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Abstract

This paper develops a theory of mathematical explanation through the lens of a separatist metaphys-
ical grounding framework. I argue that mathematical explanations delivered by proofs are best cap-
tured by a non-causal determination relation between mathematical facts—a metaphysical grounding
relation where the explanans determines the explanandum, where the relevant why questions at each
step are answered; an explanatory proof is the one that establishes an explanatory chain between the
explanans and the explanandum. Through a case study in algebra (e.g., the infinity of fields with
characteristic zero), I argue how this relation establishes objective dependencies in terms of deter-
mination relations that answer why-questions about mathematical facts. By adopting a ground-first
separatist approach—where grounding relations back explanations but are distinct from them—the
theory aligns with mathematical practice, supports proof plurality, and addresses gaps in existing
accounts.
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1 Introduction

Mathematics has a crucial role in explaining physical and social phenomena 1. This role
has been a major topic in the philosophy of science. However, until recently, the question
of whether mathematics has an explanatory role in accounting for mathematical facts has
not been fully addressed in the literature of analytic philosophy 2. Nonetheless, according
to Mancosu in [Man00], discussions on mathematical explanation, not necessarily in the
analytic philosophy, date back to Aristotle’s Posterior Analytics. He claims that demonstra-
tions “of the reasoned fact” (i.e., explanations) occur in mathematics. He contrasts these
demonstrations with the demonstration “of the fact.” According to him, although both are
logically correct, only the first type of demonstration explains the result 3 4.

1 This paper is a substantially revised version of the first chapter of my PhD dissertation on mathematical
explanation at the University School for Advanced Studies of Pavia (IUSS). I am deeply grateful to numerous
individuals for their insightful and constructive feedback on earlier drafts of this paper. I extend my sin-
cere appreciation to Andrea Sereni, Dugald Macpherson, William D’Alessandro, Stefan Roski, Hamid Vahid,
Mahmoud Morvarid, Mohammad Saleh Zarepour, Mohsen Zamani, and Davood Hosseini. In particular, I
am particularly grateful for the invaluable critiques and suggestions provided by anonymous reviewers of the
European Journal for Philosophy of Science. Finally, I express my heartfelt gratitude to the editors of EJPS
for their unwavering support throughout the editorial process.

2 In this literature, the issue was discussed in the works of Steiner [Ste78], Kitcher developed in [HM08]
extracted from [Kit89], and Lange’s [Lan14].

3 See [MPP23], Section 5 for further details.
4 Aristotle’s idea raised a critical discussion (the Quaestio de Certitudine Mathematicarum) during the

Renaissance. See [Man00] for further details.
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On the other hand, the relation between grounding explanations and mathematical expla-
nations has been gaining some attention, with some versions discussed in the literature. One
of the early systematic contributions to the relation between the mathematical explanation
and the grounding explanation is due to Bolzano 5, who argued that explanatory proofs are
ultimately ground-revealing proofs. On the other hand, Lange, in a famous work [Lan19],
has argued that mathematical explanation and grounding explanation diverge. Nonetheless,
a couple of recent studies by Poggiolesi and Genco in [PG23] and Poggiolesi in [Pog23]
suggest that mathematical explanation is a type of conceptual explanation backed by a con-
ceptual grounding relation 6.

In a previous work [Maa25] 7, I have argued that there is a version of metaphysical
grounding that is immune to Lange’s criticisms. In this paper, I will take a more direct ap-
proach to mathematical explanation. I will show that the version of grounding theory that
withstands Lange’s arguments in [Lan19] is actually a natural suggestion for addressing
problems regarding mathematical explanation 8. The main proposal is that a mathematical
explanation is a version of grounding explanation that is backed by a metaphysical ground-
ing relation of determination (between facts that explain and the fact that is being explained),
such that the relevant why questions about the fact under study are answered. In other words,
a proof is explanatory when it creates an “explanatory chain” that links the items meant to
explain with the item being explained.

To start, I will make a few assumptions about the grounding relation. I will consider the
grounding relation as a non-causal form of determination that backs explanations and is tran-
sitive. Based on this, I will argue that grounding provides a natural way to understand mathe-
matical explanation. It shows how mathematical facts depend on one another—specifically,
how the facts that do the explaining determine the ones being explained. I will illustrate
this with several mathematical examples.

A metaphysical understanding of the grounding relation, that according to Correia in
[Cor14] and Smithson in [Smi20] includes the conceptual grounding 9, addresses the ques-
tions about mathematical explanation. So, the main strategy of the current research is to

5 See [Rus22] for a survey of Bolzano’s view of explanatory proofs in terms of grounding.
6 Betti has presented a similar view in [Bet10], p.252.
7 Marc Lange has responded to this paper in [Lan25].
8 I thank an anonymous reviewer for pointing out that the grounding relations are generally less clear than

many mathematical concepts, including those presented in the current research. However, proponents of using
the grounding relation can employ it not to discuss or clarify any mathematical concepts (e.g., defining or
clarifying them through metaphysical grounding) but to discuss the practice of mathematics and what appears
to be a crucial aspect of it, such as explanations in mathematics. Therefore, the goal of the current research is to
better understand a significant component of the practice of mathematics, clarifying which requires employing
notions that are not explicitly used in the practice of mathematics.

9 According to Correia, for example, “every case of logical grounding is a case of conceptual grounding
(but not vice versa), and that every case of conceptual grounding is a case of metaphysical grounding (but not
vice versa).” ([Cor14], p. 32)
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extend Poggiolesi and Genco’s account in [PG23] and Poggiolesi’s account [Pog23] to a
larger set of explanatory proof by weakening the conceptual grounding to a metaphysical
grounding relation, adopting a ground-first approach, where the grounding relation is un-
derstood as a metaphysical form of determination, and the grounding explanation is backed
by it. I will argue that this weakening of the conceptual grounding relation to a metaphys-
ical relation sets the stage for studying a larger set of explanatory proofs (in an informal
setting) as a variety of grounding explanations. I leave the comparison between Poggiolesi
and Genco’s account in [PG23] and Poggiolesi’s account [Pog23], on the one hand, and the
current account, on the other hand, to future work.

Here is an overview of the paper. In Subsection 1.1, the notion of mathematical explana-
tion, along with some examples, will be introduced. Following this, Section 2.1 presents a
case of mathematical explanation that motivates the current research. It is then suggested in
Subsection 2.2 that, to properly address mathematical explanation, a determination relation
between mathematical facts is appropriate. This approach facilitates addressing the question
of mathematical explanation as a form of grounding explanation backed by a metaphysical
relation of determination in Section 3. For this purpose, a separatist theory of ground will be
presented in Subsection 3.1, arguing that mathematical explanation can be naturally viewed
as a type of grounding explanation in Subsection 3.2.

1.1 Mathematical Explanations and Informal Mathematical
Proofs

Mathematicians offer and ask for explanations; they wonder, “Why does such-and-such a
mathematical fact occur?”. For example, why is the number of occurrences of the numeral
7 on the list from 1 to 99, 999 exactly 50, 000? 10. Although many accounts of mathematical
explanation were focused on what an explanatory proof is, mathematical explanation is not
restricted to mathematical proofs 11. In addition to proofs, diagrams could, for instance,
have explanatory value 12. However, the present research only focuses on the explanations

10 The example is discussed in Lange’s [Lan19].
11 There are generally two main views on how mathematical explanations should be understood concern-

ing mathematical proofs. The first view considers being explanatory as a virtue of a mathematical proof.
For instance, according to Lange, “Purity and explanatory power are both virtues in proofs, as are brevity,
generalizability, simplicity, visualizability, theoretical fruitfulness, pedagogic value, and so forth.” (Lange,
[Lan19], Footnote 7). On the other hand, the second view considers being explanatory as a goal of a mathe-
matical proof. For instance, to borrow Detlefsen’s words, “... a prime goal of proof is explanation” ([Det08a],
p. 17). The former views explanation as a virtue of mathematical proof and other mathematical virtues, e.g.,
elegance, brevity, and purity. However, the latter view assigns a more substantial role to mathematical expla-
nation by elevating it as a prime goal of proofs. The present research subscribes to the latter view. This view
is best captured by viewing explanation as a relation between a set of mathematical facts that explain and a
mathematical fact that is being explained.

12 See [Lan18] and [D17].
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delivered by mathematical proofs. In what follows, I will discuss major features of this
particular type of mathematical explanation 13.

Generally speaking, mathematicians develop a collection of theorems, definitions, and
lemmas to address a particular question. So, the final proof appears to be just the “tip of the
iceberg” in a piece of mathematical research, representing a (sometimes lengthy) process.
Hence, to learn more about the nature of mathematical explanation as it appears in the
practice of mathematics, knowing the details of an entire research process (and sometimes
the history of the subject, the motivations, and even the failed attempts to solve the problem)
seems relevant. This shift, i.e., to look for explanatoriness in mathematical research as a
global and multifarious process rather than just locating it in mathematical proofs, does not
diminish the role of proofs insofar as proofs are seen as the final step of a longer process. So,
we will always refer to proof as a representative of a more complex piece of mathematical
research, and explanation as a prime research goal.

As we are investigating explanations in mathematics, by a fact, I will always mean a
mathematical fact, which is denoted by [𝑃 ], where 𝑃 is a mathematical proposition. Here
are some examples of mathematical facts: that every natural number greater than 1 has
a unique prime decomposition, that the first-order theory of real closed fields eliminates
the quantifiers in the language of ordered rings, or that every algebraically closed field is
infinite.

A key aspect of this kind of mathematical explanation that any bona fide account should
include is its objectivity; in a genuine case of mathematical explanation, some mathematical
fact accounts for another mathematical fact. In other words, we are looking for a relation
between a mathematical fact that we are about to study (the explanandum) and another
mathematical fact that we understand better (the explanans), such that the latter makes true
statements about the former. For facts [𝑃 ] and [𝑄], there is an objective element to the
mathematical explanation involving an objective relation that is guaranteed to hold when
[𝑄] accounts for [𝑃 ]. Call this the objective element of mathematical explanation 14:

Mathematical explanation includes an objective element based on which the
explanans makes some statements about the explanandum to be true. (1)

It is important to emphasize that, consistent with standard mathematical practice, the scope
of our research includes proofs, which consist of a series of true propositions (or facts) that

13 Mathematical explanations can be quite intricate. In their paper [HM05], Hafner and Mancosu draw a
comparison between the numerous types of mathematical explanations and the diverse religious experiences
described by William James. They suggest that the term “explanation” cannot be used as a catch-all for any
principle or essence but rather serves as an umbrella term for the vast array of explanations that exist. As
a result, it is crucial to specify the type of explanation when dealing with mathematical explanation. This
research aims to offer a theory of mathematical explanation that is offered by mathematical proofs.

14 This aspect will be addressed in terms of the grounding relation. Note that the grounding relation, as well
as the distinctions relating to this topic, including partial versus full grounding, will be discussed in section
3.1.
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serve as premises and another true proposition (or fact) that serves as the conclusion. This
is because we are focused on the proofs that convey the reasons why some mathematical
proposition is true or why some mathematical fact is the case. These reasons, usually in
a mathematical proof, take the form of a series of steps (usually in an informal language
including some formal element and some natural language) that eventually establish the
truth of the proposition that is considered as the conclusion by answering a series of why
questions regarding the fact under study.

On the other hand, when examining mathematical explanations provided by proofs, it
is important to recognize that some proofs explain a given fact better than others. This
does not imply that one proof is the best explanation, but rather that some offer a deeper
understanding of the explanandum. Although comparing the relative explanatory power
of different proofs is closely tied to the study of explanation, it is not the main focus of
this research 15. To the extent that this issue is relevant here, it highlights the need for a
representational element—something that shows why one fact holds in virtue of another 16.
I will denote this representational structure as ⟨𝑃 because of 𝑄⟩

17.
As we examine explanations delivered by proofs, it is appropriate to clarify our concep-

tion of proofs and their explanatory aspects. Following Dawson’s characterization [Daw06],
I understand proofs as informal arguments that establish truth while ideally explaining why
that truth holds. According to him, [Daw06], p. 270, “we shall take a proof to be an infor-
mal argument whose purpose is to convince those who endeavor to follow it that a certain
mathematical statement is true (and, ideally, to explain why it is true)”. This aligns with
mathematical practice, where proofs typically blend formal elements with natural language
rather than existing as fully formalized derivations.

However, adopting this approach, i.e., considering proofs in mathematics as informal
arguments, does not ipso facto result in saying that proofs (in an informal setting) are not
rigorous 20. The debate over mathematical rigor reveals a divergence in views regarding the
relationship between formalization and rigor. According to what Hamami calls in [Ham22]

15 For a discussion of the comparative explanatory value of proofs, see Wilhelm [Wil23].
16 For a functional approach to mathematical explanation that centers on answering why-questions and en-

hancing understanding, see [IMR21].
17 Steiner made a relevant distinction in his work [Ste78] between relative explanatory value and explanation

per se. While the former concerns the differences in the explanatory value of various proofs, the latter focuses
on the nature of mathematical explanation. Nonetheless, these questions are interrelated, and exploring one
can shed light on the other. For example, in [Ste78], p.135, Steiner recalls that Feferman identifies explanation
with generality or abstraction. So, according to him, if we adopt Feferman’s idea about explanation, we should
concede that among several possible explanations, the more abstract or general the explanation, the more
explanatory it will be. The present research’s main target is studying mathematical explanation per se. So,
while I will discuss proofs with respect to their explanatory value, the main purpose will be to investigate a
theory of mathematical explanation itself. However, along with Lange, I assume that the explanatory power
of proofs is not “all or nothing” 18; different proofs could have different explanatory values 19.

20 I thank an anonymous referee of European Journal for Philosophy of Science for bringing up this issue.
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the “standard view,” a mathematical proof is rigorous if it can be routinely translated into
a formal proof within a formal theory (e.g., 𝑍𝐹𝐶). This view regards formalization as a
definitive measure of rigor, even if full formalization is rarely carried out in practice. How-
ever, this has been contested by several philosophers of mathematical practice who argue
that rigor and formalization are different concerns, and that mathematical rigor can and of-
ten does operate independently of any routine translation into formal systems 21. Detlefsen,
for example, says, “Mathematical proofs are not commonly formalized, either at the time
they’re presented or afterwards. Neither are they generally presented in a way that makes
their formalizations either apparent or routine ... There are thus indications that rigor and
formalization are independent concerns.” ([Det09], p 17). Thus, there are at least two
positions in the literature regarding the relation between rigor and formalization: one that
identifies rigor with formalizability, and another that sees rigor as a practice-sensitive notion
that need not be tied to formal systems.

Since my focus is on how mathematical explanations are conveyed through proofs in the
actual practice of mathematics, I adopt the informal presentation of proofs as my primary
subject of study. The reason is, according to Hamami in [Ham22], both proponents and
critics of the standard view agree that formalization is not routinely pursued in everyday
mathematics, and that proofs as they appear in practice often combine formal and informal
elements. Accordingly, I analyze mathematical proofs as they are used and understood in the
everyday practice of mathematicians—proofs that contain heuristic strategies, sometimes
intuitive inferences, and other informal components. Moreover, I agree with Rav that infor-
mal proofs include “topic-specific moves” that serve as “bridges between the initially given
data, or between some intermediate steps, and subsequent parts of the argument” ([Rav99],
p. 26).

In this setting, the objective element appears as a sequence of steps, including propo-
sitions that begin with those about the facts that explain and lead to propositions about
the fact being explained. This corresponds to consecutive major steps of the proof in in-
formal language and will be referred to as the explanatory chain of an explanatory proof
(further discussed and illustrated in Section 3.2). However, adopting this does not exclude
the possibility that, in a formal approach, the steps of the proof include purely inferential
and grounding steps 22. In the current approach, while not ruling out the formal approach
to the steps of the argument in a specific language, the main focus remains on the informal
version of the proof and its major steps.

To illustrate the objective element through a series of informal steps, let us consider the
example presented in [IMR21]. This example includes a proof for the sum of the first 𝑛

21 See Larvor’s paper [Lar12], Tanswell’s work [Tan15], and Detlefsen’s [Det09] for arguments against the
standard view.

22 For example, Genco in [Gen21] provides a calculus in a language that enables combining logical deriva-
tions and formal explanations to distinguish the explanatory parts of derivations from their non-explanatory
parts.
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natural numbers. It’s a well-known fact that this sum is equal to 𝑛(𝑛+1)
2

. This is the sum of
the first 𝑛 numbers:

1 + 2 +…+ 𝑛. (2)

Now, let us write the sum from 𝑛 to 1:

𝑛 + 𝑛 − 1 +…+ 1. (3)

The sum of both sequences is the same; the only difference is the order of the addition.
Next, add the first element of the first sequence to the first element of the second sequence,
which is (1 + 𝑛). Do the same for each of the two elements of both sequences. The result is
the following:

⎛

⎜

⎜

⎝

1
+
𝑛

⎞

⎟

⎟

⎠

+
⎛

⎜

⎜

⎝

2
+

𝑛 − 1

⎞

⎟

⎟

⎠

+⋯ +
⎛

⎜

⎜

⎝

𝑛
+
1

⎞

⎟

⎟

⎠

(4)

Each of the elements in the above summation amounts to 𝑛 + 1. Hence, we have 𝑛-many
summations of 𝑛 + 1, i.e., 𝑛(𝑛 + 1). However, we added the sequence to itself first. So, the
sum itself will be 𝑛(𝑛+1)

2
. The sketch presented here shows why the sum of the first 𝑛 natural

numbers is equal to 𝑛(𝑛+1)
2

. It also produces a chain consisting of the following steps:

Sequence Pairing Sum of Pairs Final Sum

In this proof, each major step is not merely a procedural move but is determined by the
facts established in the preceding steps. To begin with, the step of sequencing—the move
from the original sum 𝑆 = 1 + 2 +…+ 𝑛 to the symmetrical arrangement with its reverse,
𝑛 + (𝑛 − 1) + … + 1—is underwritten by the mathematical fact that the addition in the
ring of integers is commutative 23. This ensures that reordering the terms of the sum does
not change the outcome. Without this structural fact about integers, the move to a reversed
sequence would be unjustified. Once this symmetry is established, it determines the facts
for the next step: pairing each element in the original sequence with its counterpart in the
reversed sequence to form 𝑛 many pairs of (𝑛 + 1). The possibility of such uniform pairing
is a direct consequence of the sequencing fact. Thus, the structure of the integers and the
way the two sequences mirror one another determine the pairing step.

Following the pairing step, the sum of pairs step is similarly determined. Since each
pair now sums to (𝑛 + 1) and there are 𝑛 such pairs, the total becomes 𝑛(𝑛 + 1). But be-
cause this total emerged from pairing two sequences of 𝑆, this total is exactly 2𝑆. The
fact that each pairing corresponds one-to-one with terms from the original and reversed se-
quences—combined with the previously justified symmetry—determines that 2𝑆 = 𝑛(𝑛 +

23 Note that addition is not always commutative, for example, 1 + 𝜔 ≠ 𝜔 + 1.
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1). This, in turn, directly determines the final step: solving for 𝑆 yields 𝑆 = 𝑛(𝑛+1)
2

. Cru-
cially, at each stage, it is not that the next step merely follows in a purely formal sense, but
rather that the mathematical facts revealed at each point make the next fact to be the case
by answering the why questions fixed by the context.

This research aims to explore this aspect of explanatory proofs through a separate meta-
physical form of the grounding relation. However, before moving on to the main proposal,
I provide an example from the theory of fields that further motivates the present research in
the next section.

2 Mathematical Explanation and Determination Relation

2.1 A Case of Mathematical Explanation

While the account advocated by the current research agrees with Poggiolesi and Genco’s
account in [PG23] and Poggiolesi’s account in [Pog23] that mathematical explanations are
a variety of grounding explanations, I propose extending their framework (by weakening
the conceptual grounding relation to a metaphysical version of grounding) to encompass a
broader range of explanatory proofs. I suggest that grounding explanations in mathematics
should be backed by a metaphysical grounding relation that the facts appearing as explanans
determine the fact that appears as explanandum. To motivate this, we present a case from
field theory where an explanatory proof relies on concepts not explicitly present in the theo-
rem’s statement. This example illustrates how explanatory proofs often involve dependency
relations between mathematical facts, thereby motivating the need for a metaphysical deter-
mination relation to fully capture mathematical explanation.

Let us consider the case from the field theory. By a field, I mean a structure of the form
(𝐹 ,+,×, 0, 1), including two group structures, i.e., (𝐹 ,+, 0), and (𝐹 −{0},×, 1), which are
the additive and the multiplicative groups. Some familiar examples are the field of real
numbers ℝ, the field of complex numbers ℂ, and the field of rational numbers ℚ. These
examples are infinite fields. Some fields, however, contain only finitely many elements. An
example of a field with finitely many elements is the finite field 𝔽𝑝, where 𝑝 is a prime num-
ber. This field consists of the integers {0, 1, 2,… , 𝑝−1}, and addition and multiplication are
defined modulo 𝑝. For example, the field 𝔽5 has the elements {0, 1, 2, 3, 4}, with operations
performed modulo 5. In this field:

3 + 4 = 2 mod 5,

3 × 4 = 12 = 2 mod 5.
A field 𝐹 has characteristic 𝑝, if for all 𝑎 ∈ 𝐹 :

𝑎 + 𝑎 + ... + 𝑎
⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟

p-times

= 0.
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A field 𝐹 has characteristic 0 if no such 𝑝 exists. This is a fact that any field with charac-
teristic 0 is infinite. Here, I discuss a proof for this mathematical fact. The proof highlights
this point by employing the concept of field embedding, which is not explicitly part of
the theorem’s initial formulation. This proof draws on mathematical tools and structures
from outside the theorem’s immediate scope, thus providing a richer, more constructive
understanding of the theorem. This example motivates the proposal that mathematical ex-
planation is a type of grounding explanation that is backed by a metaphysical determination
relation. Here is the statement that fields with characteristic 0 are infinite:

Fact 2.1.1. Let 𝐹 be a field with characteristic 0. Then, 𝐹 is infinite.

Proof. Since 𝐹 has characteristic 0, the field of rational numbers ℚ can be embedded in 𝐹
using the following map:

𝜙 ∶ ℚ → 𝐹

defined by:
𝜙
(𝑎
𝑏

)

=
(

𝑎 ⋅ 1𝐹
)

⋅
(

𝑏 ⋅ 1𝐹
)−1

for any rational number 𝑎
𝑏
, where 𝑎, 𝑏 ∈ ℤ and 𝑏 ≠ 0. Here, 1𝐹 denotes the multiplica-

tive identity in 𝐹 . This map is a field homomorphism since it preserves both addition and
multiplication:

𝜙
(𝑎
𝑏
+ 𝑐

𝑑

)

= 𝜙
(𝑎𝑑 + 𝑏𝑐

𝑏𝑑

)

= 𝜙 (𝑎𝑑 + 𝑏𝑐) ⋅ (𝑏𝑑)−1 = 𝜙
(𝑎
𝑏

)

+ 𝜙
( 𝑐
𝑑

)

,

and similarly for multiplication. Since 𝐹 contains a copy of the field of rationals, 𝐹 must
contain infinitely many elements, as ℚ is infinite. Therefore, 𝐹 must be at least as large as
the field of rational numbers, which is infinite.

Here is a breakdown of the major steps of the proof. There is a copy of the rational
numbers, i.e., ℚ, in every field with characteristic 0. Let us denote this copy of the rational
numbers by ℚ. As a crucial remark, ℚ denotes a series of formal objects that are unique up
to isomorphism. Although elements of ℚ in different fields could have different names, as a
field, they are the same. However, the infinite structure of rational numbers ℚ is preserved
in every isomorphic copy. Hence, the infinity of 𝐹 is proved via a structural understanding
of the infinite subfield that exists in every field with characteristic 0.

Let us delve into the reasons why the proof is indeed explanatory. First, for any field𝐹 of
characteristic zero, the proof proceeds by showing that there exists a canonical embedding
of the rational numbers ℚ into 𝐹 . This embedding arises naturally from the inclusion of the
integers ℤ into 𝐹 via the map 𝑛 → 𝑛 ⋅ 1𝐹 , where 1𝐹 denotes the multiplicative identity of
𝐹 . Since 𝐹 has characteristic zero, this assignment is injective and thus extends uniquely
to ℚ by defining 𝜄(𝑎∕𝑏) = (𝑎 ⋅ 1𝐹 )(𝑏 ⋅ 1𝐹 )−1 for any integers 𝑎, 𝑏 with 𝑏 ≠ 0. The map 𝜄
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preserves all field operations, rendering the copy of ℚ in 𝐹 as a distinguished subfield of 𝐹 .
Hence, The embedding is canonical in the sense that given any homomorphism 𝜑∶ 𝐹 → 𝐹 ′

between fields of characteristic zero, the restriction of 𝜑 to the ℚ-subfields commutes with
𝜄 in the sense that 𝜄◦𝜑 = 𝜄′. This is illustrated in the following diagram:

ℚ 𝐹

𝐹 ′

𝜄

𝜄′
𝜑

Hence, in every field with characteristic 0, a particular structure, i.e., ℚ-like structure, is
preserved and is isomorphically unique, which, among many other features, is infinite. This
is because the canonical embedding denoted by 𝜄∶ ℚ → 𝐹 preserves not only the algebraic
structure but also reflects the infinite nature of 𝐹 ; since ℚ is infinite and 𝜄 is injective, the
image 𝜄(ℚ) forms an infinite subset of 𝐹 .

Second, the rational numbers in this example are what mathematicians call an example
of a prime field. The prime field of 𝐹 is the intersection of all subfields of 𝐹 :

𝑃 =
⋂

𝐾⊆𝐹
𝐾 is a subfield

𝐾.

This intersection is itself a field and is contained in every other subfield of 𝐹 . Prime sub-
fields are one of the central notions in the study of fields and field extensions 24. In this
case, the prime field of 𝐹 is exactly the rational numbers ℚ. So, not only does ℚ embed
in every field with characteristic 0, it embeds in every subfield of 𝐹 . This showcases how
the embedding of the prime subfield provides a structural understanding of fields and field
extensions. Hence, the infinite structure not only appears in every field with characteristic
0, but it also appears in every subfield of 𝐹 . Hence, if 𝐹 is an extension of ℚ (e.g., ℝ, or
ℂ), this embedding ensures that 𝐹 inherits a densely ordered structure if 𝐹 is ordered (e.g.,
ℝ).

Furthermore, studying prime fields helps characterize fields based on their characteris-
tics. This is because the prime field is the smallest subfield generated by the multiplicative
identity 1𝐹 , i.e., it includes all finite sums and differences of 1𝐹 , along with their multi-
plicative inverses (when nonzero). Its structure depends on the characteristic of 𝐹 . So, we
have:

∙ If Char(𝐹 ) = 0, the prime field is isomorphic to the field of rational numbers ℚ.

∙ If Char(𝐹 ) = 𝑝 (where 𝑝 is prime), the prime field is isomorphic to the finite field
𝔽𝑝 = ℤ∕𝑝ℤ.

24 See [Lan05], Chapter VII for more details.
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Consequently, ℚ serves as the prime field in characteristic zero, playing a role analogous to
𝔽𝑝 in characteristic 𝑝 > 0. This underscores ℚ as the minimal algebraic structure common
to all fields characteristic 0. Therefore, the embedding in question provides (to use a term
used by Steiner [Ste78]) a “characterizing property” of fields with characteristic 0:

𝐶ℎ𝑎𝑟(𝐹 ) is 0 if and only if ℚ is canonically embedded in 𝐹 . (5)

The main premise, i.e., that ℚ is canonically embedded in every field with characteristic 0,
is generalizable in two ways: first, it generalizes to every field with characteristic 0. This
ensures that the embedding condition is crucial because ℚ as a set is not a subset of every
field with characteristic 0, but it embeds in every field with characteristic 0. Hence, the
property necessary for any reconstruction of the proof is the “embedding of ℚ in every
field with characteristic 0”, which amounts to a structural understanding of every such field
(including the infinite structure).

The canonical embedding also generalizes to the case of algebraically closed fields.
The same method, i.e., embedding the smallest field of a particular property in a family
of fields, applies to the case of algebraically closed fields 25. The inclusion of the prime
field of algebraically closed fields is a significant fact in studies regarding algebraically
closed fields, which explains many facts about the structure of algebraically closed fields.
In addition, this proof explains the infinity of 𝐹 by showing structural similarity between
all of the algebraically closed fields with characteristic 0. This generalization is further
illustrated in the following diagram:

ℚ
𝜄

←←←←←←←←←←←←←←←←←←←←←←→ 𝐹

acl
⏐⏐⏐
↓

⏐⏐⏐
↓acl

ℚ̃
𝜄̃

←←←←←←←←←←←←←←←←←←←←←←→ 𝐹

I conclude that using the canonical embedding to prove the infinity of 𝐹 is an explana-
tory proof, as it offers a structural understanding of why 𝐹 is infinite, uniquely characterizes
fields with characteristic 0, and provides a generalizable method that can be extended to
other cases.

The situation described above is quite common in the practice of mathematics. To prove
a theorem, especially in the case of solving an “open” question, i.e., a known conjecture or
unsolved problem that garners some mathematician’s attention, they employ various addi-
tional lemmas, theorems, or facts that extend those appearing in the problem’s statement.
Moreover, having proofs for a given theorem is more than providing additional support for a

25 See more details in [Lan05], Chapter VII, Section 2.



2 Mathematical Explanation and Determination Relation 12

known theorem. This aspect is relevant to discussions regarding mathematical explanation
because each proof offers a unique understanding of mathematical facts. There are often
multiple proofs for a single mathematical theorem. According to Rota, fully understanding
a new theorem often manifests as a series of proofs, with each subsequent proof being more
straightforward than its predecessor ([Rot97], p.192). The significance of the plurality of
proofs and its role in metaphysical and epistemological questions regarding mathematical
knowledge is understudied. Proofs not only prove the truth of a theorem but also offer di-
verse perspectives on it, highlight different aspects of a mathematical fact, and establish
connections with various areas of mathematics. For instance, a mathematical fact is some-
times best studied using specific fields, such as topology or algebra, via the connections
that mathematicians naturally establish between various theorems. Therefore, a bona fide
theory of mathematical explanation that is faithful to the practice of mathematics should
address this issue.

2.2 Dependencies in (Explanatory) Mathematical Proofs

Following a causal understanding of scientific explanation, assuming a dependency rela-
tion between a scientific explanation’s relata is commonplace. For example, according to
Koslicki, a successful explanation encapsulates or depicts an inherent real-world depen-
dency between the phenomena mentioned in the given explanation ([Kos12], p.212). Sim-
ilarly, Salmon identifies three primary types of scientific explanation—epistemic, modal,
and ontic—with the ontic explanations showcasing how the explained phenomena inte-
grate into natural patterns or regularities, typically understood as causal ([Sal84], p.293).
D’Alessandro in [D20] proposes a more nuanced, perhaps stronger, thesis of dependence,
suggesting that explanations mirror ontic dependence relations between the components of
the explanandum and explanans. As the motivating idea of the separatist theory of ground-
ing (to be discussed shortly in section 3.1) suggests, we seek a similar idea in a non-causal
domain.

In mathematical explanations delivered by proofs, there is a dependency between the
explanandum and the explanans. To illustrate, the truth of a conclusion depends on the
truth of its premises; if any premise is false, the conclusion cannot be guaranteed by these
premises. Thus, a true mathematical proposition that is considered the conclusion depends
on other true propositions, as is common in proofs. Additionally, there is a more robust
sense in which there is a dependency between the premises and the conclusion: the premises
make the conclusion true. This type of dependency is best understood as a determination
relation within a non-causal domain—the realm of mathematics: a determination relation
between relata of the explanation. Once we assume the truth of the premises, the truth of
the conclusion is determined. Therefore, the truth of the premises determines the truth of
the conclusion, establishing a direct metaphysical link between them. On the other hand,
the conclusion holds in virtue of the premises. To sum up, in a genuine case of mathematical
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explanation, a fact is the case in virtue of other facts mentioned in the premises.
Let us see an example to highlight the significance of the dependency relation between

mathematical facts in a mathematical proof 26. Consider the case of the unsolvability of the
quintic polynomial equation discussed at length in Pincock’s [Pin15] 27. We know that the
polynomial equation 𝑎𝑥2 + 𝑏𝑥 + 𝑐 = 0, in general, is solvable by the following quadratic
formula:

𝑥 = −𝑏+
√

𝑏2−4𝑎𝑐
2𝑎

, 𝑥 = −𝑏−
√

𝑏2−4𝑎𝑐
2𝑎

A similar but slightly more complicated formula exists for the polynomial equations of de-
gree 3. These formulas only use plus, minus, multiplication, and radicals. When an equation
is solvable only by these operations, we say that the polynomial equation is solvable by rad-
icals. It was an open question whether polynomial equations of degree 5 or higher are also
solvable by radicals. It turns out that the answer to the general case is negative. Galois’s
theory establishes the connections between the “solvability of a polynomial equation” and
the “automorphisms of algebraic field extensions.” Using these connections, roughly speak-
ing, a polynomial equation is solvable if the extension contains the roots of the equation 28.
Galois theory showed that, in Pincock’s terms, “What makes a given polynomial equation
solvable, we should say, is that the Galois group is solvable” ([Pin15], p.11). Therefore, it
illustrates how the solvability of a polynomial equation with radicals depends on the solv-
ability of the Galois group. The dependency in question is also illustrated by the fact that
the solvability of the Galois group determines the solvability of a given polynomial equa-
tion. Hence, the mathematical explanation is the result of revealing the relation between
the mathematical fact of the solvability of a group and the solvability of a polynomial of a
particular degree, rather than a mere conceptual relation between the propositions. To be
more specific, the mathematical fact that explains another mathematical fact by determining
it to be the case. So, the facts about the automorphism group of algebraic field extensions
explain why a polynomial equation is unsolvable by determining it.

The discussion thus far can be encapsulated using a generalized framework for a depen-
dence relation as outlined by Schnieder [Sch20a] 29 (“DPSC” for future reference):

((𝑥’s being true) depends on (𝑦’s being true)) iff ((𝑥 is true) ⊗ (𝑦 is true)). (6)

Within the context of this research, 𝑥 and 𝑦 represent mathematical facts, with 𝑥 serving as
the explanandum (the fact to be explained) and 𝑦 as the explanans (the fact that provides the

26 This example is a recognized case of an explanatory proof that demonstrates the metaphysical link of de-
termination. One might argue that this case could also be approached through the conceptual theory. Although
this discussion serves as an interesting case study, it lies beyond the scope of the current research.

27 Steiner [Ste78] mentions this as a possible counterexample to his theory.
28 See [Pin15], p.6 for more details.
29 Here, we only use a simplified version of the dependency scheme. The original scheme is as follows:

((𝑥’s being F) depends on (𝑦’s being G)) if and only if ((𝑥 is 𝐹 ) ⊗ (𝑦 is 𝐺)). We replace 𝐹 and 𝐺 with “true”,
following the discussion on the determination relation between the relata of mathematical explanation.
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explanation). The left-hand side of the DPSC posits that the explanandum is true in virtue
of the explanans’ being true. The main idea is that “⊗” stands for a determination relation
in a non-causal domain, such that fully understanding that such a determination relation is
established between these mathematical facts provides one with answers to why one is true
in virtue of the other.

Building on the previous discussion, we now set the stage for the rest of this paper. To
develop a comprehensive account of mathematical explanation, we need to propose a spe-
cific relation to replace the placeholder “⊗” in the DPSC scheme. This proposed relation
should capture the essential idea that, in a genuine mathematical explanation, one mathe-
matical fact determines another. Moreover, it should demonstrate how this determination
relationship enhances our understanding of mathematical facts.

In the sections that follow, I will expand on this framework by introducing a version of
the metaphysical grounding relation as a natural replacement for “⊗”.

3 Separatist Metaphysical Grounding and Mathematical
Explanation

3.1 A Metaphysical Separatist Theory of Ground

In simple terms, grounding relations seek to address questions of the form “In virtue of what
is it the case that 𝑋?” As a broad-brush picture, there are various concepts of grounding in
the literature, with semantic, epistemic, and metaphysical notions being the most commonly
recognized. According to semantic theories, grounding denotes a semantic relationship be-
tween sentences 30. On the other hand, metaphysical grounding theories encompass a range
of theories that primarily interpret grounding as a metaphysical relation between facts. The
present research deals with the grounding relation as a metaphysical relation. As a reminder,
we do not distinguish between a true proposition and a fact. So the relata of the ground-
ing relation are considered to be either true propositions or facts. Moreover, the grounding
relation in the current research is assumed to be factive. However, metaphysical theories
of grounding relations do not form homogeneous views. While some ground theorists have
formulated ground claims using the sentential operators 31, some other ground theorists con-
sider the ground as a relation between true propositions or facts 32. Following Schnieder
[Sch20b], I adopt the following constraint (which he refers to as the “factual constraint”) on
the version of the grounding that I employ:

Grounding is a relation the relata of which consists of either true propositions,
or facts.

(7)

30 See [Smi20] for more details on conceptual versus metaphysical grounding.
31 See [Fin12] as an example.
32 See [Lit23], Section 2.1 for some of the variations of such views.



3 Separatist Metaphysical Grounding and Mathematical Explanation 15

Let [𝐶] be a fact. Say that [𝐴] is a full ground for [𝐶] if [𝐴] alone is what it is in virtue of
which [𝐶] obtains. Say [𝐵] a partial ground for [𝐶] if [𝐵] with some other fact [𝐷] will
be a full ground for [𝐶]. Another distinction is between mediate and immediate ground.
Consider the fact [𝐴 ∧ (𝐵 ∧ 𝐶)]. As the names suggest, the collection [𝐴], [𝐵 ∧ 𝐶] is the
immediate ground for [𝐴∧(𝐵∧𝐶)], while the collection [𝐴], [𝐵], [𝐶] is the mediate ground
for [𝐴 ∧ (𝐵 ∧ 𝐶)]. For the rest of the paper, until explicitly mentioned, by ground, I will
mean an immediate full ground.

On the other hand, it is common to assume that grounding relation and explanation
are intertwined 33. Call the explanation that is conveyed by a genuine case of grounding,
grounding explanation. Two main frameworks address the connection between grounding
explanation and grounding. According to unionism, a ground is identical to its explanation.
According to the other view, called separatism, a ground is different from the grounding
explanation 34. The grounding relation and the grounding explanation are connected with
another relation called backing. However, the nature of the backing relation is a matter
of some debate. Some theorists define backing in terms of representation [Tro18], while
others use the explanation itself to clarify the backing relation [Kov20]. Finally, according
to Poggiolesi and Genco [PG23], a grounding relation backs an explanation when one adds
to the grounding relation the generalization, which allows one to link the grounds to the
conclusion. For my research, I stick to the intuitive meaning of it. So, if [𝐴] grounds [𝐵],
the grounding explanation it backs is ⟨𝐵 in virtue of 𝐴⟩. Here is an example of metaphysical
grounding by Bliss and Trodgon in [BT21]:

[The truckers are picketing] ≺ [The truckers are striking]. (8)

The fact that truckers are picketing determines the fact that the truckers are striking. On the
other hand, the truckers are striking in virtue of the fact that they are picketing. This is the
proposition that is backed by the grounding relation presented above:

⟨The truckers are striking in virtue of truckers’ picketing⟩. (9)

Here, the property of striking is realized and determined by picketing on this occasion.
What is backed is the fine-grained proposition 9 that is backed by the determination rela-
tion expressed by 8. Note that the instance of the grounding relation expressed by 8 is not
conceptual because the mere conceptual analysis of the proposition expressed by “Truckers
are picketing” does not yield the proposition “Truckers are striking”. However, the property
expressed by the latter is realized and hence determined by the property expressed by the
former.

The separatist theory adopted in the present research is minimal and governed by only a
handful of principles, as stated below. First is the definition of ground, which is a metaphys-
ical form of determination as presented in Lange [Lan19]. This view serves as the official

33 See [Gla20] for more details.
34 See [Sch16] for a detailed separatist view of grounding.
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definition of ground and as a criterion using which we evaluate what should be considered
as a ground:

“A fact’s grounds are whatever it is in virtue of which that fact obtains, and a
truth-bearer (such as a proposition) is grounded in its truth-makers.” (10)

Moreover, most ground theorists consider the grounding relation to be transitive. So, we
assume it here as well (a ground is denoted by “≺”):

If [𝑃 ] ≺ [𝑄] and [𝑄] ≺ [𝑅], then [𝑃 ] ≺ [𝑅]. (11)

Finally, we have the following assumption, based on the discussion above about the backing
relation:

If [𝑃 ] ≺ [𝑄], then [𝑃 ] ≺ [𝑄] backs ⟨𝑄 in virtue of 𝑃 ⟩. (12)

As a remark, by assuming 10, 11, and 12, and assuming that [𝑃 ] ≺ [𝑄] and 𝑄 → 𝑅, one can
not immediately conclude that [𝑃 ] ≺ [𝑅] 35. In other words, a ground should be established
and properly understood to provide an explanation. Therefore, it is not to be identified with
logical entailment; neither is it defined in terms of it.

The version of the grounding relation presented here is a weakened version of the con-
ceptual relation suggested by Poggiolesi and Genco in [PG23] and by Poggiolesi in [Pog23].
Because every case of conceptual grounding is a case of metaphysical grounding, but the
example above, while an example of metaphysical grounding, is not a case of conceptual
grounding. Litland in [Lit23] has leveled objections to Poggiolesi and Genco’s version of
grounding, and I will not rehearse these objections here. However, the present, more robust
version of the grounding relation is immune to many of these objections, especially to a
major one. Litland’s “commonality objection” 36 says that Poggiolesi and Genco’s version
of grounding does not say what is common to all instances of grounding. Just as one cannot
define “color” as a bundle including red, yellow, blue, etc., we cannot define grounding by
enumerating the instances. We should identify what is common to all instances of ground-
ing. The present view addresses this issue: what is common in all instances of grounding
is the determination of the relation between the grounds and the grounded.

With this understanding of grounding, I argue in the next section that the version of the
grounding relation mentioned before is a natural suggestion for a mathematical explanation.

3.2 Mathematical Explanation and Metaphysical Grounding
Relation

To show that the grounding explanation is a good candidate for the mathematical expla-
nation, one should show that the grounding relation satisfies the objective aspect of the

35 See [Lit23] for a detailed critical review of defining grounding in terms of entailment.
36 See [Lit23], Section 4.2.
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mathematical explanation discussed earlier. To be more specific, one should argue that the
version of the grounding relation previously discussed accounts for the dependency between
the relata of the explanation. Several philosophers have analyzed factual dependence—that
is, when one fact owes its being the case to other facts, or when a true proposition owes its
truth to other true propositions— through the lens of grounding, interpreting it as a relation
where one truth depends on another. According to Schierder in [Sch20b], p. 99, “in the
recent debate, factual dependence has usually been discussed by the name of ‘grounding’,
see, e.g., Rosen (2010), Correia (2010), and Fine (2012a), and other papers in Correia and
Schnieder (2012a)”. This grounding relation is typically seen as asymmetric and transitive,
providing a robust framework for capturing metaphysical dependence between true propo-
sitions or facts, which aligns with the assumptions about the grounding relation in Section
3.

To begin with, the grounding relation is primarily understood as a determination relation
in a non-causal domain. So, as a candidate for what provides a mathematical explanation,
it should address the fact that the items appearing in the explanans determine the facts
appearing in the explanandum. Hence, the grounding relation, if replaced with “⊗” in
DPSC, should provide, first, a sort of dependency. Recall that DPSC says ((𝑥’s being true)
depends on (𝑦’s being true)) if and only if ((𝑥 is true) ⊗ (𝑦 is true)). Let us replace “⊗”
with the grounding relation denoted by “≺”, with 𝑃 ∶= “𝑥 is true” and 𝑄 ∶= “𝑦 is true”.
We have:

[𝑄] depends on [𝑃 ] if and only if [𝑃 ] ≺ [𝑄]. (13)

So, the left-hand side of the 13 is a version of the “in-virtue-of” relation. What the left-hand
side of 13 says is that the truth of the proposition [𝑄] depends on the truth of the proposition
[𝑃 ]. So, [𝑃 ] is whatever it is in virtue of which [𝑄] obtains. By the definition of ground
10, [𝑃 ] is a ground for [𝑄]. In addition, if the grounding relation on the right-hand side
holds, then [𝑄]’s being the case depends on [𝑃 ]’s being the case (or, if considered as true
propositions, the truth of the former depends on the truth of the latter). Therefore, we can
replace the left-hand side with the more familiar “in-virtue-of” relation. I conclude that
grounding dependence is a bona fide dependency relation.

⟨𝑄 in virtue of 𝑃 ⟩ if and only if [𝑃 ] determines [𝑄]. (14)

The grounding relation, as understood in this research, satisfies two notions of dependency
discussed in Section 2.2. On the one hand, there is a weaker notion, which I call negative
dependency: in general, if one of the premises of a proof is false, then the conclusion does
not follow. This captures the idea that the truth of the conclusion is conditional on the truth
of the premises.

On the other hand, there is a stronger notion, which I call positive dependency. Ac-
cording to this notion, the facts stated in the premises make the other fact to be the case.
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That is, the conclusion owes its truth to the truth of the premises. This more robust kind of
dependency, referred to by Schnieder [Sch20b] as factual dependence, is central to the view
that metaphysical grounding offers a suitable framework for understanding mathematical
explanation.

The metaphysical grounding relation satisfies both negative and positive dependencies
in proofs. First, according to the factual constraint 7 introduced earlier, the grounding rela-
tion (as understood here) holds only between true propositions or facts. That is, if a propo-
sition is false, it cannot serve as one of the relata in a grounding relation. This ensures that
the grounding relation respects negative dependency: the falsity of a premise rules out the
grounding relation. Second, metaphysical grounding is understood as a relation of deter-
mination between mathematical facts. In such a relation, the grounds not only support but
determine the grounded fact—they make it the case. Thus, the grounding relation also satis-
fies positive dependency, since the truth of the grounded fact depends on, or is made to hold
by, the truth of what appears as grounds. In sum, metaphysical grounding—as a factive de-
termination relation—captures both the negative dependency and the positive dependency
as a variety of factual dependence.

In addition, this view aligns with what Roski refers to as “explanatory realism” in
[Ros21]—a view rooted in the works of philosophers like Jaegwon Kim and David Lewis 37

—which posits that information is genuinely explanatory only if the explanans involves enti-
ties in a specific determination relation to those addressed by the explanandum. Importantly,
this determination relation is metaphysical and holds between facts; it involves a substantive
link where the truth of one proposition, or a mathematical fact, depends on another. This
occurs through relations that establish a metaphysical link between the explanans and the
explanandum, reinforcing the idea that mathematical facts are interconnected in a genuine
case of mathematical explanation.

The proposal states that a proof is explanatory if it traces the truth of the proposition
being proved back to the truth of the premises, ensuring that the relevant why questions are
answered at each step. In terms of grounding, a proof is explanatory if it reveals the grounds
for the fact being explained, so there is no explanatory gap in the chain from the explaining
facts to what is being explained. This illustrates what I call an explanatory chain. An
explanatory chain is made up of a series of grounding relations that, at each step, answer the
relevant why questions and determine the next step. Here is the scheme for an explanatory
chain, where every node shows a fact and the edges represent the grounding relation between
them.

A B C D E

It contrasts with cases in which a proof fails to account for a relevant why question or in-
cludes an explanatory gap. In these cases, while the grounds may be noted, they are not

37 See [Kim88], and [Lew86]. See Roski’s [Ros21], Footnote 3, for a list of previous accounts of explanatory
realism.
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revealed 38:
A B C D E

The account presented here addresses the situations discussed in Subsection 2.1. Con-
sider the example discussed in subsection 2.1. The proof via embedding for the Fact 2.1.1
uses notably different sets of concepts from those appearing in the problem’s statement.
the proof proves the infinity of 𝐹 using the fact that each field with characteristic 0 con-
tains a copy of rational numbers denoted by ℚ. However, as discussed earlier, the notion
of “canonical embedding,” which plays a crucial role in the proof of the infinity of 𝐹 , does
not appear in the conclusion.

As a reminder, [ℚ → 𝐹 ] denotes the fact that the set of rational numbers is embedded
in the field 𝐹 . We have:

[ℚ → 𝐹 ] determines [𝐹 is infinite]. (15)

By the definition of ground, the above cases represent genuine grounding relations. So we
have:

[ℚ → 𝐹 ] ≺ [𝐹 is infinite]. (16)

Moreover, the determination relation expressed by 15 is established in a way that provides
answers to the why-questions regarding the infinity of 𝐹 . For example, the main question
is “Why is 𝐹 infinite?”, and the answer is “Due to the canonical embedding of the rational
numbers in 𝐹 ”. Again, consider the relevant question, “Why does the canonical embed-
ding of rational numbers show that 𝐹 is infinite?”, and the answer is “Because [ℚ → 𝐹 ]
shows that the image of ℚ in 𝐹 , i.e., ℚ is infinite”. Finally, “Why is ℚ infinite?”, and the
answer is “Because it is an isomorphic copy of ℚ, and ℚ is infinite.” This exemplifies the
explanatory chain in the explanatory proof of the fact that 𝐹 is infinite if 𝐶ℎ𝑎𝑟(𝐹 ) = 0
using the canonical embedding of the rational numbers in 𝐹 . The explanatory chain of the
explanatory proof discussed is depicted in the following diagram:

[ℚ is infinite] [ℚ = 𝜄(ℚ)] [ℚ is infinite] [ℚ → 𝐹 ] [𝐹 is infinite]

Why the
injection 𝜄
shows it?

Why is ℚ
infinite?

Why the
embedding
shows it?

Why is 𝐹
infinite?

The statement 16 also showcases the dependency relation between the fact [𝐹 is infinite]
and [ℚ → 𝐹 ]. In the sense that they show that the truth of the fact under study (i.e., [𝐹 is
infinite]) is dependent on the truth of the grounds. By doing this, as per Statement 14, these
grounds provide the following representational elements:

⟨𝐹 is infinite in virtue of the fact that ℚ is canonically embedded in 𝐹 ⟩. (17)
38 See the example of the proof of the Fundamental Theorem of Algebra in this section for an example that

the chain includes explanatory gaps.
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One of the merits of the current account of the mathematical explanation in terms of the
grounding explanations is the focus on the existence of a determination relation regardless
of the concepts used in the immediate scope of the theorem’s statement; this approach to
mathematical explanation is “cross-categorical,” to use a term used by Raven in [Rav12].
In other words, the present theory supports the view that mathematical proofs that offer
genuine explanations are not always “pure proofs” 39, a term referring to the proofs that only
employ the concepts that are occurring in the theorem’s statements. However, as discussed
in [Lan19], many pure proofs fall short of offering explanations as much as the impure proofs
do. The view advocated here suggests that while purity may be a goal in the explanations
that mathematicians seek to find (it could be a measure of the merit of an explanatory proof),
it is not a prerequisite for a proof to be explanatory. In some cases, the items appearing in the
theorem and the items in the proof explaining it belong to different mathematical categories,
i.e., these elements are not of the same nature. In some cases, a topological proof explains
an algebraic fact or a semantic fact explained via purely syntactic methods.

Let us illustrate this aspect via an example. Steiner has addressed the example. He
says, “Chang and Keisler, to cite two more logicians, propose to ‘explain’ preservation
phenomena ... “just by the syntactical form of the axioms.” ([Ste78], p.135). Chang and
Keisler in [CK90], p.147, talk about “preservation theorems,” the general scheme of which
is 𝑇 is preserved under 𝑋 if and only if the set of models of 𝑇 is closed under 𝑌 . To be more
exact, let 𝑇 be a first-order -theory. The goal is to find necessary and sufficient criteria that
explain why the 𝑇 set of -models of 𝑇 is closed under a condition 𝑋. As an example of
the preservation phenomena, an -theory 𝑇 is said to be preserved under submodels if any
-submodel  of an -model  of 𝑇 , is a model of 𝑇 . As another example, an -theory
𝑇 is preserved under homomorphisms if the for any -model , and an -homomorphism
ℎ, ℎ() i.e., the homomorphic image of  under ℎ is an -model of 𝑇 . The following is
Theorem 3.2.2 of [CK90]:

Theorem 3.2.1. Let 𝑇 be a first-order -theory, then 𝑇 is preserved under submodels if
and only if 𝑇 has a set of universal axioms.

Proof. See [CK90], proof of the Theorem 3.2.2.

Let us examine Theorem 3.2.1 more closely. If 𝑇 has a set of universal axioms, it is
easier to see that 𝑇 is maintained under submodels. The main point is to demonstrate that if
𝑇 is preserved under submodels, then 𝑇 has a universal set of axioms. Therefore, we have
two mathematical facts: the preservation phenomenon under submodels and the existence
of a universal axiomatization. Note that these two facts are different in that the first is purely
semantic, while the second is purely syntactic.

39 See Detlefsen and Arana’s paper [DA11], and Detlefsen’s work [Det08b] for an overview of the concept
of purity of proofs.
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The theorem above shows that these two facts are connected. If 𝑇 has a universal ax-
iomatization, then 𝑇 is preserved under submodels, and if 𝑇 does not have a universal
axiomatization, then 𝑇 is not preserved under submodels. So, the syntactic fact determines
whether or not the semantic fact occurs. Hence, it is in virtue of the universal axiomatization
that the preservation phenomenon occurs, so we have:

[𝑇 has universal axiomatisation] ≺ [𝑇 is preserved under submodels]. (18)

Theorem 3.2.1 shows that there is a determination relation between these mathematical
facts. The explanation that is backed here is that ⟨𝑇 is preserved under submodels in virtue
of the fact that 𝑇 has a universal axiomatization⟩. Moreover, this is a genuine case of
mathematical explanation when the following lemma is fully incorporated into the proof:

Lemma 3.2.2. Let 𝑇 be a first-order -theory, and Γ, a set of -sentences such that Γ is
closed under finite disjunctions. Then, 𝑇 has a set of axioms 𝑇0 ⊂ Γ if and only if for any
-model  ⊧ 𝑇 , and every -sentence 𝜙 ∈ Γ such that  ⊧ 𝜙, then  ⊧ 𝜙, where  is
any -model, then  ⊧ 𝑇 .

Proof. See [CK90], proof of Lemma 3.2.1.

Finally, the present account of mathematical explanation provides ways to understand
mathematical research better by adopting the ground plurality. So, along the theses 10, 11,
and 12, I adopt the following thesis, which states that a single mathematical fact can be
multiply grounded. I call this assumption the “Ground Plurality Thesis”:

A single mathematical fact can have multiple grounds, each offering a unique
explanation. (19)

The Ground Plurality Thesis emphasizes the complexities involved in mathematical research
and aligns more closely with how mathematicians actually carry out their work. Further
exploration of this thesis and its role in enhancing our understanding of research practices
is beyond the scope of this study.

However, merely showcasing the ground connections is not sufficient for a proof to be
considered explanatory. The proof must illustrate how the facts within the explanandum de-
pend on those within the explanans. In other words, a ground-revealing proof should trace
the truth from the propositions about the explanandum all the way back to the truths con-
cerning the explanans. This transition must enable one to answer the relevant why questions
regarding what is proved.

Let us illustrate this with an example in which a mathematician knows a theorem has
been proved but is unsure why the theorem holds (i.e., the explanation is not fully known
to the mathematician). Indeed, in many cases, while conducting mathematical research,
mathematicians “quote” some theorem with no further explanation. In some cases, the
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“quoted theorem” plays a significant role in the practice of mathematical research, yet some
mathematicians are unsure about the proof of the quoted theorem itself. Consider the case
of the Fundamental Theorem of Algebra. For simplicity, we only state the case where the
coefficients are in the complex numbers ℂ:

Theorem 3.2.3. (Fundamental Theorem of Algebra) Every polynomial with coefficients in
ℂ has a root in ℂ.

The proof of the Fundamental Theorem of Algebra 3.2.3 can be approached from various
angles, including topological methods, analysis, or algebra. One of the straightforward
proofs for the Theorem 3.2.3 comes from Liouville’s Theorem 40. Liouville’s Theorem
states that:

Theorem 3.2.4. (Liouville’s Theorem) Let 𝑓 be an entire function (analytic everywhere in
the complex plane) and bounded. Then, 𝑓 is constant.

According to Ahlfors in [Ahl79], p.122, Liouville’s Theorem 3.2.4 provides an almost
trivial proof for the Fundamental Theorem of Algebra 3.2.3. Let us review the proof sketch:

Proof. Let 𝑝(𝑥) be a polynomial equation over ℂ such that for all 𝑥 ∈ ℂ, we have 𝑝(𝑥) ≠ 0.
Then, consider 𝑝(𝑧) = 1∕𝑝(𝑥), which is well-defined and analytic as 𝑝(𝑥) is never 0. Again,
as 𝑥 → ∞, then |𝑝(𝑥)| → ∞ and hence 𝑝(𝑧) → 0, showcasing that 𝑝(𝑧) is bounded. Using
Liouville’s Theorem 3.2.4, 𝑝(𝑧) is a constant equation, which is a contradiction. So, 𝑝(𝑥)
should have a solution for some 𝑥 ∈ ℂ, proving the Fundamental Theorem of Algebra
3.2.3.

The proof sketch presented above does not fully explain why the Theorem 3.2.3 holds,
as it leaves the whole proof relying on a “black box” (i.e., Liouville’s Theorem 3.2.4), a
theorem that plays a significant role in the flow of the argument — a significant step in
the informal proof, but it is not explained. Therefore, we have a case in which we know
that a theorem holds, but we cannot address the why questions regarding why it holds. The
situation above is compatible with the theory of mathematical explanation advocated here.
Knowing that a ground exists does not imply knowledge of the ground itself; showing mere
grounding connections does not guarantee a ground-revealing proof. One needs to fully un-
derstand the ground in order to grasp the explanation that it backs. However, proofs using
quoted theorems only ensure the existence of the ground. Nevertheless, to understand the
ground, i.e., to understand the representational elements that the ground backs, one should
identify the elements that play a significant role in the proof. In our case, we know a meta-
physical relation exists between the items in the proof and the theorem proved. However,
we do not fully understand the ground because a significant part is not understood. In such a

40 See Ahlfors’ [Ahl79], p.122.
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case, once we have a proper understanding of Liouville’s Theorem 3.2.4, we can claim a full
understanding of the ground and, consequently, the proof using Liouville’s Theorem 3.2.4.
To sum up, mere knowledge of the existence of (even a proper) ground does not guarantee a
full understanding of the ground itself. As per separatism thesis (i.e., Statement 12), while
for the former, one only needs to trust the peers or have a general view of the theorem, for
the latter, one needs to understand the significant elements of the ground and how these
elements contribute to determining the result.

This example demonstrates that simply revealing grounding connections between the
grounds and the grounded is not sufficient to make a proof explanatory. An explanatory
proof should properly reveal the grounds, ensuring that the transitions between them are
seamless and without unexplained gaps. While highlighting these foundational connec-
tions might suggest to mathematicians that an explanation could be constructed using a
particular method, it does not mean that the explanation has actually been provided. Only
when the method is fully developed—with the consecutive steps shaping an explanatory
chain—can we move from the grounds to what is grounded, thereby delivering the expla-
nation; an explanatory proof is one that reveals the ground in a continuous way, i.e., the
explanatory chain starting from the facts that are about to explain the fact that is supposed
to be explained should answer the why questions. So, while the above proof sketch can
ensure a mathematician that there exists an explanation for the Fundamental Theorem of
Algebra using Liouville’s Theorem, it does not mean that we have the explanation via this
proof.

4 Conclusion

In this study, I aimed to formulate a theory of mathematical explanation through the lens
of a particular metaphysical grounding theory. I argued that we need a determination re-
lation captured by a separatist theory of metaphysical grounding. A separatist approach to
metaphysical grounding emerges as an intuitive candidate for what is typically recognized
as a genuine mathematical explanation. This theory acknowledges that various proofs con-
tribute different kinds of explanations to the mathematics being examined, each with its own
explanatory merits (without implying one is the best explanation). This diversity reflects
the inherent diversity found within the practice of mathematical research.
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