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Abstract 

 

The success of AlphaFold, an AI that predicts protein structures, poses a challenge for 

traditional understanding of scientific knowledge. It generates predictions that are not 

empirically tested, without revealing the principles behind its predictive success. The paper 

presents an epistemological trilemma, forcing us to reject one of 3 claims: (1) AlphaFold 

produces scientific knowledge; (2) Predictions alone are not scientific knowledge unless 

derivable from established scientific principles; and (3) Scientific knowledge cannot be 

strongly opaque. The paper defends (1) and (2) and draws on Alexander Bird's functionalist, 

anti-individualist account of scientific knowledge, to accommodate AlphaFold's production of 

strongly opaque knowledge in science. 
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1 Introduction 

The problem of predicting how a protein's sequence of amino acids determines its three-

dimensional structure, the protein-folding problem, has historically been one of the most 

difficult and significant challenges in the biological sciences. AlphaFold’s success in producing 

a data bank of close to all protein structures known in nature has revolutionized the sciences, 

with profound implications for the production and validation of scientific knowledge.  

AlphaFold presents a fundamental challenge for epistemology of science: it operates as 

an epistemically opaque system (Duede 2023; 2022; Creel 2020; Sullivan 2022; Lipton 2018), 

a ‘black box’, generating predictions without revealing the underlying principles or rules it uses 

to produce them. This opacity raises critical questions about the nature and the production of 

scientific knowledge in the age of AI-driven science. Are predictions alone, even highly reliable 

ones, sufficient to constitute scientific knowledge?  Can we claim that AlphaFold generates 

new scientific knowledge when its internal higher-level processes are inaccessible to human 

understanding? 

This paper investigates whether AlphaFold’s predictions are scientific knowledge. 

Instead of relying on experiment-centered frameworks, which are closer in spirit to more 

‘traditional’ forms of empiricist views in philosophy of science (see Humphreys 2004; Bird 

2022 for discussion), other epistemological models of knowledge might better reflect the 

realities of AI-driven research.  

In the second section, I present the problem of protein-folding and motivate the problem 

AlphaFold presents for scientific epistemology. The third section presents a trilemma that 

confronts us with the challenge of accommodating opaque AI systems like AlphaFold within 

our broader understanding of how science generates knowledge: (1) AlphaFold produces 

scientific knowledge; (2) Predictions alone are not scientific knowledge unless derivable from 

established scientific principles; and (3) Scientific knowledge cannot be strongly opaque.  I 
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defend claims (1) and (2) and reject (3), drawing on a functionalist account of scientific 

knowledge by Alexander Bird (2010; 2022), that fully excludes human mental access from the 

picture. I conclude that scientific knowledge can be strongly opaque to human scientists.  

 

2  Background 

2.1.  Protein folding and AlphaFold 

A protein is a sequence of amino acids. When interacting with any environment, for instance 

when put in water, the protein’s amino acid string folds into a three-dimensional structure. This 

3D native1 structure of the protein is thought to be encoded in its 1D amino acid string, but the 

principle behind this encoding is not well understood, with several hypotheses having been 

proposed (Dill and McCallum 2012; Dill et al. 2008). The protein folding problem is the 

question of how a protein’s amino acid sequence dictates its three-dimensional structure (Dill 

et al. 2008).  

There is so far no known general mechanism or principle that explains how proteins 

fold in nature. As proteins perform many important functions in biology and biochemistry, 

predicting their folds has been one of the most important and difficult problems in biological 

sciences. Since (cheaper) computational methods for modelling proteins became available and 

increasingly successful, predicting protein structures to accelerate drug discovery became a 

major objective in computational biology (ibid.). The Protein Data Bank (PDB), which is the 

primary repository for protein structures, had approximately 170,000 structures as of 2020. 

These structures were determined primarily using experimental methods such as X-ray 

crystallography, nuclear magnetic resonance (NMR) spectroscopy, and cryo-electron 

 
1 As postulated by Anfinsen (1973), the native structure of a protein is the thermodynamically stable structure 
which depends only on the amino acid sequence and on the conditions of solution. The native structure does not 
depend on whether the protein was synthesized biologically or in vitro (Dill et al. 2008). 
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microscopy (cryo-EM). The process of determining protein structures experimentally has 

historically proven to be extremely time-consuming, costly, and not feasible for every protein, 

leading to a substantial gap between the number of known 1D protein sequences and their 

corresponding 3D structures.  

In 2019 Deep Mind announced AlphaFold, an artificial intelligence system which can 

successfully predict protein structures. AlphaFold 2.0 followed in 2021, (Jumper et al. 2021a) 

and was succeeded in 2024 by AlphaFold 3.0. The newest version is able to predict DNA, 

RNA and ligand structures, all essential to further accelerating drug discovery (Abramson et 

al. 2024). AlphaFold can predict protein folds with an atomic level of precision and has been 

integrated into scientific developments in biology, chemistry, and medicine (Yang, Zeng and 

Chen 2023).  

As of 2024, AlphaFold has predicted the structures of over 200 million proteins. This 

comprehensive database includes nearly all known protein structures from a wide range of 

organisms, including plants, bacteria, animals, and viruses. The massive expansion from its 

initial release has significantly impacted the scientific community, accelerating research and 

innovation in fields such as drug discovery, molecular biology, and biotechnology (EMBL-

EBI 2022; Heikklä 2022; Quach 2022). Most importantly, AlphaFold’s achievement has been 

publicly pronounced as a solution to the protein folding problem (Lewis 2022)2. In its citation 

for the 2024 Nobel Prize in Chemistry, the Nobel Committee wrote that “Demis Hassabis and 

John Jumper have developed an AI model to solve a 50-year-old problem: predicting proteins’ 

complex structures. These discoveries hold enormous potential”3 (Press release, Nobel Prize 

Outreach 2024) (italics added). The claim that AlphaFold solves the protein-folding problem 

is a central motivation for this paper. 

 
2 For a more cautious view, see McDonough (2024). 
3 italics added.  
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2.2. Deep learning and scientific knowledge  

Recent work in philosophy of machine learning (ML) and science has explored the reliability 

of deep learning systems’ (DLS) outputs, and how the systems’ opacity affects the epistemic 

justification for using them in scientific practice (Creel 2020; Sullivan 2022; Boge 2022; Grote, 

Genin and Sullivan 2024; Duede 2024; Duede 2023; Duede 2022).  

DLS are often described as 'black boxes' due to their opacity. While they can be seen as 

mathematically transparent (Duede 2022), their high-level logic and the reasoning behind their 

predictions remain largely unintelligible (Creel 2020; Duede 2022). This epistemic opacity 

stems from the mismatch between the complex, high-dimensional mathematical optimisation 

processes within deep neural networks (DNNs) and human understanding and interpretation of 

these high-level processes (Boge 2022; Sullivan 2022; Creel 2020; Duede 2022). In the 

AlphaFold case, the epistemic opacity pertains to the prohibitively complex principles on 

which the system operates, in spite of the understanding its engineers have of its general 

workings, including of certain biological principles that were encoded into its architecture. 

Nevertheless, DLSs’ ability to make accurate predictions has led to remarkable success in 

various scientific applications (Jordan and Mitchell 2015; Boge 2022).  

The epistemic justification for relying on the outputs of opaque systems is a complex, 

unresolved issue. Some argue that DLSs cannot be evaluated as reliable or trustworthy in the 

same way as other scientific instruments because we lack access to the high-level logical rules 

governing their internal processes (Grote, Genin and Sullivan 2024; Duede 2022). While efforts 

in explainable AI aim to address this opacity, current approaches primarily focus on local 

interpretability, providing insights into specific model behaviours rather than a comprehensive 

understanding of the internal logic. It has been further argued that DLSs differ from human 

experts in terms of epistemic justification (Duede 2022). While we trust experts based on their 
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reasoning, evidence, and adherence to epistemic norms, the opacity of DLSs prevents a direct 

evaluation of their internal reasoning processes.  

Computational reliabilism, developed by Duran and Formanek (2018), provided a basis 

for epistemic justification in traditional computer simulations techniques. Based on process 

reliabilism, their account posits that beliefs derived from computer simulations are justified 

when the simulation constitutes a reliable process for generating true beliefs. Given the 

impossibility of surveilling every computational step, reliability must be attributed through 

external indicators, such as verification procedures, validation protocols, robustness and expert 

knowledge assessments (Duran and Formanek 2018, 652). Importantly, computational 

reliabilism permits reliability attributions without requiring full transparency of the underlying 

processes, a significant advantage for addressing the epistemic opacity challenge in 

computational science.  

The framework successfully addresses traditional computer simulations, where 

reliability indicators can be systematically applied to the simulation process and expert 

knowledge provides meaningful oversight. However, unlike conventional simulations, 

AlphaFold generates novel predictions about protein structures through opaquely learned 

representations that lack theoretical foundations or sufficient empirical data to match the 

outputs with. Not only are the computational steps involved in generating predictions 

inaccessible, like in conventional computer simulations, but the internal high-level logic of the 

DLS learning processes makes the learned representations uninterpretable. The system's 

reliability cannot be established through standard verification and validation procedures when 

it produces predictions for previously unknown protein structures, nor can expert knowledge 

validate outputs that exceed current empirical and theoretical knowledge. 

The computational reliabilism framework thus fails to capture how such DLS can 

generate legitimate scientific knowledge precisely when they produce reliable outputs on the 
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basis of an unknown principle in absence of theoretical and empirical grounding, arguably their 

most significant novel feature and contribution, compared to previous computer simulation 

techniques. Computational reliabilism still aids in establishing the starting point in my 

discussion of whether AlphaFold produces scientific knowledge, in that it provides a basis for 

general trustworthiness of the system’s outputs, which scientists use as propositional claims 

about the structures of particular proteins.  

Humphreys (2004) discusses the role of theoretical knowledge in the construction of 

reliable scientific instruments which may exceed the capacities of humans. He asks whether 

not knowing how the instrument works undermines arguments for the reality of the properties 

it detects (Humphreys 2004, 35), pointing out that theoretical knowledge is normally embedded 

in at least the construction, if not in the use of the instrument and it is what ultimately makes 

the instrument a reliable producer of veridical data (Humphreys 2004, 37). Thus, even when 

the scientist using an instrument may not know how the instrument works, she can rely on it 

because theory is embedded into its construction, and its outputs may be related to the known 

theory. While it is obvious that AlphaFold has been constructed with some theoretical 

considerations about the processes of protein folding (Kieval and Westerblad 2024), it could 

not have been constructed based on a theory or a general principle of protein folding, as such 

a principle is not known. Where some of the previous accounts of opacity in computational 

techniques found no need for transparency when there is a good fit between predictions and 

theory (Humphreys 2004, 150), there is no theory of protein folding to match the outputs of 

AlphaFold with.   

While there is a case for DLSs being sufficiently reliable and thus trustworthy to be a 

legitimate part of scientific practice (Duede 2023), there is an open question about the epistemic 

status of their outputs. Are they to be treated as candidates for scientific knowledge, and do 

they thus stand in need of justification (ibid.)? In the AlphaFold case, while the generated 
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predictions are used for various other research projects (e.g. drug discovery), the protein 

problem itself has always been about determining particular protein structures, which is also 

the purpose of AlphaFold. Additionally, considering the scientists take whichever structures 

they need from the AlphaFold data bank to use in their research, these structures are first 

handled as propositional claims about the real structures of the proteins of interest (the 3D 

structure of the particular protein is XYZ). Therefore, the philosophically interesting question 

concerns to the status of the individual outputs, i.e. whether these outputs themselves can be 

scientific knowledge. In other words, the question is whether it can be known to science that a 

particular protein structure is XYZ, on the basis of a prediction from AlphaFold. In further 

sections, I argue that the answer depends on whether an opaque internal principle (that 

AlphaFold may have figured out, but no one knows how to decode) can also be part of scientific 

knowledge.  

   Building on this body of work, I take as my starting assumptions that AlphaFold 1) 

has a valid place in scientific practice in virtue of being sufficiently reliable, and 2) is 

epistemically opaque in terms of the high-level processes supporting its individual predictive 

outputs. I will not be pursuing further examination of the levels of opacity and / or reliability 

of AlphaFold in this paper, as it is not the ML techniques that are my focus here. Instead, this 

paper aims to investigate the philosophical question of what follows for our view of scientific 

knowledge, where scientific knowledge is understood approximately as ‘what is known to 

science’. In particular, I investigate whether what is known to science can at the same time be 

fully opaque to every human.  

 

2.3. The problem 

AlphaFold is said to have discovered hundreds of millions of protein structures, effectively 

granting the novel predicted structures the status of discovered ones in the public discourse 
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(Callaway 2024; Stroe 2023; Trager 2022; Belias 2022). These new structures have not led 

scientists to discover a principle of protein folding, such that they could either propose an 

explanation of how AlphaFold could have made its predictions or advance a theory of protein 

folding themselves.  

Furthermore, most scientists using AlphaFold take its predicted structures at face value 

and use them to work on whatever their objective is. There is normally no experimentation 

until a stage after which AlphaFold is involved, and that experimentation is also not aimed at 

confirming particular protein structures. For instance, in drug discovery research, AlphaFold 

can be employed together with computational chemistry platforms such as Chemistry42, and 

biocomputational generative platforms such as PandaOmics. Chemistry42 has been used to 

generate molecules based on the structures predicted by AlphaFold. While there is laboratory 

testing of the molecules that are eventually selected for some specific purpose (Ren et al. 2023), 

AlphaFold is employed to generate a pool of suitable protein folds without subsequent 

experimental testing of its predictions (which would not be practically feasible anyway and 

would defeat the purpose of using AlphaFold). While sceptics have argued that empirical 

confirmation and experimentation is needed (e.g., Terwilliger et al. 2023), in the absence of 

such experimentation, the predictions are used as representations of the protein shapes.  

This leads us to a strange situation from an epistemological point of view. Determining 

specific protein structures has been one of the most important difficult problems in biological 

sciences, which now appears to have been (at least partially) ‘solved’ by an opaque system. We 

rely on AlphaFold’s predictions of novel protein structures ubiquitously in cutting-edge science. 

Ordinarily, propositions we rely on in the course of doing science have the status of scientific 

knowledge – they are part of what is ‘known to science’. But in this case, the worry is that 

computational predictions which are not empirically tested, and for which we have no 

underlying theory or general principle, cannot qualify as scientific knowledge or genuine 
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discovery. The long tradition of Nobel Prizes being awarded for empirically tested discoveries, 

rather than for novel techniques or technologies, is testament to this idea. Jumper and Hassabis 

may be said to have cracked the principle behind protein folding but neither they, nor other 

scientists can claim to themselves have knowledge of this principle.  

The central question is whether AlphaFold, despite its opacity, generates scientific 

knowledge. And if it does who has this knowledge: science, scientists, or AlphaFold?  

 

3  Does AlphaFold generate scientific knowledge? A trilemma 

I approach this question by considering the following trilemma: 

 

1. AlphaFold can produce scientific knowledge. 

2. Empirically unconfirmed predictions alone are not scientific knowledge unless 

derivable in an appropriate way from supporting theories, laws or mechanisms that are 

scientific knowledge. 

3. Scientific knowledge cannot be strongly opaque. 

 

There are prima facie reasons for taking each of these claims seriously.  

 

(1) AlphaFold can produce scientific knowledge.  

AlphaFold has generated highly reliable and ubiquitously used predictions, which scientists 

take from the repository and make use of without experimental confirmation. If a repository of 

scientific claims (which AlphaFold produced and which the scientists are directly engaging 

with) is regarded with good reason, such as the strong reliability of the outputs, as authoritative 

and trustworthy in scientific practice, it should (absent any reason to believe the trust is 

misplaced) be regarded as scientific knowledge.   
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(2) Empirically unconfirmed predictions alone are not scientific knowledge – unless 

derivable in an appropriate way from supporting theories, laws or mechanisms that are 

scientific knowledge.  

Sometimes predictions are plausible cases of scientific knowledge. For example, it is 

known that Halley’s comet will return in 2061. However, these are cases where there is a known 

theory, a law or a mechanism that produces the prediction. One might find claim (2) too 

demanding, thinking of examples such as "it is scientific knowledge that paracetamol reduces 

fever, even though there is no knowledge of how exactly it does that”. However, it is not that a 

generalization cannot be scientific knowledge unless an underlying principle is known. It's 

rather that a prediction about a specific instance cannot be scientific knowledge unless (at 

minimum) the supporting principle is known.  

One could reply that we do in fact know the supporting generalization – that AlphaFold 

is x% reliable. But this is akin to someone claiming that they know they will not win the lottery 

because only one in a million tickets wins. I might know the odds of winning, but I cannot, on 

the basis of this, know whether I will win this time. Similarly, I may know paracetamol works 

in x% of cases, but it is not scientific knowledge that it will work in this particular case. And, 

in the case of AlphaFold, an unconfirmed prediction of a specific protein structure, not 

generated on the basis of a known principle of theory, does not seem to amount to scientific 

knowledge. To see the absurdity of taking a predictor with a good track record to be generating 

scientific knowledge, imagine a “science guru” who has a good track record of predicting future 

Nobel Prize-worthy discoveries. It does not seem plausible to equate this oracle’s predictions 

with knowledge. If it were, we ought to give them the Nobel Prize. 

Restricting the discussion to ‘scientific’ knowledge here is important. One can imagine 

scenarios where reliable predictions may meet the standards for everyday knowledge despite 
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the lack of any derivation from scientific knowledge (e.g. I can know that sun will rise and set 

tomorrow even if I know none of the relevant astronomical generalizations). But the prediction 

will be scientific knowledge only if the supporting generalization is too. 

 

(3) Scientific knowledge cannot be strongly opaque.  

To the extent that AlphaFold’s predictions are derived from a supporting theory, law or 

principle of protein folding, the supporting generalizations are ‘strongly opaque’. Strong 

opacity implies that no individual human knows the relevant theory, and no human has any 

way of accessing it. This can be distinguished from cases of weak opacity in which only a few 

experts possess the knowledge or in which the knowledge is difficult but possible to access.  

Why think scientific knowledge cannot be strongly opaque? If a black box falls out of 

the sky, it seems absurd to immediately treat the information it contains as scientific knowledge 

even if no one can access that information. If current AI systems make strongly opaque 

scientific knowledge possible, this is something without any obvious precedent.   

 

While each claim is independently plausible, the AlphaFold case forces us to reject one of them. 

For instance, if AlphaFold is strongly opaque and strong opacity is incompatible with 

knowledge, then AlphaFold cannot produce knowledge. If strong opacity is compatible with 

knowledge, then AlphaFold can produce knowledge. Which one should we reject? 

Those attracted to an experiment-centered, quasi-empiricist view, might want to reject 

(1) and defend (2) and (3). I have in mind here ‘traditional’, internalist empiricism, committed 

to the central place of the scientists’ knowledge in scientific inquiry. Such views in philosophy 

of science are discussed Humphreys (2004) and Bird (2010, 2022), on which evidence and 

empirical confirmation are ultimately tied the mental states of scientists.  
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In the rest of this paper, I will defend (1) and (2) and reject (3). I will proceed by 

assessing each claim in more detail.  

 

3.1 Defending 1: AlphaFold can produce scientific knowledge 

This claim concerns the status of AlphaFold’s highly reliable predictions about protein 

structures, most of which are not empirically confirmed. These can be understood as 

propositional in form and are themselves not opaque to human scientists, as they can be 

accessed via the AlphaFold repository. Whether these predictions amount to scientific 

knowledge depends on how we answer the question: Can a prediction which is not yet 

empirically confirmed, count as knowledge if the predicting system is known to be highly 

reliable?  

 A critic might argue that empirical confirmation is what turns predictions into 

knowledge. Against this, I argue that predictions can be knowledge, and it is in fact part of 

normal scientific practice to view them as such.  This is for two reasons.    

First, science routinely treats empirically unconfirmed predictions as scientific 

knowledge. An example of a prediction that could be classified as knowledge before empirical 

confirmation was the discovery of the planet Neptune, which was predicted, and some would 

argue discovered, through mathematical methods rather than direct observation. In 1846, 

irregularities in the orbit of Uranus led astronomers to predict the existence of another planet. 

Neptune was subsequently observed in the predicted position. Some predictions are so robust 

and influential that they can be considered discoveries even before empirical confirmation, 

especially considering such predictions often drive further research efforts. For instance, the 

prediction of antiparticles by Dirac was considered groundbreaking and led to significant 

advancements in particle physics, even before the positron was experimentally confirmed (Bird 
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2022). As we see in these examples, scientific knowledge often includes and encompasses 

predictions without empirical confirmation. 

Second, confirmation itself might not necessarily be instantiated via human cognitive 

access. Scientific evidence in general often includes and heavily relies on simulations (Boge 

2022; Humphreys 2009, 2004; Winsberg 2022, Parker 2020), models and inferences based on 

indirect observations and measurements (Bird 2022; 2010). Although different accounts of 

confirmation may posit different requirements, on the empiricism’s terms the method by which 

the results have been achieved, and the resulting knowledge itself must still be cognitively 

accessible to humans. AlphaFold forces us to challenge this assumption. The confirmation of 

AlphaFold’s predictions may be run opaquely, by the processes operating withing the system’s 

architecture. AlphaFold may, for instance, be conducting a kind of Bayesian confirmation, its 

architecture allowing for multistep / multilevel testing and updating (see Jumper et al 2021a). 

It is simulating new data based on prior evidence, then testing it, then simulating again (there 

may be many steps involved in this process, as can be inferred from AlphaFold’s architecture4). 

This process may be even viewed as an experiment, or rather a great number of experiments 

(see Duede 2022 and Winsberg 2003 for a similar view), all ran inside of the deep neural 

network (the opacity of which will be addressed later).  

A question for the critic remains, if AlphaFold’s outputs cannot be scientific knowledge, 

what can they be? Some type of ‘quasi-knowledge’ could be invoked here or, as some 

philosophers have proposed, an ML-generated space of plausible hypotheses (Ratti 2020). 

However, since in the AlphaFold case determining individual protein structures is the core of 

the protein problem, individual predictions are themselves knowledge candidates, not merely 

a space of hypothetically useful structures for e.g., drug development. Any ‘not quite 

knowledge’ or ‘quasi-knowledge’ in this context has the same functional role in science as 

 
4 For details of AlphaFold 2.0 architecture, see Jumper et al. (2021a). 
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‘knowledge’ (scientists treating protein structures produced by AlphaFold and those 

determined by an experimental method in the same practical way, both the AlphaFold’s 

predictions and the experimentally determined structures being fallible to some degree). Thus, 

this move amounts to little more than paying lip service to the more traditional empiricist view. 

It is therefore not really a distinction worth drawing.  

On this basis I claim that AlphaFold’s predictions function as scientific knowledge and 

therefore can be knowledge. Since empirically unconfirmed predictions are routinely treated 

as part of scientific knowledge in science, and the requirements for confirmation may differ 

depending on the account of confirmation, with at least Bayesian confirmation or confirmation 

via a simulated experimentation being available in AlphaFold’s case, AlphaFold’s predictions 

too can be taken as scientific knowledge claims about the previously unknown protein 

structures in accord with normal scientific practice. In virtue of high reliability and the 

trustworthiness with which the repository of these structures produced by AlphaFold is taken 

by scientists, they should be considered or at least can be scientific knowledge. The defense of 

this claim, however, is incomplete, without the discussion of how these predictions come about. 

The next section discusses this problem.  

 

3.2. Defending 2: Empirically unconfirmed predictions alone are not 

scientific knowledge – unless derivable in an appropriate way from 

supporting theories, laws or mechanisms that are scientific knowledge 

A novel prediction in science normally requires grounding in some known principle that gives 

this prediction justification for it to function as scientific knowledge.  

Consider an example from physics: the existence of black holes has been known to 

science for decades before we had direct empirical confirmation of their existence, but only 

because they were predicted by a very strong theory which was known. General Relativity 
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Theory produced a lot of true predictions, including Penrose proving that black holes’ existence 

followed from GRT mathematically in 1965, and there is a lot of confirming evidence for GRT 

itself. The Nobel Prize for his work on black holes was awarded to Penrose for this long-

standing work as recently as 2020, after their existence was deemed empirically confirmed due 

to the first ever photograph of a black hole taken in 2019. Thus, despite the Nobel Prize only 

having been awarded in 2020, science has known for decades that black holes existed without 

their empirical confirmation on the basis of GRT, which was known and highly reliable5.  

 Thus, even if empirical confirmation of a prediction is not always necessary for it to be 

knowledge, clearly a prediction alone is insufficient for knowledge, if nothing can be said of 

the principles it is either derived from, or which give it a high probability of being true. While 

it is contentious to assume fundamental principles or laws in biology, we can speak of 

mechanisms and principles for the equivalent purposes here.  

 Further relevant here may be an example from Norton’s “The Material Theory of 

Induction” (2021): Knowing the relevant chemical properties of crystals and how they interact 

with the environment lets us predict of the shape a crystal will take before we see it form. This 

is in fact routine for chemists in a lab, when a new salt is prepared, to simply assert that such-

and-such is the form of the salt’s crystals. This prediction factually works as knowledge 

because the principles, or in this case knowing the relevant material conditions on which the 

inference is to be made, are also knowledge. Turning to the case of protein folding, two papers 

by Dill and colleagues (2012, 2008) provide substantial insights into reasons to posit a general 

(and in theory discoverable) principle. Proteins fold due to specific physicochemical forces 

encoded in their amino acid sequences, suggesting a general principle or a mechanism 

underlying the folding process. The principle is thought to dictate how proteins achieve their 

 
5 There are of course examples in the history of science where correct predictions were made by an erroneous 
theory, with a related debate in the literature (see e.g., Dellsen 2016; and Bird 2022), which is beyond the scope 
of this paper. 
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stable, functional native structures from their linear sequences, in the extremely short time they 

do so in nature. Finding out the relationship between a protein’s sequence and its structure is a 

cornerstone of the folding principle. It is suggested that the amino acid sequence inherently 

contains all the information needed to achieve the correct 3D shape6. It is therefore reasonable 

to posit that there has to be a general principle of how proteins fold. Meaning, if you have all 

the relevant information about the mechanism of amino acids interacting with other molecules, 

then you can infer the shape of a particular protein based on this knowledge.   

 This leads us to a principal difficulty with defending the second claim in the 

AlphaFold’s case. The issue essentially comes down to whether we can reasonably assume that 

AlphaFold has figured out some general principle of protein folding. In fact, the only way to 

fully hold the propositions (1) and (2) of the trilemma is to say that AlphaFold has implicitly 

grasped something like a theory or principle of protein folding, and that this principle should 

be considered part of scientific knowledge.  

 A note of caution should be taken at this point. Whether AlphaFold’s solution represents 

the ‘real’ phenomenon (the ‘real’ protein-folding principle), merely a model, or something 

completely different (e.g., it developed a mechanism based on shortcuts that are not 

representative of how proteins actually fold in nature) is an important issue. It is however an 

issue for a separate investigation, pertaining to the relationship between models and phenomena 

in science, to the extent to which scientific instruments can represent real phenomena, as well 

as to how DLSs may exploit relevant vs irrelevant correlations to make predictions (see e.g., 

Parker 2020; Sullivan 2022; Boge 2022; Andrews 2023; Pietsch 2015). While these questions 

are certainly important to the ‘realism debate’ about what science can know from ML 

techniques (Rowbottom, Peden and Curtis-Trudel 2024), this investigation is beyond the scope 

 
6 For more detailed discussion of the modelling suggestive of the possible protein folding principles and further 
evidence, see Dill (2012, 2008). 
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of this paper. The question I aim to get into is about how what AlphaFold is doing relates to 

how scientific knowledge is generated.  

Consider the following: AlphaFold was trained on all available data about protein 

structures and on what is known about the partial mechanisms of protein-folding (in absence 

of a theory or a general principle) (Stroe 2023)7. Based on all this data, it produced a massive 

number of novel inferences that turned out to be highly reliable. Consider further that 

AlphaFold uses some form of supervised and unsupervised learning. An essential step in 

training is when the output error is minimized by changing the system parameters until the 

output matches what we already know to be true (feedback). The system is given a set of amino 

acid strings for known protein shapes and then its parameters are ‘tweaked’ until it produces 

correct outputs. One could point out that it is precisely a feature of AlphaFold, that even during 

this training step, tweaking the system’s parameters does not give us knowledge of the high-

level mechanism, i.e. we do not gain knowledge of how and why the transformer architecture 

ends up distributing weights, what it picks up on, etc. It is almost like we are tweaking the 

numbers blindly, until it works. Let us now compare this with how a scientist adjusts parameters 

and calculations for a specific model, calibrating it for making better predictions. Something 

similar often happens when a scientist is working on solving a new problem or working to 

discover a principle, where she tries out various ‘tweaks’ to make it work. While she normally 

has reasons to try out the tweaks she does, she is still often trying things out without the 

knowledge of what works, until she does something right and thus discovers the working 

principle.  

There seems to be a certain parallel between this process of calibration in the 

development and strengthening of scientific theories and methods and ML training. An 

 
7 see also: DeepMind Team: https://deepmind.google/discover/blog/alphafold-a-solution-to-a-50-year-old-grand-
challenge-in-biology/  



 18 

important difference is of course that a scientist refining a theory for better predictions can 

explain her reasoning at least to an extent, whereas a deep neural network cannot explain its 

reasons for assigning weights across statistical distributions. Thus, an appropriate way to think 

of AlphaFold may not be as of an artificial scientist that discovers the principle of protein 

folding by making tweaks to the theory but as an entity that embodies a (simulated) principle 

of protein folding (along the lines of Parker 2020, and Gross 2024). Gross (2024) argued that 

in molecular biology ML techniques can be plausibly taken as providing a theoretical 

underpinning for the phenomena it models, which further supports at least the plausibility of 

the view that whatever AlphaFold has implicitly picked up on may in its own right constitute a 

principle of protein-folding. Notably, AlphaFold achieved remarkably good results, compared 

to the past strategies of running computer simulations with built-in knowledge about everything 

we know about the forces between molecular components of proteins. This further 

distinguishes ML systems from older computer simulation techniques in their capacity to not 

only compute prohibitively complex amounts of data but to learn and internally generate law-

like principles for the modeled phenomena.  

Another potential analogy can be drawn between AlphaFold embodying a simulated 

protein-folding principle and how in certain scientific domains, the predictive success of a 

model can lead to the acceptance of the model itself as a discovery (of a previously unknown 

principle). For example, quantum mechanics' ability to predict a wide range of phenomena with 

high accuracy has led to its broad acceptance and the discovery of new physical principles, 

even before some of its aspects were empirically confirmed. Just like the body of theory in this 

case is tested by its ability to make good predictions, so is AlphaFold’s.  

A sceptic might point out that instead of adopting (2), in the AlphaFold’s case we can 

adopt (2)*: Empirically unconfirmed predictions alone are not scientific knowledge, unless 

derivable either in an appropriate way from supporting theories, laws or mechanisms or from 
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a sufficient amount / type of data using other appropriate truth-filtering methods. This way, we 

can still deny that knowledge can be produced by an oracle whose workings we know nothing 

about, and we might still defend that the outputs of AlphaFold are knowledge, without having 

to accept that its opaque internal mechanisms are themselves knowledge. I would argue this 

approach will only show us what we already know, that AlphaFold’s outputs are reliable, which 

is the starting point of my discussion in this paper. It still leaves us in a strange position 

regarding how predictions, if taken as scientific knowledge, relate to an underlying principle 

that is not knowledge. Normally in science, predictions function as knowledge if the underlying 

principle is known or, in the case of computer simulations, predictions are usually taken to not 

themselves constitute knowledge but either ‘merely’ a plausible hypotheses space (Ratti 2020) 

or higher-order evidence (Parker 2020), that is evidence about the existence of some other 

evidence about the relevant phenomenon, from which scientists can gain knowledge. Both can 

be reliable and used for further scientific investigation, e.g. drug discovery. However, in the 

case of the protein folding problem, to take specific protein shapes to be ‘known to science’ 

without empirical confirmation, we need to accept that they come from an underlying principle 

that can itself constitute scientific knowledge.  

All in all, considering that AlphaFold is producing novel highly accurate data based on 

all the previously available evidence on how proteins fold via sufficiently reliable methods, 

and that we have good reasons to believe there is a general principle of protein folding to begin 

with, it looks like what AlphaFold is doing resembles normal scientific practice, if only 

occurring at an accelerated pace. This is in principle consistent with some other proposed 

accounts of how computational science techniques can provide evidence and lead to scientific 

knowledge, even where an individual scientist working with the simulation has no access to all 

of the relevant mechanisms (Parker 2020). Except, whatever it has learned in terms of general 

principles or if it embodies one itself is not known by any human. Accepting both that 
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AlphaFold’s internal simulated principle is both a plausible candidate for scientific knowledge 

and strongly opaque in the relevant sense is what makes the picture strange, rather than the 

specifics of the process of how it learns to predict the protein shapes.  

Even if we have various accounts that equip us with reasons to trust AlphaFold in regard 

to our scientific practice, having a principle of protein folding that is both scientific knowledge 

and is not directly known to us is what makes its case unusual. It ultimately calls for taking a 

more radical stance on the possibility of strongly opaque yet scientific knowledge. As strong 

opacity of the internal principle remains the main cause for concern with accepting both 

propositions (1) and (2), in the next section I discuss proposition (3): the problem of opaque 

scientific knowledge. 

 

3.3.  Rejecting 3: Why scientific knowledge can be strongly opaque 

This claim concerns the most complex part of the trilemma and the heart of the dispute with 

my critic. In this section, I will be granting the assumption that AlphaFold has or embodies an 

implicit principle of protein folding which is a knowledge candidate, in order to focus on the 

question of whether a strongly opaque principle can be scientific knowledge. The strong 

opacity featuring in the AlphaFold case is by extension likely to characterize much of AI-driven 

science. 

The question behind the claim (3) can be formulated as following: Are the general 

principles of protein folding AlphaFold has implicitly grasped (but that no one knows how to 

decode) part of scientific knowledge? One might defend (3): scientific knowledge cannot be 

strongly opaque, on the basis of lacking accessibility to the opaque principle, along the lines of 

an internalist and thus an individualist picture of knowledge, contrary to an externalist view 

that prioritizes the system’s trustworthiness.  
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Establishing sufficient reliability or trustworthiness I have outlined in the Background 

section constitutes the basis for the justification of AlphaFold’s integration into the production 

of scientific knowledge. However, there is more to the argument against (3) than confirming 

that AlphaFold’s predictions are trustworthy on the basis of their reliability and can therefore 

be taken as scientific claims. Namely, one may still object that the internal opaque principle of 

protein folding should not be considered part of scientific knowledge, even if the outputs can 

be trusted. The internal principle calls for its own justification as part of knowledge, since we 

do not want to claim that science is done via a process unknown to science. Where we do 

eventually want to land is to say that science is done via a process not known to individual 

scientists but known to science as an enterprise.  

The idea that humans might eventually be displaced from the process of scientific 

knowledge production is not new. Humphreys (2004; 2009) viewed this as a possible or even 

a likely trajectory of scaling automation in science, arguing for moving away from 

“anthropocentric epistemology”. Other accounts, such as Parker (2020) stated that scientists 

can in principle gain knowledge from computer simulations (via gaining second-order evidence 

about the existence of other evidence about the target phenomena), even when the scientist 

herself does not have access to all of the relevant internal processes of the simulation. However, 

the present problem calls for a more specified solution, as AlphaFold and similar AI systems 

are 1) distinct from older / traditional computer simulation techniques, and 2) generate 

knowledge without its outputs being matched to an existing theory, nor are they taken in 

practice as a second-order type of evidence. The strongly opaque implicit principle of protein-

folding thus needs to be either accepted as part of what is known to science or rejected as 

known to science.  

To help accommodate the rejection of claim (3), I turn to Bird’s (2010; 2022) account 

of scientific knowledge as irreducibly social or collective knowledge. The view rejects 
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individualist and internalist accounts of scientific knowledge based on various forms of ‘belief’ 

and on which science is best explained as functionally analogous to but not supervenient on 

individual cognitive systems. A somewhat more radical version of his account may allow for 

accommodating broader implications of AI-driven science, as it posits a view of scientific 

knowledge from the point of view of science as a social enterprise. Bird (2010) outlines three 

conditions for qualifying something as knowledge, which can be satisfied by AlphaFold:  

1. Outputs must be propositional in nature (propositionality). Both the predictions and 

arguably the underlying principle of protein folding (assuming there is one in this case) 

can be expressed in propositional terms and amount to scientific claims. 

2. Mechanisms whose function is to ensure or promote the chances that the outputs are 

true / valid / trustworthy are in place (truth-filtering). AlphaFold is not an oracle or an 

alien artifact, but a learning system, which bases its novel outputs on all of our previous 

scientific data and claims. It is also integrated into the social system of science: there 

are peer reviewed papers on the quality of AlphaFold’s predictions, the advancements 

in protein folding-related problems in biological sciences, on its use in drug discovery 

and design research, etc. (e.g., Ali and Caetano-Anollés 2024; Kryshtafovych et al. 

2023; Jumper et al. 2021b); and it is integrated with various other processes and tools 

of science, which continuously correct for errors and unreliable data.  

3. The outputs are the inputs for a) social actions or for b) social cognitive structures (incl. 

the very same structure) (function of outputs is preserved) – the outputs must be usable 

to produce more scientific knowledge. AlphaFold’s outputs are used in complex projects, 

as part of the division of labor between various other computational systems and human 

scientists. New cutting-edge research projects employ AlphaFold to varying degrees. 

Computational methods of problem-solving in science are advancing due to systems 

like AlphaFold. Moreover, new versions of these AI systems are developed on the basis 
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of the previous ones, adapted to expand on the type of data and predictions it can 

produce. 

The justification here is an externalist reliabilist one and is realized through the truth-filtering 

(trustworthiness) condition. Since the functionalist account rejects the central role of individual 

minds in the knowledge production, the proposition that is a knowledge candidate does not 

need to be individually known by anyone, but it must be integrated into the broader scientific 

knowledge infrastructure, as the conditions 2 and 3 state. 

This view further lays a basis for arguing towards a more radical stance: that mental 

states’ role is peripheral, such that something can be knowledge without mental states involved 

altogether and at any point in the knowledge production. If we accept that for P to be knowledge, 

no individual human has to know P at any given time (Bird 2010), we still might acknowledge 

that the process of P becoming knowledge usually, or at least so far, does involve individual 

mental states at some stage of the process (e.g. it is still largely humans who write and peer-

review papers). However, P does not become or remain knowledge in virtue of being accessed 

by individual mental states. For example, a scientific paper contains knowledge not in virtue 

of humans being able to read it but in virtue of it having been reviewed and utilized for 

producing further papers. If a machine could write and review a paper and if further scientific 

inferences could be drawn on its basis, it does not matter whether any human have either written 

or accessed it.  

Still, one might worry that accessibility remains a crucial, even if implicit, part of the 

functionalist profile of knowledge for Bird’s account, beside trustworthiness. Even if no mental 

states are required for something to be part of scientific knowledge at any given time, mental 

access to knowledge may ensure that the system of knowledge production functions properly. 

Bird argues explicitly however that it is not access that defines knowledge but the functional 

integration into a societal structure, paired with the capacity of the said knowledge to play a 
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social role (e.g. drive scientific decision making), where: “[cognitive| accessibility is the 

principal means by which that is achieved” (Bird 2010: 48). For Bird, however important the 

access to knowledge might currently be in science, it is its function that plays the qualifying 

role.  

One might object that, since the implicit theory of protein-folding is not known by 

humans, it cannot in fact play the required social role (unless it is made known to humans). 

This may be an issue of conflating the individualist epistemological approach with the 

collective knowledge account, where social role in decision-making need not be dependent on 

an internally held mental-state-like knowledge of individual scientists. For example, if a 

question arises whether a drug modelled with the involvement of AlphaFold should be 

developed further into an experimental or even trial phase, it does not come down to whether 

the principle by which the predictions were made is opaque or not. One might still object at 

this point, that, while the predictions themselves can be accessed and used for social decision-

making, the opaque mechanism cannot. At this point I see the distinction between the two to 

be quite thin. As far as AlphaFold can propose several structures to be taken as potential 

candidates for further research on a particular task, its internal mechanism is effectively driving 

decision-making for the research direction, even if the human scientist only interacts with the 

predictions in form of outputs and not with the internal mechanism itself.   

The case of AlphaFold pushes this account towards a more radical version that is better 

able to accommodate AI-driven science, in that it at least requires taking a stance on whether 

trustworthiness without accessibility is enough, as AlphaFold may be satisfying the conditions 

for the former but not the latter. One could still insist that in the examples Bird (2010) provides, 

such as that of a science text book sitting in a library, where the knowledge is constituted via 

the book having been reviewed and being available in a library (both being instruments of 

knowledge in a socially-defined sense) still implies guaranteed cognitive access to the 
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knowledge kept in the book. But the fact that the access to this knowledge is ensured by the 

features of the social mechanisms we build (the book being readable, the libraries accessible, 

etc.) may ultimately be due to the fact that individual humans have so far played a driving, if 

only contingent, role in producing scientific knowledge and defining its trajectories. That is to 

say, the fact that human artifacts are at least typically cognitively accessible to individuals 

ultimately only matters incidentally to how the knowledge they keep performs its (societal) 

function. While accessibility is central for trustworthiness on an internalist view, it is not 

necessary for trustworthiness on an externalist functionalist view, and it is arguably only 

tangential to scientific knowledge as collective social knowledge. 

The radical decoupling of scientific practice from mental states and cognitive access 

thus allows us to accept the position that scientific knowledge can be fully opaque to humans, 

via excluding human cognitive access to knowledge from the picture of what is required in 

scientific knowledge production. It can therefore more adequately accommodate developments 

in AI-driven science. On such a view, AlphaFold produces outputs on the basis of an opaque 

internal principle which itself satisfies the externalist functionalist conditions for knowledge.  

The outlook on the wide employment of systems such as AlphaFold in current and 

future science generally confronts us with the genuine possibility that strong opacity of the 

mechanisms and the high-level principles behind their predictions is largely compatible with 

the rich functional integration with the rest of science. If the integration is in place and 

AlphaFold functions as a part of a larger system that sustains itself according to the scientific 

norms and standards, the inaccessibility of its internal principle should not prevent us from 

treating it as scientific knowledge.  
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4  Conclusion 

I presented the epistemology of AlphaFold as a trilemma and argued that scientific knowledge 

can be strongly opaque to humans, as long as it is properly functionally integrated into the 

enterprise of the scientific practice as a whole. If we accept an externalist functionalist view 

which completely rejects the role of accessibility to knowledge through mental / cognitive 

states, we can accept that AlphaFold generates scientific knowledge, even if part of that 

knowledge is strongly opaque. Otherwise, we face a situation where scientists are advancing 

science without scientific knowledge. The AlphaFold case in a way forces us to take a more 

radical position on whether we can call something that is reliable, novel, based on existing 

scientific knowledge, and used ubiquitously for cutting-edge science ‘scientific knowledge’, if 

it may never be known to humans. By accommodating such epistemically opaque systems into 

not just our notions of reliable scientific instruments, but into our broader conception of what 

can be known to science, we come closer to developing an epistemological account that is more 

responsive and appropriate to the current practices in the AI-driven science.  
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