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Abstract
The current landscape of views on chance in the Everett interpretation is rocky.

Everettians (Wallace 2012, Sebens and Carroll 2018, McQueen and Vaidman 2019) agree
that chance should be derived using principles governing uncertain or partial belief, but
they cannot agree on how. Critics (Baker 2007, Dawid and Thébault 2015, Mandolesi
2019) maintain that any such approach is circular. We smooth the landscape by shifting
focus from what Everettians take to be uncertain to what they should think is certain:
namely, the conditions under which branches are isolated. Our approach to isolation
resolves the main tensions among the different Everettian chance derivations while
clarifying how they avoid circularity.
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1 Introduction
The current landscape of views on chance in Everettian quantum mechanics is a curious one.
On the one side, longstanding critics of many-worlds theories maintain that probability is
needed to make sense of the machinery that Everettians use to derive chance values, resulting
in circularity (Baker 2007, Dawid and Thébault 2015, Mandolesi 2019). On the other side,
Everettians seem to agree that chances should be derived in terms of agents’ uncertain or
partial beliefs—but they cannot agree on how.

Perhaps the most famous of these uncertainty-based approaches is the decision-theoretic
program explored by Deutsch (1999) and Wallace (2012): they purport to prove that a
rational Everettian agent must order their preferences over acts in a way that recovers the
Born rule. Sebens and Carroll (2018) take issue with a principle of rationality in Wallace’s
approach, and instead aim to derive Everettian probabilities from principles governing self-
locating uncertainty. McQueen and Vaidman (2019) offer yet another self-locating uncertainty
approach, taking issue with Sebens and Carroll’s metaphysical view of branching. Notably,
all three approaches claim that symmetries of quantum states are central to their arguments,
but none attempt to characterize the symmetries at play.

We suggest a shift in focus from what these Everettians take to be uncertain to what they
take to be certain. In fact, we diagnose all these Everettians as holding a tacit commitment
to a functional link between chance and certainty—namely, that chances supervene on the
totality of physical information relevant to (actual) relative frequencies. In the context of
Everettian derivations of chance, this link is satisfied by stipulating an appropriate notion of
when a subsystem is ‘isolated’. We sketch a thin functional analysis of isolation that allows
Everettians to identify branches as isolated subsystems without using probabilistic concepts.
This analysis, in turn, affords a characterization of the symmetries of branches relevant to
chance.

Then, we argue that chance’s functional link with certainty does most of the explanatory
work in deriving specific chance values: to wit, it does so by characterizing the precise
sense in which symmetric, isolated states should yield equivalent chance assignments. This
characterization yields a thin core approach to deriving chance in Everettian quantum
mechanics that smooths the current rocky landscape. Each of the decision-theoretic and
self-locating uncertainty programs discussed above can adopt this core approach while (a)
changing very little of the structure of their arguments and (b) addressing the main criticisms
they have levied at each other. Moreover, since certainty of a branch’s ‘isolation’ is explicitly
non-probabilistic, the core approach clarifies the sense in which these derivations avoid the
usual charges of circularity.

Our plan for the article is as follows. In §2, we consider the various functional roles for
objective chance which have been identified in the literature hitherto, and add to this mix
the certainty link, which will play a central role in this article going forward. In §3, we show
how the certainty link and a notion of system’s being isolated from its environment can be
leveraged in order to afford a resolution to the reference class problem. In §4, we offer a thin
functional analysis of isolation: namely, that (a) ‘isolated subsystems’ should instantiate a
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recursive structure, such as Wallace’s (2022a) ‘theory sectors’, and (b) one should be able to
create ‘isolated subsystems’ in a laboratory. Then, in §5 we use these functional criteria to
argue that Everettians should adopt two separate notions of isolation: one for microstates
and one for macrostates. We also clarify how our notion of isolation for macrostates does not
depend on solving the preferred basis problem, and so in turn does not depend on a prior
assignment of chances. Having done this, we demonstrate in §6 how taking chance to be an
intrinsic property of isolated macrostates specifies a core approach to deriving Everettian
chance. We then outline how each of the above-mentioned Born rule derivations deviates
from the core, as well as how the core resolves the primary tensions among them. In §7 we
wrap up.

2 Most attitudes towards ‘chance’ tacitly invoke certainty
Much cross-talk in philosophical literature stems from the difference between two key philo-
sophical methodologies for confronting troubling terms: namely, conceptual analysis and
conceptual engineering (Cappelen 2018). The former aims to give a precise definition of the
term under consideration that yields maximal fidelity with all its uses in everyday talk. The
latter aims to create a novel definition for the term that better suits a set of desired uses.
Whereas the former is primarily descriptive, the latter is primarily normative.1

Conceptual analysis and conceptual engineering, so construed, are meant to identify
endpoints on a spectrum of methodologies. For example, Quine’s version of conceptual
analysis (which we favor) falls somewhere in between. Quine, drawing on Carnap (1947, §2),
rejects the sort of analysis that aims to ‘expose hidden meanings’; instead, he thinks analysis
should ‘fix on the particular functions of the unclear expression that make it worth troubling
about’ (2013, p. 238). One might summarize the pursuit of a Quineian analysis of ‘chance’
as an attempt to answer the following question: what would be a happy thing for ‘chance’ to
mean, given how we roughly use it today?

For our attempt at answering this question, we follow Quine in fixing on the functions
that ‘chance’ plays or might play in daily discourse. This approach already puts us in the
good company of philosophers of probability such as Hájek (2019), and Everettians such as
Wallace (2012) and Saunders (2010), all of whom aim to give ‘chance’ a functional definition.
Given our present focus on chance in Everettian contexts, we will begin our search for a
functional definition with the functional links that Everettians have deemed most important.
All the chance functionalists we survey assent that the following links are descriptive of our
use of the term ‘chance’. It varies whether any given chance functionalist treats any given
link normatively, as a principle of desired use.

To begin, then: Saunders (2010), following Papineau (1996), helpfully identifies the
following two functional roles which one might demand be satisfied by a notion of objective
chance:

(C1) The inferential link: The chance of an event is measured (roughly) by (actual)
relative frequencies of that event; and

1For a discussion of this distinction in a very different context in the philosophy of physics, see Krátký
and Read (2024).
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(C2) The credential link: All else being equal, one’s subjective degree of belief or credence
in an event ought to equal the chance of that event.

Brown (2011, p. 7), Wallace (2012, §4.4), and Read (2018, p. 137) all endorse that these links
(or slight variations of them) are at least descriptive of chance talk.

In addition to the above two functional roles for chance, Saunders (2010, p. 181) goes on
to identify another:

(C3) The uncertainty link: Chance events, prior to their occurrence, are uncertain.

Clearly this link is descriptively adequate, but should we add it to a list of normative
requirements? Given that many worlds theories specify that all possible measurement
outcomes are actual, one might be wary of the normative upshot of uncertainty. Greaves
(2007), for example, aims to build an account of Everettian chance with the first two links
alone. Still, Saunders and Wallace have taken pains to show how the Everettian can recover
this link in a normative sense, if they so desire.

One immediate question to ask of the uncertainty link—whether one treats it as descriptive
or normative—is this: should it have anything in particular to do with the measure of chance?
To be sure, we might like to recover the lived experience of observers—but it seems a stretch
to think that uncertainty about outcomes per se would be enough to inform us about the
right choice of chance function.

Now, one way in which one might leverage the uncertainty link in order to get a bead on a
specific chance measure is via the ‘principle of indifference’, which states that in the absence
of any relevant evidence, agents should distribute their degrees of belief equally among all
the possible outcomes under consideration—see Eva (2019) and references therein. However,
even availing oneself of the principle of indifference is unlikely to fix a unique such chance
measure, absent further constraints. This might be illustrated by familiar problems with
applying the principle of indifference to an infinite state space. Consider the classic example
of the hypothetical box factory due to van Fraassen (1989, p. 303), in which the principle of
indifference is unable to discriminate between (e.g.) length- and area-preserving probability
measures.2 To paraphrase, imagine that you are told that the factory produces cubic boxes
with sides of any length from 4 to 5 centimetres and given no further information. What are
your best estimates for the face area and the side length of a given box? If you apply the
principle of indifference to side length, you get the uniform measure over the interval [4, 5]
(in units of cm); if you apply the principle to face area, you get the uniform measure over
[16, 25] (in units of cm2). The problem is that these choices yield estimates of 4.5cm for the
box’s side length and 20.5cm2 for the area of its faces, and no cubic box can have both of
these measurements. To get consistent answers, only one of the two probability measures can
be uniform—and the principle of indifference seems to offer little guidance as to which one it
should be.

Ideally, one would seek more information about the box factory to resolve the paradox.
Suppose, for example, that one learns that the factory starts with an imprecise rod-cutting

2Van Fraassen credits Bertrand (1889) with the insight driving his example. Keynes (1978, pp. 48–49)
gives a very similar version of the thought experiment (using volume and density rather than length and
area), which he credits to von Kries (1886). Note that Adlam (2025) has also recently invoked Bertrand’s
paradox to call into question subjective uncertainty based approaches to fixing an objective chance measure.
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machine, then nearly perfectly creates eleven copies of that initial rod to piece together a
cubic frame. This additional information suggests that the length of that initial rod fixes
all relevant parameters of the finished box—and so, at this stage one ought to pick uniform
distribution over length to obtain estimates for face area. Along this line of reasoning, if one
indeed strives for the recovery of a specific probability measure, then the following additional
functional role might serve one better in making good on that:

(C4) The certainty link: Chance values supervene on the totality of physical information
that is relevant to the (actual) relative frequencies of the event.

Following the certainty link in our reasoning about the box factory would lead us to recognize
that in this case the length of the box’s side is the physical parameter that is relevant to the
chances.

In at least this case, the certainty link appears to be necessary for deriving a specific
measure of chance, since self-locating uncertainty does not suffice on its own. But in fact
there is nothing to stop us having both (C3) and (C4)! We can recover lived experience (via
(C3), as articulated above) and obtain a unique chance measure (via (C4)); it’s just that the
explanation of the former has little to do with the explanation of the latter.

The box factory example provides some initial evidence that the certainty link latches
onto something important in our usual ‘chance’ talk. In the next section, we adduce more
evidence for this by arguing that both objectivists and subjectivists about chance appeal to
the certainty link in order to solve versions of the reference class problem.

3 Certainty of a system’s isolation solves the reference
class problem

We claim that the link with certainty—that chance values supervene on the totality of
information relevant to the actual frequencies—adequately describes most of our usual
‘chance’ talk. To defend this claim, we now show how it appears in several prominent
objective and subjective analyses of chance as a way to solve versions of the reference class
problem.

First, for objective analyses, consider various versions of frequentism. One can view
frequentism as an approach to chance that begins by ‘filling in’ the inferential link with an
analytic definition, one that identifies a chance value with with a (possibly limiting) relative
frequency of a given event in an actual or hypothetical reference class of events of a certain
type. For example, a finite frequentist might fill in the inferential link (C1) with the following
definition:

FF: The chance of an attribute X in a finite reference class R is the relative frequency of
actual occurrences of X within R:

ch (X | R) =
n(X)

n(R)
, (1)
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where n(·) gives the number of occurrences.3

This definition cannot recover chances that align exactly with standard quantum probabilities;
we include the details here to illustrate one version of the reference class problem.4 To wit:
selecting a reference class becomes a problem if it is unclear what types of events are most
relevant—and so it is unclear how to specify R. Suppose, for example, one wants to assess
the chance that their grandmother Sarah, a serial smoker, will contract lung cancer. One
can do so by comparing the frequency of lung cancer cases in the total population to the
frequency of cases among only folks like Sarah. However, it is not immediately clear which
factors making someone ‘like Sarah’ ought to be included in one’s assessment.5

This issue recurs in hypothetical frequentism, where the reference class R is infinite. It
is still often ambiguous why one infinite sequence contains the relevant events rather than
another. A striking physical example comes from Diaconis et al.’s (2007) analysis of fair coin
tosses. They argue that the usual way of tossing a coin is ever-so-slightly biased, such that
there is a roughly .51 chance that the coin will land on the same side it started on before the
flip. So, if you instruct your bookie to always place the coin heads up on their thumb before
the flip, the resulting frequencies of heads outcomes will be ever-so-slightly altered. The
hypothetical frequentist might have thought they could ignore this detail and use any infinite
sequence of coin tosses R yielding a limiting frequency of one-half, but not so. Subtle details
about the measurement process that produces a reference class can end up being relevant to
the actual relative frequencies of an event.

Statistical physical theories offer a solution of sorts by providing one way to fill in the
link with certainty: they formally specify the totality of relevant physical information. In so
doing, they specify the right reference class. We might characterize this solution by saying
that these theories fill in the certainty link (C4) with the following rule, which we call ontic
separability, or OS:

OS: Suppose that a statistical physical theory T specifies that a system U contains within it
an isolated subsystem S. The chances that theory assigns to outcomes X in S should
be independent of the environment U \ S:

ch (X | U) = ch (X | S) . (2)

Here, the state of the isolated system S has taken over the role of the reference class R in
FF. S’s isolation from other systems—at least as far as the relevant physical parameters are
concerned—provides a justification for its playing this role.

Moreover, the reference class problem is not exclusively a problem for frequentist analyses
of probability. Hájek (2007) cogently argues that it is a problem for subjectivists, too (among

3This particular definition of finite frequentism is due to Hàjek (1997). Throughout this paper, for ease of
exposition, we allow the arguments for the chance and credence functions to be attributes, propositions, or
events. However, nothing in our argument should hinge on this permissive approach. For example, the reader
should feel free to rewrite a definition using attributes in terms of propositions if they prefer.

4This is not to say that finite frequentism cannot recover quantum probabilities approximately. Saunders
(2021) presents a discrete Everettian approach that does just this. In this paper, however, we restrict our
focus to approaches that aim to recover real-valued Born rule probabilities exactly.

5Venn (1876) presents an early version of this example.
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others). To roughly paraphrase Hájek’s point, subjectivist accounts of chance will generally
include a judgment about what background information is admissible in assigning beliefs
about chance—and it is often ambiguous what should count as ‘admissible’.

Here is one way in which to illustrate the problem. In parallel with our gloss of frequentism,
we view subjectivism as starting an analysis of chance by filling in the credential link (C2) with
a normative principle, one reifying chances as the arbiters of certain credence assignments.
Lewis (1980), for example, takes chance functions to theoretically specify chance values, and
then requires that credence defer to chance following his ‘principal principle’, PP. Pettigrew
(2012) characterizes this principle as follows:

PP: Let Cch state that the correct chance function is ch. An agent ought to have a credence
function c such that, for all possible initial chance functions ch and all propositions A
and E, if E is admissible for A,

c(A | Cch ∧ E) = ch(A), (3)

providing c(Cch ∧ E) > 0.

Lewis himself provides no formal criteria for what it means for E to be ‘admissible’ for
A. However, it is clear that information about the future is disallowed, while nearly any
information about the past is allowed (1980, pp. 272–6).

Lewis’s approach to admissibility has the interesting consequence that past events can
only have a chance value of zero or one, even if one is ignorant of the outcome. Although
Lewis accepts this consequence (1980, p. 273), Bacciagaluppi (2020) calls it into question.
To summarize Bacciagaluppi’s point, suppose that a bookie tells you that she will flip a fair
coin in the back room. She goes through the door, flips the coin, returns, and asks you how
confident you are in the claim A that it landed heads rather than tails. Then she repeats
this process, except that before she goes into the back room, she asks you how confident you
are that A′ the coin will land heads when she flips it. Intuitively, if you think that there is
one correct credence value to report for A′ (e.g., one-half), then you should think that the
same value is the correct one to report for A. In other words, whether one asks about an
unknown outcome of a given chance setup before or after it occurs does not matter to the
integrity of that chance setup; the chance value is well defined in either case.6

One can accommodate the intuition that past events have well-defined, nontrivial chance
values with a revision of Lewis’s principle that Pettigrew (2012) attributes to Isaac Levi:

LPP: Let Cch state that the correct chance function is ch. An agent ought to have a credence
function c such that, for all possible chance functions ch and all propositions A and E,
if E and A are stochastically independent according to ch (that is, ch(A | E) = ch(A)),

c(A | Cch ∧ E) = ch(A), (4)

providing c(Cch ∧ E) > 0.
6Bacciagaluppi uses the term ‘epistemic objective probabilities’ to refer to well-defined, non-trival chance

values for past events; see (2020, §3.5) for more details.
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Following Levi’s approach, it does not matter that the outcome of the toss A is information
about the past, as it is clearly not stochastically independent of A. Levi thereby allows the
subjectivist to report nontrivial chances for past outcomes, contradicting Lewis.

In short, insofar as subjectivists can disagree on what information E is admissible, they
encounter a version of the frequentist’s reference class problem. To resolve their version of
the problem, they can use the link with certainty to clarify what information is ‘admissible’
or relevant. Once again, statistical physical theories sharpen the solution: such theories
stipulate, by fiat, the system states and measurement procedures that fully characterize the
admissible information. We might formalize this solution by filling out the certainty link (C4)
with an epistemic separability principle, ES:

ES: Suppose that a statistical physical theory T specifies that a system U contains within
it an isolated subsystem S. The credences that an agent assigns to outcomes X in S
should be independent of the environment U \ S:

c (X | U) = c (X | S) . (5)

Note that ES and LPP together imply OS: in order to avoid conflict between the rec-
ommendations of ES (via (5)) and LPP (via (4)), it must be the case that any ‘possible’
chance function mentioned by the latter principle satisfies OS (via (2)). One can similarly
use OS and LPP to derive ES. The isolation of subsystems, and thereby the certainty
link, can be given primarily objective or subjective import depending on one’s philosophical
preference—and one can easily translate between the two.

Indeed, either OS or ES captures our solution to the box factory paradox. In that case,
our physical theory T is simple. We let the total system U be given by a specification of
all properties of the box—its side length, face area, and volume—at all times during its
construction, if defined. Then, we let S be a specification of these properties before the faces
are constructed and after the box has been fully assembled. Finally, we note that S is an
isolated subsystem of U . The details of what happens in the time interval covered by U \ S
do not matter, since the final dimensions of the box are fixed once the rods are cut. Since
no additional information is available, we appeal to the principle of indifference to motivate
using the uniform distribution over lengths rather than a different distribution.

In this way, a wide variety of approaches to chance use isolated subsystems to fill in the
certainty link (C4) and thereby resolve the reference class problem. However, this move raises
the question of how we determine when a subsystem is isolated in general. In the box factory
example, we simply stipulate that the right sort of isolation is achieved. In the next section,
we will aim to do better.

4 But ‘isolation’ is ambiguous
In the previous section, we argued that both subjectivists and objectivists fill in the certainty
link (C4) with an appeal to isolated subsystems in order to solve their versions of the reference
class problem. In particular, we considered filling in the certainly link with appeals to the
isolation of systems in a statistical physical theory. The notion of an ‘isolated system’ in
physics, however, is a tricky one to pin down. Our strategy in this section is do for ‘isolated
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system’ what we did for ‘chance’ in Section 2: namely, to give it a thin, functional analysis
based on long-standing desiderata among physicists.

We start with Einstein’s (1948) classic concern about how the non-locality of quantum
mechanics might challenge the possibility of empirical science:

The following idea characterises the relative independence of objects far apart in
space (A and B): external influence on A has no direct influence on B; this is
known as the ‘principle of contiguity’, which is used consistently only in the field
theory. If this axiom were to be completely abolished, the idea of the existence
of (quasi-)enclosed systems, and thereby the postulation of laws which can be
checked empirically in the accepted sense, would become impossible. (Translation
by Max Born, Einstein et al. 1971, p. 171)

Here, Einstein argues that something like a principle of local action is at least extremely useful
for making sense of the idea that some systems can be effectively closed off from external
influence. However, as Howard (1985) notes, Einstein is less strongly committed to local
action than to separability: it is ‘the existence of (quasi)-enclosed systems’, however justified,
that achieves the possibility of empirical physics. Prospects seem dim for non-relativistic
quantum mechanics to justify this separability principle on the back of local action; it is not
a field theory, for one. Still, past physicists seem to have had a coherent notion of empirically
testing non-local theories like Newtonian gravity and Coulombic electrostatics; it would be
strange if one could not construct an analysis of ‘(quasi)-enclosed systems’ that did not
depend on locality. Indeed, for Einstein, it only seems crucial that the physical laws—local
or otherwise—can be studied in some controllable setting.

Wallace’s (2022a, 2022b) notion of subsystem recursivity provides a useful tool for sharpen-
ing how isolation relates to testability. Wallace does not aim to analyze ‘isolation’ per se; on
the contrary, he is forward about treating it as a term of art in his analysis. Nonetheless, his
discussion of a theory’s recursive ‘sectors’ is quite helpful for filling out the structural features
that a theory needs for it to be ‘checked empirically in the accepted sense’. Very roughly, a
sector of theory identifies a system whose kinematics and dynamics can be fully specified
without reference to any other system. As long as one is justified in claiming that they
have captured a sector of theory with a system in their laboratory, one can make inferences
about that theory’s applicability writ large. The alignment of theory sectors and isolated
subsystems, then, would seem to get very close to the thin notion of empirical testability
that Einstein is after.

Wallace calls a theory subsystem recursive just in case it possesses this alignment. He
fleshes out the idea of subsystem recursivity by illustrating how it arises in Coloumbic
electrostatics:

[Suppose] we now consider a dynamical model in an N -particle sector [of electro-
statics], in which there is some sub-region R and some subset of M < N particles
which remain (over some time period) well inside R, while the other N −M
particles remain outside R; and suppose that as we approach the [boundary] of
R, [the electric potential] tends to some spatially-constant value [...]. This could
happen, for instance, because the other N ≤ M particles are very far from R,
or because positive and negative charges outside R approximately balance so as
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to exert little net Couloumb force within R. Then to a good approximation, we
can study the dynamics of the subsystem of those M particles autonomously
from the other N ≤ M : they will behave as if those particles were not present
and as if the M particles were interacting among themselves according to the
appropriate M -particle sector dynamics. If we want to study the dynamics of
that subsystem of particles, in other words, under these assumptions and if we are
sufficiently tolerant of small errors, we can replace the full N -particle sector with
the M -particle sector. In this sense, the latter can be interpreted as modelling an
isolated subsystem of the former.

[...] In fact, Coulombic electrostatics has these two features:

(i) Any sector of the theory can be interpreted as an idealized description of an
isolated subsystem of a sector of the theory;

(ii) An isolated subsystem of any sector of the theory can be described, in
idealization, as a sector of the theory.

I will call a theory with these two features subsystem-recursive: these are theories
where any model can be interpreted in the first instance as modelling a dynamically
isolated subsystem under certain idealizations about its environment and where,
if we want to remove those idealizations, we can embed the model in a model of a
larger system within the same theory—and where that larger system in turn is
interpretable in the first instance as a subsystem of a still-larger system, with no
assumption that we need to understand the whole setup in terms of an ur -system
that describes the whole universe. (2022a, p. 242)

While Wallace treats ‘isolation’ as a term of art, he gives a formal definition of ‘sector’ by
defining structure-preserving restriction maps that take a larger theory sector to a smaller one.
For our purposes, we extract from this account three qualitative criteria that a restriction to
a subsystem must satisfy for that subsystem to count as a sector: namely, the restriction
must preserve the theory’s rules for kinematics, dynamics, and symmetries. To flesh out the
kinematic part for electrostatics, we might describe the trajectories of N particles at a given
time slice with vectors in the N -wise Cartesian product of R3; in this case, we are always free
to project down onto M of these trajectories to describe those particles and those alone. We
ensure that these trajectories obey the Coulomb force law by stipulating that the potential
does not vary across the boundary of the spatial region containing these M particles, as
Wallace describes above. Time reversal, spatial translations, and rotations applied to the
state space of just the M particles preserve solutions to the Coulomb dynamics just as well
as they do when applied to the larger system. All such solutions will adequately describe the
M particles on their own, yielding a precise sense in which they behave as though the others
‘were not present’. Thus, the M -particle subsystem satisfies the three qualitative criteria
and is therefore a sector of electrostatics. Moreover, in this case, we have good grounds to
identify such sectors with isolated subsystems. The boundary’s constant electric potential
means, in particular, that the electric field vanishes there, and we can measure when and
where there is a non-zero electric field. So, Coulombic electrostatics thereby satisfies features
(i) and (ii), coming out as a subsystem recursive theory.
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In contrast with Coulombic electrostatics, Wallace cites Newtonian gravity as an example
of a theory where the alignment between sectors and isolated subsystems breaks down. In
this theory, the dynamics of point-source masses indexed by J is given by

d2

dt2
xiJ = ∇iΦ(xiJ , t), (6)

where Φ is a scalar potential field that satisfies the Poisson equation,

∇2Φ(x, t) = −4πG
∑
J

δ(x− xJ)mJ . (7)

We restrict our attention to Φ that are linear at the system boundary. Idealizing the boundary
to be at |x| =∞, we can write this condition as

lim
|x|→∞

Φ(x, t) = Φ0(t) + ai(t)x
i(t), (8)

where the acceleration term ai(t) refers to the components of a time-dependent vector. In the
case where ai(t) = 0 for all t, the boundary condition is constant, and this theory recovers
the usual inverse-squared force law of Newtonian gravity. We can then define sectors of the
theory in much the same way that we did for Coulombic electrostatics. Just as the electric
field disappears at the boundary of a Coulombic sector, the gravitational field vanishes at
the boundary of a Newtonian sector. However, we now have a good reason to think that the
resulting sectors are too strict to characterize a desirable notion of isolation: no such sector
can describe a laboratory on Earth’s surface. We need a non-zero ai(t) at the laboratory
boundary to account for the Earth’s gravitational field.

To fix this issue, we can simply change the definition of ‘Newtonian sector’ to contain
dynamics with the full range of boundary conditions in (8). However, Wallace notes that one
might also change the definition of ‘isolation’ to identify isolated subsystems with Newtonian
sectors. So long as we know the specific point mass distribution generating a potential with
non-zero ai(t) at a given subsystem’s boundary, we can always rewrite that subsystem’s
dynamics within an appropriate sector. Considering only laboratories on the surface of the
Earth, this issue does not appear to pose an immediate threat. However, Einstein’s elevator
thought experiment challenges its general tenability. When one feels a greater push towards
the elevator’s floor, there is no means of discriminating from within the elevator whether
the cause of this effect is due to the Earth acquiring more mass or the elevator’s upward
acceleration. This point challenges Newtonian sectors’ ‘upwards’ recursion, towards larger
and larger systems. Progressing up this ladder, whenever we reach a cosmological system
with a nonvanishing gravitational field at the boundary, Newton’s theory does not license
us to stop at that rung—even though the particular completion of that system within a
Newtonian sector might end up being arbitrary.

Contrast this situation with what happens when we revise electrostatics to include
potentials with linear boundary conditions of the form (8). This revised theory of electrostatics
has sectors with empirical differences: namely, some sectors will have vanishing electric fields
at their boundary, and some will not. However, this move does not challenge the isolation
of these sectors from other subsystems. The dynamics can still be studied in isolation. In
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other words, generalizing the form of the dynamics allows us to specify a sense in which the
empirical differences between the sectors do not matter for the physics.

From these case studies, we can draw a general moral. When sectors impose conditions
on the dynamics that we can check empirically but which are hard to control from within the
system, we have cause to generalize those dynamics—which, in turn, disrupts that theory’s
notion of isolation. The converse of this moral is that tenable notions of isolation can allow
for empirical differences between isolated subsystems by specifying a precise sense in which
those empirical differences do not affect the dynamics.

We capture this moral as the interplay of two functional links the term ‘isolated subsystem’
ought to satisfy: a link to a recursive structure on the one hand and a link to empirical
control on the other.

(I1) The recursion link. Isolated subsystems instantiate a recursive structure (like that
of a theory sector).

(I2) The control link. We can create an isolated subsystem in a laboratory.

The recursion link (I1) sharply defines various senses in which a given subsystem might be
isolated, and the control link (I2) pushes one to pick a sense of isolation that is useful for
empirical practice.

One might want to be agnostic about the strength of the control link in the same way that
one might be agnostic about the strength of the inferential link about chance. Subjectivists
about chance often stipulate that any sequence of outcomes is possible for an event with any
chance value. Thus, the actual outcomes of any finite sequence of chance events might end up
being wildly misleading about the true value of the chance. Usually, these subjectivists invoke
the law of large numbers to argue that such cases are rare, thus recovering the inferential link
(C1) approximately. Similarly, one might want the control link (I2) to apply only to theories
that describe phenomena below a certain length scale, allowing for cosmological theories with
isolated systems that are impossible to create in an Earth-bound laboratory. Given that
non-relativistic quantum mechanics is typically used for small length scales, we will assume
that (I2) holds for our case.

Fruitfully, the symmetries encoded in subsystem structures provide a way of strengthening
the separability principles that we used to fill in the certainty link (C4) in the previous section.
Roughly following Wallace (2022a, p. 245), we say that a property is intrinsic if it is the
same in any two subsystem states related by a symmetry. What would it mean for a chance
assignment to be an intrinsic property of a system? While there is flexibility in answering
this question, we take one happy answer to be that when a symmetry maps one system state
to another, these states must assign the same chance values to any subsystems related by
that map.

One can view this intrinsicity condition as a consequence of either one of the separability
principles. We use OS to illustrate. Suppose that a theory sector S contains two subsystems
X1 and X2 corresponding to two outcomes. By subsystem recursivity, S is isolated from the
rest of the universe U . Therefore, OS implies:

ch (Xi | U) = ch (Xi | S) . (9)
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Now, if a symmetry maps S = {X1, X2} to S ′ = {X ′1, X ′2}, then that map should make no
difference to properties that depend only on S; i.e., the intrinsic ones. Thus, (9) implies:

ch (Xi | S) = ch (X ′i | S ′) . (10)

Equation (10) is powerful enough to drive the derivation of specific chance values.
Our strategy for deriving Everettian chance, then, is to first pin down appropriate theory

sectors for Everettian quantum mechanics, and then apply the intrinsicity condition (10).
We turn now to this first task, for which we use Newtonian and Coulombic case studies as
templates.

5 Probing Everettian ‘isolation’ with theory sectors
In the previous section, we identified two core functional roles played by talk of ‘isolated
subsystems’: (I1) isolated subsystems should instantiate a recursive structure, like that of
Wallace’s (2022a) theory sectors, and (I2) agents should be able to create them in laboratories.
‘Isolated subsystems’ fulfill these roles in theories with nonlocal force laws, like Coulombic
electrostatics and Newtonian gravity. That bodes well for the prospects of applying this
functional analysis to ‘isolated subsystems’ in nonrelativistic quantum mechanics.

However, there is a fly in the ointment: a theory like Newtonian gravity employs a
single dynamical rule, and orthodox non-relativistic quantum mechanics infamously has
two. According to orthodoxy, unitary dynamics describes self-evolution, projective dynamics
describes measurement, and never the twain shall meet. In contrast, a traditional selling
point of Everettian approaches is that they treat all dynamics as unitary. Thus, at first blush,
one might justifiably think that orthodoxy will frustrate attempts to define a theory sector,
while Everettian approaches will accommodate sectors similar to those in Newton’s theory.

In fact, we find that both of these impressions are false. Orthodoxy naturally accom-
modates two sorts of theory sector, one for each of its dynamical rules—and prospects for
Everettians getting away with just one sort of sector seem dim. On the orthodox approach,
one can helpfully use von Neumann’s measurement scheme to relegate projective dynamics
to macroscopic objects. Similarly, Everettians rely on projections to specify the sense in
which their macrostates—branches—are dynamically isolated. Thus, whether or not one is
an Everettian, we recommend adopting two separate sectors and, accordingly, two separate
notions of ‘isolation’ for non-relativistic quantum mechanics: one for microstates and one for
macrostates.

The notion of isolation for Everettian macrostates amounts to what Franklin (2024)
calls a ‘screening-off criterion’: namely, the emergence of a particular macrostate from a
microstate amounts to the approximate dynamical isolation of one branch from any other
branch. Macrostates include indicators of the outcomes of measuring quantum systems, such
as a sharp position state of a measuring device’s pointer—a ‘pointer state’, in Zurek’s (1981,
1982) popular terminology. In short, pointer states correspond to measurement outcomes, the
chance events that we care about. Thus, we use branching dynamics to fill in the recursion
link (I1) and specify the notion of isolation relevant to Everettian chance.

The control link (I2) guides the precise subsystem structure that branching dynamics
should instantiate. In particular, these dynamics pose two challenges to our empirical
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control of macroscopic subsystems. On the one hand, we have a repeatability problem:
system eigenstates may fail to strongly couple to pointer states, resulting in non-repeatable
measurements. On the other hand, we have a preferred basis problem: a non-probabilistic
rendering of system-environment interactions may fail to select well-localized pointer states,
resulting in macroscopic states of affairs that are highly nonclassical. The repeatability
problem is analogous to the case of the Newtonian who learns of Einstein’s elevator scenarios;
it gives us reason to generalize our macrostate sectors.

What about the preferred basis problem? Several authors use it to charge Everettians
who seek to derive chance values with circularity or incoherence (Baker 2007, Dawid and
Thébault 2015, Mandolesi 2019). For example, responding specifically to Wallace’s (2012)
decision-theoretic derivation, Mandolesi writes the following:

Without the Born rule, Wallace’s solution of the preferred basis problem does
not work as expected. Branches might be nothing like our world, lacking complex
structures or behaving erratically. This compromises the whole decision-theoretic
approach, which depends on narratives where agents exist, their actions have the
expected consequences, and rationality is possible. (2019, p. 49)

In response to such challenges, Franklin (2024, p. 299) aims to confirm the emergence of
classical worlds in Everettian quantum mechanics on the basis of phenomena that one can
derive from decoherence without reference to probabilities. Our strategy is slightly different.
We argue that the Everettians do not need probabilities to establish a robust sense in which
their worlds are isolated, even if those worlds end up being non-classical.

Note that the Everettian who allows for the theoretical possibility of deviant branches is
strongly analogous to the electrostatics theorist who adopts dynamics with linear boundary
conditions. The latter cannot use their weakened notion of ‘isolation’ to specify whether the
electric field vanishes at an isolated subsystem’s boundary, even though they could easily
check it empirically. Likewise, the Everettian cannot use our preferred notion of ‘isolation’
to guarantee that a branch is quasi-classical, even though they could easily observe it to
be. Quite plausibly, there is a difference in modality between these two setups. Constant
electric fields at system boundaries should be common, and non-classical macrostates should
be either impossible or rare enough to ignore. However, this difference does not change the
fact that both theorists fulfill our two thin functional criteria for isolated subsystems.

To build up to this point, we will start by illustrating how microstate and macrostate
sectors arise in a conservative approach to quantum mechanics; namely, the Schrödinger
picture augmented with von Neumann’s account of measurement. Then, we describe how
the repeatability problem motivates a generalization of both sectors that arises in quantum
measurement theory. Next, we review how Everettians revise macrostate sectors with the
branching dynamics of decoherence. Finally, we flesh out the argument sketched above, which
suggests that branching dynamics afford Everettians a compelling notion of isolation despite
the preferred basis problem.

5.1 Orthodoxy’s sectors for microstates and macrostates

We start with a conservative approach—namely, the Schrödinger picture as presented in
many textbooks on non-relativistic quantum mechanics, augmented with von Neumann’s
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account of measurement. Infamously, this picture posits two different dynamical rules: one
for a system’s self-evolution, and one for measurements of that system. This immediately
poses a challenge for applying Wallace’s notion of subsystem structure, which tacitly assumes
that a theory has just one fundamental dynamical rule. Our strategy is to propose a distinct
notion of sector for each rule, associating the former with microstates and the latter with
macrostates.

The kinematics of both sector types are the same, so we start there. On the Schrödinger
picture, one identifies the state of a system at a given time with a vector in a complex Hilbert
space. That state assigns values to observable properties via its projections P̂i onto certain
orthogonal subspaces of the Hilbert space—subspaces which can be equivalently described as
the spectra of Hermitian operators, in line with standard practice. However, there is some
arbitrariness regarding which properties we assign to which subspaces. Intuitively, if we act on
the Hilbert space’s vectors in a way that changes none of their relative lengths or angles, then
a difference in how they project onto subspaces should amount to a difference in our choice
of labels for those subspaces. Handily, unitary maps encode such transformations, making
them prime candidates for dynamical symmetries. In what follows, we take a transformation
by a unitary Û to map vectors Ψ to Ψ′ = ÛΨ and operators Â to Â′ = ÛÂÛ−1.

The Schrödinger equation specifies the dynamics of microstates. Anticipating our desire
to define a subsystem structure, let us define these dynamics on a system S, its environment
E, and a system SE containing both. We represent the state of SE at time t with a vector
Ψ(t) ∈ HSE, where HSE = HS ⊗ HE, the tensor product of Hilbert spaces describing the
degrees of freedom of the system and the environment, respectively. Ψ(t) must satisfy

i~∂tΨ(t) = ĤΨ(t), (11)

for some self-adjoint operator Ĥ, the Hamiltonian. The Hamiltonian defines a family of
unitary operators ÛĤ(t, t0) = e−iĤ(t−t0)/~, and

Ψ(t) = ÛĤ(t, t0)Ψ(t0) (12)

solves (11). Note, too, that a unitary transformation Û of the underlying Hilbert space
preserves the dynamical rule (11), in the following sense. Letting Ψ′(t0) = ÛΨ(t0) and
Ĥ ′ = ÛĤÛ−1,

Ψ′(t) = ÛĤ′(t, t0)Ψ
′(t0) (13)

is a solution of
i~∂tΨ′(t) = Ĥ ′Ψ′(t) (14)

corresponding to the old dynamics in our newly-labeled space. Hence, unitary operators
encode dynamical symmetries of the total system SE.7

Microstate dynamics and their symmetries behave well under a natural notion of restriction.
Whenever we can express the kinematics of a total system as a simple tensor product, we
can select any component in that product to recover a well-defined state that obeys the

7This is not to say that unitaries encode all dynamical symmetries! The time symmetry of Schrödinger
dynamics, for example, is best represented by an antiunitary operator (Sakurai and Napolitano, 2010, p. 291).
For the Born-rule derivations we consider, it suffices that every unitary map encodes a symmetry, but not
vice versa.
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same dynamical rule with the same symmetries. To illustrate, let us say that S and E are
kinematically separable at time t when the state of SE is separable in the usual sense; that
is,

Ψ(t) = ΨS(t)⊗ΨE(t). (15)

Similarly, let us say the dynamics are separable when the Hamiltonian is separable in the
usual sense, i.e.,

Ĥ = ĤS ⊗ ĤE. (16)

The separability of the Hamiltonian implies that the unitaries it generates are separable,
too. Thus, we can summarize the kinematic and dynamic separability of S and E with the
following equation:

ÛĤ(t, t0)Ψ(t0) = ÛĤS
(t, t0)ΨS(t0)⊗ ÛĤE

(t, t0)ΨE(t0). (17)

The first component of this tensor product is a solution of equation (11) defined on HS,
the Hilbert space of the subsystem S alone. Let us introduce the notation (·)|S to denote
restriction to the S component of a simple tensor product state—so, e.g., Ψ|S(t0) = ΨS(t0)
and Ĥ|S = ĤS. By the same reasoning as before, unitary maps ÛS on HS identify symmetries
of the restricted dynamics. We say that the restriction to S thus yields a new microstate
sector of the theory. Likewise, with light abuse of notation, we can specify extensions (·)|SE
of a microstate sector as a family of maps, each undoing the action of a given restriction from
SE to S or E.

What about measurement? Although many textbook expositions of the Schrödinger pic-
ture skip it, von Neumann’s account of measurement fruitfully allows us to relegate projection
dynamics to macroscopic objects. To illustrate the idea driving this account, consider a spin-1

2

system S shot through a (macroscopic) Stern–Gerlach measurement apparatus A measuring
spin in the z-direction. We idealize our model of A such that HA is two-dimensional, just like
HS. We suppose that SA is initially separable in the tensor-product sense described above.
Then, we describe the measurement with the action of a unitary map Û(α, t0) that satisfies

(a|↑〉+ b|↓〉) |A〉 Û(α,t0)−−−−→ a|↑〉|A↑〉+ b|↓〉|A↓〉, (18)

where |A↑〉 and |A↓〉 are orthogonal (macroscopic) pointer states representing localized spots
near the top and bottom of our observation screen, respectively. This particular Stern–Gerlach
measurement is destructive, but we can imagine a non-destructive version of the experiment
which prepares states a| ↑〉|A↑〉 by removing the top half of our screen. In this case, we
suppose S and A return to their separable microstate dynamics after time α. Von Neumann’s
own account simply generalizes process (18) to apply to systems with HS of arbitrary finite
dimension. Note well that (18) falls entirely within the purview of a microstate sector;
its dynamics can, in principle, be recovered by some Hamiltonian and equation (11). The
radical break occurs when we impose the projection postulate, which stipulates that once the
measurement is complete, precisely one element of the sum on the right-hand side of (18)
describes the new state of SA.

Let us introduce a bit of notation to more easily get a subsystem structure out of the
projection postulate. We use the time-indexed projection P̂i(α) = ÎS ⊗ |ψi〉〈ψi| to denote the
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projection of SA onto the ith pointer eigenstate of A at time α. The (unnormalized) state
after measurement is then given by

Ψ(α) = P̂i(α)Û(α, t0)Ψ(t0). (19)

These measurement dynamics straightforwardly preserve the unitary symmetries of mi-
crostates. For an arbitrary unitary transformation by Û , we have

Ψ′(α) := ÛΨ(α) = Û P̂i(α)Û(α, t0)Ψ(t0)

= Û P̂i(α)(Û−1Û)Û(α, t0)(Û
−1Û)Ψ(t0)

= P̂ ′i (α)Û ′(α, t0)Ψ
′(t0),

(20)

as expected.
We can also iterate non-destructive measurements in a chain. For example, say we

measure a new pointer observable at time β, perhaps with a different apparatus B, and
observe the outcome j. Recycling our notation for extensions and restrictions of microstates,
let Ψ|SAB(t0) = Ψ(t0)⊗ |B〉, and let P̂i|SAB = P̂i ⊗ ÎB. The evolution of the system is then
given by

Ψ(β) = P̂j(β)Û(β, α)P̂i|SAB(α)Û |SAB(α, t0)Ψ|SAB(t0). (21)

This iterative process points to the notion of a macrostate sector for the conservative approach.
Roughly, we take a macrostate sector to be a specification of a sequence of von Neumann

measurements finishing at times (α1, . . . , αn), yielding state evolution of the form (21), and
equipped with a notion of extension via concatenation and restriction to substrings—that is, a
contiguous sequence of characters from the original sequence without rearranging or changing
them. (Note that substrings are less general than subsequences, which can omit intermediate
elements of the substring.) So, for instance, for a sequence (α2, α3, α4), concatenations include
(α1, α2, α3, α4) and (α2, α3, α4, α5), and restrictions include (α2, α3). Let us suppose that
extension via concatenation is precisely the process of extending the initial sequence (19) to
the final sequence (21), albeit generalized to initial and final sequences of arbitrary finite
length. Likewise, let us take a restriction to a substring to be the dual operation undoing one
such extension. Note that the projection postulate requires us to consider only substrings and
not more general subsequences, as the ‘unused’ superposition terms in equation (18) need to
be dismissed to guarantee that the future dynamics work as expected. Crucially, restrictions
allow us to dismiss systems and apparatuses that are unused in the sector under consideration.
For example, suppose the non-destructive Stern–Gerlach measurement of (18) indeed yields
the state Ψ(α) = a| ↑〉|A↑〉 on SA. Then, letting Ψ|S(α) = a| ↑〉 and Ψ|S|SB(α) = a| ↑〉|B〉,
we have

Ψ|SB(β) = P̂j|SB(β)Û |SB(β, α)Ψ|S|SB(α), (22)

defining a macrostate sector for just apparatus B’s measurement of S. Thus, there is a sense
in which macrostate sectors robustly isolate systems in time: we are licensed to fully ignore
past measurements of an isolated system when we wish to measure it anew. Indeed, it is
straightforward to check that the extension (21) and the restriction (22) each retain unitary
maps as dynamical symmetries of the sort demonstrated by equation (20).
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It is instructive to look at a concrete example of a symmetry in a macrostate sector. Let
Ŝ ∈ U(2) be a unitary map that flips the labels of ‘up’ and ‘down’ spin-1

2
states,

a|↑〉+ b|↓〉 Ŝ−→ a|↓〉+ b|↑〉. (23)

Now, apply the unitary transformation Ŝ ⊗ ÎA to the dynamics described by equation (18):

(a|↓〉+ b|↑〉)|A〉 Û ′(α,t0)−−−−→ a|↓〉|A↑〉+ b|↑〉|A↓〉. (24)

In particular, the symmetry Ŝ⊗ ÎA maps the final state a|↑〉|A↑〉 to a|↓〉|A↑〉, and it similarly
maps b|↓〉|A↓〉 to b|↑〉|A↓〉. The underlying symmetry of the microstate carries over to the
macrostate. In other words, the arbitrariness in the labeling of ‘up’ and ‘down’ states of
S becomes a redundancy in descriptions of possible outcomes for SA. Symmetries in the
microstate sector of the apparatus A itself similarly induce symmetries in SA. For example,
ÎS ⊗ Ŝ applies the frame shift defined by (23) to the pointer states of the apparatus. So,
for example, the symmetry ÎS ⊗ Ŝ maps the final state a| ↑〉|A↑〉 to a| ↓〉|A↑〉. Now, note
that something interesting happens when the superposition weights a and b are equal. The
symmetry Ŝ ⊗ Ŝ maps the state a|↑〉|A↑〉 to b|↓〉|A↓〉—and so the two possible final states
are symmetric to each other.

Note well that, as of yet, we have not introduced any chance or probability rule into the
conservative approach. The Born rule figures nowhere in our definitions of microstate and
macrostate sectors. Moreover, the reader in the know will be keenly aware that the symmetries
outlined in the preceding paragraph suffice to derive that rule rather than stipulate it.

In sum, the conservative approach to non-relativistic quantum mechanics has two separate
but compatible subsystem structures, one for microstates and the other for macrostates.
Macrostate sectors are specified by a sequence of microstate sectors, each of which might
contain further microstate sectors as subsystems. In turn, the conservative approach yields
candidates for two notions of isolation. We say that a subsystem is an isolated microstate if
it is a microstate sector, and likewise for isolated macrostates.

How defensible are these conservative notions of isolation? In the introduction to this
section, we flagged two problems: one about repeatability and one about preferred bases.
Putting the latter on hold, we turn our attention to the former.

The repeatability problem refers to how our sectors require repeated measurements of the
same sort to leave the system’s microstate unchanged. For example, if one records the pointer
state |A↑〉 in (18), the system S is left in the state | ↑〉; thus, another spin-z measurement
performed immediately after the first should not change the state of the system in any way.
Achieving perfect repeatability in practice is challenging, if not impossible, due to unavoidable
environmental noise (Busch et al. 1995, §II.2.3). The difficulty is not so very different from the
challenge of eliminating external gravitational fields to study Newtonian gravity. Fortunately,
quantum measurement theory offers a revision of our dynamics that relaxes the repeatability
requirement, which we cover next.

5.2 Revising the sectors to accommodate non-repeatability

In the previous subsection, we flagged that the challenge of achieving repeatable measurements
renders conservative sectors too restrictive to serve as a happy characterization of isolated
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subsystems. Now, we address this problem by introducing a natural relaxation of one of the
assumptions in a von Neumann measurement process: namely, the notion that pointer states
need not fully separate a system’s eigenstates.

Recall our simple example of a von Neumann measurement of a spin-1
2
system, (18). Let

us now suppose that the unitary dynamics couples the definite spin states to macroscopic
apparatus states A+ and A− that are not quite orthogonal:

(a|↑〉+ b|↓〉) |A〉 Û(α,t0)−−−−→ a|↑〉|A+〉+ b|↓〉|A−〉, (25)

where, for example, 〈A±|A↑|A±〉 6= 0, 1. Following Busch et al. (1995, §I.1.2), one nice way to
motivate this generalization is to imagine that HA encodes the spatial degrees of freedom of
the spinning electron, letting A+ and A− refer to center-of-mass wavepackets that are not
fully separated or localized. Then, a projection onto A↑ or A↓ represents a localization of
one of these wavepackets via an interaction with the observation screen. In particular, the
non-destructive Stern–Gerlach measurement described in the previous section would now
pick out the final state

Ψ(α) = (a〈A↑|A+〉|↑〉+ b〈A↑|A−〉|↓〉) |A↑〉, (26)

which, in general, is no longer a simple tensor product of states in S and A.
The generalization poses an immediate issue for conservative sectors: the final system

and apparatus states can no longer be expressed as a simple tensor product. Recall that we
relied on such separability to justify the isolation of a macrostate in time. In other words,
separability gave us the license to ignore a system’s past measurement interactions when
considering new ones. Failure to recover this feature would certainly threaten the tenability
of quantum mechanics as an empirical theory.

Fortunately, a minor modification will suffice. Supposing the dynamics of S and A remain
separable in the conservative sense, we can describe S as evolving on its own by using the
partial trace operation to suppress the apparatus’ degrees of freedom:

ρ̂S(α) = TrA (|Ψ(α)〉〈Ψ(α)|) . (27)

The relevant generalization of the conservative approach’s Schrödinger dynamics is given by
the standard Liouville–von Neumann equation,

i~∂tρ̂S =
[
ĤS, ρ̂S

]
, (28)

which recovers (11) in the special case that ρ̂S is pure. Thus, so long as the total system
follows the separable Hamiltonian Ĥ = ĤS ⊗ ĤA, we can take S to identify a microstate
sector of the theory. The system S, after all, now behaves precisely as if the system A were
not present. However, it is no longer the case that specifying states on S and A suffices
to uniquely specify a state on SA that restricts to them. We have to keep in mind that
to piece together the total state, we need more information than just the kinematics and
dynamics of the subsystems on their own. One can revise macrostate sectors to accommodate
these generalized microstates by rewriting the equations (19) through (22) with the density
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operator formalism for states. So, for example, the macrostate dynamics of the generalized
measurement in (25) are as follows:

(a|↑〉+ b|↓〉) |A〉〈A| (a∗〈↑ |+ b∗〈↓ |) Û(α,t0)−−−−→ |a|2|↑〉|A+〉〈A+|〈↑ |+ |b|2|↓〉|A−〉〈A−|〈↓ |. (29)

For ease of exposition, we avoid unpacking additional examples here.
Instead, we return to the second challenge to conservative theory sectors: the problem

of the preferred basis. Loosely following Schlosshauer (2007), we split the problem into two
parts. First, one might wonder whether von Neumann’s scheme suffices to specify a unique
basis along which measurements occur. Second, one might be concerned that the scheme
fails to rule out non-classical bases. We address each in turn.

Regarding the first problem, note that we simply stipulate the pointer basis of the
apparatus in (18). As Zurek (1981) notes, this choice of basis is not strictly required by the
unitary dynamics of the measurement. This issue is most clearly visible in the symmetrical
case discussed above, where a = b = 1/

√
2. In that case, we could equally well rewrite the

measurement (18) as follows:

1√
2

(|↑〉+ |↓〉) |A〉 Û(α,t0)−−−−→ 1√
2

(|↑x〉|A↑x〉+ |↓x〉|A↓x〉) , (30)

where the z-spin system and apparatus states {↑, ↓, A↑, A↓} are related to their x-spin
counterparts (denoted here with x subscripts) in the expected way. Without the stipulation
that dynamical projection onto a state in the {A↑, A↓} basis follows the unitary process
(18), this latter process seems to equally well describe a z-spin measurement and an x-spin
measurement.

Schlosshauer (2007, p. 54) takes this argument to show that the von Neumann scheme
cannot, on its own, motivate a specific pointer basis for Everettians, who deny the existence
of dynamical collapse. In our view, this conclusion is somewhat overstated. As Schlosshauer
(2007, §2.15) also notes, due to Schmidt’s (1907) theorem, any decomposition

|Ψ〉 =
∑
i

ci|Si〉|Ai〉 (31)

is unique provided that the |Ai〉 are orthogonal, each ci is real,
∑

i c
2
i = 1, and all ci are

different from each other. Note that only this last condition is violated in the symmetric case
considered above. If the initial state of S can be any superposition of z-spin eigenstates, then
the pointer basis of the von Neumann measurement (18) will be unique for a host of these
initial states. That fact implies, in turn, that any choice of pointer basis for the measurement
dynamics other than {A↑, A↓} would have to vary based on the initial state—an undesirable
feature if we think that the dynamics themselves are responsible for the pointer basis. All
of which is to say: contra Schlosshauer, Everettians can use the von Neumann scheme to
prescribe a specific basis for branching macrostates, even if they find the explanatory force of
its prescription lacking.

That brings us to the second preferred basis problem: the fact that the von Neumann
scheme accommodates any unitary dynamics of the form (18)—and so, in particular, it
accommodates wildly non-classical apparatus states, which might involve macroscopic su-
perpositions of pointer positions. The decoherence program offers a revision of macrostate
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sectors that aims to address this problematic allowance of macroscopic interference. However,
the solution to this problem and the condition under which macrostates are ‘isolated’ can
fruitfully come apart. In the next subsection, we describe how.

5.3 Revising the sectors to motivate a preferred basis

One might hope that Everettians could provide tools to remedy the ugliness of requiring two
notions of ‘theory sector’ in the conservative approach. After all, Everettians use decoherence
to remove dynamical collapse and make do with only unitary evolution. However, they cannot
escape the need to use different sectors for microstates and macrostates. The Everettian
replaces the dynamical collapse of conservative macrostates with the dynamical ‘isolation’ of
branches—where the relevant notion of ‘isolation’ is different from that for microstates.

As flagged in the previous subsection, in addition to replacing dynamical collapse with
non-interacting branches, Everettians also appeal to decoherence to address an explanatory
gap left by von Neumann’s scheme: namely, its accommodation of unobserved macroscopic
interference. However, we argue that this explanatory story is separable from the one that
explains how branches become isolated—and that the latter suffices to recover a useful and
robust notion of ‘isolated subsystem’ according to our functional criteria.

To build up to this point, recall that the standard story of how decoherence gives rise
to branching begins with a single microstate sector: we let Ψ(t0) be the initial state of SE,
a subsystem and its environment. Now, however, we stipulate that the dynamics must be
modeled with a three-part Hamiltonian,

Ĥ = ĤS + Ĥint + ĤE, (32)

where ĤS and ĤE are the self-Hamiltonians of the system S and the environment E (respec-
tively), and Ĥint describes the interaction of the two. This interaction couples the eigenstates
of some observable on S with a corresponding set of approximately orthogonal—and thereby,
roughly, ‘independent’—environment states. Thus, the environment states play an analogous
role to the eigenstates of the pointer observable in the von Neumann measurement scheme.
During a branching event, Ĥint dominates, very quickly extending any coherence in S over the
designated eigenstates to coherence over the environment states. Then the self-Hamiltonians
take over again, preserving this ‘isolation’ of each coupled system and environment state for
all future times.

This story aims to address the von Neumann scheme’s problematic permissiveness by
leveraging the supposed naturalness of the system-environment interaction. As such, much
hinges on motivating the naturalness of desirable interaction Hamiltonians. Schlosshauer
(2007) illustrates the basic idea with a toy spin-1

2
system. Assuming that the system and

environment are initially separable, we have (with slight abuse of notation)

(a|↑〉+ b|↓〉) |E〉 Ĥint−−→ a|↑〉|E↑〉+ b|↓〉|E↓〉, (33)

where 〈E↑|E↓〉 ≈ 0. We model the environment as a collection of systems not dissimilar to
our system of interest—for example, in this case, a collection of N additional spin systems.
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We take Ĥint to couple the system and the environmental spins in the following way:

Ĥint =
1

2
σ̂z ⊗

N∑
i=1

giσ̂
(i)
z , (34)

where σ̂z and σ̂
(i)
z are the Pauli z-spin operators of the system and the ith environmental spin,

respectively, and gi is the strength of their coupling. Now, we no longer simply stipulate that
the measurement-like evolution of (33) holds between a system and an apparatus. Rather,
we derive this evolution from the interactions of many systems of the same kind. Moreover,
if (34) describes typical interactions of spin degrees of freedom, including those present in
measurement devices, then it will be difficult to couple spin superpositions to pointer states of
those devices. To summarize this idea, we can decompose S into a system S ′ and a measuring
apparatus A, and say that we expect the following dynamics:

(a|↑〉+ b|↓〉) |A〉|E〉 Ĥint−−→ a|↑〉|A↑〉|E↑〉+ b|↓〉|A↓〉|E↓〉. (35)

In other words, we expect that apparatus states encoding definite pointer readings will couple
to system states preferred by decoherence. As a bonus, we recover quantum measurement
theory’s generalization when the system’s spin states are not the ones favored by decoherence.
Recall that in the previous subsection, we took the system’s spin to couple with its center of
mass, and we took A↑ and A↓ to be localized center-of-mass states. Now, we might consider
an environment E of air particles; when these air particles scatter off heavy objects, they
strongly couple to their localized center-of-mass wavefunctions. So, if the center of mass is
not well localized before reaching the screen, we expect evolution roughly like

(a|↑〉+ b|↓〉) |A〉|E〉 Ĥint−−→ (c|↑〉+ d|↓〉)|A↑〉|E↑〉+ (e|↑〉+ f |↓〉)|A↓〉|E↓〉. (36)

Here, the coupling of localized states of the system’s center of mass and the apparatus’ pointer
states with approximately orthogonal environment states explains why we observe localized
measurement records. However, in this case, the system’s observables of interest—the spin
observables—fail to couple strongly to the localized pointer states.

With this picture in hand, we can sketch how decoherence gives rise to ‘branching’
macrostates. Environmental interactions dynamically prefer a given pointer basis, supressing
interference among the terms of that basis. Thus, an agent who observes a given pointer state
is justified as ‘forgetting’ many details about the microstate: they can ignore all branches
other than the one containing their pointer state, as well as any minuscule interactions
between their branch and others. The key difference with conservatism is that the Everettian
forgoes requiring dynamical projection to justify the agent’s behavior. Instead, they require
that the ‘unused’ branches hang around, but in such a way that they barely interfere with
each other’s dynamics.

To spell that out, let |Eα
i 〉 ∈ HSE denote the environmental state coupled to the ith

pointer observable at time α, and let P̂i(α) = ÎS ⊗ P̂ [|Eα
i 〉]. Then,

Ψα
i = P̂i(α)Û(α, t0)Ψ(t0) (37)
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defines the state of the ith branch of SE at time α. Now, suppose that another branching
event occurs at a later time β > α. Let Ψαβ

ij denote the branch state recovering pointer states
i at α and j at β, respectively; that is,

Ψαβ
ij = P̂j(β)Û(β, α)P̂i(α)Û(α, t0)Ψ(t0). (38)

The ‘isolation’ of branch states refers to the requirement that each branch state nearly
determines its own future trajectory. If we idealize, we can take this determination to be
complete. This move yields the branching criterion, which states that only one prior branch
can contribute to the state of any future branch; i.e.,

Ψαβ
ij ,Ψ

αβ
i′j 6= 0̄ ⇐⇒ i = i′, (39)

where 0̄ stands for the zero vector in HSE. Strictly satisfying (39) requires idealizing the
environmental record states to be exactly orthogonal—bringing them much closer to playing
the role of pointer states in a von Neumann measurement.

As such, Everettians recover something very close to conservative macrostates as an
emergent feature of microstate dynamics. Note, however, that it is at best unclear how to
build Everettian branches into microstate sectors: states satisfying the branching criterion will
not, in general, be simple tensor products of states corresponding to the different branches.
They do not quite mesh with conservative macrostate sectors, either. As such, we use
the terminology ‘branch sector’ to denote the particular subsystem structure of Everettian
branches.

A branch sector is a specification of a sequence of branching events that end at times
(α1, . . . , αn), resulting in state evolution of the form (38), and equipped with notions of
extension and restriction between sequences and their subsequences. Note that the dynamics
of branch sectors, (38), have a similar form as the dynamics of conservative macrostate
sectors, (21)—both are iterated sequences of unitary and projection operators indexed by the
sequence of times αi. The key structural difference afforded by the branch sectors is the more
liberal notion of extension and restriction—to subsequences, rather than substrings. Basically,
since the branching criterion ensures future measurements are (to a very good approximation)
unaffected by past ones, the observer is allowed to forget any given measurement in a sequence.

In sum, Everettians do not change microstates; they can stick with the conservative ones,
or they can use the generalization from quantum measurement theory.8 Their innovation lies
in replacing conservative macrostates with branches. We use branch sectors to characterize
the subsystem structure imposed by the branching criterion, which differs only subtly from
that of a conservative macrostate sector.

This much suffices to define a robust notion of ‘isolation’ of branches: to wit, we can say
that a branch is isolated precisely when it can be described as a branch sector. Note, however,
that the branching criterion imposes no particular form on the total system’s Hamiltonian,
leaving the problem of the preferred basis apparently only half solved. We claim that the
thin notion of isolation sketched in this subsection is independent of the rest of the solution.
In the next subsection, we argue for that claim.

8If the Everettian does choose to generalize their microstates, they will also have to rewrite branch sectors
using the density matrix formalism analogously to equation (29). See Chua and Chen (2025) for more
illustrations of this type of re-expression.
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5.4 Isolation does not require a preferred basis

As flagged in the previous subsection, the decoherence program’s remedy to the von Neumann
scheme’s permisiveness hinges on naturalistically motivating interaction dynamics that select
appropriate pointer states, like spin eigenstates or well-localized wavepackets. In particular,
Dowker and Kent (1996, §3.2) illustrate that the branching criterion on its own allows
for desirable pointer states in one branch and superpositions of those states in another.
Following Gell-Mann and Hartle (1997, 1993, 2007), Everettians like Wallace (2012) opt
to treat the branching criterion as a necessary, but not sufficient, condition for (perhaps
idealized) descriptions of quasi-classical histories. Gell-Mann and Hartle (1995) go further,
characterizing quasi-classicality with a generalized measure of entropy for coarse-grained
histories, which involves a probabilistic weighting of branches. In contrast, Wallace stops
at the branching criterion, suggesting that quasi-classicality is a fuzzy notion that does not
need a formal characterization (2012, p. 99).

At first blush, it would seem that an Everettian like Wallace who seeks a derivation
of a quantum chance rule cannot help themselves to Gell-Mann and Hartle’s probabilistic
explanation of quasi-classicality. If they did, the thought goes, they would be caught in the
sort of circularity that troubles Mandolesi (2019). Note, however, that once one has our
thin characterization of ‘isolated subsystems’ on the menu, nothing stops an Everettian from
having their cake and eating it. The branching criterion, on its own, fulfills the functional
criteria (I1) and (I2): the branches it defines instantiate a recursive subsystem structure, and
we can create at least some of them in laboratories via normal measurement processes. That
is enough to make good sense of branches as ‘isolated subsystems’, which in turn is enough
to fill in the certainty link (C4), which in turn is enough to derive chance values. Then, of
course, the Everettian is free to use those chance values to recover Gell-Mann and Hartle’s
explanation of why we never observe the non-classical macrostates allowed by the branching
criterion per se.

In sum, Everettians can use the machinery of decoherence to recover a notion of isolation
that fruitfully decouples from their explanation of the suppression of macroscopic interference.
Specifically, the branching criterion makes good sense of isolated macrosates that might
be quasiclassical or not, just as a generalized Coulombic electrostatics makes good sense
of isolated subsystems that might have vanishing electric fields at their boundaries or not.
As flagged in the introduction to this section, there might be a modal difference between
these scenarios: intuitively, non-zero electric fields are possible but non-classical branches
are impossible, or nearly so. However, this difference does not interfere with (I1) or (I2). To
fulfill the control link (I2), all that matters is that some isolated subsystem can be studied,
so that the sense in which it is similar to any other isolated subsystem can be projected
outward to them. Moreover, the Everettian averse to brute chances does not need to sit with
the possibility of non-classical branches for long: once chances are derived, they can justify
the typicality of classical branches in the usual way.

However, the Everettian is not fully off the hook. While the possibility that branches
might be non-classical does not trouble their isolation, another possibility might: namely,
that decoherence spreads in space as well as time. One might reasonably question whether
branching is adequately modeled as occurring everywhere in space simultaneously. This
modeling assumption is tacit in the dynamics (34), since the coupling constants gi are not
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functions of space or time; coupling occurs immediately at a given strength, regardless of how
distant the ith spin system is from the system of interest. This modeling assumption persists
in most applications of decoherence, including a de-idealization of (34) that Cucchietti et al.
(2005) propose applying to nuclear magnetic resonance. In contrast, Wallace (2012, §8.5–8.6)
sketches an explicitly local conception of branching, where decoherence spreads in space and
time. As a first pass at unpacking this conception, we might de-idealize the decoherence
interaction in (35) to occur in two steps, as follows:

(a|↑〉+ b|↓〉) |A〉|E〉 Ĥ1−→ a|↑〉|A〉|E↑〉+ b|↓〉|A〉|E↓〉
Ĥ2−→ a|↑〉|A↑〉|E↑〉+ b|↓〉|A↓〉|E↓〉.

(40)

Here, Ĥ1 describes the decoherence of the spin system S with its environment E, after which
Ĥ2 decoheres the composite system SE with the pointer states of the apparatus A. This
establishes how decoherence might spread over time; if we have reason to believe that S, E,
and A are each well-localized, it might also describe a sense in which decoherence spreads
throughout space. Blackshaw et al. (2024) create a toy model that runs with this idea,
de-idealizing the dynamics of (34) to demonstrate how decoherence spreading might work for
a collection of spin systems.

Whether such de-idealizations will make an empirical difference to future physics is
an interesting open question. One can imagine a robust model of spreading decoherence
underpinning a covariant formulation of measurement histories. Such an approach would
avoid adopting a preferred frame’s time coordinate, as we tacitly do in our descriptions of both
conservative and Everettian macrostates. However, it seems likely that such developments
would take us beyond the purview of non-relativistic quantum mechanics. So, as far as the
Everettian dealing with the non-relativistic domain is concerned, branch sectors provide
a thin, robust, and stable characterization of the sense in which macrostates are isolated
subsystems. This isolation suffices to fill in quantum chances’ link with certainty, and so we
take it to suffice to derive the values of those chances.

At this juncture, it is useful to consider a concern of a more metaphysical stripe. The
staunch metaphysician might well demand that we derive the reference class defining the
chance of an event from first principles. That metaphysician might well try to do so by
embracing the truth of Everettian quantum theory and seeking a derivation of the Born
rule. We do not take the subsystem recursivity of branches, on its own, to motivate the
metaphysician’s project. We do, however, take it to motivate the certainty link, if only
provisionally, by exemplifying the Everettian theory’s good behavior when it comes to
testability. The theory acts as we ideally want testable theories to act—and since it is a
statistical theory, it thereby offers a paragon of a well-specified reference class. Thus, the
Everettian metaphysician using a separability principle is at least no worse off than any other
scientific realist who defeasibly takes a well-tested physical theory as their starting point.

With that said, we turn to how our functional analysis of isolation with theory sectors
begets a thin, core approach to deriving Everettian chances from symmetry. We show how
this core approach helps ease disagreements among Everettians and defuse salient criticisms
from non-Everettians.
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6 Sectors unite and strengthen Born rule derivations
The three uncertainty-based approaches to quantum probability we consider here—the
Deutsch–Wallace theorem (Deutsch 1999, Wallace 2010, 2012), Sebens and Carroll’s (2018)
derivation, and McQueen and Vaidman’s (2019) modification of the latter—all claim that
their derivations have something to do with symmetry. Wallace writes that his proof is
driven by the fact that ‘in Everettian quantum mechanics not just the laws, but the actual
microstate of the system are invariant under a symmetry transformation, as could not be
the case if only one outcome was to occur’ (2012, p. 151). Sebens and Carroll do not
explicitly distinguish between one- and many-outcome symmetries, but still require that
transformations of subsystems are ‘symmetries of the dynamical laws’, i.e., symmetries of
unitary evolution maps (2018, p. 48). Similarly, McQueen and Vaidman (2019) base their
derivation explicitly on systems with rotational symmetry.

None of these authors attend to the difference between microstate and macrostate sym-
metries illustrated in the previous section. This elision might appear benign at first glance,
as unitary transformation maps instantiate both sorts of symmetries. However, we take
the elision to create avoidable conflict among Everettians and to obscure the core of the
chance derivation. As such, our strategy in the present section is to illustrate a core approach
to deriving Everettian chances with macrostate symmetries, and then illustrate how this
approach resolves these tensions in the literature.

The core approach is to suppose that an assignment of chance values is an intrinsic
property of a macrostate with respect to its unitary symmetries, in the sense specified by
macrostates’ subsystem structure (I1). As noted in Section 4, either of the separability
conditions we use to fill in chance’s certainty link (C4) then implies the following intrinsicity
condition:

ch (Xi | S) = ch (X ′i | S ′) , (41)

where a unitary transformation maps the macrostate S = {X1, X2} to S ′ = {X ′1, X ′2}.
Equation (41) then drives the derivation of specific chance values. Note that this approach
applies equally well to both conservative and Everettian approaches to quantum mechanics;
in the latter case, we simply specify that macrostates are given by branch sectors.

Let us illustrate how the core approach works for an equal-weight, two-outcome case,
returning to the symmetry we illustrated for conservative macrostate sectors in the previous
section. There, we applied a symmetry map Ŝ ∈ U(2) that flips the labels of ‘up’ and ‘down’
spin-1

2
states, given by equation (23). This time, let’s include an evironment E interacting

with the spin system S before the latter interacts with our Stern–Gerlach device A:

(a|↑〉+ b|↓〉) |A〉|E〉 Û(α,t0)−−−−→ a|↑〉|A↑〉|E↑〉+ b|↓〉|A↓〉|E↓〉. (42)

For any two states |E↑〉 and |E↓〉, there exists a unitary map ŜE that permutes them. We
apply Ŝ ⊗ Ŝ ⊗ ŜE to obtain:

(a|↓〉+ b|↑〉)|A〉 Û ′(α,t0)−−−−→ a|↓〉|A↓〉|E↓〉+ b|↑〉|A↑〉|E↑〉. (43)

Let equations (42) and (43) specify macrostate sectors S = {X1, X2} and S ′ = {X ′1, X ′2}.
Note that each contains two sub-macrostates, one corresponding to each summand of the
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right-hand-side superposition. In the case that a = b = 1/
√

2, the map Ŝ ⊗ Ŝ ⊗ ŜE leaves
the state of S unchanged, so S = S ′. Moreover, it identifies two pairs of sub-macrostates:
X1 = X ′2 and X2 = X ′1. By the intrinsicity condition (41), that means S should assign its
two sub-macrostates equal chance values:

ch (X1 | S) = ch (X ′1 | S ′) = ch (X2 | S ′) = ch (X2 | S) . (44)

The rules of probability then require that each of these chance values is one-half. To make
this story Everett-specific, one stipulates that equations (42) and (43) are descriptions of
branching events, rather than von Nuemann measurements soon to be followed by a dynamical
projection.

Each of the three symmetry-based approaches described above deviates only slightly from
this core approach. In the following subsections, we illustrate how each approach deviates in
turn, and we argue that returning to the core unites them while addressing approach-specific
critiques from Everettians and non-Everettians alike. For each approach, we explicitly discuss
only a finite-outcome, equal-weight case like the one above; such cases suffice to exhibit the
key conceptual differences, and the remainder of the proofs are mostly mechanical.

6.1 Wallace’s two-branch, equal-weight case

In short, Wallace’s approach to deriving Everettian chances deviates from the core approach
by requiring that sub-macrostates be identical, rather than merely symmetric. Among other
things, this approach helps Wallace differentiate chance in a many-worlds theory from chance
in a single-world theory: the latter could never satisfy the identity requirement, the thought
goes, as different outcomes seem to correspond to different states by fiat. However, we
argue that this move ends up requiring dynamics that threaten the subsystem recursivity of
Everettian macrostates.

To show how, we consider the two-branch, equal-weight case in Wallace’s (2012) decision-
theoretic Everettian derivation of the Born rule. The full derivation utilizes a total of ten
axioms: four ‘richness’ axioms that, roughly, enrich the state of a branch sector to closely
mirror a Bayesian decision problem; and six ‘rationality’ axioms that, roughly, operationalize
the role played by symmetries in the core approach. With this picture, Wallace refers to
unitary dynamics as ‘acts’ (denoted U) available to agents in certain states, and he uses the
term ‘reward’ to refer to sets of macrostates that yield the same payout for an agent.

Two of the richness axioms (‘reward availability’ and ‘branching availability’) roughly
ensure that branches occur with all possible weights for all possible outcomes; we will omit
these from our exposition, as we assume the possibility of the equal-weight, two-branch case
by fiat. An additional two axioms (‘problem continuity’ and ‘solution continuity’) ensure the
state space is rich enough to allow well-defined limiting cases. These axioms are relevant to
the recovery of arbitrary real-valued chances, but they do not feature in the equal-weight
case, so we will ignore them as well. That leaves us with the following six axioms (Wallace
2012, §5.3, 5.4):

Erasure. Given a pair of states ψ ∈ E and φ ∈ F , where E and F are macrostates
in the same reward, there is an act U available at E and an act V available at F
such that Uψ = V φ.
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Ordering. The preference relation �ψ is a total ordering.

Diachronic consistency. If U is available at ψ, and (for each i) if in the ith
branch after U is performed there are acts Vi, V ′i available, and (again for each
i) if the agent’s future self in the ith branch will prefer Vi to V ′i , then the agent
prefers performing U followed by the Vis to performing U followed by the V ′i s.

Microstate indifference. An agent doesn’t care what the microstate is provided
it’s within a particular macrostate.

Branching indifference. An agent doesn’t care about branching per se: if a
certain operation leaves his future selves in N different macrostates but doesn’t
change any of their rewards, he is indifferent as to whether or not the operation
is performed.

State supervenience. An agent’s preferences between acts depend only on
what physical state they actually leave his branch in: that is, if Uψ = U ′ψ′ and
V ψ = V ′ψ′, then an agent who prefers U to V given that the initial state is ψ
should also prefer U ′ to V ′ given that the initial state is ψ′.

Wallace appeals to each of these axioms in his derivation of the two-branch, equal-weight
case:

For a simple case, suppose we have two acts (A and B, say): in each, a system
is prepared in a linear superposition α|+〉 + β|−〉 and then measured in the
{|+〉, |−〉} basis. On act A, a reward is then given if the result is ‘+’; on B, the
same reward is given on instead ‘−’. The resultant states are

A: α|+〉 ⊗ |reward〉+ β|−〉 ⊗ |no reward〉;
B: α|+〉 ⊗ |no reward〉+ β|−〉 ⊗ |reward〉.

(45)

By erasure, there will exist acts available to the agent’s future self in the reward
branch (for both A and B) which erase the result of what was measured, leaving
only the reward. Performing these transformations, and the equivalent erasures
in the no-reward branch, leaves

A-plus-erasure: α|0〉 ⊗ |reward〉+ β|0′〉 ⊗ |no reward〉;
B-plus-erasure: β|0〉 ⊗ |reward〉+ α|0′〉 ⊗ |no reward〉.

(46)

Now, by branching indifference, the agent’s future selves are indifferent to
whether this erasure is or is not performed. (Branching indifference is needed be-
cause we have no guarantee that erasures are nonbranching; if we did, microstate
indifference would suffice.) So by diachronic consistency, the original agent
is indifferent between A and A-plus-erasure, and between B and B-plus-erasure.

But now: if α = β, then A-plus-erasure and B-plus-erasure leave the system in
the same quantum state. So by state supervenience, the agent is indifferent
between them. Since we know from ordering that preferences are transitive, the
agent must also be indifferent between A and B. (2012, pp. 172–173, emphasis
added)
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To start, note that branching indifference appears in this derivation with something of
an apology. It is needed to deal with erasures, which are in turn needed to ensure that the
final states in the two cases are identical (and not merely symmetric) as required by state
supervenience. If we weaken state supervenience to track symmetry rather than identity, then
erasure, diachronic consistency, and branching indifference become unnecessary: microstate
indifference would suffice. That makes good sense, as microstate indifference does the work
of picking out branch sectors, Everettian macrostates, as the isolated subsystems that matter
for chances. Thus, removing the identity requirement from Wallace’s argument essentially
returns us to the core approach, albeit with an explicitly epistemic way of deriving the rules
of probability built in.

Moreover, on closer inspection, the availability of erasure acts seems hard to justify.
Erasures are meant to reflect the fact that a system’s microstate makes no difference to an
agent as long as the agent gets the same reward. However, erasures do not enter the model
as features of an agent’s ignorance, but rather as dynamical acts that the agent can perform.
Wallace flags this tension in his motivation of erasure:

Erasure is slightly more complicated. It effectively guarantees that an agent
can just forget any facts about his situation that don’t concern things he cares
about (i.e. by definition: that don’t concern where in the reward space he is).
In thinking about it, it helps to assume that any reward space has an ‘erasure
subspace’ available (whose states correspond to the agent throwing the preparation
system away after receiving the payoff but without recording the actual result of
the measurement, say). An ‘erasure act’ is then an act which takes the quantum
state of the agent’s branch into the erasure subspace; the agent is (by construction)
indifferent to performing any erasure act, and since he lacks the fine control to
know which act he is performing, all erasures should be counted as available if
any are. (2012, pp. 167)

The scare quotes around ‘erasure subspace’ seem to convey the difficulty of physically
motivating the reification of an agent’s ignorance of the microstate into a feature of the space
of dynamical possibilities. Likewise, Wallace’s description of agents ‘throwing the preparation
system away’ seems only tenuously related to the acts defined in the erasure axiom, which
requires two agents to map their full microstates—including the preparation system—to one
and the same state.

Even worse, as Mandolesi (2019, p. 42) argues, erasures stand in strong tension with the
linearity of unitary dynamics. His argument goes as follows: let ψ ∈M and φ ∈ N , where
M and N are orthogonal macrostates in the same reward. By the erasure axiom, there are
acts U and V available at M and N such that Uψ = V φ. Now, note that M and N are
sub-macrostates of M ∨ N . In the superposition microstate ψ + φ, it seems like the two
versions of an agent on branches M and N should be able to perform U and V at the same
time, yielding an act W = U ∨ V available at M ∨N . However, that cannot be the case. If
it were, then we would have Wψ = Wφ, and so W would fail to be unitary.

Our functional analysis of isolation enables us to sharpen Mandelosi’s point: some
erasures in macrostates lack natural extensions to macrostates that contain them, threatening
subsystem recursivity. Recursivity is not broken outright, as U and V might each have
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different extensions to M ∨N if we require the two versions of the branching agent to perform
their acts at different times. However, this requirement seems hard to motivate.

We wager that retaining a natural subsystem structure for branches is more important
than winning a victory for many worlds over one. Thus, Wallace seems better off dropping
the identity requirement, forgoing erasures, and adopting (an appropriately epistemicized
version of) the core approach.

As a bonus, the core approach eschews the need for the diachronic consistency axiom.
Motivated by duplication thought experiments, Sebens and Carroll (2018) reject that axiom.
We will not rehearse these here; instead, we simply note that moving to the core would allow
Wallace to accommodate Sebens and Carroll’s criticism.

6.2 Sebens and Carroll’s two-branch, equal-weight case

Sebens and Carroll’s (2018) approach proposes an epistemic separability principle specific to
multiverse theories, which they call ESP. This general principle differs from our ES chiefly
by building in a notion of self-locating uncertainty within a multiverse:

ESP: Suppose that the universe U contains within it a set of subsystems S such that
every agent in an internally qualitatively identical state to agent A is located in some
subsystem that is an element of S. The probability that A ought to assign to being
located in a particular subsystem X ∈ S given that they are in U is identical in any
possible universe which also contains subsystems S in the same exact states (and does
not contain any copies of the agent in an internally qualitatively identical state that
are not located in S):

c (X | U) = c (X | S) . (47)

Here, c (X | U) means the self-locating probability of being in subsystem X given that one
inhabits the universe U . Note that the terminology of S being a ‘set of subsystems’ might
mislead one in identifying the role separability plays; to avoid confusion, one can think of S
as a state description common to a set of agents in a multiverse, one that marks all such
agents as ‘internally qualitatively identical’. It is physical information in U above and beyond
S that is meant to be redundant, as far as probability is concerned. As such, S in the above
definition roughly recovers the sense in which we say S is ‘isolated subsystem’ in OS and ES.
As Sebens and Carroll state, the ‘gist’ of ESP is this: ‘The credence one should assign to
being any one of several observers having identical experiences is independent of the state of
the environment’ (p. 40).

Helpfully for our purposes, Sebens and Carroll continue to sharpen the sense in which
their subsystems S are isolated beyond the statement of ESP itself. After introducing the
principle, they offer the following clarification:

The essential idea is that a subsystem is a part of the larger system that can
be considered as a physical system in its own right. Slightly more formally, we
imagine that the overall state of a system can be decomposed into the states of
various subsystems, so that two constraints are satisfied: (i) the state of each
subsystem, perhaps with some additional information about how the subsystems
are connected, can be used to uniquely reconstruct the original state; and (ii)
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the information contained within each subsystem’s state is enough to specify
its immediate dynamical evolution, as long as the other subsystems are not
influencing it. (Sebens and Carroll, 2018, p. 41)

Note that (i) and (ii) cover very similar ground to subsystem recursivity. Thus, S in Sebens
and Carroll’s ESP fulfills our functional criterion (I1) for isolation.

However, Sebens and Carroll adopt the subsystem structure of microstates to define the
sense in which S is isolated, rather than that of macrostates. In particular, they use the
density matrix generalization of microstate sectors that we reviewed in Section 5.2, a stance
they clarify in an appendix:

In general, the reduced density matrix for the composite system AB, ρ̂AB, cannot
be constructed uniquely from the separated reduced density matrices for A and
B. The matrix also encodes facts about the entanglement between A and B. But
as these are just facts about how A and B are connected, condition (i) is satisfied.
To see that condition (ii) is met, suppose that, at least for a time, subsystem A is
isolated from everything else, E. Let Ût be the unitary operator that gives the
time evolution of the total state. Since A and E are non-interacting, Ût = ÛA⊗ÛE.
The time evolution of ρ̂A is then given by ÛAρ̂AÛ †A (ÛE is irrelevant). (Sebens
and Carroll, 2018, p. 67)

As such, Sebens and Carroll take the following principle, ESP-QM, to be the realisation of
ESP in the quantum-mechanical context:

ESP-QM: Suppose that an experiment has just measured observable Ô of system S and
registered some eigenvalue Oi on each branch of the wavefunction. The probability that
agent A ought to assign to the detector D having registered Oi in their branch when
the universal wavefunction is Ψ, c (Oi|Ψ), only depends on the reduced density matrix
of A and D, ρ̂AD:

c (Oi |Ψ) = c (Oi | ρ̂AD) . (48)

In their criticism of the ESP derivation, Dawid and Friederich (2020, p. 716) note saliently
that the reduced density matrix formalism might fail to track whether branching has occurred.
In our setup, this amounts to the fact that they focus on microstates rather than macrostates.
Moreover, they do not derive an intrinsicity condition from their separability principle; thus,
they end up tacitly adopting Wallace’s identity criterion. Only identical reduced density
matrices can yield the same chances, and not merely symmetric ones.

The issue of focusing on identical microstates gives rise to two curious moves in Sebens
and Carroll’s chance derivation. First, they adopt a global view of branching. This view
amounts to a particular way of interpreting the two steps of decoherence in the de-idealized
dynamics (40), where the system S first decoheres with the environment E and then SE
decoheres with the measuring device A. The global view says there are two measuring devices
in two universes once the first decoherence step occurs—that is, even when the device is still
in its ready state. Sebens and Carroll further illustrate the view as follows:

[...] branching happens throughout the whole wave function whenever it happens
anywhere. When the universal wave function splits into multiple distinct and
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effectively non-interacting parts, the entire world splits—along with every object
and agent in it. (2018, p. 34)

As such, even when decoherence has not yet reached Alice in their equal-weight, two-outcome
case, they can still infer that there are two copies of Alice uncertain about their location in
the multiverse, because branching has occurred elsewhere.

Second, they derive chance values for just those instances in which decoherence has
occurred for a system but not yet reached Alice. They present their equal-weight, two-branch
case as follows:

Alice measures the z-spin of a single particle in the x-spin up state. One display
(D1) will show the result of the experiment. If the spin is up, a second display
(D2) will show ♥. If it is down, a ♦ will appear on the second display. Alice is
not immediately affected by the result; in particular, she is for a time unaware of
the experiment’s outcome. The wave function of Alice, the detectors, the particle,
and the environment (the rest of the universe) evolve from

|Ψ0〉 = |R0〉A|R〉D1|R〉D2|↑x〉|ER〉 (49)

to

|Ψ1〉 =
1√
2
|R〉A|↑〉D1|♥〉D2|↑z〉 |E↑♥〉+

1√
2
|R〉A|↓〉D1|♦〉D2|↓z〉 |E↓♦〉 . (50)

To use ESP–QM to demonstrate that P ( ↑ | Ψ1) = P ( ↓ | Ψ1) = 1
2
, we will need to

also consider an alternate scenario where the computer (part of the environment)
is programmed differently so that ♥ displays if down is measured and ♦ displays
if up. Then the post-measurement, pre-observation wave function would be:

|Ψ2〉 =
1√
2
|R〉A|↑〉D1|♦〉D2|↑z〉 |E↑♦〉+

1√
2
|R〉A|↓〉D1|♥〉D2|↓z〉 |E↓♥〉 . (51)

Step 1: Focus first on Alice and D1. The [(Alice + Detector 1)] reduced density
matrices for Ψ1 and Ψ2 are the same,

ρ̂AD1(Ψ1) = ρ̂AD1(Ψ2) =
1

2
|R〉A|↑〉D1〈↑ |D1〈R|A +

1

2
|R〉A|↓〉D1〈↓ |D1〈R|A. (52)

ESP–QM requires that the probabilities Alice assigns to the possible spin results
be the same in these two universes as they have the same [(Observer + Detector
1)] reduced density matrix,

P ( ↓ | Ψ1) = P ( ↓ | Ψ2). (53)

Step 2: If we ask what probability Alice should assign to the display being ♥,
we need to consider the reduced density matrix generated by tracing over D1,
the spin of the particle, and the environment. Ψ1 and Ψ2 agree on ρ̂AD2. By
ESP–QM, the probabilities assigned to ♥ must be equal,

P (♥ | Ψ1) = P (♥ | Ψ2). (54)
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Step 3: Next, note that the ♥-branches ‘just are’ the ↑-branches in Ψ1 and the
♥-branches just are the ↓-branches in Ψ2. Thus Alice is in the ♥-branch of
ρ̂AD2(Ψ1) if and only if she is in the ↑-branch of ρ̂AD1(Ψ1). Similarly, she is in the
♥-branch of ρ̂AD2(Ψ2) if and only if she is in the ↓-branch of ρ̂AD1(Ψ2). Therefore,
Alice must assign

P ( ↑ | Ψ1) = P (♥ | Ψ1)

P ( ↓ | Ψ2) = P (♥ | Ψ2).
(55)

Step 4: Putting together the results in Equations (53)–(55), we see that the
probability of being on a ↑ /♥-branch must be the same as that for being on a
↓ /♦-branch: P ( ↑ | Ψ1) = P ( ↓ | Ψ1). So, the unique rational degrees of belief in
the first scenario consider each branch to be equiprobable. (Sebens and Carroll,
2018, pp. 43–45)

McQueen and Vaidman (2019, p. 22) argue convincingly that this derivation applies only to
cases where decoherence has not yet reached Alice—and so it seems that Alice’s credences
can only be legitimate in the split-second before decoherence reaches her. Explicitly, they
note that the application of ESP-QM in Step 2 becomes unsound once we fast-forward to
the end of the decoherence process, after which Alice has split into orthogonal states. So,
labeling Alice’s post-branching states R↑ and R↓, we may write the fully decohered Ψ1 and
Ψ2 as

|Ψ1〉 =
1√
2
|R↑〉A|↑〉D1|♥〉D2|↑z〉 |E↑♥〉+

1√
2
|R↓〉A|↓〉D1|♦〉D2|↓z〉 |E↓♦〉 (56)

and
|Ψ2〉 =

1√
2
|R↑〉A|↑〉D1|♦〉D2|↑z〉 |E↑♦〉+

1√
2
|R↓〉A|↓〉D1|♥〉D2|↓z〉 |E↓♥〉 , (57)

respectively. But now,

ρ̂AD2(Ψ1) =
1

2
|R↑〉A|♥〉D2〈♥|D2〈R↑|A +

1

2
|R↓〉A|♦〉D2〈♦|D2〈R↓|A (58)

and
ρ̂AD2(Ψ2) =

1

2
|R↓〉A|♥〉D2〈♥|D2〈R↓|A +

1

2
|R↑〉A|♦〉D2〈♦|D2〈R↑|A, (59)

and so ρ̂AD2(Ψ1) 6= ρ̂AD2(Ψ2).
Of course, ρ̂AD2(Ψ1) and ρ̂AD2(Ψ2) specify isolated and symmetric Everettian macrostates,

in our sense of these terms; note that (58) and (59) take the form of the right-hand side of
(29). Thus, if Sebens and Carroll were to modify ESP-QM to track symmetric macrostates
instead of identical microstates, they would essentially recover our core approach. This move
would accommodate McQueen and Vaidman’s desire to treat fully decohered branches while
altering very little of the structure of their proof. We believe that they should accommodate
this desire, as their cases of interest are macroscopic states of affairs—i.e., primarily, events
corresponding to measurement outcomes.

McQueen and Vaidman also reject the global conception of branching on metaphysical
grounds. They present an alternative metaphysics, which they illustrate as follows:9

9See also Vaidman (2020).
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[...] when you see [a notebook in which has been recorded the result of a Stern–
Gerlach experiment] on your desk and ask, ‘what is the probability that I am in
the world with the spin-↑ result?’, you ask a meaningless question. For prior to
having branched, there is only one ‘you’ that is in both the world with the spin-↑
result and the world with the spin-↓ result. (McQueen and Vaidman, 2019, p. 16)

On one sensible reading of this passage, McQueen and Vaidman seek to apply a Lewisian
‘overlap’ view to a local de-idealization of decoherence of the sort sketched in Section 5.4,
such that the number of objects or selves or whatever else in a given spatial region depends
on whether decoherence has reached it.10

The global and local branching pictures are certainly incompatible, but we think that each
seems plausible. More to the point: neither view makes a difference to the subsystem structure
of Everettian macrostates for non-relativistic quantum mechanics, which isolate branches
only after the interaction Hamiltonian stops dominating the dynamics of decoherence. In
other words, branching could occur everywhere at once or spread in space and time, and both
options yield the same isolated macrostates once decoherence has finished. Thus, if Sebens
and Carroll were to adopt our core approach, they could (a) generalize their derivation to
apply to agents for longer than artificially short time scales and (b) retain their global view
of branching.

6.3 McQueen and Vaidman’s three-branch, equal-weight case

McQueen and Vaidman claim to derive chance values with just two principles: symmetry,
which says that ‘if the physical situation has a particular symmetry, whatever will happen
should respect this symmetry’; and local supervenience, which says that ‘whatever happens in
region A depends only on the quantum description of this region and its immediate vicinity’
(2019, p. 17). They do not offer formal characterizations of these principles, but it is clear
that their local conception of branching underpins both.

As such, McQueen and Vaidman’s finite-branch, equal-weight case focuses on a case with
spatially distant, sharply-localized wavepackets:

Consider a particle in a superposition of three very far apart well localised wave
packets centered at positions labeled A, B, and C. These three positions lie on the
circumference of a perfect circle such that the particle has three-fold rotational
symmetry. That is, the system appears the same when it is rotated by one third
of a full turn about the circle’s center. Three identical detectors, distributed
over those same positions, which also exhibit three-fold rotational symmetry,
simultaneously measure the presence of the particle.

The quantum mechanical description is as follows. The initial state of the particle
is:

(1/
√

3) (|a〉+ |b〉+ |c〉) =
1√
3

(|1〉a|0〉b|0〉c + |0〉a|1〉b|0〉c + |0〉a|0〉b|1〉c) , (60)

10As they say in a footnote: ‘We do not consider the self as a “history” in a sense which leads to a “divergent”
instead of an overlapping picture’ (McQueen and Vaidman, 2019, fn. 8).
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where the right-hand-side is given in Fock representation, to help clarify the role
that locality will play in our argument. The interaction process is described by

(1/
√

3) (|1〉a|0〉b|0〉c + |0〉a|1〉b|0〉c + |0〉a|0〉b|1〉c) |R〉A|R〉B|R〉C (61)
→ (1/

√
3)(|1〉a|0〉b|0〉c|X〉A|R〉B|R〉C+

|0〉a|1〉b|0〉c|R〉A|X〉B|R〉C+

|0〉a|0〉b|1〉c|R〉A|R〉B|X〉C)

(62)

→


|1〉a|0〉b|0〉c|X〉A|R〉B|R〉C probA
|0〉a|1〉b|0〉c|R〉A|X〉B|R〉C probB
|0〉a|0〉b|1〉c|R〉A|R〉B|X〉C probC

(63)

where signify the ready and clicked states of the detector in A, etc. The symmetry
between A, B and C is explicit before measurement interaction (61). It is
still explicit during the measurement unitary evolution (62). The symmetry
principle then also requires that it will be manifested in the mixture (63) after
the measurement. Therefore, probA = probB = probC = 1/3. (McQueen and
Vaidman, 2019, p. 17)

Curiously, the fact that the symmetry is achieved by rotation of spatially distant states does
not appear to play any special role in the derivation. In the end, the symmetries linking the
three states are special cases of unitary transformations of branch states, as evidenced by
(62). In particular, as we covered in our exposition of the core approach, there will be pairs
of environmental and system unitary symmetries that translate between any pair of the three
branch states in equation (63) regardless of whether these states represent spatially distant
systems.

Moreover, focusing on spatially distant, well-localized states seems to hamstring the scope
of the derivation. Indeed, in order to achieve the generality of the core approach, they are
forced to tie arbitrary spatially-localized measurements to this rather specialized class of
states:

The proof above considers a quantum state of a particle placed in different
locations, and it is not applicable directly to a quantum state of a local system
like a spin. But our proof is a consistency check: Born rule violation is inconsistent
with relativity theory. Born rule violation for a local measurement of a spin will
also lead to inconsistency. Quantum theory considers various legitimate methods
of measurements. In particular, we can arrange a unitary swap mechanism
between the spin state and the spatial state of the particle:

(α|↑〉+ β|↑〉)|ready〉 → |↑〉(α|a〉+ β|b〉). (64)

After this procedure we make a measurement of where the particle is. We have
proved that this final measurement should comply with the Born rule, and the
consistency of quantum theory tells us that direct local measurements of the spin
should follow the Born rule too. (McQueen and Vaidman, 2019, p. 18)
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Note that it might well be the case that a system’s spin degrees of freedom are isolated from
its spatial degrees of freedom (in the microstate sense). This possibility licenses us to, for
example, study the spin-chain decoherence model (34) without reference to any other system
properties. Here, however, McQueen and Vaidman seem to render the symmetries of spin-only
systems reliant on hidden degrees of freedom, threatening these systems’ sectorhood.

Charitably, McQueen and Vaidman aim to give a first pass at how a chance derivation
should go in a relativistic generalization of the Everettian’s non-relativistic theory. They note
briefly that their proof is meant to apply to ‘the relativistic generalisation of the Schrödinger
equation’ (p. 19), but they do not specify which generalisation they have in mind (among,
e.g., the Dirac equation, the Klein–Gordon equation, and so on). We think this project is
a worthy one, although we would press McQueen and Vaidman to (a) provide an explicit,
localized de-idealization of decoherence (of the sort sketched in Section 5.4) and (b) precisely
characterize the relevant dynamical symmetries in the resulting picture. Moreover, it would
be quite strange if such a project were to invalidate the core approach; one would naturally
expect the latter to emerge from the low-velocity limit of the former. In such a case, McQueen
and Vaidman should have no issue with decision-theorists or ESPers who adopt the core.

7 Discussion
We have argued that the apparent tensions among Everettian approaches to chance using
uncertain or partial beliefs dissolve once we shift our attention to what these Everettians
think is certain. They need to be certain of a given subsystem’s isolation to address the
reference class problem that hounds any approach to chance, and we offer a thin functional
analysis of isolation in terms of (I1) instantiating a recursive subsystem structure and (I2)
enabling empirical control. Getting clear on the subsystem structures that Everettians need
enables us to unite decision-theoretic and self-locating uncertainty approaches under a thin
common core—and this core clarifies why the preferred basis problem does not pose any
threat of circularity.

It is not all wine and roses for Everettians, however! We ended up needing to specify two
different subsystem structures corresponding to two different notions of isolation: one for
microstates and one for macrostates. In one sense, this move is anathema to the Everettian
ethos, which aims to unify all of quantum theory under a single dynamics. In another sense,
the move amounts to a natural incorporation of lessons from statistical mechanics into an
Everettian worldview. The extent to which this latter perspective might take precedence over
the former, however, is a matter for future work.
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