready to embrace the logical point of view 
by making explicit some set-theoretic axioms and viewing her spaces, functions, and 
numbers as living in some universe that satisfies these axioms, she needs not assume 
that the universe she uses satisfies full ZFC. Recall that by Solovay’s Theorem 3, in 
some ZF + DC models there are no nonmeasurable sets. Fundamental theorems in 
probability and statistics are derived from mathematical analysis, and DC was pro-
posed by Bernays (1942) as part of a set theory that enables analysis to be carried out. 
ZF + DC is often considered “the right theory for classical analysis”, on the ground 
that most theorems in classical analysis can be proved from these axioms (Asperó 
& Karagila, 2021). If this is right, then Solovay’s theorem shows that there exists 
a robust set theory for the probabilist such that she can prove all the theorems she 
wants, without committing to nonmeasurable sets.12

In conclusion, according to our view, a probabilist is free to consider her sets as 
being naive, unaxiomatized without specifying a model of set theory in which they 
inhabit. Or, she may consider her sets as axiomatized by ZF + DC and living in a 
universe where all sets are measurable. None of these set-theoretic views affect her 
probabilistic practice. She may also use models of full ZFC, but the existence of 
the alternatives suggests that nonmeasurable sets are merely instrumental features 
induced by particular ways of specifying her mathematical apparatus, which are nei-
ther determined nor required by probabilistic applications.

4  Objections

In this section we work under the assumption that nonmeasurable sets exist and 
respond to some counterarguments to our position. We begin with discussing the 
“missing hypothesis” worry in Sect. 3.1 proposed by Hoek (2021).

12 The Axiom of Determinacy (AD) contradicts AC and implies that there are no nonmeasurable sets (as 
opposed to ZF + DC being merely consistent with this). One might wonder if ZF + AD is also a reason-
able set theory for the probabilist, but the extent to which it proves theorems of analysis and probability is 
less clear to the author than ZF + DC. For a philosophically informed introduction to AD, see Koellner 
(2014).
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4.1  Missing hypotheses

Hoek aims to show that for the Random Spinner, there exists a total chance function 
P : Ω → [0, 1] that is a probability measure such that P ({r}) = 0 for all r ∈ Ω. (We 
might call this assertion Chance Totalism – more on this in the appendix.) Chance is 
defined as “the objective likelihood that [an] event takes place” (p. 641). The notion 
of chance leads to various metaphysical issues, such as whether devices like the Ran-
dom Spinner are in fact chancy, and what does it mean for a chance function to 
exist. These issues are irrelevant to the present paper, since our following analysis 
of Hoek’s argument reveals that its key premise is epistemological in nature, nothing 
beyond the worry that ignoring nonmeasurable sets lead to “missing hypotheses”.

Hoek begins by describing what he calls the Typical Inductive Inference. Sup-
pose a scientist investigates how likely the Mystery Lamp is to blink (call this event 
E), i.e. the probability P(E). The class of hypotheses that the scientist considers are of 
the form “P (E) = x” where x ∈ [0, 1]. The scientist proceeds by making n trials and 
recording the number of blinks m. She then considers the likelihood of her evidence 
under various hypotheses: if, e.g. P (E) = 80%, then the likelihood of observing 
m = 794 among n = 1000 is high, whereas that of observing m = 50 among n = 1000 is 
low. The hypothesis which maximizes the likelihood function is chosen. In this way 
various hypotheses about the value of P(E) can be compared and selected.

Once this method is defined, Hoek proposes the following argument:

Box 4
1. If some event has no chance at all, then Typical Inductive Inference is unreliable.
2. Typical Inductive Inference is, in fact, reliable.
1. If some event has no chance at all, then Typical Inductive Inference is unreliable.
3. Therefore, every event has a chance.

How is the first premise justified? Hoek reasons: if some event has no chance, then 
we have some additional hypotheses to consider. Here, one such hypothesis is that E 
has no chance (No Chance), in the sense that the chance function P gives no value 
with the input E. However, Typical Inductive Inference is unable to examine this 
hypothesis, since it only applies to evaluating hypotheses for which we know how 
likely certain data is observed, given the hypothesis. But we have no idea how likely 
we are going to observe m blinks among n trials, given the hypothesis No Chance. 
This is a problem because “if [No Chance] fits the data equally well as the hypoth-
esis that [Ch(E)] is around 80%, then that substantially undermines the strong jus-
tification we thought we had for our inductive predictions about the future behavior 
of the lamp”. (p. 646) Consequently, the inference fails to justify its conclusion and 
so it is unreliable.

Clearly, Hoek’s consideration is closely related to the statistical inference setting 
we introduced earlier in Sect. 3.1. The scientist described above considers the class 
of hypotheses of the form E : Ω → {0, 1} where Ω = [0, 2π). The problematic state-
ment No Chance describes situations where E is not a measurable function, i.e. the 
set E−1(1) is non-measurable. As we discussed earlier, these nonmeasurable func-
tions are typically excluded from consideration in statistical inference. Essentially 
Hoek worries that a nonmeasurable function “fits the data equally well” with a mea-
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surable one chosen by statistical inference and thinks in this case the justification 
for choosing the measurable function is undermined. To avoid this problem, Hoek 
concludes that the scientist must set up her algebra F  to include all the subsets, so 
that all functions are measurable and her credence function is total.

Key Claim If an agent’s algebra F  is not equal to the full powerset 2Ω, then her 
Typical Inductive Inference is unreliable.

I claim that Hoek’s argument does not suffice to establish Key Claim. The argument 
clearly relies on the worry that nonmeasurable hypotheses might “fit the data equally 
well” with measurable hypotheses. However, upon closer scrutiny, we can see that 
this worry is misplaced.

To begin with, “fitting the data” might mean being consistent with the data, but 
in the probabilistic setting at issue, mere consistency is irrelevant. “This coin is 
fair” and “this coin is unfair” are both consistent with any finite number of coin toss 
results. This fact does not prevent us from employing Typical Inductive Inference 
to decide between these hypotheses.

Statistics works by identifying some notions of fitness with data more useful then 
mere consistency. In this case, the most straightforward (although not necessarily the 
most appropriate) notion is maximum likelihood estimation. However, if we are to 
compare the likelihood of the relevant hypotheses, we immediately see that nonmea-
surable hypotheses do not “fit the data equally well” with measurable hypotheses. 
This is simply because the likelihood of a nonmeasurable hypothesis is undefined, so 
it cannot appear in the comparison of likelihood.

Moreover, even if we somehow define a degree of fitness that works for nonmeasur-
able hypotheses and they end up “fitting the data equally well” with some measurable 
hypothesis according to the notion thus defined, this does not mean that our chosen 
hypothesis is unjustified. For in general, any method for hypothesis choice typically 
cannot isolate a single best hypothesis. In the philosophy of science literature, this is 
well-known as the underdetermination of hypothesis by evidence. Sometimes, a best 
hypotheses can be isolated once a criterion is chosen. For example, given some data 
points, there might be a unique set of parameters generating a curve which maximizes 
a certain function that measures the degree of fitness, e.g. the likelihood function. 
However, this would not resolve the underdetermination phenomenon. Still, there 
exist other plausible candidate criteria for evaluating hypotheses which may yield 
different results. Let alone there may exist other plausible but different hypotheses 
(which may involve alternative kinds parameters) to choose from. The typical lesson 
from underdetermination is not that some method is unjustified unless it can always 
isolate one single best hypothesis. Instead, the lesson is that we can make theory 
choice based on criteria beyond fitness with data, e.g. theoretical virtues, pragmatic 
considerations, and more. These criteria often arise in scientific practice and results 
in effective theory choices.

In conclusion, the mere possibility of some ignored hypothesis fitting the data 
equally well with a chosen hypothesis does not undermine that choice. Someone 
advocating for considering the ignored hypothesis has the burden to prove that it is 
unjustifiably ignored. In particular, if one thinks nonmeasurable hypotheses under-
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mine theory choice, one must offer some specific positive reasons, yet they are lack-
ing in the current discussion. Such reasons may include, for example, some theory 
predicting the plausibility of nonmeasurable hypotheses. But as of today, no scientific 
theory describes or predicts any empirical bearing of nonmeasurable sets. On this 
issue, the only worry Hoek mentions concerns losing justifications for “future predic-
tions” of the chosen theory, but in a lot of underdetermination cases, the competing 
hypotheses also predict the future differently, which do not prevent us from making 
theory choices. In fact, if our data underdetermine two theories that make the same 
predictions, then a choice seems even less pressing. As these instances of underdeter-
mination do not appear to undermine scientific practice, there seems to be no reason 
to think that nonmeasurable hypotheses yielding different predictions threatens our 
conclusions about the behavior of the Mystery Lamp. Meanwhile, as described in the 
previous section, there are what we consider as strong positive reasons against the 
empirical bearing of nonmeasurable sets. Therefore we reject the “missing hypoth-
eses” worry.

4.2  Undue restriction

Now we turn to a different set of arguments proposed by IHH (2022) for imprecise 
credence: the idea of representing credence with a generalized probability function 
that assigns intervals (as opposed to mere numbers) as probabilities. For the Random 
Spinner, the credence assigned to A ⊆ Ω would be the interval whose endpoints are 
A’s inner measure and outer measure, respectively. In this manner, translation invari-
ance is preserved while nonmeasurable sets receive probabilities. IHH did not explic-
itly endorse Credence Totalism, and it is not clear whether they think non-total 
credence functions are rationally impermissible.13 However, in order to motivate the 
advantage of imprecise credence over non-total credence functions, they suggest that 
it is important to give nonmeasurable sets credence. This is the main claim we shall 
discuss. We think that IHH did not give a successful argument for this claim.

The first argument proposed by IHH is based on the idea that any subset should be 
permitted to enter an agent’s algebra if she wants.14 More precisely, it relies on the 
following premise.

Extendability states that P is permissible only if for any set A, there exists Pʹ 
extending P such that Pʹ is defined on A.

13 One may understand IHH as merely arguing that imprecise credence is rationally permissible, as 
opposed to rationally required (Dorr, 2024). This view is consistent with the idea that non-total credence 
functions are also rationally permissible. In this paper we do not intend to argue against the permissibility 
of imprecise credence. However, from our point of view, imprecise credence is not more permissible or 
desirable than non-total credence.
14 “…if [a proposition] doesn’t appear in [an agent’s] algebra, she simply has no doxastic attitude to it. To 
be sure, it’s fine if the algebra excludes some propositions - one need not think about everything. But if an 
agent wants to assign a credence to the proposition that the spinner will land on some non-measurable set 
of points, she should not be doomed to failure… An epistemology that abjures such agents is too restric-
tive.” (2022, p. 900)
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To begin our objections, we first observe that Extendability does not imply any 
problem with the Lebesgue measure. Indeed, Vitali’s construction shows that there 
are some nonmeasurable sets – we shall call these nonmeasurable sets Vitali-style – 
for which the Lebesgue measure cannot be extended to, if the extension preserves 
translation invariance.15 From the existence of Vitali-style nonmeasurable sets, the 
argument appears to conclude that the Lebesgue measure is not rationally permis-
sible, because it violates Extendability. But in fact, it does not: a translation invari-
ant extension to the Vitali-style sets does not exist, but it is consistent with ZFC that 
a total extension of the Lebesgue measure can exist (which by Theorem 3, cannot 
be translation invariant), under suitable large cardinal hypotheses. (See Section 4.3 
and the appendix.) Thus, Extendability needs to be modified for the argument to 
go through:

Extendability∗ states that P is permissible only if for any set A, there exists Pʹ 
extending P such that Pʹ is defined on A and preserves certain properties of P, 
e.g. translation invariance.

One might think that it is prima facie permissible to assign credence to any set A, and 
this is how Extendability is justified. This can be granted for the sake of argument, 
even if A is of Vitali-style. However, this justification for Extendability does not 
straightforwardly apply to Extendability∗, for the following reason.

In general, it is false that any permissible probability function must be able to be 
further extended to accommodate yet another feature which is permissible by itself. 
In other words, two features of a credence function can be individually permissible 
but jointly impermissible. For example, regarding the spinner (not assumed to be 
symmetric), it is clearly permissible for someone to have P ([0, π)) = 0.9 (e.g. when 
she thinks that the spinner is very likely to land in the left half). It is also permissible 
to have P ([π, 2π)) = 0.9, that is she thinks that the spinner is very likely to land in 
the right half. But there is no P which has both properties, since such P contradicts the 
axiom of total probability. Precisely because of this contradiction, we conclude that a 
credence function which satisfies P ([0, π)) = P ([π, 2π)) = 0.9 is not rationally per-
missible. In the present case, the relevant properties are i) P is translation invariant, 
ii) P is defined on some Vitali-style set A. Both features are permissible, but jointly 
they contradict our chosen axioms. In fact, the Vitali-style sets are precisely the sets 
for which we cannot assign a translation invariant credence under the chosen axioms! 
In so far as we are ready to consider features that contradict these axioms impermis-
sible (unless there are independent reasons against these axioms, which are absent in 
IHH’s discussion), we should conclude that the desired extension is impermissible.

15 Note that for certain nonmeasurable A, the Lebesgue measure can be extended to σ(L ∪ {A}), while 
preserving translation invariance. In other words, there are nonmeasurable sets which are not of Vitali-
style.
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4.3  Contagious credence gap

Another argument proposed by IHH is based on the observation that credence gaps 
for nonmeasurable propositions can propagate to other propositions. uppose an agent 
is certain that the following proposition holds, i.e. assigns credence 1 to it:

Nonmeasurable Blink: the lamp blinks iff the spinner hits A, where A is 
Vitali-style.

IHH claimed that in this case, she cannot assign credence to the proposition that “the 
lamp blinks after a spin”. For whatever credence this proposition receives, the propo-
sition that the spinner will hit A receives the same credence, which is not possible if 
translation invariance is to be preserved, since A is of Vitali-style. Hence the credence 
gap propagates to mundane propositions which supposedly should be able to receive 
credence. Even worse, if the agent merely has a “low but non-zero credence” to “a 
causal connection between a non-measurable set of points on a spinner and the light”, 
she still cannot assign credence to the proposition that “the lamp blinks after a spin” 
(IHH, 2022, p. 899)

Before we discuss this argument, we note that both the proposition that the lamp 
blinks and Nonmeasurable Blink are not represented in the probability space with 
Ω = [0, 2π). All subsets of this space represent propositions of the form “the spinner 
will hit A” where A ⊆ Ω, and these are the only credence bearers according to the 
formalism. To address this, we let the new sample space Ω = {0, 1} × [0, 2π), where 
each trial has its outcome recorded as (a, b) ∈ Ω, a is either 1 or 0 (meaning that the 
lamp blinks or not), and b ∈ [0, 2π) records the point hit by the spinner. We can rigor-
ously formulate IHH’s argument in this setting.

Definition 1  For X ⊆ [0, 2π), we denote X+ = {1} × X , X− = {0} × X , 
X∗ = X+ ∪ X−, and Xc = [0, 2π) − X . Translation invariance for the new sample 
space means for any r, P (A∗) = P ((A + r)∗). Let µ be the Lebesgue measure on 
[0, 2π).

Proposition 1  Let A ⊆ [0 , 2π) be Vitali-style, let B = (Ac)− ∪ A+ (represent-
ing Nonmeasurable Blink), and C = [0 , 2π)+ (representing “the lamp blinks”). 
Assume P is translation invariant. Then no translation invariant extension of P takes 
value on both B and C.

Proof  Clearly P (·∗) induces a probability measure over [0, 2π) and it is translation 
invariant. So P (X∗) = µ(X) for all measurable X ⊆ [0, 2π). For a contradiction, 
assume that Pʹ extends P, is translation invariant, and takes value on B and C. We 
have A+ = C ∩ B, A− = Ω − B − C, both in the domain of Pʹ, hence A∗ is in the 
domain of Pʹ. But then P (·∗) is a translation invariant extension of P (·∗) over [0, 2π) 
with A in its domain, contradicting A being Vitali-style.

Let F  be the algebra of credence bearers. IHHs argument goes as: suppose B ∈ F , 
by the above Proposition, C ̸∈ F . But C is such a natural proposition to consider that 
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it should always be in F . Since the standard probability formalism does not allow 
this, we need to modify it.

We agree that it is natural to have C ∈ F . But why should we accept the supposi-
tion that B ∈ F? In fact, the very same analysis in Sect. 4.2 applies to the set B in this 
case. There, we discussed two reasons against giving Vitali-style sets credence: a) 
even if they are prima facie permissible to receive credence without any background 
assumptions, there is no reason to think that this is still permissible if we are to pre-
serve translation invariance; and b) they should not receive credence since putting 
credence on them contradicts our chosen axioms and accepted local constraints on 
credence functions.16 Proposition 4 shows that B (i.e. Nonmeasurable Blink) plays 
the exact same role as the Vitali-style set in our previous analysis, namely extending 
a translation invariant probability (whose domain naturally includes C) to be defined 
on B while preserving translation invariance results in contradiction. Therefore, the 
natural conclusion to draw from Proposition 4 is that B should not enter F  in the first 
place. An argument which concludes that we should have A ∈ F  based on the sup-
position that B ∈ F  is circular, since it already supposes that something analogous to 
a Vitali-style set should enter the algebra.

4.4  Discussion

We end this section by treating some secondary issues and objections arising from 
our discussion so far.

4.4.1  Physical possibility of nonmeasurable propositions

Footnote 4 of IHH (2022) discusses (and criticizes) the idea that because of their 
“infinite precision”, nonmeasurable propositions are physically impossible to be true. 
Importantly, my reasons for not engaging with these propositions are entirely differ-
ent and should be distinguished from this idea.

To begin with, “infinite precision” is a poor characterization of both nonmeasur-
able sets and physical possibility. My issue with nonmeasurable propositions is not 
that they are “infinitely precise” (whatever that means), but rather they are noncon-
structive. Specifically, their construction relies on unspecified choice functions with 
uncountable cardinality.17 In particular, my view can be maintained while acknowl-
edging that there are some set constructed from some countably infinitary process 
of epistemic interest. For example, the question of how to conditionalize on certain 
measure 0 sets has been extensively discussed (Meehan & Zhang 2020). My view 
does not imply that this question is pointless. In fact, these measure 0 sets are often 
highly constructive, which is precisely what renders the conditionalization issue 
relevant.

16 A statement contradicting some chosen axioms consitutes a strong reason to reject the statement, but 
sometimes it is a defeasible reason. In some cases, the contradiction may give motivations to modify or 
improve the axioms. Our arguments in Sect. 3 suggest that credence assignment to Vitali-style sets does 
not constitute such a case and so dispel this concern.
17 Since DC implies countable choice (CC), it follows from Theorem 3 that we can have all the countable 
choice functions but no nonmeasurable sets.
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As for whether nonmeasurable propositions are physically possible to be true, I 
stay neutral on this issue. While some nonmeasurable propositions may be trivially 
true (e.g. a specific nonmeasurable set being hit), many nonmeasurable propositions 
assert correlations between non-measurable sets and some empirical phenomenon 
(e.g. Nonmeasurable Blink), or even causal connections. It is not clear to me 
whether nonmeasurable propositions of the second kind can be true. I am happy to 
grant that they may possibly be true, but it is not clear to me how this possibility can 
be empirically verified.

4.4.2  Credence gaps on possible propositions

In light of the previous point, one may worry: if someone believes that a proposition 
may be true, then how can it be reasonable to ignore it in scientific investigations? 
How can it be reasonable not to give it credence? Does my position force me to 
acknowledge that all nonmeasurable propositions are false? To dispel this apparent 
puzzle, we make two clarifications.

First, the mere possibility of a proposition does not require a rational agent to give 
it a credence. Leaving credence gaps on nonmeasurable propositions does not mean 
that we rule them out (i.e. consider them as false or impossible), it merely means 
that they are not under consideration in a specific epistemic situation. A proposition 
which an agent considers false or impossible receives credence 0 instead. An agent 
can consider a proposition as possibly true and yet reasonably ignore it by not assign-
ing it a credence.

Second, we observe that there are many examples where an epistemic agent 
ignores propositions which she considers possible. One example most salient to the 
Mystery Lamp is the practice of machine learning. Indeed, the Mystery Lamp can be 
suitably viewed as a learning problem: we are given many data points of the form 
(r, x) ∈ [0, 2π) × {0, 1}, and the machine attempts to learn a classifier X ⊂ [0, 2π) 
that is a best predictor of getting 1. There are many machine learning algorithms 
implementing this task, their details do not matter here. It suffices to say that the 
class of candidate classifiers that can theoretically be learned by a given algorithm 
is always contained in a class of well-behaved functions and excludes the pathologi-
cal functions. In particular, these functions would certainly admit only finitely many 
parameters and so place very low in the Borel hierarchy, let alone involving anything 
into the projective hierarchy. Certainly no machine learning algorithm returns non-
measurable functions! Consequently, many functions are ignored, and which func-
tions are ignored partly depends on our choice of algorithm. However, in machine 
learning practice, making these inevitable choices does not mean rejecting the pos-
sibility that other classifiers may work better, or turn out to be the “true” classifier. 
What matters is explaining why it is reasonable to ignore certain functions, which is 
precisely our task for nonmeasurable sets.

4.4.3  Extent of idealization

At the end of Sect. 3.3, the logic-infused probabilist who considers her R as living in 
Solovay’s model is a partially idealized agent who is i) capable of engaging with infi-

1 3

Page 19 of 27    182 



Synthese         (2025) 206:182 

nite sample spaces; ii) willing to consider the Random Spinner as rotationally sym-
metric; iii) capable of utilizing some nonconstructive objects given by ZF + DC, or at 
least countable choice functions; and yet iv) incapable of utilizing some uncountable 
choice functions. Following the literature, we may call the combination of i)–iv) a 
semiconstructive or quasiconstructive point of view (Massas, 2023; Schechter, 1996, 
§14).

One might ask whether this standpoint is coherent. On the one hand, from a fully 
realistic point of view, one may think that finite sample spaces are all that an agent 
can engage with. One may also think that the Random Spinner should not be consid-
ered rotationally symmetric, due to friction and finite initial angular velocity. On the 
other hand, if we consider a highly idealized, God-like agent capable of utilizing arbi-
trary choice functions, then our discussion in Sect. 3.2 is irrelevant, and nonmeasur-
ability seems more salient. Nevertheless, we think both extremes are unsatisfactory.

Although the fully realistic point of view is reasonable, we note that there are 
many fruitful mathematical and scientific practices that drift away from it. Infinitary 
concepts (e.g. limit, the continuum, integrals, etc.) are applied from physics to sta-
tistics, without much concern on how actual human brains grapple with them. As for 
ii), a tradition known as the method of arbitrary functions stemmed from Poincaré 
seeks to derive uniform probability for the Random Spinner, even when its dynamics 
is taken into account (Myrvold, 2021). On iii), we observe that as evident in classical 
analysis textbooks, mathematicians typically consider making a countable sequence 
of choices unproblematic.18 As for the fully ideal perspective, we are dissatisfied with 
it because it treats highly nonconstructive phenomena such as nonmeasurability on 
an equal footing with idealizations naturally considered in practice. In contrast, the 
semiconstructive point of view helps to isolate the nonconstructive phenomena, with-
out necessitating radical reformulations of existing practices. As Schechter (1996, § 
14.76) observes, it is “a compromise between constructivist mathematics and main-
stream mathematics, which should be easily understood by most analysts and other 
‘ordinary’ mathematician”. We therefore think that the semiconstructive standpoint is 
a robust one from which formal epistemology can benefit.

4.4.4  Nonmeasurable phenomena are in fact empirically detectable

In Sect. 3.2 we argued that nonmeasurable phenomena are not empirically detectable. 
However, Dorr (2024) suggests otherwise. He imagines God asking us to distinguish 
between a lamp triggered by a nonmeasurable subset of the Random Spinner (“the 
interesting spinner”) and another lamp triggered by one-third of the spinner (“the 
boring spinner”), and claims:

“After thirty spins, your tally … has ten 1s and twenty 0s: just the proportion 
that would be most likely if you had the boring spinner. You wonder how you 

18 Here, our treatment of countably infinite processes may draw comparisons with a philosophy of set 
theory known as countablism, as outlined by Builes and Wilson (2022). However, they are quite different. 
Countablism there is understood as a metaphysical thesis highlighting the fact that for any infinite set there 
is a forcing extension of the universe such that it becomes countable.
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should react. I say you should react by becoming more confident that you have 
the boring spinner than you were before your experiments. I hope readers will 
share my sense that this is obviously the right reaction. For those who demand 
an argument, I offer the following: your observations should leave you pretty 
confident that you have the boring spinner. Beforehand, you should not have 
been pretty confident. But necessarily, if you are pretty confident afterwards 
and not before, you are more confident afterwards than before…” (Emphasis 
added)

Dorr claims that we can empirically distinguish nonmeasurable phenomena from 
measurable ones, at least in the restricted setting of choosing between just these two 
spinners. However, from his description, it is entirely unclear on what basis can we be 
“pretty confident that we have the boring spinner”. Perhaps the thought is, our confi-
dence in having the boring spinner should increase because it has high likelihood of 
generating the data. But what we really need is to compare the likelihood of the two 
hypotheses. How can we compute the likelihood of the nonmeasurable hypothesis? 
This brings us back to the discussion in Sect. 4.1 of Hoek, who observes that there is 
in general no way to do this.19

On this point, I think Hoek is right in that if nonmeasurable hypotheses are taken 
into consideration, then we cannot empirically rule them out. However, Dorr’s intu-
ition that an outcome of ten 1s and twenty 0s strongly supports the boring hypothesis 
is also important. This very natural intuition, I think, is based on the law of large 
numbers: if our n trials are considered as n i.i.d. random variables, this law asserts 
that their average Xn approaches µ as n → ∞, where µ is the mean of Xn. However, 
as we formulate this law as a mathematical theorem, we make the assumption that X 
is a measurable function. For the “interesting spinner”, X is not measurable, for which 
the theorem says nothing. So one cannot apply intuitions based on this law to refute 
nonmeasurable hypotheses. The fact that Dorr overlooks this and considers it obvi-
ous to apply the law seems to me to suggest that we very naturally tends to implicitly 
make measurability assumptions. And from our point of view, these assumptions are 
very much justified.

4.4.5  Nonmeasurable sets of low complexity

It is well known that under V = L, there exist nonmeasurable sets relatively low 
in the projective hierarchy, e.g. at the (lightface) Π1

2/Σ1
2 level. A recent article by 

Hanson (2025) gives a comprehensive exposition of this phenomenon. The upshot 
of such results is that nonmeasurable sets can be more explicit than one may think – 
an example given by Hanson (2025, Prop. 3.5) is: there is an open set U ⊆ R3 × N 
which yields a Π1

2 nonmeasurable set after taking its projection and complement 
successively for 3 times. We think such results have no bearing on our position, for 

19 In some specific cases this might not be true, e.g. we are told that “the interesting spinner” is correlated 
with a nonmeasurable set whose outer measure is quite small. But the general case appears intangible. 
What if it is correlated with the union of one third of the spinner with a nonmeasurable set with small 
outer measure?
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several reasons. First, our final discussion in Sect. 3.2 suggests that the empirically 
relevant phenomena fall within the range of the analytic/coanalytic sets, or even the 
Borel sets. If this is right, then the presence of nonmeasurable sets at the next level is 
irrelevant. Second, V = L in particular implies a strong form of AC, that every set is 
uniformly well-ordered by <L, an order that exists at the ∆1

2 level. This means that 
nonconstrutive objects can be made definable (in the logical sense that provably there 
exists a formal formula describing the object) via metamathematical techniques. But 
a constructivist or semiconstructivist would likely doubt whether an object being 
definable in this sense is any indication of its explicitness, if she is concerned with an 
empirically motivated sense of explicitness. Finally, from the point of view discussed 
in Sect. 3.3, for the probabilist, there is no difference between various axiomatic set 
theories as long as they allow her to do the basic work, and there is no reason to pay 
special attention to byproducts of exotic set theories. Strengthening AC to V = L is 
analogous to replacing an ordinary chalk with a particularly fancy chalk with proper-
ties of independent interest.

5  Appendix: chance totalism and set-theoretic implications

This appendix discusses some views of Hoek (2021) closely related to the theme of 
the paper. The issues involved here chiefly concern metaphysics and the philosophy 
of set theory. Readers primarily interested in the role of nonmeasurable sets in epis-
temology may skip the appendix without loosing sight of the main contributions of 
the paper.

Recall that Hoek’s argument introduced in Sect. 4.1 intends to prove Chance 
Totalism, which appears as an intermediate step towards the ultimate goal of dem-
onstrating the falsity of CH. Furthermore, Hoek claims that the argument against CH 
has an empirical character, since on his view, Chance Totalism best explains the 
success of inductive inference. The purpose of this appendix is to show that Chance 
Totalism does not imply ¬CH, unless one assumes certain forms of AC. Since the 
relevant form of AC is not amenable to empirical justification, Hoek’s argument does 
not have the empirical character he claims. We need to introduce some definitions for 
the discussion.

Definition 2  Let κ be an infinite set, a measure over κ is a function µ : 2κ → [0, 1] 
such that i) µ(κ) = 1; ii) µ({s}) = 0 for all s ∈ κ; iii) if Xn ⊆ κ are pairwise dis-
joint, then µ(

∪
n∈ω Xn) =

∑
n∈ω µ(Xn).

Definition 3  Hoek (2021) M denotes the assertion that there exists a measure over R.

Chance Totalism is the statement that there is a chance function for the Random 
Spinner witnessing M. The principle M turns out to have the following series of set-
theoretic implications.20

20 See Kanamori (2008, Ch. 2) for some references to these results.
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Definition 4  Let κ be a cardinal, we say κ is real-valued measurable if there is a 
κ-additive measure on κ. κ-additive means additivity holds for any mutually disjoint 
family of size < κ. We say κ is measurable if there is a κ-additive measure on κ 
whose range is {0, 1}.

Proposition 2  Let κ be the least cardinal such that there exists a measure on κ. Then 
any measure on κ is in fact κ-additive, i.e. κ is also the least real-valued measurable 
cardinal.

Proof  Fix λ < κ. Let {Xα : α < λ} be mutually disjoint and m(Xα) = 0, it suf-
fices to show that m(

∪
Xα) = 0. Suppose m(

∪
Xα) = r > 0, define the following 

measure over λ: for A ⊆ λ, m(A) =
∑

α∈A
m(Xα)

r , contradicting the minimality of κ.

Definition 5  An atom for a measure m is some set A ⊆ κ such that m(A) > 0 and for 
all B ⊆ A, either m(B) = m(A) or m(B) = 0. If m has an atom we say m is atomic.

Proposition 3  κ is measurable iff κ is real-valued measurable with an atomic, 
κ-additive measure.

Proof  On the one hand, let κ be measurable with measure µ, then in particular µ is an 
atomic real-valued measure with κ as an atom. On the other hand, if A ⊆ κ is an atom 
for a measure m, then µ(X) = m(X∩A)

m(A)  defines a 2-valued measure.

Proposition 4  If κ is measurable then |R| < κ.

Remark 1  In hindsight, it is known that a measurable cardinal is inaccessible and in 
fact has many inaccessibles below it, which implies Proposition 7.

Theorem 4  [Ulam] Let κ be real-valued measurable with a κ-additive measure m. 
If m is atomless then κ ≤ |R|, moreover, there is a total extension of the Lebesgue 
measure over R which is κ-additive.

Proof  This is proved as Theorem 2.5 in Kanamori (2008).

We now have a dichotomy where κ is the least real-valued measurable cardinal.

	

{
|R| < κ ⇔ κis measurable ⇔ There is an atomic κ-additive measure over κ
κ ≤ |R| ⇔ κis not measurable ⇔ All κ-additive measures over κ are atomless

We can also see that the principle M is equivalent to the second disjunct: if M holds, 
then there is a measure over R, by Proposition 5, there is a least real-valued measur-
able cardinal κ ≤ |R|. On the other hand, If there is a least real-valued measurable 
cardinal κ ≤ |R|, by the extension part of Ulam’s Theorem 8, M is witnessed by a 
κ-additive total extension of the Lebesgue measure.
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In particular, M implies that there is a real-valued measurable cardinal κ ≤ |R|, 
which has some striking consequences.

Proposition 5  [Ulam, AC] Let κ ≤ |R| be real-valued measurable, then κ is weakly 
inaccessible.

κ being weakly inaccessible means that κ is regular, and for any cardinal λ < κ, 
λ+ < κ. Hence if M holds, we have ℵ0 < ℵ1 < ℵ2 < · · · < κ < |R|, meaning that 
CH fails considerably. Because Hoek claims that his argument earlier described in 
Sect. 4.1 establishes Chance Totalism, which implies that M is witnessed by a 
chance function for the Random Spinner, Hoek thinks his argument refutes CH. In 
fact, it has numerous other consequences: since CH holds under V = L, Hoek also 
refuted Gödel’s V = L. Similarly, since |R| = ℵ2 holds under forcing axioms such as 
PFA, he also refuted these axioms… Moreover, we know:

Theorem 5  [Solovay] ZFC+ “there is a real-valued measurable cardinal” is equi-
consistent with ZFC+ “there is a measurable cardinal”.21

So if a real-valued measurable cardinal is consistent, then we have a model of ZFC
+“there is a measurable cardinal”, and in particular ZFC itself. Assuming that Hoek 
thinks M is not only true but consistent, then he also showed that ZFC as well as 
many large cardinals are consistent!

All these conclusions are supposed to follow from Chance Totalism. And since 
chance function is considered objective, it is argued that these conclusions hold for 
the “real” set theoretic universe.

So the argument described in Sect. 4.1, if sound, indeed has striking consequences. 
There, we have already discussed some of its flaws. If my criticisms are right, then 
the argument does not prove Chance Totalism. In this section we make a separate 
criticism: even if Chance Totalism is true, the alleged set-theoretic conclusions do 
not follow. The reason is as follows.

As in Sect. 3.3, we need to pay attention to the distinction between mere sets 
and sets as members of set-theoretic universes. Suppose indeed there is a chance 
function that is a measure defined on all the subsets of the infinitely thin rim of the 
Random Spinner, whose existence can be confirmed via some empirical or abductive 
considerations, as Hoek wishes. I claim that even so, the existence of this chance 
function does not fix the set-theoretic universe in which it lives (or in which there 
exists a function isomorphic to the chance function in some sense), if the notion of 
the set-theoretic universe makes sense at all. We may consider the set formed by the 
points on the rim of the spinner – it is a set of physical objects. There is no reason 
to think that this set inhabits any specific model of set theory (e.g. a model of ZFC), 
or indeed to assume the existence of any coordination between this set and the/a set-
theoretic universe at all. With whatever local information we are given about the set 
of points on the spinner’s rim and the functions defined on them, we have no reason 
to make conclusions on global questions such as whether the axiom of replacement 

21 Note that κ < / = / > |R| are all equiconsistent with a measurable.
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holds, whether AC holds, or whether there is a well-ordering of the reals. Therefore, 
the total chance function may come from a ZFC universe, or it may well come from 
a choiceless universe.

This constitutes a problem for the argument against CH, because when AC is 
absent, the existence of a total chance function on R (i.e. M) does not imply ¬CH. 
M ⇒ ¬CH follows from Ulam’s Proposition 9, whose proof depends on constructing 
an Ulam matrix using AC.22 In fact, it turns out that in some choiceless situations CH 
is consistent with M.

To briefly describe such situations, we first note that without AC, R may not be 
well-orderable, so CH should not be stated as 2ℵ0 = ℵ1. (In fact, the existence of a 
well-ordering of R implies the existence of nonmeasurable sets.) Instead, it is stan-
dard to consider the formulation known as the weak continuum hypothesis (WCH): 
any uncountable set of reals is bijective with R.

In Solovay’s model, every subset of R has the perfect set property, meaning that it 
is either countable or contains a subset bijective with R. So in particular, any uncount-
able set of reals is bijective with R, by the Schröder–Bernstein theorem which holds 
in ZF. So WCH holds. Since the Solovay model contains a total measure on R (i.e. 
the Lebesgue measure) and satisfies WCH, the implication from Credence Totalism 
to ¬CH does not hold.

The same phenomenon appears in many models other than Solovay’s model. In 
descriptive set theory, measurability, the Baire property, and the perfect set property 
are considered the three most important regularity properties of subsets of R. In many 
choiceless contexts they simultaneously hold for all subsets of R. For example, AD 
implies these properties. Therefore, in AD models, we have a total measure coexist-
ing with WCH as well.

To summarize, Hoek’s alleged empirical argument against CH involves two con-
sequences of AC: i) nonmeasurable sets exist; ii) M ⇒ ¬CH. But inductive infer-
ence goes on as usual without assuming that nonmeasurable sets admit credence or 
chance, because the empirical point of view does not force us to adjudicate whether 
i) holds (Sects. 3.3). If our empirical investigations are unaffected if we see our math-
ematical objects as living in Solovay’s model, for example, then our above analysis 
shows that from the empirical point of view, we need not accept M ⇒ ¬CH either.23 
Therefore we should not consider Hoek’s argument successful.
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