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Abstract

We present a conceptual framework in which quantum probabilities arise from dis-

crete events generated by real-valued alignments of inner products between two dy-

namically evolving wavefunctions. In this perspective, discreteness and probabilistic

behavior emerge from the temporal structure of such events rather than being im-

posed axiomatically. Illustrative calculations show that the Born rule can appear as

the limiting frequency of these events, without invoking wavefunction collapse, many-

worlds branching, or decision-theoretic postulates. A two-state example demonstrates

consistency with standard quantum predictions and suggests how outcome frequencies

track Born weights. Extensions to interference scenarios, quantization heuristics, and

multidimensional systems indicate that this proposal provides a fresh conceptual angle

on the origin of quantum probabilities. This work is exploratory and aims to highlight

the underlying idea rather than provide a completed alternative theory; questions con-

cerning dynamical equations, general proofs, and experimental signatures remain open

for future research.

1 Introduction

Quantum mechanics has achieved extraordinary empirical success through its Hilbert-space

formalism, where physical states are represented by vectors and observables by self-adjoint
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operators. The probabilistic character of measurement outcomes is encoded in the Born

rule [1], which prescribes that the probability of obtaining an eigenvalue is given by the

squared modulus of the corresponding amplitude. While this rule underpins all quantum

predictions, its conceptual origin remains unresolved: why should probabilities arise from

|ψ|2, and why should the eigenvalues of operators exhaust the set of possible outcomes?

Several interpretations have sought to address these questions. Bohmian mechanics [2]

supplements the wavefunction with deterministic trajectories, introducing an equilibrium

distribution to recover Born weights. Collapse models [3] modify the Schrödinger equation

by stochastic terms to enforce outcome definiteness. Everett’s relative-state formulation [4]

eliminates collapse, interpreting all outcomes as realized in parallel branches of a multiverse.

Decoherence theory [8] accounts for classicality by suppressing interference but does not by

itself explain probability assignments.

Beyond interpretation, structural reformulations have also been pursued. Noncommuta-

tive geometry [5] and generalized probabilistic theories [6] seek alternatives to Hilbert space

while preserving operational predictions. Operational and resource-theoretic approaches

have highlighted constraints on measurement compatibility and disturbance [11], leading to

renewed attention on the physical underpinnings of probability. Recent experimental and

theoretical works have probed measurement dynamics, measurement-induced entanglement

and phase transitions, and constraints from joint measurability, deepening links between

dynamics and foundational principles [11, 12, 13, 14].

Attempts to derive the Born rule often appeal to either structural or rationality ar-

guments. Gleason-type theorems [7] associate probability measures with the geometry of

Hilbert space, while axiomatic and operational reconstructions, such as Hardy’s frame-

work [6], seek to recover quantum theory from simple postulates. Everettian and decision-

theoretic programs [4, 10] interpret probability as a rational constraint on branching agents.

Frequency-based interpretations, dating back to von Mises [9], identify probabilities with

limiting frequencies of repeated events and have inspired recent operational approaches [11,

12, 13, 14].

In this work, we propose an alternative conceptual framework in which probabilities

emerge dynamically from the interaction of two evolving wavefunctions. Specifically, we

consider a pair of wavefunctions f(t) and g(t) whose inner product

I(t) = ⟨f(t), g(t)⟩

is generally complex but becomes real at discrete times {tj}. These real-valued events play

the role of measurement-like occurrences. At such events, the observed outcome corresponds
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to the eigenstate whose contribution dominates the real part of I(tj). Probabilities then

arise as limiting frequencies of these events rather than being postulated.

This paper does not claim to present a fully developed theory or a rigorous derivation of

the Born rule in full generality. Instead, it introduces an exploratory mechanism and exam-

ines its implications in simplified settings. Illustrative examples, including a two-state system

and an interference scenario, demonstrate consistency with standard quantum predictions

and suggest a new way to conceptualize quantization and measurement.

The remainder of the paper is structured as follows. Section 2 introduces the mathemati-

cal structure of the event-based formalism. Section 3 presents a two-state example providing

an illustrative link to Born probabilities. Section 4 explores interference effects, a selection

rule for quantization, and extensions to multidimensional systems. Section 5 presents the

conclusions of this work, including its current limitations and possible directions for future

research.

1.1 Physical Motivation

A central puzzle in the foundations of quantum mechanics is why the Born rule privileges

the inner product of a wavefunction with its own conjugate, |ψ|2 = ⟨ψ|ψ⟩, as the measure

of physical probability. From a mathematical point of view, complex numbers are not just

magnitudes but carry a phase structure that directly influences interference and superposi-

tion. It is therefore natural to ask: why restrict to the self-conjugate inner product when the

Hilbert space structure allows the more general overlap ⟨ψ|φ⟩ between two possibly distinct

wavefunctions?

This question motivates the present framework. We suggest that measurement-like events

may be understood in terms of the dynamical interaction of two wavefunctions f(t) and g(t),

rather than a single wavefunction with its conjugate. In this view, the real-valued occurrences

of their inner product provide the basis for discrete outcomes. Probabilistic behavior can

then be interpreted as arising from the limiting frequencies of these real events, with Born-

type weights appearing as a possible special case. From this perspective, the emergence

of such weights is not imposed axiomatically, but may be traced to structural features of

complex numbers and their role in governing the interplay of two dynamical wavefunctions.
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2 Mathematical Formalism

We begin with two time-dependent wavefunctions f(t) and g(t) defined on a Hilbert space.

Their inner product is

I(t) = ⟨f(t), g(t)⟩ =
∫
R
f ∗(x, t) g(x, t) dx. (1)

In general, I(t) is complex-valued. The central postulate of this formalism is that

∃{tj} such that I(tj) ∈ R. (2)

That is, there exists a discrete sequence of event times {tj} at which the inner product be-

comes purely real. These instants represent the “measurement-like” events in the dynamics.

2.1 Discrete Event Structure

To represent the occurrence of measurement-like events along a continuous time axis, we

define the outcome process as

O(t) =
∑
j

xi(j) δ(t− tj), (3)

where xi(j) denotes the eigenvalue associated with the j-th event time tj, and δ(t− tj) is the

Dirac delta distribution. This ensures that contributions occur only at the event instants tj,

while O(t) vanishes elsewhere.1

Physical Interpretation of the Contextual State

In this framework, the second wavefunction g does not correspond to an additional phys-

ical system in the usual sense, but acts as a contextual state that provides the relational

background against which discrete events are defined. This state can be interpreted as rep-

resenting an apparatus or reference frame, aligning with the spirit of relational formulations

of quantum theory [15], where measurement outcomes arise from correlations rather than

absolute properties. The evolution of g determines the instants when the inner product ⟨f, g⟩
becomes purely real, signaling an event in the model.

1If the time parameter were restricted to a discrete grid, the Dirac delta would be replaced by the
Kronecker delta δt,tj .
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2.2 Outcome Selection from Eigenstate Contributions

To see how the outcome xi(j) is determined, expand the wavefunctions in an orthonormal

eigenbasis {φi}:
f(t) =

∑
i

fi(t)φi, g(t) =
∑
i

gi(t)φi. (4)

The inner product is then

I(t) =
∑
i

f ∗
i (t)gi(t). (5)

At an event time tj, the real-valued condition requires

ℑ[I(tj)] = 0. (6)

The dominance rule is defined as follows: at an event tj, select the eigenvalue xi

corresponding to the term ℜ[f ∗
i (tj)gi(tj)] that contributes most strongly to I(tj), while other

terms are either suppressed or purely imaginary. Thus the outcome is

xi(j) = xi if ℜ[f ∗
i (tj)gi(tj)] dominates in I(tj). (7)

For clarity, this rule can be formalized as

i(j) = argmax
i

∣∣ℜ[f ∗
i (tj)gi(tj)]

∣∣,
with tie-breaking by minimal index. This ensures a well-defined selection for every event.2

2.3 Emergent Probabilities from Frequencies

Over many cycles, different outcomes xi recur with different frequencies. One may define

the probability of outcome xi as the limiting frequency of its occurrence across events:

P (xi) = lim
N→∞

1

N

N∑
j=1

δi,i(j). (8)

Here δi,i(j) = 1 if the j-th event produced outcome xi, and 0 otherwise. In simple superposi-

tion settings, this frequency definition suggests a correspondence with the standard quantum

2In principle, two eigenstates could contribute equally to the real part of the inner product at an event,
creating a tie. Such cases are extremely rare under generic conditions and do not affect the main argument.
If they occur, one may resolve the tie by an arbitrary rule, for example by selecting the eigenstate with the
smaller index.
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weights,

P (xi) ≈ |ci|2, (9)

where ci are the coefficients in the conventional quantum expansion. The weighting thus

appears not as a postulated rule, but as a possible outcome of the relative frequencies with

which the real-valued condition selects different eigenstate contributions. In this picture,

the Dirac delta enforces discreteness at the level of single events, while the inner product

dynamics of f and g influence how often each eigenvalue xi is realized. Born-type behavior

can therefore be interpreted as emerging from the structure of repeated real-valued inner

product events, rather than assumed from the outset.

For clarity, we summarize below the central postulate and the supporting assumptions

that underpin the event-based formalism developed in this section. The postulate (A0)

captures the conceptual novelty of the approach, while (A1)–(A4) specify technical conditions

adopted in this work for concreteness.

Assumptions and Postulate of the Event-Based Formalism:

(A0) Event Postulate: There exists a discrete set of times {tj} such that

I(tj) = ⟨f(tj), g(tj)⟩ ∈ R.

These instants correspond to “measurement-like” events.

(A1) The time axis is continuous; events occur at discrete instants {tj}.

(A2) Event localization on the time axis is represented by Dirac deltas δ(t− tj).

(A3) Outcome selection at an event tj follows the dominance rule:

i(j) = argmax
i

∣∣ℜ[f ∗
i (tj)gi(tj)]

∣∣,
with tie-breaking by minimal index.

(A4) Probabilities arise as limiting frequencies over events:

P (xi) = lim
N→∞

1

N

N∑
j=1

δi,i(j).

The limit is assumed to exist under ergodicity or uniform phase sampling.
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3 Illustrative Two-State Example

To demonstrate the consistency and implications of the formalism, consider a two-level sys-

tem (e.g., a spin-1
2
system) with eigenstates φ1 and φ2, associated with discrete outcomes x1

and x2, respectively. Let us define

f(t) = (eiθ + e−iθ)φ1 + ε(ei2θ + e−i2θ)φ2, (10)

g(t) = (i e−iθ − i e+iθ)φ1 + iε[(eiθ + e−iθ) + (eiθ − e−iθ)]φ2, (11)

where θ = ωt and 0 < ε≪ 1.

Then, the inner product is

I(t) = 2 sin(2θ) + 2iε2(cos θ + cos 3θ)− 2ε2(sin 3θ − sin θ). (12)

Events occur when I(t) is real, i.e., when ℑI(t) = 0. This condition reads

cos θ + cos 3θ = 0 ⇐⇒ cos θ(4 cos2 θ − 2) = 0. (13)

Define the real parts of contributions for convenience:

ℜI1 := real contribution from φ1,

ℜI2 := real contribution from φ2.

Family A (Outcome x2). If θ = π
2
, 3π

2
, then cos θ = 0, so ℑI = 0. At these points

sin(2θ) = 0, making the φ1 channel vanish. The φ2 channel contributes a small but nonzero

real part, ℜI2 = ∓4ε2, which therefore determines the outcome. Hence these events yield

x2. They repeat with period π, giving two x2 events per full cycle 0 → 2π.

Family B (Outcome x1). If θ = π
4
, 3π

4
, 5π

4
, 7π

4
, then cos θ = ±1/

√
2, so again ℑI = 0. At

these points | sin(2θ)| = 1, making ℜI1 = ±2, while the φ2 contribution is negligible. Thus

the event is dominated by φ1, and the outcome is x1. These occur with period π/2, giving

four x1 events per full cycle.
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Figure 1: Real and imaginary parts of the inner product I(t) for the two-state system. Green
markers indicate event points where the imaginary part vanishes (ℑ(I) = 0), corresponding
to measurement-like occurrences. This illustrates the discrete event structure predicted by
the formalism.

θ cos θ + cos 3θ ℑI sin(2θ) ℜI1 sin 3θ − sin θ ℜI2 Dominant Outcome
π
2 0 0 0 0 −2 +4ε2 φ2 x2
3π
2 0 0 0 0 +2 −4ε2 φ2 x2
π
4 0 0 1 2 0 0 φ1 x1
3π
4 0 0 −1 −2 0 0 φ1 x1
5π
4 0 0 1 2 0 0 φ1 x1
7π
4 0 0 −1 −2 0 0 φ1 x1

Table 1: Real and imaginary parts of I(t) at the six event angles. Two events select x2, four
select x1, giving the 2:1 split.

The probability of outcome xi is then

P (xk) = lim
N→∞

1

N

N∑
j=1

δi(j),i,

which for this construction gives P (x1) = 4/6 = 2/3 and P (x2) = 2/6 = 1/3. These values

are consistent with what would be expected from the standard Born-rule weights for a state

proportional to
√

2/3, ϕ1 +
√

1/3, ϕ2.
3

3If the phases oscillate faster, the real-valued events happen more often. This makes the time gaps with
no events so small that they become practically unnoticeable, even though outside those instants there are
no events and therefore no outcomes. The outcome ratios, however, remain the same because they depend
on the relative contributions, not on the speed.
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4 Discussion

The proposed event-based formalism views Born-type weighting as a possible emergent fea-

ture of temporally localized events where the inner product of two evolving wavefunctions

becomes real. Rather than postulating collapse to enforce discreteness, this approach sug-

gests that measurement-like events could arise from intrinsic relational dynamics between two

wavefunctions. The framework is explicitly conceptual and intended to illustrate plausibility

rather than to provide a final formulation.

A key strength of this approach lies in its frequency-based foundation: probabilities are

not treated as primitive axioms but as limiting frequencies of real-valued events, in line with

von Mises’ interpretation of probability [9]. At the same time, the construction appears

consistent with standard quantum predictions, as illustrated in the two-state example. This

perspective suggests that measurement outcomes are not pre-assigned eigenvalues but dy-

namically permitted results conditioned by a phase-dependent reality criterion. Whether an

outcome can occur depends on whether its associated interaction term achieves real align-

ment during the evolution. Thus, phase relations between wavefunctions acquire a physical

role in determining the possibility of discrete outcomes.

The following subsections present illustrative extensions and conceptual implications of

the formalism. First, we examine a simplified interference scenario showing how alternating

constructive and destructive events emerge from the real-valued condition. Next, we intro-

duce an interaction-based selection rule that offers a physical interpretation of quantization,

reframing eigenvalues as emergent rather than assumed. Finally, we outline a schematic

extension to multidimensional and entangled systems.

4.1 Illustrative interference scenario

To further illustrate the mechanism, we consider a simplified interference model where al-

ternating constructive and destructive events emerge from the real-valued condition. While

this example is heuristic, it demonstrates how phase relations can determine event timing

and outcome frequencies in a manner that mirrors Born weights. Let’s consider a simple

two-component ansatz:

f(r, t) = a(r) + b(r)e−i2Ωt, g(r, t) = a(r) + b(r)e+i2Ωt,
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where a(r), b(r) ∈ C and Ω is a characteristic angular frequency. Taking the Hermitian

conjugate of f gives f ∗(r, t) = a∗(r) + b∗(r)e+i2Ωt, so the inner product becomes

f ∗(r, t) g(r, t) = |a|2 + (a∗b+ ab∗)e+i2Ωt + |b|2e+i4Ωt. (14)

Define

R := a∗b+ ab∗ = 2ℜ(a∗b) ∈ R.

The imaginary and real parts separate as

ℑ
(
f ∗g

)
= R sin(2Ωt) + |b|2 sin(4Ωt), (15)

ℜ
(
f ∗g

)
= |a|2 +R cos(2Ωt) + |b|2 cos(4Ωt). (16)

Writing a∗b = |a||b|eiφ gives R = 2|a||b| cosφ. The event condition ℑ(f ∗g) = 0 thus becomes

|b|2 sin(4Ωt) + 2|a||b| cosφ sin(2Ωt) = 0. (17)

Figure 2: Illustration of the interference scenario. The plot shows the real and imaginary
parts of the inner product f ∗(r, t)g(r, t) for the two-component model. Event points (green
markers) occur when ℑ(f ∗g) = 0, corresponding to discrete measurement-like occurrences.
Successive events alternate between constructive and destructive branches, with outcome fre-
quencies governed by the relative magnitudes of |a| and |b|, reproducing Born-type weighting.

Approximation: Alternating-event picture. If the 4Ω-harmonic term is negligible

(e.g., |b| small or under a rotating-wave approximation) and φ ∈ {0, π}, then (17) simplifies
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to

sin(2Ωt) = 0 =⇒ 2Ωt = nπ, n ∈ Z.

At these instants cos(4Ωt) = 1, and the real part evaluates to

ℜ(f ∗g) = |a|2 + |b|2 ± 2|a||b| = (|a| ± |b|)2.

Thus, successive events alternate between constructive and destructive branches. The

dominance rule then selects outcomes with relative frequencies governed by |a| and |b|, re-
producing Born-type weighting in this illustrative scenario. In the general case, event times

are determined by the full equation (17).

4.2 Interaction-based selection and quantization

The formalism invites an interpretation of quantization as a phase-alignment effect: eigen-

values become observable only when the corresponding interaction term satisfies the real-

alignment condition. This interpretation is suggestive rather than definitive, serving as a

conceptual heuristic for how discrete spectra could emerge dynamically. In the standard for-

mulation, measurable quantities are introduced as eigenvalues of self-adjoint operators. Here,

by contrast, an eigenvalue xi becomes physically realizable only if the associated interaction

term

Ii(f, g) = f ∗
i gi

satisfies the reality condition

ℑ(Ii) = 0,

where fi, gi are the expansion coefficients of f and g in the eigenbasis. If this condition is

met at one or more instants, xi can occur as an outcome. If not, it remains inaccessible

despite belonging to the formal spectrum.

This principle reframes quantization as a dynamic selection rule based on phase align-

ment between two evolving wavefunctions. Observable values are not intrinsic properties of

operators but relational features determined by temporal conditions on interaction terms.

For example, the two outcomes of a spin-1
2
measurement correspond to subspaces in which

the interaction term can achieve real alignment. Similarly, discrete energy levels may be

viewed as configurations allowing such alignment under unitary evolution.

This interpretation elevates phase to a determining role: whether an eigenvalue is ob-

servable depends on an evolving relational property between two wavefunctions, rather than

a static operator structure. Consequently, the framework offers an objective criterion for
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outcome selection and provides a fresh angle on the measurement problem.

4.3 Toward multidimensional and entangled systems

The Dirac-delta event structure extends naturally to systems with multiple degrees of free-

dom. Let {tj} denote event times and define the discrete process

O(t) =
∑
j

xi(j) δ(t− tj),

where xi(j) is an n-dimensional eigenvalue vector. The limiting frequency of outcomes defines

the joint distribution

P (xi) = lim
N→∞

1

N

N∑
j=1

δi,i(j), (18)

where δi,i(j) is a multi-index Kronecker delta comparing entire outcome vectors. The multi-

dimensional dominance rule selects the joint eigenvector whose contribution ℜ[f ∗
i (tj)gi(tj)]

dominates among all joint terms. This construction may recover the standard joint prob-

ability structure in composite systems and accommodates entanglement when f and g are

multi-particle wavefunctions. While the present discussion is only conceptual, it outlines

how the Kronecker-delta event structure can naturally generalize to composite systems. A

rigorous treatment of entanglement, correlations, and open-system dynamics remains an

important direction for future work.

5 Conclusion and Outlook

This work proposes a novel perspective on the measurement problem, suggesting that quan-

tum probabilities may emerge from the interaction of two evolving wavefunctions rather than

from primitive postulates. The event-based mechanism sketched here hints at how Born-type

weighting could arise from real-valued inner product occurrences, linking discrete outcomes

to phase-dependent features of the dynamics.

The framework remains exploratory: no explicit dynamical laws have been formulated,

the Born rule is only illustrated in simple cases, and the physical interpretation of the dual

wavefunctions is unsettled. Extensions to relativistic or many-body settings and possible

experimental implications are also open questions. Future work may aim to develop the

underlying dynamics, clarify interpretation, and explore whether the approach yields testable

distinctions from standard quantum mechanics.
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