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Abstract

We investigate the epistemic role of coherence in scientific reasoning, focusing on its use as a heuristic
for filtering evidence. Using a novel computational model based on Bayesian networks, we simulate
agents who update their beliefs under varying levels of noise and bias. Some agents treat reductions
in coherence as higher-order evidence and interpret such drops as signals that something has gone
epistemically awry, even when the source of error is unclear. Our results show that this strategy can
improve belief accuracy in noisy environments but tends to mislead when evidence is systematically
biased. We explore the implications for the rationality of coherence-based reasoning in science.
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1 Introduction
Probabilistic methods are central to contemporary science and its philosophical understanding. Scientists
use probabilistic tools to model uncertain phenomena, manage noisy data, and assess evidential support.
Philosophers, in turn, have drawn on Bayesian frameworks to reconstruct learning processes, formalize
scientific reasoning, and articulate normative constraints on belief change. Yet, despite their successes,
such approaches continue to face significant challenges, particularly when it comes to reasoning under
uncertainty, bias, or incomplete information.

A growing body of work explores how agents, human or artificial, might cope with such challenges
using cognitive heuristics. One such strategy involves coherence-based filtering, the tendency to discount
evidence that would disrupt the internal coherence of one’s beliefs. This phenomenon is well-documented
in cognitive science and psychology, where it is associated with confirmation bias (Festinger et al., 1956),
myside bias (Stanovich et al., 2013; Baccini et al., 2023), and motivated reasoning (Mandelbaum, 2019).
But coherence also has a long-standing philosophical pedigree as a criterion of epistemic justification
(BonJour, 1985) and as a feature of explanatory reasoning (Thagard, 1989, 2002).

While earlier work challenged the justificatory role of coherence by highlighting its limited connection
to truth (Bovens and Hartmann, 2003; Olsson, 2005), later contributions have argued that coherence may
still have epistemic value, either as a heuristic in conditions of partial knowledge (Angere, 2008) or as a
defeater in social epistemic contexts (Goldberg and Khalifa, 2022). Our aim in this paper is to advance this
line of inquiry by examining whether and when reductions in coherence provide higher-order reasons to
reject some evidence. In doing so, our approach also connects to Thagard’s pioneering ECHO model of
explanatory coherence (Thagard, 1989), though, as we discuss later, it differs in important ways.

Although discussions of higher-order evidence in epistemology, such as those arising from disagreement
with epistemic peers, typically focus on indicators of an agent’s unreliability, including memory, perception,
or reasoning errors (for recent reviews, see Dorst 2024; Horowitz 2022; Ye 2022), coherence considerations
may also play a higher-order role. In scientific contexts, researchers sometimes treat sharp drops in
coherence as signals that something has gone wrong, even if they cannot immediately identify a specific
error, and the issue may not stem from their unreliability. In this way, coherence can function as a form of
higher-order evidence not necessarily tied to the agent but may concern the evidence itself. Yet, as we will
show, this strategy can both help and hinder inquiry.

To illustrate this point, we begin in Section 2 with two contrasting historical motivating examples. In
the first, the physics community’s rejection of superluminal neutrino measurements (despite their statistical
strength) was arguably warranted due to the incoherence of the result with established theory. In the second,
decades-long overreliance on Millikan’s original measurements of the electron’s charge—despite better
data emerging later—illustrates the downside of excessive coherence-based conservatism. These cases
raise the broader question: when can coherence-based evidence filtering lead to more accurate beliefs? To
address this, we develop a computational model of belief updating under uncertainty. Drawing on Bayesian
networks, we simulate agents who repeatedly revise their beliefs in response to new evidence. Some agents
update on all evidence, even if the evidence goes against their expectations; others apply a coherence-based
filter, rejecting updates that would reduce the coherence of their current belief set.

Our results show that coherence-based filtering can be epistemically beneficial, but only under specific
circumstances. In highly noisy environments, where a substantial amount of evidence is erroneous, it
helps agents resist misleading evidence and maintain accurate beliefs. But in low-noise settings, or when
evidence is systematically biased, coherence filtering consistently leads agents away from the truth. These
findings help explain why coherence-based reasoning may function as a productive heuristic in some
domains (e.g., mature sciences) while becoming an epistemic liability in others (e.g., biased or politicized
research contexts).

By examining how coherence interacts with probabilistic belief updating, our study contributes to
ongoing work on probabilistic reasoning in the sciences. It aligns with research on the normative role of
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heuristics in scientific inference, the epistemology of bias and misinformation, and the limits of Bayesian
rationality under real-world constraints. More broadly, it shows how formal tools can be used to model
cognitive strategies and to evaluate their reliability across epistemic contexts.

We proceed as follows: Section 2 presents our motivating examples. Section 3 introduces the formal
coherence measures and our modeling framework. Section 4 describes the results of our simulations.
Section 5 explores our findings’ normative and philosophical implications. Section 6 concludes.

2 Motivating Examples
To motivate our analysis, we begin with two historical episodes illustrating how coherent considerations
influence scientific reasoning. In both cases, the episodes may plausibly be reconstructed as instances in
which the decreased coherence of a new result with existing theory shaped how the scientific community
responded. However, while coherence-based skepticism proved beneficial in the first case, it arguably
hindered progress in the second. These examples suggest that coherence can serve as a heuristic for
managing uncertainty but that its epistemic value is highly context-dependent.

The first example involves the OPERA experiment’s 2011 claim that neutrinos had been observed
traveling faster than the speed of light. Based on measurements between CERN and the Gran Sasso
Laboratory in Italy, the result reported a statistical significance well above the standard discovery threshold
(Adam et al., 2011; Brumfiel, 2011). If correct, it would have overturned one of the central tenets of
modern physics, namely, the invariance of the speed of light, as codified in Einstein’s theory of relativity.
Despite the apparent strength of the statistical evidence, the physics community responded with widespread
skepticism. Many researchers suspected a methodological error precisely because the result was deeply at
odds with well-established theoretical commitments. This skepticism proved well founded: subsequent
investigations revealed that the anomaly was due to a faulty fiber-optic cable connection. Once corrected,
the measurements aligned with relativistic expectations (Cartlidge, 2012).

In this case, coherence-based reasoning played a clearly beneficial epistemic role. Faced with a
surprising and disruptive result, scientists did not accept the evidence at face value. Instead, they treated its
incoherence with accepted theory as a defeasible reason to question its reliability. Their resistance to belief
revision was not irrational conservatism but a reasonable response to the possibility of experimental error.
Here, coherence considerations functioned as a form of higher-order evidence, which prompted deeper
scrutiny that ultimately revealed the true source of the anomaly.

The second example illustrates a more problematic side of coherence-based evidence filtering. In the
early twentieth century, measurements of the electron’s elementary charge took several decades to converge
on the correct value, partly due to the authoritative influence of Robert Millikan’s 1913 oil drop experiment
(Millikan, 1913). While Millikan’s original measurements were based on careful experimentation, they
contained an incorrect value for the viscosity of air (Feynman, 1985, Cargo Cult Science). As a result, his
calculated value for the elementary charge was slightly off. Later experiments often produced more accurate
measurements that diverged from Millikan’s findings, but these deviations were downplayed or dismissed
as outliers. The scientific community’s strong preference for coherence with Millikan’s authoritative result
fostered a kind of implicit deference, significantly delaying the measurement’s correction.

Contrary to the superluminal neutrinos episode, this case exemplifies the negative side of coherence-
based evidence filtering: non-misleading evidence that conflicted with established consensus and prior
expectations was unintentionally discounted. In contrast to the OPERA case, coherence considerations
here led to epistemic inertia rather than productive scrutiny. Rather than helping to detect misleading initial
results, the desire for coherence insulated an inaccurate belief from revision.

These two episodes highlight the double-edged nature of coherence-based reasoning in science. In the
neutrino case, a drop in coherence correctly signaled an underlying flaw in the evidence and protected
inquiry from being misled. In the electron charge case, a decreased coherence with an authoritative but
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flawed result led to misplaced confidence and slower progress. These contrasts raise a broader question:
under what conditions does coherence-based filtering of evidence support more accurate belief formation,
and when does it become a source of bias or error? This question motivates the formal model we develop
in the next section.

3 A Simulational Study

3.1 Formal Measures of Coherence
To explore the epistemic role of coherence, we first require a clear conceptualization of coherence itself.
Intuitively, epistemic coherence captures how well the propositions within an information set “hang
together” (BonJour, 1985). Consider, for instance, the difference between these two information sets (from
BonJour 1985, p. 96):

S1 = {[All ravens are black], [This bird is a raven], [This bird is black]}, and

S2 = {[This chair is brown], [Electrons are negatively charged], [Today is Thursday]}.

Set S1 is intuitively much more coherent than S2 because the propositions in S1 support each other,
while those in S2 lack meaningful connections. Clarifying and formalizing this intuitive notion has
generated substantial philosophical debate (e.g., Lewis 1946; Rescher 1973; BonJour 1985; Thagard 1989;
Lehrer 2000). Within Bayesian epistemology, coherence is typically formalized through quantitative
measures that map probability distributions over propositional variables onto numerical coherence scores
(see Olsson 2022 for a comprehensive recent review). Because Bayesian measures explicitly accommodate
uncertainty and are readily operationalizable in computational models, we adopt this Bayesian approach in
our analysis. That is, Bayesian coherence measures formally quantify how strongly propositions within an
information set “hang together,” enabling rigorous exploration of coherence’s role in belief updating.

Two central intuitions frequently guide coherence measures (see, e.g., Schippers 2014). The first is
the deviation from independence: propositions in a coherent set are probabilistically dependent, and the
degree of dependence (in whichever specific way this is formalized) may be used as a proxy for the degree
of an information set’s coherence. For example, the propositions in S1 above clearly depend on each
other. Following Shogenji (1999) who formalizes this intuition, we can then measure the exact degree of
coherence in the following way:

cohS(S) :=
P (A1, . . . , An)

P (A1)× · · · × P (An)
(1)

where S = {A1, . . . , An} represents a set of propositions. This measure captures the former intuition of
how much propositions deviate from probabilistic independence (the threshold value at which the set is
neither coherent nor incoherent is 1).

The second intuition is that coherence measures the relative probabilistic overlap among propositions.
Propositions are coherent if they tend either to be jointly true or jointly false, meaning their joint probability
makes up a large proportion of their union’s probability (Olsson, 2002; Glass, 2002). For instance, consider
the following highly coherent set:

S3 = {[The restaurant is crowded], [The restaurant is noisy]}.

This set is intuitively coherent since these propositions tend strongly either to both hold true or false:
more or less, all crowded restaurants are usually noisy and vice-versa. Consequently, their joint probability
is about as high as their union’s probability.

By contrast, consider a much less coherent set:
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S4 = [The restaurant is crowded], [The restaurant has many free tables].

These propositions tend systematically to disagree: a crowded restaurant rarely has many free tables,
and a restaurant with many free tables is rarely crowded. Thus, the propositions do not overlap much,
making their joint probability very low relative to their union’s probability, and hence the set is intuitively
much less coherent. Olsson (2002) and Glass (2002) formalize this in the following measure:

cohOG(S) :=
P (A1, . . . , An)

P (A1 ∨ · · · ∨An)
=

P (A1, . . . , An)

1− P (¬A1, . . . ,¬An)
. (2)

A recent measure proposed by Hartmann and Trpin (forthcoming) combines both intuitions:

cohHT(S) :=
P (A1, . . . , An)

1− P (¬A1, . . . ,¬An)
/

P (A1)× · · · × P (An)

1− P (¬A1)× · · · × P (¬An)
(3)

This hybrid measure compares the actual relative overlap to the relative overlap there would be if the
propositions were probabilistically independent and their marginal probabilities fixed. We include this
measure in our simulations because it has been shown to be a reliable truth-tracker (Hartmann and Trpin,
forthcoming).

There are, of course, also many other coherence measures available in the literature, several of which
rely on averaging coherence scores across subsets of propositions (e.g., Fitelson 2003; Meijs 2006; Douven
and Meijs 2007; Schupbach 2011; Koscholke et al. 2019). These subset-based measures, however, are
computationally demanding for larger information sets. All these other measures are also excluded from
our analysis because our simulations indicate that even the three relatively simple measures presented
here, despite their differences, yield highly consistent results. The main difference in the compared
updating strategies is, therefore, plausibly not in the specific measures of coherence but rather in the use of
coherence-based evidence filtering vs. not using such a filter.

3.2 The Model
Based on the insights from the two motivating examples presented above and previous work on the
formal measures of coherence, we developed a computational simulation to further investigate the role
of coherence in scientific reasoning. In the proposed simulation, agents try to form an accurate picture
of the ground truth (the world) by gathering information about it. The simulation is roughly inspired
by two existing frameworks, the Bayesian Normative Argument Exchange across Networks (NormAN)
modeling framework (Assaad et al., 2023) and the bandit modeling framework (Zollman, 2007, 2010).
From NormAN, we take the idea of representing the world using a Bayesian network. On the other hand, the
evidence-gathering process in the simulation resembles playing a single-armed bandit, where information
takes the form of a set of stochastically generated states of the world. In this section, we will first present
the fundamental entities and dynamics of the simulation and then explain how we extended it to explore
the role of coherence considerations.

The world in the simulation consists of a set of probabilistically related events. It is represented via a
Bayesian network (BN), consisting of a directed acyclic graph (DAG) and a corresponding conditional
probability distribution over a set of binary propositional variables from the BN nodes (see Pearl 1988
for a general introduction to Bayesian networks theory, and Hartmann 2021 for an introduction to their
philosophical applications). Nodes in the DAG represent the events in the world, which may be true or false,
while edges represent probabilistic dependencies between them. The conditional probability distribution
(CPD) then contains information about the likelihood of individual events given different values of related
events.

Agents in the simulation already have an accurate representation of the events in the world and their
probabilistic relations—in other words, they are aware of the structure of the Bayesian network (BN) in
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C

S R

G

Probability Value
P (C) 0.5
P (S|C) 0.1
P (S|¬C) 0.5
P (R|C) 0.8
P (R|¬C) 0.2
P (G|S,R) 0.99
P (G|S,¬R) 0.9
P (G|¬S,R) 0.9
P (G|¬S,¬R) 0

Figure 1: The “sprinkler” network, where C, S,R,G are propositional variables with corresponding values
C: “It is cloudy”, ¬C: “It is not cloudy”, S: “The sprinkler is turned on”, ¬S: “The sprinkler is not turned
on”, R: “It rains”, ¬R: “It does not rain”, G: “The grass is wet” and ¬G: “The grass is not wet,” and the
corresponding probabilities of its CPD.

question, though not its exact probability distribution. To illustrate how such a structure might look and to
clarify the elements of a Bayesian network, we employ a simple and widely used textbook example, the
so-called “sprinkler” network.1

The sprinkler network (see Figure 1) describes a simplified scenario involving weather conditions
and wet grass, where each node represents a binary event: whether it is cloudy (C), whether it rains (R),
whether the sprinkler is turned on (S), and whether the grass is wet (G).2 The directed edges between
nodes indicate probabilistic dependencies: the likelihood of rain or sprinkler use depends on whether it is
cloudy, and the likelihood of wet grass depends on whether the sprinkler is activated or it is raining.

We chose this example because it is intuitive, clearly illustrates the basic properties of Bayesian networks
(e.g., conditional independence and dependency structures), and is extensively used in the literature on
Bayesian modeling. Throughout our simulation, agents know precisely these dependency structures but are
initially uncertain about the exact conditional probabilities linking these events.

In the course of the simulation, agents gradually learn about the probabilities of the events in the
world by observing it many times. More specifically, we model the learning of the agents by having the
agents sample from a CPD that is associated with the world and then fitting these observations to the
model via maximum likelihood estimation (MLE).3 For example, one sample the agents might gather
is S1 = [Cloudy=True, Sprinkler=False, Rain=True, Wet Grass=True], another is S2 = [Cloudy=False,
Sprinkler=True, Rain=False, Wet Grass=True], and so on. In every round of the simulation, agents gather
a number of such observations. Using this information, they then form a new belief about the distribution
by fitting the observations to the BN. Effectively, this means that the agents develop an updated subjective
CPD. Figure 2 illustrates how this may work in practice. Note that the agent’s CPD will tend to deviate
from the CPD of the true BN.

As we were interested in the effect of the agents’ prior beliefs on their accuracy, we set their prior
CPDs at the start of the simulation before they gathered any evidence from the world. The prior CPDs are
generated by randomly changing the parameters of the world’s CPD within some interval. For example, if
in the true distribution P (R|C) = 0.8, agents might start with a distribution where P (R|C) is sampled
from a uniform distribution between [0.8− i, 0.8 + i], where i ≥ 0, 0.8− i ≥ 0, 0.8 + i ≤ 1, and i is
a parameter of the model, which can be determined by the modelers. This kind of change is applied to

1This BN was, to the best of our knowledge, first introduced in the canonical form in Russell and Norvig (1995), although the
general set-up is also discussed in Pearl (1988).

2We follow the convention of listing propositional variables in italics and the instantiations in roman script.
3Alternative updating rules could be used here. We ran the simulations using a Bayesian Parameter Estimator for a subset of

parameters explored in Section 4 with results remaining consistent.
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C R S G
1 1 0 1
0 0 1 1
0 0 0 0
1 0 0 1
1 1 0 1
... ... ... ...

P (C) =
0.45

P (R|C) =
0.82 ...

P (S|C) =
0.11 ...

P (G|S,R)
= 0.97 ...

Figure 2: An agent estimates the CPD (right) from sampled observations (1 stands for the variable being
true, 0 for it being false; left) via MLE.

the whole distribution. To make sure that agents’ priors affect their later belief updates, we then generate
some number of samples from this modified prior CPD at the start of the simulation and add them to the
evidence agents receive from the world. Controlling agents’ priors in this way allows us to model different
scientific contexts, from mature science with a broad consensus about the domain of study to nascent lines
of research, where research supports a wide variety of hypotheses and theories. In the former case, the
priors may be close to the truth (the value of i is close to 0), while in the latter, they could be well off
(higher values of i).

The process of gathering evidence and updating beliefs about the probabilities of the events in the
world is then repeated for multiple steps. At the end of the simulation (the number of steps is determined
at the onset as a parameter of the model), we evaluate how closely agents’ beliefs approximate the
actual conditional probability distribution of the ground truth using the Kullback-Leibler (KL) divergence
(Kullback and Leibler, 1951). The KL divergence measures the discrepancy between two probability
distributions, quantifying the information loss when approximating the true distribution. It is particularly
useful here as it captures how well agents’ beliefs reflect the correct probability distribution of the ground
world.

To explore how coherence affects scientific inquiry, we also implemented an alternative learning
process. Whereas the default process described above involves updating beliefs solely by fitting evidence
to the known network structure, this alternative process adds a step that explicitly considers how newly
gathered information impacts the coherence of an agent’s beliefs. Specifically, in this step, agents first
determine the most probable state of the world based on the learned distribution. In the running example
of the “sprinkler” BN, this may be that it is cloudy, the sprinkler is off, it is raining, and the grass is wet.
Then, they check how coherent this state is using one of the coherence measures presented above. Agents
accept the updated belief if it is more coherent than the state that was the most probable according to their
prior belief. If not, they reject the evidence and the update, effectively remaining in their prior state.

Formally, the agent calculates the coherence of the most probable joint state under their current
probability distribution P0. Suppose this state is {C=1, R=1, S=0, G=1}. The agent computes
cohP0({C=1, R=1, S=0, G=1}) using one of the presented coherence measures and their current
probability distribution P0, prior to incorporating new observations. After fitting the new data to the
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network, the agent obtains a revised conditional probability distribution, yielding a posterior distribution
P1.

They then determine the most probable joint state under P1 and calculate its coherence, e.g., if
the same joint state remained most probable, they would calculate cohP1{C=1, R=1, S=0, G=1}. If
this posterior coherence is at least as high as the prior one, i.e., if cohP1({C=1, R=1, S=0, G=1}) ≥
cohP0({C=1, R=1, S=0, G=1}), then the agent accepts the updated distribution P1. Otherwise, they
reject it and retain their prior distribution P0.

Agents using this alternative learning process treat coherence as a higher-order reason to dismiss
new evidence when it would reduce the perceived coherence of their beliefs. This mirrors the reasoning
observed in the two motivating examples discussed above. However, rejecting relevant evidence simply
because it disrupts coherence conflicts with the Principle of Total Evidence, the idea convincingly defended
by Carnap (1947) and later by Good (1967) that all available evidence should be taken into account when
estimating the probability. This makes coherence-based filtering a questionable strategy in general. To
assess whether and when it might nonetheless improve epistemic outcomes, we simulate environments in
which the incoming evidence may be misleading, reflecting the kinds of distortions and noise that often
arise in real-world scientific inquiry.

We extended the model in one additional way to capture this possibility. Specifically, agents in the
model can receive two types of erroneous or misleading evidence. In one case, we randomly changed some
percent of the evidence points agents collected. For example, let’s say the current world state the agents
observe is S1 = [Cloudy=True, Sprinkler=False, Rain=True, Wet Grass=True]. In an extremely noisy
environment, in which agents would be misled about 50 % of their evidence, they wouldn’t observe S1

but a modified set where (on average) two out of four values would be changed (for True to False or the
other way around). The percentage of evidence that changes—the level of “noise” in the environment—is
determined as a model parameter. We call this type of misleading evidence “noisy evidence”. It represents
a possible deviation of the measured value from the actual one that is not predictably biased in any direction
(i.e., random measurement error).

In the other case, agents receive evidence that is systematically misleading. Specifically, they have
some probability of drawing samples not from the ground truth but from an alternative Bayesian network
that is biased. For example, suppose a sprinkler factory is trying to downplay the role of rain in making the
grass wet. Then where in the ground truth of the model P (G|¬S, R) = 0.9, in the alternative, misleading
BN, this probability may be changed to P (G|¬S, R) = 0.4; that is, if it rains but the sprinkler is off, the
grass is much less likely to be wet than in the true case. We call this “systematically misleading evidence”.

In contrast to noisy evidence, misleading evidence presents a picture of the world that systematically
deviates from the truth. There are different possible sources of such bias in scientific inquiry. A well-known
example concerns the so-called publication bias (Easterbrook et al., 1991). Scientific journals strongly
prefer to publish positive results. This means that a lot of negative results never get reported, which creates
a biased scientific record. An alternative important source of bias is in industry funding, management,
or promotion of scientific research (Holman and Elliott, 2018). For example, industry-funded studies in
clinical drugs and medical devices research have a higher chance of reporting positive efficacy results than
non-industry studies (Lundh et al., 2017). While drawing samples from an alternative Bayesian Net with a
different probability distribution is an idealization of such scenarios, it can be understood as representing a
scientist conducting, for example, an industry-biased study.

3.3 Simulation Setup and Procedure
To investigate the epistemic consequences of coherence-based reasoning, we constructed a simulation that
models agents attempting to arrive at accurate beliefs about an underlying world. The simulation formalizes
a series of epistemic choices—concerning how agents treat incoming information, how they weigh
coherence, and how they respond to uncertainty—and embeds them in a dynamic learning environment.
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This allows us to examine whether and under what conditions coherence-based filtering serves as an
epistemically productive strategy.

Epistemic Environment. The world is represented as a Bayesian network whose structure is known to
the agents but whose underlying CPD is not. Agents begin with an initial (prior) CPD, which may deviate
more or less from the truth, depending on a model parameter. In each round, they gather evidence by
observing sampled world states and use this to update their beliefs. The degree to which the evidence
is accurate, noisy, or biased is also under experimental control. We report results using two textbook
networks of increasing complexity: the “Sprinkler” (4 binary nodes) and “Asia” (8 binary nodes) networks,
although any Bayesian may be used.4

Epistemic Strategies. We model two types of agents. Normal agents update on all available evidence.
Coherence agents, by contrast, treat coherence as a form of higher-order evidence: if an update reduces the
coherence of their current beliefs, they reject it. In this way, coherence functions as a defeater, overriding
first-order evidence when the belief system as a whole becomes less integrated.

Simulation Dynamics. Each round of the simulation unfolds as follows (see also Figure 3 for a flowchart):

1. Agents receive a batch of evidence in the form of sampled world states.

2. They propose an updated belief distribution via maximum likelihood estimation.

(a) Normal agents adopt the updated distribution.
(b) Coherence agents compare the coherence of the most probable joint state under the new

distribution to the previous one and accept the update only if coherence does not decrease.

3. Belief accuracy is evaluated from the modeller’s perspective as the Kullback–Leibler divergence
between the agent’s current probability distribution and the true distribution, which is not available
to the agents.

Iteration. This process is repeated for N rounds. Each round represents an inquiry cycle in which agents
encounter new evidence, attempt to integrate it, and in which their epistemic position is evaluated. No
additional stopping conditions are imposed.

This simulation framework offers a controlled environment for exploring how coherence considerations
interact with belief revision. By formalizing coherence-based reasoning in probabilistic terms and
embedding it in an iterated learning process, we are able to assess not only whether coherence can function
as a useful heuristic but also when its use is epistemically appropriate—or counterproductive.

4 Results
Having established the model and its rationale, we now turn to the outcomes of our simulations. We aim to
assess whether agents who employ coherence as a defeater perform better or worse than those who do
not across a variety of epistemic environments. These environments are defined by the accuracy of the
agents’ priors, the reliability of the evidence they receive, and the presence or absence of systematic noise
or distortion.

4Interested readers are invited to experiment with other textbook or custom Bayesian networks, keeping in mind that larger
networks are computationally rather demanding. The simulations were implemented in Python using the bnlearn and Mesa libraries.
The source code is available at https://github.com/Martin-Justin/CohABM/.
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Start round

Sample world states Propose updated belief (MLE) Coherence-based agent?

Check coherence increase Accept new belief Evaluate accuracy (KL divergence)

Next round or end

Reject update, keep prior

NoYes

Improves

Worsens

Figure 3: Flowchart of simulation dynamics for coherence and normal agents.

We compare the performance of two types of agents across a range of parameter settings (see Table 1).
For each simulation run, agents attempt to learn the underlying probability distribution of the world over
N = 50 rounds. In each round, agents observe 100 samples and update their beliefs accordingly. Each
combination of parameters was simulated 30 times to ensure robust averages. Performance is measured by
the Kullback-Leibler (KL) divergence between an agent’s belief distribution and the true distribution at the
final round.

Parameter Values
Bayesian Net Sprinkler, Asia
Coherence Measures Shogenji, Olsson–Glass, Hartmann–Trpin
Type of Misleading Evidence noisy evidence, systematically misleading evidence
Information Noise 0.05 to 0.3 (in 0.05 increments)
Variation of Prior CPD Values 0.05 to 0.4 (in 0.05 increments)
Sample size 20, 40, 60, 100

Table 1: Parameter values used in the reported simulations. Robustness checks with a wider variety of
parameters are presented in the Appendix.

4.1 Coherence Under Noise
We begin with the case in which agents receive evidence corrupted by random noise. In each round, a certain
proportion of observed values is randomly flipped without systematic bias. This scenario models epistemic
environments where error is frequent but directionless—due, for instance, to faulty instrumentation, poor
measurement conditions, or human error. We refer to this as “noisy evidence.”

Figure 4 reports the results from the “Sprinkler” Bayesian network under varying levels of noise and
prior accuracy. Each cell in the heatmap displays the average difference in accuracy between a Coherence
agent and a Normal agent after 50 rounds. Positive values indicate cases where the Coherence agent
achieved lower KL divergence (i.e., more accurate beliefs).

As the figure shows, coherence-based evidence filtering improves accuracy when the level of noise is
high (particularly above 25%) and when prior beliefs are already fairly well-calibrated. In these settings,
the coherence filter serves as a protective buffer, allowing agents to insulate their belief system from
misleading evidence that would otherwise degrade it. However, this same conservatism becomes a liability
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Figure 4: Difference in accuracy (Normal minus Coherence) at round 50 in the “Sprinkler” network with
noisy evidence. Positive values favor coherence-based reasoning (KL divergence from truth is, in a sense,
a penalty).

in low-noise contexts. When the environment is reliable, rejecting evidence that would lower coherence
simply slows the process of convergence toward truth, especially when agents begin with inaccurate priors.

This dynamic is further illustrated in Figure 5, which tracks the evolution of belief accuracy across
simulation rounds in two contrasting cases. On the top chart, we see how coherence filtering helps when
the environment is noisy: the Coherence agent ultimately avoids being misled. On the bottom, we observe
the opposite: in a low-noise setting, coherence filtering acts as an impediment to belief revision, leaving
the agent epistemically inert.

To check the robustness of these results, we tested the same combination of evidence noise and variation
of priors across a range of different conditions. Specifically, we ran simulations for up to 500 rounds,
with a significantly larger “Asia” Bayesian network (Lauritzen and Spiegelhalter, 1988) and with agents
receiving less evidence every round. The results proved to be consistent—we invite readers to consult the
Appendix for details.

4.2 Coherence Under Systematic Misleading Evidence
Next, we compared Coherence and Normal agents in an environment with systematically biased evidence.
Before we present the results, we should note how we generated such evidence. As we outlined in
Section 3.2, agents receive systematically misleading evidence by having some chance of collecting
samples from an alternative Bayesian network. This Bayesian Net has a conditional probability distribution
that deviates from the ground truth. We constructed this alternative BN manually by changing certain
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Figure 5: KL divergence from the true distribution over time. Top: high noise (30%), moderately accurate
priors (20%). Bottom: low noise (5%), inaccurate priors (30%). The Coherence agent is in blue, and the
Normal agent is in orange. The shaded region around the lines represents the 95% confidence interval.

conditional probabilities in the original “Sprinkler” and “Asia” BNs. To control for the variables that might
affect the results, we made sure that the modified BNs satisfied two conditions. First, the same joint state
should remain the most probable one as in the original network. For example, if {C=1, R=1, S=0, G=1}
is the most probable joint state in “Sprinkler”, this should also be the case in the modified network. Second,
the most probable state should be less coherent than in the original network. If opposite was the case, one
might worry that the effects of misleading evidence on Coherence agents is not due to its systematic nature
but due to its being more coherent.5

Figure 6 reports the results for systematically misleading evidence in “Sprinkler” Bayesian network
under varying levels of prior accuracy and probabilities for agents who received misleading evidence
(referred to in the chart as “Noise”). As above, each cell displays the average difference in accuracy between
a Coherence agent and a Normal agent after 50 rounds, with positive values indicating cases where the
Coherence agent achieved more accurate beliefs.

These results present a stark contrast to those from noisy environments (reported in Figure 4). Here,
coherence-based evidence filtering almost indiscriminately hurts agents’ inquiry. This suggests that a
qualitatively different mechanism is at play. To see why, consider what role an evidence filter might play in
an environment with systematically misleading vis-à-vis one with randomly noisy evidence. If evidence is
randomly noisy, a perfectly reliable evidence filter would, on the one hand, screen off all evidence in an
environment with so much noise that following it would cause misleading belief updates. On the other, it
would let in all the evidence in situations where following it would improve agents’ priors. As we saw,
in environments with noisy evidence, coherence-based evidence filtering is somewhat reliable: it resists
misleading updates at the cost of resisting some truth-tracking updates as well.

In contrast, in environments where some pieces of evidence are systematically misleading or biased,
5The modified BNs we used are available in the same GitHub repository as the code for the model in an easily readable .bif file

format. We invite readers to further modify the networks or introduce their own custom ones.
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Figure 6: Difference in accuracy (Normal minus Coherence) at round 50 in the “Sprinkler” network with
systematically misleading evidence. Positive values favor coherence-based reasoning.

a filter can help discriminate between reliable and biased evidence. A perfect evidence filter in such
environments would screen off all pieces of biased evidence and let in all of the reliable evidence. Here,
the coherence-based evidence filter fails. It seems that, at least sometimes, it is actually anti-reliable: it lets
in misleading evidence and screens off reliable evidence rather than vice versa.

Figure 7 presents some evidence of this anti-reliability. In the Figure, the top chart represents the
evolution of one Coherence agent’s belief accuracy over time for one combination of parameters. The
bottom chart shows the evolution of a Normal agent’s belief accuracy over time in the same situation. The
figure shows that while the Normal agent reliably advances toward the truth, the Coherence agent actually
moves away from it. Note that this dynamic is not present in environments with noisy evidence. There,
Coherence agents always make belief updates in the same direction as Normal agents, although much more
conservatively.

Filtering out reliable evidence instead of misleading evidence does not happen often. In some
situations—especially where agents start with accurate priors—its impact is almost neglectable. However,
it becomes much more pernicious when agents start with worse beliefs. These results turn out to be robust
across a range of conditions. Interested readers may once again refer to the Appendix.

In sum, coherence-based reasoning can improve belief accuracy—but only under specific epistemic
conditions. When it is beneficial, its value lies in its conservatism: it resists misleading updates at the cost
of resisting some truth-tracking updates as well. In environments where error is frequent and unsystematic,
this tradeoff pays off. In more reliable environments, however, coherence filtering risks entrenching false
beliefs. Additionally, in environments where evidence is systematically misleading, coherence-based
filtering can act anti-reliably and thus predictably leave agents worse off. Whether coherence should be
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Figure 7: Evolution of one agent’s beliefs over time for high chance of receiving misleading evidence
(30%), inaccurate priors (35%), and the Hartmann-Trpin coherence measure. Top: Coherence agent.
Bottom: Normal agent. Note that, due to random sampling of prior conditional probabilities, agents may
start from different levels of prior accuracy.

treated as epistemically virtuous or not thus depends on the structure of the informational world in which
an agent finds herself.

5 Discussion
Our simulation study set out to evaluate when, if ever, coherence-based filtering of evidence leads to
epistemically superior belief states. The results were mixed: coherence can sometimes improve belief
accuracy, especially in noisy environments, but its benefits are fragile. In other contexts—particularly when
agents have inaccurate priors or encounter systematically misleading evidence—coherence consistently
leads them astray. In this section, we explore the broader philosophical significance of these findings,
focusing on three questions: (i) whether coherence-based reasoning can be rationally justified as a kind of
higher-order evidential practice, (ii) how our results connect to the social epistemology of science, and
(iii) whether they problematize the Principle of Total Evidence. Finally, we also look at the relation of
our approach to Thagard’s (1989) model ECHO, and at the implications of our results for the norms of
rationality in science.

5.1 The Epistemic Status of Coherence Filtering
In the simulation, we assumed that coherence can be understood as a kind of higher-order evidence and
that such evidence acts as a defeater. Both parts of this assumption are controversial; thus, we will say
something more about them here.

Higher-order evidence, as usually understood in epistemology, is evidence about one’s reasoning or
evidential situation (Horowitz, 2022). In contrast to first-order evidence, which tracks the world directly,
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higher-order evidence tells us something about the agent’s epistemic state. Standard cases of higher-order
evidence, as discussed in epistemology, usually concern evidence of agents’ unreliability. For example, the
well-known Hypoxia case (Elga, 2008) concerns a pilot who gets evidence that she suffers from hypoxia—a
condition that makes her calculations and predictions unreliable. Similarly, evidence of peer disagreement,
which is also commonly discussed in this literature, signals that one of the disagreeing peers has made a
reasoning mistake (Christensen, 2016).

In contrast, a drop of coherence, caused by updating on recently received evidence, does not say
anything about the agent or the reliability of their reasoning process. Rather, it tells us something about the
evidence that caused the drop in coherence—it signals that this evidence might be unreliable or otherwise
defective. One might question whether this is a genuine example of higher-order evidence. However, we
think this question speaks more to the limited understanding of higher-order evidence in the existing debate
than against such an understanding of coherence. First, it is clear that the fact that incoming evidence does
not fit with the agent’s current beliefs is not first-order evidence—it tells us nothing new about the world.
Second, other examples exist where such “evidence of evidence” is used in science. Scientists routinely
measure the statistical significance of their results, i.e., how probable such results are if they assume the
null hypothesis. As with coherence, these tests tell them nothing about the (un)reliability of their reasoning
but act as a kind of higher-order evidence about evidence.

The other part of our controversial assumption concerns the question of whether higher-order evidence
has a defeating force. While the thought that higher-order evidence should prompt us to revise our beliefs
has strong intuitive support, it has proven remarkably hard to assimilate this insight into a consistent
picture of epistemic rationality (see Lasonen-Aarnio 2014 for an early explication of some of the issues).
Some philosophers even argue against higher-order defeat altogether (Titelbaum, 2015; Littlejohn, 2018;
Lasonen-Aarnio, 2019). Fully addressing this question goes beyond the scope of this paper. Nevertheless,
we will outline one possible understanding of coherence-based higher-order evidence where such evidence
has a defeating force. Central to this understanding is the question of how we should conceive of the
normative force of higher-order evidence.

One natural interpretation of coherence filtering is within a reliability-focused framework. On views
of this kind (see, e.g., White 2009; Schoenfield 2018; Ye 2022), higher-order evidence is significant not
because it provides propositional support for first-order claims but because it bears on the expected accuracy
of the agent’s belief-forming methods. In line with this, coherence filtering may be epistemically valuable
when the agent’s background beliefs are reliable, and the environment is noisy. In these cases, the filter helps
screen out noise without obstructing access to truth. However, when the agent’s priors are inaccurate or the
environment is systematically misleading, the same mechanism becomes counterproductive. Coherence
then functions less as a safeguard against noise and more as a gatekeeper against correction. Under some
conditions, it can even be actively detrimental to the accuracy of the agent’s beliefs. The root of the problem
is then clear: coherence may be understood as higher-order evidence in a reliability-focused framework,
but it is not a particularly useful form of higher-order evidence.6

Our simulations make this point vivid. Depending on the starting point and the nature of the evidence
(whether, how, and how much it is misleading), the outcomes vary significantly. Beyond the higher-order
evidence debate, this supports the view that coherence has no intrinsic epistemic authority. The effectiveness
of coherence-based evidence filtering depends on factors external to coherence itself, such as the reliability
of the agent’s priors and the noise characteristics of the environment. It is not a mark of rationality
per se nor a reliable path to truth in general. Instead, coherence functions best as a context-sensitive
heuristic—adaptive in certain settings but potentially dangerous when misapplied.

6However, pace Horowitz (2019), coherence-based higher-order evidence is not predictably misleading. As we showed, there are
situations where taking it into account pays.
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5.2 Social Coherence and the Epistemology of Science
Our results also echo recent work in social epistemology that emphasizes the role of coherence as a
defeater in belief assessment. In particular, Goldberg and Khalifa (2022) argue that coherence in science
is best understood as a social norm: a belief may be prima facie unjustified if it negatively coheres with
information that members of a scientific community are epistemically entitled to expect one another to
consider.

Our model is not social in this sense. Agents do not represent or respond to the epistemic positions
of others, nor are they assessed against any community-wide body of knowledge. Still, there is a formal
analog to negative coherentism at the level of the individual. Coherentist agents filter new evidence through
an internal coherence constraint: they are less likely to update on claims that conflict with their existing
beliefs. As a result, their beliefs exhibit a kind of temporal coherence—earlier commitments modulate
future ones.

This internal filtering mechanism has similar effects to the negative coherentist constraints described by
Goldberg and Khalifa (2022). When agents begin with accurate priors, coherence helps maintain reliable
beliefs. But when those priors are poorly calibrated, or when evidence is systematically biased, the same
coherence filter leads agents astray. The results of our simulations, therefore, show that the epistemic status
of coherence in our model is defeasible in precisely the way Goldberg and Khalifa emphasize: coherence
with a prior belief set may be reasonable in some contexts, but it does not guarantee justification and may, in
fact, hinder it. This aligns with the minimal version of (informal) negative coherentism that Goldberg and
Khalifa defend: that incoherence with a reasonable epistemic position can be a defeater, even if coherence
itself is not a mark of justification.

5.3 Coherence and the Principle of Total Evidence
Our findings speak to ongoing debates about the Principle of Total Evidence (PTE), the normative claim
that one ought to condition belief on all available evidence (Carnap, 1947; Good, 1967). At first glance,
our model appears to challenge this ideal: coherence-based agents routinely discard incoming information
if it conflicts with their prior beliefs, and in some contexts, this turns out to be beneficial. In doing so, they
violate PTE by design.

But this apparent conflict is not so straightforward. In our model, the so-called “evidence” presented to
agents is not guaranteed to be veridical. It is sampled from processes that may include significant noise or
bias. From the standpoint of classical PTE, such data arguably should not be treated as evidence in the first
place. This suggests that the agents’ coherence-based filtering can be reinterpreted: not as violating PTE,
but as embodying a kind of internal noise-detection mechanism for deciding what to treat as evidence at all.

This reframing aligns with recent efforts to qualify or reinterpret PTE. For example, Sikorski and
Gebharter (forthcoming) argue that including all available information can undermine reliability in contexts
where evidence sources are interdependent, such as forensic science. Others, like Schurz (2024), defend
PTE in idealized settings but acknowledge that it presupposes a well-calibrated background, in case the
agent can identify relevant, non-defective information and treat it as approximately certain. Our agents are
not in that position. They do not know which data points are genuinely indicative of the world and which
are noise. Coherence filtering provides one way to mitigate this uncertainty.

This ambiguity, therefore, speaks in favor of PTE, but it also illustrates a broader point. In real-world
settings, agents are not always in a position to determine what counts as total evidence. One may be
confronted with information that seems evidential but arises from unreliable processes. In such cases,
epistemic norms must grapple not just with how to reason given one’s evidence but with how to determine
what is evidence. Our results suggest that coherence constraints can function, for better or worse, as
one way of navigating that threshold. This shifts the focus from PTE as an unqualified norm to a more
procedural perspective: agents may need heuristics to decide what to treat as evidence in the first place.
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Under such uncertainty, coherence-based screening offers a defeasible, fallible, but sometimes useful
strategy.

5.4 Comparison with ECHO
Our approach also bears comparison to Thagard’s influential ECHO model of explanatory coherence
(Thagard, 1989). In ECHO, evidence has initial priority but may later be “deactivated” if it coheres only
with hypotheses that lose support. Hence, evidence can also be filtered in a coherence-based way. However,
an important difference from our approach needs to be pointed out. The described approach of ECHO,
where evidence is filtered (i.e., deactivated) if it loses support, reflects what Harman (1986, Ch. 4) calls
the foundations theory of belief revision: each belief must remain underwritten by sufficiently strong
justificatory links, and even once-accepted beliefs may be discarded if their supports collapse.7

Our model, by contrast, more closely follows what Harman terms the coherence theory of belief
revision. Once evidence passes the coherence filter it is retained, and belief change proceeds by minimal
adjustments that preserve overall system integrity. In this respect our Bayesian approach operationalizes
coherence-based conservatism in a way that better matches Harman’s account of actual reasoning practices,
while Thagard’s ECHO represents a more foundationalist, always-ready-to-revisit stance.

At the same time, it is important to stress that Thagard’s theory was a pioneering contribution that
shaped decades of work on explanatory and computational models of coherence. Its connectionist
implementation made coherence a tractable construct in cognitive science, and subsequent extensions of
ECHO have enriched our understanding of explanatory reasoning in both science and everyday cognition
(e.g., Thagard, 2002). What distinguishes our approach is not a rejection of this tradition but a shift
of emphasis: by embedding coherence-based conservatism within a Bayesian network framework, we
situate it directly within the dominant modeling paradigm of contemporary formal epistemology and the
philosophy of science. This not only makes our model easier to integrate with probabilistic approaches to
confirmation, explanation, and scientific reasoning but also highlights how coherence-driven conservatism
can be formally analyzed alongside other Bayesian updating rules. In this way, our account builds on the
legacy of ECHO while offering a complementary route for understanding the role of coherence in inquiry.

5.5 Reframing the Norms of Rational Inquiry
Finally, our results suggest that coherence-based reasoning occupies an uneasy position within epistemic
norms. It is not rationally required nor uniformly reliable, but neither is it irrational or epistemically
arbitrary. Instead, coherence filtering exemplifies a form of context-sensitive epistemic conservatism: a
strategy that trades openness to new information for the preservation of belief, with effects that depend
crucially on the surrounding informational environment.

What this suggests is a richer picture of epistemic rationality, in which strategies like coherence filtering
cannot be evaluated in isolation from their environments. The rationality of an update rule depends not
only on its internal logic but also on its ecological fit: how well it performs given the reliability of prior
beliefs, the structure of incoming evidence, and the agent’s epistemic goals (e.g., truth vs. internal belief
stability). This ecological perspective is familiar in cognitive science (e.g., Gigerenzer and Brighton, 2009)
and recently also in epistemology (Pils, 2022; Thorstad, 2024), but it is often underemphasized in debates
regarding belief revision in the philosophy of science.

Our model helps us see why this aspect is important. Because coherence filtering is sensitive to
how beliefs change, not just what they represent, it builds in a preference for belief-system integrity over
short-term responsiveness. In this sense, coherence filtering resembles other conservative strategies in

7Note that Harman here discusses theories of belief revision rather than theories of justification. Hence, it is possible that the
foundations theory of belief revision (as embodied in Thagard’s ECHO model) may be coherentist with respect to justification (or
activation, in Thagard’s connectionist terms).
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science, such as the preference for established paradigms in Kuhn’s (1962) theory of scientific change or
the use of robustness checks in statistical modeling. These practices slow down belief revision to protect
against overfitting or premature shifts, but they can also perpetuate error when the system they protect is
flawed, or evidence is biased.

From a normative standpoint, then, our findings support a pluralistic view of rational inquiry. No single
updating rule (coherence-based or otherwise) dominates across all epistemic contexts. What matters is
not whether coherence filtering is always rational, but when it is rational to filter for coherence. This,
in turn, depends on the agent’s epistemic situation. Understanding rational inquiry in these terms may
also illuminate long-standing debates in epistemology and philosophy of science. The tension between
total evidence and selective updating, for instance, is often framed in abstract normative terms. Our
results suggest that the real epistemic stakes lie not in the ideal of perfect receptivity to evidence but in the
pragmatic challenge of distinguishing signal from noise.

6 Conclusion
Our findings complicate the idea that coherence is simply a sign of a well-structured belief set. When
coherence is treated not merely as a structural virtue but as a defeater for incoming evidence, the question
of its epistemic value becomes sharply context-sensitive. The normative question is then no longer just
whether coherent beliefs are justified or more likely to be true but whether coherence should license
epistemic conservatism. Once coherence is allowed to influence whether new information is taken on
board, the epistemic task shifts: it is no longer simply about updating on the total evidence but about
deciding whether some coherence-disrupting evidence ought to be treated as evidence at all.

This reframes coherence from a static justificatory concept in epistemology to a dynamic constraint on
inquiry. In this light, the old debate over whether coherence justifies belief gives way to a more pragmatist
concern: whether coherence-based reasoning helps inquiry move in the right direction.

Our results suggest that sometimes it does. However, in contexts where information is unreliable or
adversarially shaped, coherence is a treacherous guide. Its epistemic value turns not on its relation to truth
per se but on the structure of the informational environment and the agent’s place within it. In this sense,
coherence inherits the ambiguity of methodological conservatism in science: it can preserve hard-won
understanding or obstruct paradigm shifts. What matters is not coherence itself but knowing when to treat
it as a warning sign and when to override it in pursuit of better evidence. While identifying the factors that
govern this balance exceeds the scope of this paper, our results indicate that doing so is essential for a
deeper understanding of the role of coherence in inquiry.
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Appendix: Robustness Checks
This Appendix presents robustness checks for the results, presented in Section 4. The first part deals with
coherence under noisy evidence, and the second with coherence under systematically misleading evidence.

Noisy Evidence
To check the robustness of results for cases where agents receive evidence corrupted by random noise, we
first extend the number of simulation rounds to 500. Figure 8 confirms that the observed advantages (and
disadvantages) of coherence filtering are not merely transient: even in the long run, coherence filtering
helps when noise is high or priors are good, and hinders when noise is low or priors are poor.
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Figure 8: Difference in accuracy (Normal minus Coherence) at round 500 in the “Sprinkler” network with
noisy evidence.

We also tested the results under varying sample sizes—20, 40, and 60 samples per round instead of 100.
These results are shown in Figure 9. With fewer observations, coherence agents tend to perform slightly
worse—reflecting the greater risk of over-rejecting evidence in data-scarce environments—but the overall
trends remain stable.

Additionally, we replicated the simulation using the more complex “Asia” network. While the absolute
differences are more pronounced—likely due to the increased difficulty of learning in a larger epistemic
space—the qualitative patterns are nearly identical (Figure 10).
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Figure 9: Difference in accuracy (Normal minus Coherence) at round 50 in the “Sprinkler” network with
noisy evidence. Top left: agents received 20 evidence samples per round. Top right: 40 evidence samples.
Bottom: 60 samples.

Systematically Misleading Evidence
The same robustness checks were conducted for the cases where agents received systematically misleading
evidence. Figure 11, Figure 12, and Figure 13 present the results for 500 simulations rounds, for different
amounts of evidence received, and for the “Asia” Bayesian network respectively.
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Figure 10: Results for the “Asia” BN with noisy evidence. Coherence is beneficial only under high noise
and accurate priors.
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Figure 11: Difference in accuracy (Normal minus Coherence) at round 500 in the “Sprinkler” network
with systematically misleading evidence.
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Figure 12: Difference in accuracy (Normal minus Coherence) at round 50 in the “Sprinkler” network with
misleading evidence. Top left: agents received 20 evidence samples per round. Top right: 40 evidence
samples. Bottom: 60 samples.
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Figure 13: Results for the “Asia” BN with misleading evidence.
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