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ABSTRACT

In this thesis, I achieve two main goals. The first is to give a universal definition of gauge
symmetry that contains a minimal set of dynamic and epistemic ingredients. The second
is to use this definition to motivate a new explanation of the Arrow of Time that evades
the standard objections plaguing existing proposals.

My definition of gauge symmetry is inspired by a proposal due to Dirac that identifies
gauge structure with representational structure that is underdetermined by the dynamical
laws. To arrive at my definition, I generalise Dirac’s analysis in two ways. First, I make
use of an explicit account of representation to cleanly separate puzzles that result from
well-known problems of model-building from those that result directly from gauge sym-
metry. Then, I extend Dirac’s formalism to apply beyond standard Hamiltonian systems.
When applied to well-studied examples of symmetry, my definition is consistent with
expectations. But when applied to a particular kind of scaling symmetry called dynamical
similarity, my definition implies that dynamical similarity should be treated as a gauge
symmetry of cosmology. While this result is found to be consistent with certain standard
practices in cosmology, broader implications for empirical and conceptual problems in
cosmology arise.

One such implication regards the explanation of the Arrow of Time. When implement-
ing dynamical similarity as a gauge symmetry using my extension of Dirac’s method, the
resulting theory can contain dynamically stable attractor states and dynamically privi-
leged states called Janus points even though the underlying dynamics is time-reversal
invariant. When such structures exist, I say that a Janus–Attractor scenario has been
realised and show how such a scenario can generally be used to define an Arrow of Time
pointing from the Janus point to an attractor for an observer near that attractor.

I then consider two empirical problems that, I argue, underpin the Arrow of Time in
our Universe: the smoothness problem, which involves explaining the relative smoothness
of the early Universe, and the red-shift problem, which involves explaining the wildly
out-of-equilibrium behaviour of the red-shift manifest in the large monotonic values of
the Hubble parameter in the past. Two corresponding models are then constructed: a
self-gravitating Newtonian N -body model and a Friedmann–Lemaître–Robertson–Walker
cosmology. I show that, under certain reasonable assumptions, gauge-fixing dynamical
similarity in the N -body model solves the smoothness problem and doing the same in
the cosmological model solves red-shift problem. These solutions arise as realisations of
a Janus–Attractor scenario and suggest a general mechanism for a more comprehensive
explanation of the many aspects of the AoT in our Universe.
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SAMENVATTING

In dit proefschrift realiseer ik twee hoofddoelstellingen. De eerste is het geven van een
universele definitie van ijksymmetrie die een minimale set dynamische en epistemische
elementen bevat. De tweede is het gebruiken van deze definitie om een nieuwe verklaring
voor de pijl van de tijd te motiveren die de gebruikelijke bezwaren tegen bestaande
voorstellen ontwijkt.

Mijn definitie van ijksymmetrie is geïnspireerd op een voorstel van Dirac, waarin
ijkstructuur wordt geïdentificeerd met representatiestructuur die niet volledig wordt
bepaald door de dynamische wetten. Om tot mijn definitie te komen, generaliseer ik
Diracs analyse op twee manieren. Ten eerste maak ik gebruik van een expliciete theorie
van representatie om verwarring tussen bekende problemen van modelvorming en de
gevolgen van ijksymmetrie te vermijden. Vervolgens breid ik Diracs formele aanpak uit
zodat deze ook buiten standaard Hamiltoniaanse systemen toepasbaar is. Toegepast op
bekende voorbeelden van symmetrie, stemt mijn definitie overeen met de verwachtin-
gen. Maar toegepast op een specifiek type schalingssymmetrie, genaamd dynamische
gelijkenis, impliceert mijn definitie dat deze symmetrie als een ijksymmetrie van de kos-
mologie moet worden beschouwd. Deze conclusie blijkt in overeenstemming te zijn met
bepaalde gangbare praktijken in de kosmologie, maar leidt ook tot bredere empirische en
conceptuele implicaties.

Een daarvan betreft de verklaring van de pijl van de tijd. Wanneer dynamische gelij-
kenis wordt geïmplementeerd als een ijksymmetrie volgens mijn uitbreiding van Diracs
methode, kan de resulterende theorie dynamisch stabiele aantrekkingspunten en dyna-
misch bevoorrechte toestanden bevatten, zogenoemde Januspunten, ondanks dat de
onderliggende dynamica tijdomkeerinvariant is. In gevallen waarin zulke structuren
bestaan, spreek ik van een gerealiseerd Janus–Aantrekkingspunt (JA)-scenario en toon ik
aan hoe zo’n scenario algemeen kan worden gebruikt om een pijl van de tijd te definiëren
die loopt van het Januspunt naar een aantrekkingspunt voor een waarnemer nabij dat
aantrekkingspunt.

Vervolgens behandel ik twee empirische problemen die, zo als ik betoog, ten grondslag
liggen aan de pijl van de tijd in ons universum: het gladheidsprobleem, dat vraagt om een
verklaring voor de relatief gladde begintoestand van het vroege heelal, en het roodver-
schuivingsprobleem, dat vraagt om een verklaring voor het extreme niet-evenwichtsgedrag
van de roodverschuiving, zichtbaar in de grote monotoon dalende waarden van de Hub-
belparameter in het verleden. Ik construeer twee corresponderende modellen: een
zelfgraviterend Newtoniaans N -deeltjesmodel en een FLRW-kosmologie. Ik laat zien dat,
onder bepaalde redelijke aannames, het ijk-vastleggen van dynamische gelijkenis in het
N -deeltjesmodel het gladheidsprobleem oplost, en als we hetzelfde doen in het kosmolo-
gisch model dat dat het roodverschuivingsprobleem oplost. Deze oplossingen vormen
realisaties van een JA-scenario en suggereren een algemeen mechanisme voor een meer
omvattende verklaring van de vele aspecten van de pijl van de tijd in ons universum.
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To-morrow, and to-morrow, and to-morrow,
Creeps in this petty pace from day to day,

To the last syllable of recorded time;
And all our yesterdays have lighted fools

The way to dusty death. Out, out, brief candle!
Life’s but a walking shadow, a poor player

That struts and frets his hour upon the stage
And then is heard no more.

Macbeth (Act 5, Scene 5, lines 18–25)

1.1. SYMMETRY, POSSIBILITY AND TIME’S ARROW

From the youngest child to the greatest poet, none can escape the advance of time. For
some, this knowledge carries the burden of confronting the realities of age. For others,
it highlights the wonderful fleetingness of the human experience. But for the physicist,
time’s directionality is a puzzle. While the direction of our experience in time is as
undeniable as it is inseparable from our humanity, our best physical laws don’t seem to
explain it.

In this thesis, I will propose a new solution to this puzzle. I will develop a programme
to account for the direction of processes in time despite the apparent time symmetries of
our best fundamental theories. From now on, I will call this puzzle the problem of the
Arrow of Time, (AoT). My approach will differ from standard attempts to explain the AoT
in that it will be based on a symmetry argument. I will observe that, at the level of modern
cosmology, the overall size of the universe — but importantly not its rate of change —
is devoid of empirical content. When the consequences of this simple observation are
taken to their logical conclusion, a new understanding of our best fundamental physical
theories will be revealed. In this new understanding, observers like us typically experience
the pervasive and substantial time-asymmetries that comprise the AoT in our universe.

While this thesis is ultimately about explaining the AoT, it is also about understanding
symmetry — both what symmetry is and what its implications are for scientific theorising.
To arrive at the proposed explanation of the AoT, I will first need to establish what it means
for there to be more structure in a theory’s models than in the phenomena it is trying
to describe. In physics, this old problem involves understanding the nature of ‘gauge
symmetry.’ My first task will then be to give a clear definition of gauge symmetry and then
use it to motivate rules for what to do when a gauge symmetry is present.

Applying those rules to the physical theories of cosmology will directly lead to my
proposed explanation of the AoT. Consequently, the plausibility of my proposal hinges
on the plausibility of my analysis of gauge symmetry. I will therefore dedicate significant
effort to this analysis. There is, undeniably, an abundance of existing literature on the
subject of gauge symmetry. One thing that will be different about my treatment is that it
will be general enough to accommodate my case of interest, where the gauge symmetry
in question has important formal differences from well-studied cases. In particular, the
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gauge symmetry relevant to cosmology, called dynamical similarity, will be found to break
the standard formal relations between configurations and their momenta: it treats scale
as gauge but not scale velocity. It is this non-standard feature of dynamical similarity
that will lead to a new understanding of the AoT. The philosophical foundations of my
approach will, thus, require that my definition of gauge symmetry can handle all the
well-studies cases of gauge symmetry and generalise naturally to dynamical similarity.

One important aspect of my proposal is that it requires a shift in convention. Some
(or perhaps most) important problems associated with the AoT involve matters of degree
because the puzzles at hand involve explaining the amount of time-asymmetry in a
system. For such questions, one needs to choose some method for counting possibilities,
and such choices usually introduce a certain amount of convention. For almost two
centuries, physicists have been in the rather fortunate position of having an obvious
measure to choose from: the Liouville measure, which is robustly time-independent and
wildly successful as an explanatory tool in physical practice. Unfortunately, as we will
show,1 the very nature of dynamical similarity makes it incompatible with the Liouville
measure. This fact shatters long-held intuitions and opens a door to new ways of thinking
about the counting of dynamical possibilities.

To be clear, I will not yet be able to settle on a single convention that can be used
in all imaginable cases. But I will show that there exists a natural family of choices that
can explain the AoT and share universal features rivalling the explanatory virtues of the
Liouville measure. Moreover, this family includes the measures already being used by
modern cosmologists — even though the correct usage of these measures is the subject
of ongoing debate. My framework, then, severs as a way to give a clear conceptual
understanding of how such measures should be used and interpreted.

My proposal for solving the AoT will be at the same time general and specific. Because
it is leveraged on a symmetry argument, the proposal will have general features that reflect
the structure of dynamical similarity. But it’s one thing to provide a general argument
for the existence of the AoT in general and another to predict the specific features of
our world that comprise our experience of the AoT. To address the latter, I will study two
specific models: one cosmological and one based on Newtonian gravity. Together, these
models explain many of the properties of the AoT we experience in our universe.

This thesis can thus equally serve as a proposal for an explanation of the AoT, the first
step in a more ambitious project to explain particular time-asymmetric features of the
world, and a case study in understanding the implications of gauge symmetry. In the last
regard, one may pose the question: what is it about gauge symmetries that makes them
such powerful conceptual tools for theory construction? My tentative answer, which I will
turn to at the end of my analysis, is that they provide strong constraints both on the space
of states but also on the natural ways of counting dynamical possibilities over the space
of states. Symmetries can thus radically reshape the inferential and explanatory structure
of a theory by ensuring that the users of that theory count only those possibilities that
really count in the world. When this is done for dynamical similarity in cosmology, the
AoT is revealed.

1See Section 4.8.3.
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1.2. HOW TO EXPLAIN THE ARROW OF TIME

1.2.1. THE PROBLEM OF THE ARROW OF TIME

Let me now state more precisely the problem that I will aim to solve.2 This problem is
firstly based on the empirical observation that many physical processes in nature exhibit
a significant and pervasive form of asymmetry in time. This asymmetry is expressed as a
numerically large temporal gradient in at least one quantity. Often, this quantity is some
kind of entropy, but this is not essential — a fact I will make use of later. Despite this large
temporal gradient, our best fundamental physical theories are only able to explain a small
amount of time asymmetry.3 The problem of the AoT is then to explain the large amount
of time-asymmetry seen in physical processes despite the (near) time reversal symmetry
of our best physical laws.

Several comments regarding this definition of the problem are now in order. First, I
have not yet specified the particular processes for which I will seek an explanation. I will
do so shortly below. Second, the formulation of the problem as posed above highlights the
fact that I will be concerned primarily with finding explanations for particular empirical
phenomena as they occur in time. I will thus leave open metaphysical questions about
time itself, such as whether it has an intrinsic direction.

Third, while the numerical imbalance that needs explaining is often attributed to some
type of entropy, restricting attention to particular notions of entropy is not essential except
when one is specifically interested in the entropic arrows of particular thermodynamic
systems. But defining entropy at the cosmological level is fraught with formal challenges
resulting from the infinite dimensional nature of the state space.4 In my analysis, I will
mainly be concerned with understanding the behaviour of physical quantities, such as
the rate of expansion of the universe, that can be modelled by phase space functions.
These can be given precise mathematical definitions even in the infinite dimensional
case.

Finally, my phrasing of the problem suggests that the essential explanandum is the
exceptional largeness of the numerical gradient. As such, I’ve identified the problem
with a kind of counting problem: the universe is ‘far more’ time-asymmetric than we
could reasonably expect given our knowledge of our most fundamental laws. This clearly
assumes, either explicitly or implicitly, a measure on the space of possible worlds. Inso-
much as I will strive for mathematical rigour and epistemological clarity, I will try to avoid
committing to any particular measure unless absolutely necessary. Thus, my general
scenario for obtaining some AoT does not involve the specification of a particular measure.
It is only when I turn to specific questions, such as why some numerical imbalance is
greater than a certain quantity, that the use of a measure is unavoidable. For the cases
I’m interested in, it will suffice to give universality arguments that single out a class of
measures that can explain the broad quantitative features of the system.

With these comments in mind, let me now say more about the particular numeri-

2My definition of the problem is based on the construction in Price (2002) and is the subject of Chapter 6.
3The small amount of time asymmetry that can be explained is due to the lack of time-reversal invariance of the

electroweak interaction of the Standard Model of particle physics.
4See, for example, the issues discussed in Earman (2006).
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cal gradients I will be interested in explaining. I will be concerned primarily with two
problems. The first will be to explain the relative smoothness of the early state of the
universe. This I will call the smoothness problem. The second will be to explain the large
and monotonic expansion rate of the universe.5 Because this expansion rate appears
observationally as the red-shifting of waves as they propagate through space, I will call
this the red-shift problem.

I will give much more detail about and motivation for each of these problems later.6

For now, let me note that while these problems are not meant to be exhaustive, they are
considered by many to entail a significant portion of the commonly discussed puzzles
associated with AoT. For example, an influential argument given in (Penrose, 1989, Ch 7)
states that our knowledge of the clumping properties of gravity is sufficient to explain the
large reservoir of entropy produced by our Sun, and therefore the observed thermody-
namic AoT seen on Earth, provided one can explain the early smoothness of the universe.
This will form the basis for my motivations for considering the smoothness problem later.
Additionally, Rovelli (2019), leveraging an argument made in Wallace (2010), argues for
the importance of explaining the extreme expansion rates of the early universe to lock-in
entropy in the form of the hydrogen atoms that fuel our Sun. This will later provide the
basis for my motivations for considering the red-shift problem.

I will discuss the relative merits of the arguments above later. Note, however, that
these empirical problems occur exclusively in the domain of classical physics. As a result,
my explanation of these effects will be purely classical. I will thus leave open, for the
moment, the question about the origin of time asymmetry in quantum mechanics. I will
adopt the working hypothesis that the AoT can be explained without quantum theory —
notably, without solving its hard foundational problems.

Regardless of whether the smoothness and red-shift problems are the only problems
needing explanation, these problems certainly encompass a significant portion of the
observed time asymmetries in the world. Finding explanations for these time asym-
metries using a symmetry argument based on scale may even provide a new template
for explaining time asymmetries more generally, including asymmetries relevant to the
quantum formalism.

Support for this claim can be seen by noting that one of the primary virtues of my
explanation for the AoT is that it is a very general explanatory scheme that can be applied
to a wide class of physical situations. When applying my norms in systems with dynamical
similarity to, for example, homogeneous and isotropic cosmologies, I will find a solution
to the red-shift problem in those cosmologies (see Section 8.4). Similarly, when applying
my norms to an N -body system of self-gravitating point particles, I will find a solution to
the smoothness problem for those models (see Section 8.3). This suggests that applying
these norms to a more diverse set of models or to more realistic models of the universe
will lead to solutions to more diverse aspects of the problem of the AoT.

5More specifically, the large monotonic decrease of the Hubble parameter.
6See, for example, Section 6.2.
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1.2.2. THE JANUS–ATTRACTOR SCENARIO

Let me now give a sketch of the general scenario for obtaining an AoT in theories where
dynamical similarity is a gauge symmetry.7 The idea will be to consider our two models
of interest, namely the cosmological and N -body models, and first express them as
dynamical systems on phase space. Then, we project the dynamical trajectories of these
theories onto a smaller state space that is invariant under dynamical similarity.8 My claim,
which I will prove in detail in what follows, will be that the projected theories contains
global structures, called attractors, and local structures, that I will call Janus points. It is
these structures that define an AoT.

More generally, I will argue that whenever attractors and Janus points occur along
a dynamical trajectory of some dynamical system, there is an AoT seen by observers in
states near a particular attractor that points from the Janus point to that attractor. The
general situation is depicted in Figure 1.1. Dynamical similarities are transformations that
simultaneously rescale and reparametrize a dynamical trajectory.9 Thus, the projection
involves removing the directions on phase space that rescale unparameterized curves.
Attractors in this scenario then arise when the dynamical evolution of the system before
projection moves mostly along the directions of rescaling, as shown in Figure 1.1. The
existence of attractors therefore depends on the details of the dynamics as well as any
dynamical conditions imposed on the solution space. For the models I will consider, the
dynamical conditions required to guarantee the existence of attractors are well-motivated
physically. For example, they require the cosmological constant to be positive and for the
matter to not have negative energy. Once these conditions are satisfied, the existence of
attractors follows from rigorous theorems.

Note that there can be many attractors in the state space — even within a single
dynamical trajectory. For that reason, the AoT in this scenario is not a global feature of
a theory but something that is seen by particular observers in a specific kind of state —
namely, those that are close to an attractor. Thus, different observers can see different,
even incompatible, AoTs. For some observers, namely those close to a Janus point, no AoT
of this kind can even be assigned. A region around a Janus point then serves as a kind of
transition region in the dynamics from which opposite AoTs emerge. The name Janus
point, introduced by Julian Barbour, is then aptly chosen since Janus is the two-faced
Roman god of time, transitions and beginnings. Because this scenario for obtaining an
AoT requires the existence of Janus points and attractors, I will call it a Janus–Attractor
(JA) scenario.

7The full picture will be given in Section 8.2.
8This projection can be either explicit, in which case the dynamics is projected onto a reduced system, or

implicit, in which case the dynamics can be expressed on a fibre bundle with the fibres being the orbits of
dynamical similarity.

9The word ‘similarity’ refers to the change of scale in the geometric sense of a ‘similarity transformation’ while
the word ‘dynamical’ refers to the change of time parameter.
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Figure 1.1 | The Janus–Attractor scenario: an AoT pointing from a Janus point to an attractor is seen by an
observer in a state close to that attractor.

Let me describe in more detail the general features of the JA-scenario depicted above.
I will assume, for simplicity, that the dynamical system in question is exactly time-reversal
invariant, ignoring for now the small time-asymmetries that exist in realistic theories of
the world because of the electroweak interaction. We will see that dynamical similarities
preserve the time-orientation of a dynamical trajectory10 so that the invariant projection
of the dynamics is time-reversal invariant. In this case, one might ask how it could be
possible, even in principle, to have an AoT in such a theory?

The answer lies in the particular details of the construction. In Section 1.2.3, I will
briefly motivate why one might expect attractors to arise when removing dynamical
similarity. For now, let’s discuss what they are in general. Attractors are defined to be
stationary sets of the dynamics. That is, they are sets (not necessarily single points as they
appear in Figure 1.1 due to the lack of dimensions on a page) reached from some dense set
of trajectories in the asymptotic ‘forward’ flow of the dynamics. However, if an attractor
exists in the ‘forward’ flow, another must also exist in the ‘backward’ flow when the theory
is time-reversal invariant. This is because any proof of the existence of an attractor in the
forward direction can equally be applied to the same effect in the backward direction. So
attractors can be consistent with time-reversal invariance provided such attractors bound
trajectories in both temporal directions. Note that nothing requires that these attractors
be themselves symmetric to each other in any way.

This does not yet give rise to an AoT. The fact that it doesn’t is a reflection of the
underlying (near) time-reversal invariance of the dynamics and is the basis for the well-
known temporal double-standard objection to many proposed explanations of the AoT

10I.e., the time-reparametrisation resulting from the dynamical similarity is monotonic.
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raised in Price (2004). To get around this objection, I need to introduce an additional
structure to break the time symmetry, at least locally, between the two attractors that
bound a trajectory. This is achieved by a Janus point. In the theories I will consider,
the choice of Janus point will involve some amount of convention. This convention
essentially amounts to a choice of Riemannian metric on the state space. The Janus point
can then be thought of as a kind of mid-point between the attractors.11 Two AoTs will
then ultimately point from the Janus point to each of the attractors.

To understand the temporal directions defined above as realistic AoTs, I can now
provide a concrete notion of nearness to an attractor. Using the Riemannian metric
defining the Janus points, a state is near to an attractor when the distance defined by the
metric goes to zero. An observer in a state near an attractor will then see a monotonic
and numerically large gradient in the inverse of this distance, defining a generic AoT by
our definition. Therefore, when there is a JA-scenario, we achieve our minimal goal of
proving the existence of some AoT.

If one wants to go beyond establishing the mere existence of an AoT and consider
questions of degree, such as determining the amount and nature of the time-asymmetry
seen by a particular observer, then one must choose a specific Riemannian metric, or
family of metrics, with corresponding Janus points that can give precise answers to the
questions of interest. Importantly, in order for that choice to be explanatory, it must
be motivated by additional theoretical virtues that include more than just the ability to
explain the AoT. I will discuss the virtues of my own choices in the concluding section of
the thesis.

1.2.3. SCALE SYMMETRY IN COSMOLOGY

Suppose that in one night all the dimensions of the universe became a thousand times
larger. The world will remain similar to itself, if we give the word similitude the meaning it
has in the third book of Euclid. Only, what was formerly a metre long will now measure a
kilometre, and what was a millimetre long will become a metre. The bed in which I went to

sleep and my body itself will have grown in the same proportion. When I awake in the
morning what will be my feeling in face of such an astonishing transformation? Well, I
shall not notice anything at all. The most exact measures will be incapable of revealing

anything of this tremendous change, since the yard-measures I shall use will have varied in
exactly the same proportions as the objects I shall attempt to measure.

The relativity of space from Science and method
Henri Poincaré, 1908 (translation 2003).

When it comes to measurements in cosmology, it is commonly accepted that, while
the global scale of the universe is not directly observable, changes of scale are.12

11This is not a mid-point in the sense of equal distance, since such distances can be infinite, but in the sense
that the trajectories are geodesics of the chosen metric at a Janus point.

12The issues discussed in this section are covered in more detail in Section 8.4.
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Let us fist discuss the non-observability of global scale. This fact can be easily under-
stood by imaging what would happen, as Poincaré does above, if one increased the size of
everything in the universe a thousandfold. In that case, all relative measurements in that
rescaled universe would give precisely the same value. Consequently, any law depending
on the absolute scale would be underdetermined by all knowable facts about the world. It
is thus noteworthy that our laws of cosmology do, in fact, not depend on the absolute size
of the universe. As is well-known, the initial value of the scale factor, a0, which sets the
overall scale of the universe, can be rescaled without affecting the cosmological equations
of motion. This symmetry is an example of the dynamical similarities discussed above.
However, if one combines this fact with the time-reparametrisation invariance of general
relativity, then one can see that the value of the scale factor is not empirically meaningful
at any time because one can always make a choice of clock where the dynamics of the
scale factor is (nearly) arbitrary.13

The interplay between dynamical similarity and time-reparametrisation invariance
will be studied extensively in this thesis. It suggests that the universe’s size at any given
time is ultimately empirically irrelevant. In other words, spatial scale is a gauge degree
of freedom. The connection between the freedom to choose a clock and the freedom to
choose a spatial scale is easy enough to understand: a choice of clock sets a global scale
at every instant for the velocities of the system. Fixing a scale then also requires fixing a
convention for comparing configurations and their rates of change.

For consistency, different conventions for fixing the scale will similarly require differ-
ent choices of internal clock. Of course, once a particular convention is made, a scale-free
description of system can be given, in principle, using any scale-invariant choice of in-
ternal clock. But the explicit structure of the dynamical equations may depend on the
choice of convention. This will be confirmed in the detailed investigations that will follow.
What is important for now is to establish that global spatial scale is empirically irrelevant
in cosmology even though there are choices in how to describe the system without scale.

On the other hand, changes of scale, encoded in the Hubble parameter H , are not only
measurable but essential to many important cosmological processes. These changes can
be observed via the red shifting of waves, most notably radiation, propagating through
space. One can easily measure the red-shift by comparing the wavelength of light coming
from distant galaxies to light produced under similar conditions in the lab. It is this
red-shift that causes cooling in the early universe and fixes, for example, the relative
abundance of elements in our universe.

These considerations lead to an unusual situation: a particular variable, in this case
the spatial volume of the universe, is determined to be a gauge variable while its cor-
responding momentum, in this case the Hubble parameter, is not. Consequently, it is
possible to eliminate the spatial volume from the theory, keep the Hubble parameter, and
retain empirical adequacy.

What is so unusual about this is that the laws of physics are generally second order
differential equations in time.14 If one performs the reduction described above, then one
obtains equations that are first order in time for exactly one choice of variable: the Hubble

13The ‘nearly’ here reflects the fact that the time evolution of the scale factor can be rescaled only up to an
arbitrary but monotonic function by redefining the lapse function.

14We will make the point in this paragraph much more concretely in Section 4.8.
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parameter. Phase space is then no longer a viable state space for the theory because phase
space assumes a pairing between configurations and momenta that is only guaranteed
for second order systems. Instead, we must use the odd-dimensional analogue to phase
space called contact space. But while Liouville’s theorem guarantees a universal time-
independent volume-form on phase space, no such result holds on contact space. This
dramatically changes the structure and interpretation of the dynamical equations.

The equations for dynamical flows on contact space look very similar to Hamilton’s
equations on phase space.15 For the even-dimensional part of a contact space, they are
virtually identical except for a term that looks like a friction term in Hamilton’s second
equation. The coefficient of this friction-like term depends on the variable along the odd
dimension of the contact space. I will call this variable the drag because of its formal
resemblance to the drag coefficient of a theory with friction. We will see that the drag
will also determine the time-dependence of any counting procedures (more specifically,
measures) that one wants to define on state space. This is unsurprisingly related to its
formal resemblance to the drag coefficient of a system with friction.

A cautionary note about the drag is that it will depend on the particular convention
used to fix the global scale. In cosmology, the drag can be identified with the Hubble
parameter using a natural representation of the dynamics. This choice is the one that
arises by fixing the scale factor to be a constant. But it is also the choice that leads to
a counting procedure widely used for counting solutions in cosmology.16 Moreover,
because the Hubble parameter appears, for example, as a friction term in the Klein–
Gordon equation of a massive scalar field in a homogeneous cosmology, the Hubble
parameter is perhaps naturally identified with a kind of drag variable.

I have thus sketched an argument, which I will make more carefully throughout the
thesis, that cosmological systems can be treated as contact systems where the scale factor
has been eliminated and the Hubble parameter behaves like a drag coefficient for the
matter fields in the universe. This gives an alternative way to think about red-shift not as
waves being dragged out because of the expansion of space but because of a universal
friction-like force. In the new picture, the dynamics are characterised by dissipative-like
phenomena. And when there is dissipation, there can be attractors. This is precisely
how attractors will be seen to arise in our formalism. Moreover, the Janus points will
be characterised by points of the dynamics where the dissipative terms are zero. The
behaviour of the drag therefore determines whether a JA-scenario is possible. There will
always be, for example, a JA-scenario if there is a way to represent the system where the
drag is monotonic and passes through zero. This explains more generally why theories
that exhibit dynamical similarity as a gauge symmetry can (but don’t always) lead to a
JA-scenario.

15See Equations 4.194.
16This counting procedure is given by the “physical” measured used by cosmological that is defined in Hawking

and Page (1988) and given in Equation 7.5. We will discuss the reasons why cosmologists regard it as physical
in Section 7.4.



1

12 1. INTRODUCTION

1.3. HOW TO DEFINE A GAUGE SYMMETRY

1.3.1. SYMMETRY AND ITS PROBLEMS

My solution to the problem of the AoT is motivated by a symmetry argument. In particular,
it is based on the claim that dynamical similarity should be considered a gauge symmetry
of cosmology. It is therefore essential to my argument to give a general definition of gauge
symmetry and a set of rules for what do to when one is found. To do this, I will outline a
general principle, called the Principle of Essential and Sufficient Autonomy (PESA), that
will clearly identify the gauge structures of a theory and suggest several norms for how to
deal with them. The statement and justification of the PESA will be the focus of Part I of
the thesis.

The project of identifying the empirical core of a theory and its theoretical implications
has independent philosophical interest outside considerations about the AoT. Debates
about what constitutes a physically significant difference and how theories should handle
such differences have been the subject of (at times intense) debate throughout the history
of physics. In modern physics, the importance of gauge symmetries is exemplified by the
central role played by the coordinate invariance of general relativity and the Yang–Mills
symmetries of the Standard Model of particle physics despite lacking explicit methods of
removing such symmetries.

Given that the concept of a gauge symmetry plays such an important role in physics,
it is natural to ask what common principles define it? One philosophical challenge is to
understand the extent to which the formal structures of a theory’s models can inform
epistemologically sound theoretical practice for identifying gauge structure. One may
doubt whether a theory’s formal structures should have any relation to good epistemology
but Earman (1989) provides striking examples, stemming from the spacetime symmetries
of Newtonian mechanics and general relativity, where considerations about spacetime
symmetries do inform good theoretical practice. Belot (2013) asks whether this can be
done in general and gives many physical examples where standard definitions of gauge
symmetry are inadequate when applied to specific physical contexts. I will later formulate
these worries in terms of a general challenge to find a good definition of gauge symmetry
and will call it Belot’s Problem.

To illustrate some of the difficulties that Belot alludes to, consider general relativity.
One of its fundamental principles is purported to be its invariance under arbitrary coor-
dinate transformations. But early in the development of the theory it was pointed out
by Kretschmann (Kretschmann, 1918) that any theory whatsoever could be written in
generally covariant form, raising questions about the physical significance of this invari-
ance.17 Since that time, many notions have been introduced or (re-introduced) to try to
identify what sort of invariance is truly meaningful and what is not. I will discuss many
such notions as I develop my own proposal, and highlight the strengths and weakness of
each as I go.18

For now, I will attempt to illustrate some of the most pointed aspects of the problem.19

17For a more modern discussion of this point, see Norton (2003).
18See Section 3.2 for a list of different notions and a discussion of their strengths and weaknesses.
19One can find a version of the argument presented below in Belot (2018). The example discussed here illustrates
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It is common practice in general relativity to regard general coordinate transformations
as gauge transformations of the theory because they lead to underdetermination in the
equations of motion. Consider, then, the Kerr solution used as a model of the exterior
geometry of some astrophysical black hole. If general coordinate transformations are
indeed gauge symmetries, then changing the location or speed of the black hole should
lead to an undetectable change in the system. This is because translations and boosts
can be implemented as coordinate transformations, which have been identified as gauge.
But the location and speed of a black hole are certainly empirically relevant quantities. It
would seem that there is a mismatch between the physical quantities modelled by the
theory and the underdetermination in the equations of motion.

One approach to this problem is to distinguish between symmetries that act on
isolated subsystems and symmetries that act on the system as a whole.20 Perhaps our
definition of a gauge symmetry should depend upon this distinction? Under such an
approach, because a black hole is a subsystem of the universe, translating it rigidly relative
to the rest of the universe could be empirically significant even if such transformations
would be empirically insignificant had they acted on the whole system.

But this definition of a gauge symmetry depends on a lot of extra structure. One first
needs to carefully define an isolated subsystem and then what it means to rigidly translate
it.21 Additionally, one must address the problem of having a definition of symmetry that
applies differently to the ‘whole’ system than to its parts given that there is no way to
know empirically whether one has actually found the whole system — especially when
that system is thought to be the universe.

To overcome these difficulties, I will require more specificity in the statement of a
theory. In particular, I will insist that a theory state all the idealizations under which its
models should be considered valid representations of the phenomena being studied. My
definition of a gauge symmetry will then apply universally to any theory, but only when
the conditions of the idealisations are satisfied. In this way, general relativity should be
thought of as a different theory when using asymptotic boundary conditions to model an
isolated subsystem, as is done when using the Kerr solution to model astrophysical black
holes, than when considering a theory of cosmology. Clearly, these two applications of
general relativity operate under different physical idealisations. It is then not inconsistent
to have two different sets of gauge symmetries arising from these two different theoretical
frameworks.

One advantage of this approach is that it is nicely compatible with notions of gauge
symmetry that depend on the existence of isolated subsystems. In my case, the definition
of an isolated subsystem and the notion of a rigid translation can be packaged into the
idealisation conditions needed to apply the theory in the chosen context. This means that
these definitions do not need to appear anywhere in the definition of a gauge symmetry,
allowing my formulation to be simpler and more flexible. We will see explicit examples
illustrating these advantages in Section 5.4 after developing my proposal.

A related advantage of this approach is that the theoretical structures required to

the failure of what Belot calls Earman’s Principle discussed in Section 2.2.4.
20Such an approach is advocated, for example, by Greaves and Wallace (2014). See Section 2.6 for a more

detailed list of references.
21For an attempt to do so see Gomes (2021) and Gomes (2022) for the more general construction.
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distinguish different theoretical contexts (i.e., those that define the idealizations, ap-
proximations and other auxiliary hypotheses) can be conveniently contained in the
model-description of the models used to define the theory. Then, it is possible to separate
questions about what makes a good representation from questions about what makes a
good dynamical definition of a gauge symmetry.

Finally, let me note that I will be silent regarding the metaphysical status of gauge
and other structures. My definition of gauge symmetry and the norms that it implies will
depend on the empirical status of the representational structures of a theory’s models.
Further inferences about the ontological status of these structures will be left to future
investigations.

1.3.2. THE PROPOSAL FOR GAUGE SYMMETRY

Let me now give a sketch of the PESA. At the core of my definition of gauge symmetry
will be a particular kind of underdetermination of theory by phenomena. The motivation
for my definition comes from a well-known proposal introduced in Dirac (1964). Dirac’s
proposal gives a specific set of criteria for identifying gauge symmetries in constrained
Hamiltonian systems. While this proposal is not general enough for my purposes,22 its
motivations are very general. My proposal generalises and refines Dirac’s proposal by
making use of its general motivations. The resulting formalism, articulated by the PESA
in Chapter 5, can be roughly summarised by the following slogans:

1. Slogan-definition: A gauge symmetry is present when the representations of a
theory are underdetermined by the phenomena (in a way I will make more precise
below).

2. Slogan-norm: When this occurs, the underdetermination of the dynamical equa-
tions of the theory should be arranged to exactly match the underdetermination of
the representations by the phenomena.23

I will refer to these as ‘slogans’ to highlight the fact that I have intentionally ignored
many details for the sake of clarity — details that I will make explicit in my more careful
treatment later.24 When taken together, these slogans can be seen to provide concrete
dynamical and empirical criteria for identifying a gauge symmetry in a theory.

Lets me now describe in a bit more detail the resulting picture. Consider that the
models of a theory are written in terms of some set of representational structures A that
can be used to describe some phenomena. Considerable effort will be put into stating
precisely what it means for a model to faithfully represent a target system, and therefore
what it means to have a basis for empirical fact. Once this is achieved, my claim will be
that a gauge symmetry exists when there is some smaller set of observable structures
O ⊂A that is both necessary and sufficient for describing the phenomena.25 That is, there

22Since I just argued above that I’ll be interested in contact systems, which are not Hamiltonian.
23This norm will provide the basis for my generalisation of the well-known Gauge Principle, which is discussed

in Section 2.2.2.
24For the full statement of the PESA, see Section 5.2. The slogan-definition and norm given here are based on

the more complete definition of a gauge symmetry and first normative rule given in that section.
25In a way that will be made more precise throughout Part I.
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is a gauge symmetry when there is no smaller subset of O that can be used to maintain
the empirical adequacy of the theory.

The slogan-definition results from the fact that O is sufficient, which means that
there are structures in A that are not necessary for describing the phenomena and, thus,
cannot be determined from them. The gauge symmetries themselves are then defined to
be all transformations on A that leave O invariant.

My slogan-norm then requires that the theory has a formulation of its laws that is
well-posed on O but not on A . I will motivate it below. Note that this criterion does not
restrict us to deterministic theories since the laws, while well-posed, may only determine
states probabilistically. From a practical perspective, this means that the laws expressed
on A simply can’t be solved unless the user of the theory assigns arbitrary values to any
quantities in A not determinable from O . The overall picture is illustrated in Figure 1.2.

Figure 1.2 | The general structure emerging from the PESA. Gauge symmetries are transformations on A , the
set of all the representational structures of a theory’s models, that preserve O , the set of all representational
structures that are both necessary and sufficient to describe the phenomena. When a gauge symmetry exists,
the dynamical equations are required to not be well-defined on A unless arbitrary values are assigned to
gauge-dependent quantities.

The motivation for the slogan-norm is that it ensures is that a gauge symmetry cannot
go undetected. In a formulation of the theory where the equations of motion on A are
well-defined, one may not realise in using the theory that there is a variable whose value
has no impact on empirical predictions. We will see that this can lead to reasoning errors
that mislead intuitions, particularly when those intuitions involve typicality arguments.
My norm can prevent such reasoning errors by identifying the structures of the theory
that do not affect its empirical core.

Let me illustrate how to use my slogans with the simple example of a Newtonian
universe. It is generally well-accepted that the position of absolute space in such a theory
is not empirically accessible. Thus, in a simple N -body Newtonian system, the center-
of-mass of the universe is underdetermined by the phenomena. The slogan-definition
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above then says that any transformation that changes the center-of-mass while leaving
the center-of-mass coordinates invariant is a gauge transformation.

At this point, one might worry that time-dependent translations should qualify as
gauge transformations under this definition. This appears to be problematic because
Newton laws are not invariant under time-dependent translations and predict compli-
cated fictitious forces in non-inertial frames. This is where the slogan for my normative
rule comes into play.

In this example, the norm requires that we reject Newton’s equations for this system
because they are well-defined for the center-of-mass. Instead, my norm requires that we
use an equivalent system of equations that is only well-defined for translation-invariant
quantities. Fortunately, this is rather easy to do. All that is needed is to restrict Newton’s
equations to center-of-mass coordinates by imposing a constraint that enforces the van-
ishing of the linear momentum of the system. It is easy to see that this constrained system
will be invariant under arbitrary time-dependent translations, and that the position of
absolute space will be underdetermined.26 It is also easy to see that this new system is
functionally equivalent to the previous one provided that the center-of-mass really is
underdetermined by the phenomena.

Note, however, that we are now in an epistemically superior situation: we are secure
in the knowledge that the centre-of-mass really is empirically irrelevant, as long as our
theory continues to be empirically adequate, because the theory itself never makes use of
the value of the center-of-mass to make any prediction whatsoever. On the other hand, if
the new theory ever becomes inadequate for describing some phenomena of interest, we
know that we can always reintroduce the center-of-mass into the dynamical system by
returning to Newton’s original theory.

1.4. ROADMAP

The dissertation is divided into two parts. Part I motivates, formulates and justifies
the PESA. This leads to my proposed definition of a gauge symmetry and the resulting
consequences. Part II makes use of this definition of a gauge symmetry to develop a
proposal for explaining the AoT.

The first part of the thesis is divided into four chapters and the second into three.
The first chapter of Part I (Chapter 2) establishes the main problem, which I call Belot’s
Problem, that I aim to address with the PESA. Belot’s Problem is motivated using several
examples and then defined in Section 2.2. I introduce the representational language used
to articulate the PESA in Section 2.3 and define several aspects of symmetry that will be
useful in my analysis in Section 2.4. The chapter ends in Section 2.5 with a review of
some standards notions of symmetry discussed in the literature and their relation to my
analysis.

After defining the central problem in Chapter 2 and developing the language for
symmetry and representation that will be used throughout, Chapter 3 describes several
well-known attempts in the literature to define gauge symmetries. The emphasis is on
describing the structural features of these proposals and the ways in which they fail to fully

26For a direct proof, see Section 4.3.3.2. The constrained theory described here is equivalent to the Barbour–
Bertotti theory defined in that section.
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solve Belot’s Problem. These failings are used to motivate my own solution. The chapter
ends by introducing the notion of dynamical similarity, which is central to my analysis
of the AoT, and explains how this symmetry differs from standard gauge symmetries
(Section 3.4).

While Chapter 3 introduces the conceptual foundation of different approaches to
defining gauge symmetry, Chapter 4 develops the mathematical machinery needed to
model all the examples that will be relevant to the analysis later. Several important
things are accomplished. First (although not in this particular order), I review stan-
dard approaches to gauge theory including Noether’s theorems, Lagrangian constraints
(Section 4.3), and the Dirac formalism (Section 4.7). Second, I develop a unifying mathe-
matical formalism for treating general symmetries in physics (Section 4.4) and show how
this can be used to recover standard results. I illustrate the utility of this formalism by
using it to shed light on a well-known problem, called the Frozen Formalism Problem,
affecting theories where the time parameter can be arbitrarily chosen (Section 4.5). Then,
I apply the formalism to the case of dynamical similarity (Section 4.8). This important
step will allow us to apply the norms resulting from the PESA to specific models of the
universe to specifically address the red-shift and smoothness problems in the second part
of the thesis. The mathematical formalism introduced in this chapter is thus essential to
our analysis: it gives a general framework for treating symmetry that forms the basis of
the PESA and provides a concrete way to implement the resulting norms.

In Chapter 5, the closing chapter of Part I, I state the PESA (Section 5.2) and then show
how it can be used to solve the problems with symmetry introduced in Chapter 2. When
treating the examples, I will base my analysis on the formalism developed in Chapter 4.
This will allow me to compartmentalise the technical and conceptual analysis by giving
the rigorous proofs that support the claims made in Chapter 5 and then referencing them
in Chapter 4.

Part II of the thesis gives my proposed explanation of the AoT. The first chapter (Chap-
ter 6), defines the problem. I begin by defining the smoothness and red-shift problems
and show how the particular physical processes that characterise these problems are cen-
tral to establishing the problem of the AoT (Section 6.2). I then review known approaches
to explaining the AoT (Section 6.3) and illustrate their inadequacies (Section 6.4). The
intention is to establish the need for a new approach based on fundamentally different
assumptions about the character of the dynamical laws.

In Chapter 7 I take aim at the Past Hypothesis (PH), which is perhaps the leading
approach to explaining the AoT. The purpose of this chapter is to review the mathematical
and conceptual arguments typically employed for understanding the AoT in terms of a PH
(Section 7.2), describe and characterise the well-known criticism against it (Section 7.3),
and add new criticism (Section 7.5) making use of the PESA to argue for dynamical
similarity as a gauge symmetry of cosmology (Section 7.4). It is in this chapter that
I will give my argument for why dynamical similarity should be considered a gauge
symmetry. Upon accepting this, an advocate of the PH must choose between introducing
a distinction without a difference by breaking a gauge symmetry or undermining the
assumptions of the PH by accepting a time-dependent measure.

In Chapter 8, the final chapter of Part II, I introduce my new general scenario, the
Janus–Attractor(JA) scenario, for explaining the AoT and use it to solve the smoothness
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and red-shift problems. The JA-scenario is defined in Section 8.2. The smoothness
problem is addressed in Section 8.3. Particular attention is paid to the properties of the
chosen measure and the universality class that it is a part of. The red-shift problem is
then addressed in Section 8.4. The universal nature of the assumptions required to solve
this problem are highlighted.

I conclude the thesis in Chapter 9. There, I assess the extent to which I have solved
the problems I set out for myself (Section 9.1), suggest further research (Section 9.2), and
reflect on what my solution to the problem of the AoT could mean about the role of gauge
symmetry in physical theory (Section 9.3).



I
GAUGE SYMMETRY

19





2
SYMMETRY AND ITS PROBLEMS

CHAPTER SUMMARY

In this chapter, I set the stage for my analysis of gauge symmetry. I develop a language
for discussing symmetry in general and gauge symmetry in particular. I illustrate known
problems for defining gauge symmetry using concrete examples and synthesize them into a
problem I attribute to Belot. Then, I define the account of representation that I will later use
to formulate my definition of gauge symmetry that solves Belot’s Problem. Finally, I situate
my analysis within the literature in terms of several standard gauge-symmetry concepts
and review some well-known examples of gauge symmetries.
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2.1. INTRODUCTION

The purpose of Part I of the dissertation is to give a good definition of gauge symmetry that
I can later use to motivate my explanation for the AoT. I will lay down the philosophical
and physical foundations of my proposal in the first three chapters of Part I. In Chapter 2,
I will set up the representational language that I will use throughout, define the main
problem I want to solve (i.e., Belot’s Problem), give my solution and illustrate how it
applies to several examples.

One thing that distinguishes my definition of gauge symmetry from other proposals
— particularly those in the physics literature — is that my definition will presuppose a
detailed description of the modelling context when defining the theory’s models. This
means that my definition will require me to be explicit about my account of representa-
tion. I will do this in Section 2.3 where I will adopt the account developed in Frigg and
Nguyen (2020). Then, I will apply my construction in Section 5.4 and find that many
puzzles usually associated with gauge symmetries are in fact common issues that arise
when using models to represent target systems. Once these representational issues have
been dealt with, the distinctive feature of gauge symmetries, namely that they gener-
ate underdetermination in dynamical evolution, becomes easier to identify. This leads
directly to my proposal, which I will present in Chapter 5.

One important goal of Chapter 2 will be to reconsider how a gauge symmetry is usually
defined in the physics and philosophy literature. A well-known principle for doing so,
dating back to Weyl, is the Gauge Principle, which I will describe in detail in Section 2.2.2.1

The Gauge Principle, as we will see, is a general prescription developed and widely used
by physicists for defining a gauge symmetry. It will thus be important for my analysis to
ask what motivates the Gauge Principle and what this principle achieves. The PESA and
the resulting norms stated in Section 5.2 will provide my answer to these questions.

My definition of a gauge symmetry will be very general and will allow me to motivate
extensions of the Gauge Principle that apply to two important cases of symmetries:
reparametrisation invariance and dynamical similarity. The first case will show how my
proposal can be used to address an important conceptual problem, the so-called problem
of time in toy models of quantum gravity, that lies outside the proposal’s original scope.
The second case forms the basis of my proposed solution to the problem of the AoT. As a
consequence, the strength of my solution hinges on the strength of the analysis of gauge
symmetry provided by the PESA. Let me begin that analysis now.

2.1.1. THEORY AND STRUCTURE

In the first step of my analysis, I will clearly state the sense in which I will understand a
‘theory’ and establish terminology to refer to a theory’s structures. Throughout this thesis,
I will be considering physics theories, where the dominant paradigm is to formulate
theories in terms of mathematical models treated as representations of phenomena. My
primary theory of interest will be general relativity, which is a field theory whose syntactic
reconstruction is poorly understand and possibly ill-defined. For those reasons, I will be

1See that section for a detailed list of references.
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exclusively working within a semantic view of theories.2 In brief, a theory will be seen as
collection of models and rules for how to use those models to represent a target system in
the world. In Section 2.3, I will be more precise about what I mean by a ‘model,’ how a
model can be used to represent a target, and what criteria need to be met for a theory to
adequately describe phenomena. But for now, I will take for granted that this can be done
and introduce some minimal terminology that will be helpful in defining a general notion
of symmetry.

One important role of a theory is to provide a set of laws that can reduce some large
collection of possible models to a smaller subset of candidate models that might provide
a faithful representation of the target system. I will call the large collection the space of
Kinematically Possible Models (KPMs) and the smaller space the space of Dynamically
Possible Models (DPMs). The distinction between ‘kinematic’ and ‘dynamic’ models is
traditionally used in physics to distinguish all possible worlds from those permitted by a
theory’s laws. The laws then define a projection from the space of KPMs to the space of
DPMs.

To pinpoint how the laws accomplish this, let us first state, as is standard in physics,
that we will be concerned with theories whose models are mathematical objects. We can
then start our analysis with the notion of a mathematical structure, which I will broadly
take to be a set of mathematical objects equipped with functions and relations. The
models of a theory can then be understood to be composed of different mathematical
structures playing different representational roles.

Adopting the terminology used in (Gryb & Thébault, 2023, ch. 5), I will call the most
basic structures of a theory the constitutive structures. These structures are common to
all KPMs and include things like the spacetime manifold, matter fields, and coupling
constants of a theory. The laws are then implemented using a different set of structures
that impose constraints on the constitutive structures. I will call these nomic structures.
Examples include differential equations to be satisfied or cost (e.g., Lagrangian) functions
to be extremised by the DPMs. The laws then use the nomic structures to define a
projection on the space of constitutive structures, which, in turn, induces a projection
from the space of KPMs to the space of DPMs.

Before introducing the notion of symmetry, let me note that constitutive structures
can be indexed by token in the sense introduced at the end of Section 5.1 of Gryb and
Thébault (2023). For example, a theory of particle mechanics could have two, three or N
particles representing different tokens of the same type of matter. Similarly, models of
general relativity with different boundary conditions are different tokens of the same type
of spacetime structure. I will generally consider models with different tokens in this sense
to belong to different theories. Because my notion of gauge symmetry will require that
the models of a theory include a specification of the idealisations and conditions under
which the theory should apply, defining a theory in this narrow sense is reasonable. In this
way, general relativity leads to different theories with possibly different gauge symmetries
under different boundary conditions.

2The semantic view of theories was proposed in Suppes (1960) and advocated for in Chapter 3 of Van Fraassen
(1980). The version we will adopt here can be found in Chapter 9 of Van Fraassen (1989).
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2.2.1. BROAD AND NARROW SYMMETRIES

With the terminology established in the previous section, I can now give the general
definition of symmetry that I will work with throughout the thesis. Because constitutive
structures are mathematical objects equipped with functions and relations and KPMs are
collections of constitutive structures, the space of KPMs is equipped with automorphisms;
i.e., transformations that map the space of KPMs to itself. Consequently, the space of
DPMs is also equipped with automorphisms via the pullback of the projection from the
space of KPMs to the space of DPMs. We now make the following definition:

Broad symmetry:

An automorphism on the space of Dynamically Possible Models of a theory.

I call such symmetries broad because they are the most general notion of symmetry used
in the literature. This broad definition reflects a commonly held view that a symmetry
is a map from one solution (i.e., DPM) to another. Note that sometimes symmetries are
defined as transformations that preserve certain constitutive structures; e.g., spacetime
structure; that are common to all DPMs. Such transformations, however, induce trans-
formations on the space of DPMs via the appropriate pullback and, therefore, ultimately
reduce to the definition above.

It is rather easy to see that the definition of symmetry given above is so broad that
it is nearly devoid of physical content. Because the laws of a theory define the space of
DPMs and, therefore, its automorphisms, the broad symmetries are little more than a
particular way of stating the laws. After all, there is a broad symmetry that maps any DPM
to any other. Thus, all DPMs are equivalent up to a broad symmetry, raising questions
about what one can really learn from broad symmetries in general. For these reasons, the
definition of a broad symmetry given above is referred to as a “Fruitless Definition” in
Belot (2013).

To get a definition of symmetry that is more fruitful, one must give a more narrow
definition. To do this, one can require that a symmetry additionally preserve certain
specified nomic structures. I will call such proposals narrow symmetries and consider
several examples in Section 3.2.3 Narrow symmetries can therefore be used to characterise
specific features of the laws and, thus, highlight certain aspects of the target system. In
particular, narrow symmetries give information about the dynamically stable structures of
a theory, like energy and momentum, and can have considerable conceptual and heuristic
value. Note that, under this understanding, the broad symmetries are the broadest form
of narrow symmetry in the sense that they preserve all the nomic structures of the theory.

3The broad-narrow distinction was introduced in (Gryb & Thébault, 2023, §5.3), where it has been applied in a
more general analysis of symmetry in terms of structure preserving transformations.
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2.2.2. THE GAUGE PRINCIPLE

The narrow notion of symmetry defined in the previous section identifies dynamically sta-
ble structure using the criterion of invariance. This, however, is not quite how symmetry is
commonly understood. Symmetry transformations are often thought to express identity
relations, either approximate or exact, between models. In the case where the identity
relations are considered exact, the symmetry is usually referred to as a gauge symmetry.
Two systems that are related by a gauge transformation are generally considered to be
empirically indistinguishable.

Often the word ‘physically’ is used instead of ‘empirically’ when referring to indistin-
guishability in gauge theories. I will try to avoid metaphysical commitments and not try
to make any inferences about what is physically real. Because my definition of gauge
symmetry will require a specification of the empirical context, ‘empirical’ indistinguisha-
bility is the more appropriate notion. Of course, two systems could be physically different
and be empirically indistinguishable in a particular empirical context. I will take the
view that, so long as the theory is empirically adequate in the given context, empirical
indistinguishability is the notion of indistinguishability that is appropriate for making
sound inferences.

The rough notion of gauge symmetry just sketched requires significant elaboration
before it can be made philosophically precise — not the least because of the well-known
considerations involved in identifying the ‘empirical core’ of a theory.4 Before giving my
own detailed proposal for how to understand a gauge symmetry, it is worthwhile to take
note of existing efforts in the physics literature to define a gauge symmetry.

In physics, the common way to think about formulating a theory that contains a gauge
symmetry is to start with a theory that doesn’t have that gauge symmetry and implement a
procedure that first locates and then functionally removes the parts of the theory’s models
that change under the gauge symmetry. Once the effects of the relevant features of the
models have been eliminated, the theory is said to be gauged. If the features are explicitly
removed, the theory is said to be reduced under the action of the gauge symmetry.5

Removal of the effects resulting from applying a gauge transformation is motivated by
the belief that such effects are not empirically relevant to the system being modelled. A
procedure that gauges a symmetry is an implementation of what is often called the Gauge
Principle, or sometimes the Gauge Argument.

The first explicit implementation of the Gauge Principle was introduced in Weyl
(1986).6 Different implementations of the Gauge Principle typically follow the same basic
procedure.7 First, one introduces auxiliary structures that transform in a well-known way
under the symmetry group to be ‘gauged.’ Then, one modifies the nomic structures of
the theory so that the laws become, in a specified sense, independent of those auxiliary
structures.

4See, for example, the distinction between theoretical terms and entities as made in Lewis (1970) and the process
of Ramsification and the classic discussion in Hempel (1958).

5Note that explicit reduction is often not possible.
6For an English translation see (O’Raifeartaigh, 1997, Ch. 5).
7The Gauge Principle is described in many standard physics textbooks such as (Weinberg, 1995, Ch. 15) and

L. H. Ryder (1996) and in the philosophy literature: Earman (2003); Gomes, Roberts, and Butterfield (2021);
Teller (2000).
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A simple example is an old procedure introduced by Kretschmann (1918) for making
an arbitrary theory independent of the choice of coordinates that label the spacetime
structures of a theory. A modern version of this procedure, called the Stückelberg mecha-
nism after the mechanism developed in Stückelberg (1938), can be applied to the symme-
tries of particle physics.8 In both procedures, one starts with some constitutive structures
— call them K i — and then introduces so-called compensator fields, φα, that ‘shift’ the

constitutive structures along an orbit defined by K i →G(φα) j
i K j . In this notation, G(φα)i

j
is a representation of the symmetry group to be gauged and φα is a parameter along the
orbit.

The next step in the procedure is to impose corresponding conditions on the nomic
structures of the theory. Usually, this involves putting constraints on the variation of an
action, which is a function on the space of KPMs. I will illustrate how such constraints
can be imposed in Section 3.2.2. Their effect is typically to impose that the action be
independent of φα. This results in the dynamics of the φα being underdetermined by the
equations of motion. This underdetermination is then taken to signal the presence of a
gauge symmetry.

A slightly more elaborate version of the Gauge Principle involves introducing new
constitutive structures that are only partially auxiliary. These are often referred to as gauge
fields and represented by a gauge connection Ai , which is required to take values in the
Lie algebra of the symmetry group to be gauged. One can then replace all instances of
partial derivatives, ∂µK i , in the nomic structures with the gauge-covariant derivatives,
DµK i that depend on the gauge fields in such a way that the derivatives Dµ transform
covariantly under the symmetry group. Similar the Stückelberg mechanism, this produces
an action that is invariant under changes of the group parameters and a corresponding
underdetermination of the group parameters by the equations of motion. This version
of the Gauge Principle can be found in standard texts on gauge theory; e.g., (Weinberg,
1995, Ch. 15). An example of how this procedure works in a simple theory is given in
Section 4.3.3.2. One can also use the Gauge Principle in this form to construct general
relativity and the gauge theories of the Standard Model of particle physics.

The procedures sketched above are easier to implement when the original action is
already invariant under changes of the group parameters that are spacetime constants.
For this reason, the Gauge Principle is often thought of as a way of making a global (i.e.,
constant over spacetime) symmetry local (i.e., arbitrarily dependent on the spacetime
point). The naive implication of this is that local symmetries are gauge transformations,
but global symmetries are not. In Section 3.2, I will show why such an understanding
of gauge symmetry is rather limited. Instead, I will propose that the gauge character of
a symmetry is better associated with the underdetermination of the dynamical system
introduced by the implementations of the Gauge Principle.

An important limitation of existing implementations of the Gauge Principle is that
there are no known implementations that apply to dynamical similarity. I will use the
norms of the PESA to motivate an implementation of the Gauge Principle for dynamical
similarity in Section 4.8.2. This will be central to my explanation of the AoT.

8See, for example, Körs and Nath (2005) for an illustration of how this is done.
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2.2.3. PROBLEMS EXEMPLIFIED

The difficulties alluded to above in our discussion of the Gauge Principle illustrate some
challenges encountered in giving a universal definition of gauge symmetry. I will formu-
late this into a concrete problem in Section 2.2.4. For now, I will start by illustrating the
kinds of problems that arise when defining a gauge symmetry using simple examples. A
more detailed analysis of these and other problems will be given in Section 3.2.

2.2.3.1. THE NEWTONIAN FREE PARTICLE

In Newtonian mechanics, a free particle is a model for a material body, idealised as a
point particle with position xi (t) in a Cartesian space (with i = 1, . . . ,3) at time t , that is
in motion in the presence of no external forces. The dynamics of the particle is given by

Newton’s law, which says that the particle has zero acceleration: ai (t) = d2xi

dt2 = 0. This
equation of motion has the general solution

xi (t ) = xi
0 + v i

0t , (2.1)

where xi
0 is the initial position and v i

0 is particle’s initial (and constant) velocity. The
curves (2.1) then describe every the DPM of the theory.

It is easy to see that the infinitesimal Galilean transformations,

t → t +T

xi → xi +X i +ϵi
j kθ

j xk

v i → v i +V i , (2.2)

send DPMs to DPMs, and are thus broad symmetries. In (2.2), v i = dxi

dt is the particle’s

velocity, (T, X i ,θi ,V i ) are group parameters, and ϵ is totally antisymmetric tensor with
unit entries.

We immediately see the problem with such a broad definition of symmetry: the
space of symmetries is larger than the space of DPMs (in the sense that it has a greater
dimension) and is such that any DPM can be mapped to any other using a Galilean
transformation.9 If one were to identify Galilean transformations as gauge symmetries,
one would therefore trivialise the theory. This is a problem because there may be perfectly
good empirically interesting systems that one might have reason to model as a particle
moving with constant velocity. We will discuss one classic example, Galileo’s ship, below.
A more modern example would be a model of a free object travelling in a spaceship in an
orbit around the Earth. It would be absurd to suggest that such models have no empirical
content.

On the other hand, there are also good reasons to expect Galilean symmetries to be
gauge symmetries of Newtonian mechanics in general. Newton himself was well-aware
that Galilean transformations generate no detectable change within an isolated system.
This was proved as early as Corollary V of the Principia.10 Relationalists might then argue,

9To see this, apply a translation to arbitrarily shift the initial position, xi
0 → xi

0 + X i , and a boost to shift the

initial velocity v i
0 → v i

0 +V i .
10For modern translations of the Principia, see Newton (1962, 1999). See S. Saunders (2013) for an analysis of

the status of Galilean transformations in the Principia.
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as is done in Barbour and Bertotti (1982) and Barbour (1995), that, since the Galilean
transformations leave relational quantities invariant, the Galilean transformations of a
system as a whole should be treated as gauge transformations. I will develop a formalism
for doing this explicitly in Section 4.3.3.2.

We now face a problem: it seems that it is impossible to devise a narrow proposal of
symmetry that can make Galilean transformations gauge in a relational universe but not
gauge for free objects in an orbiting spaceship.

2.2.3.2. GALILEO’S SHIP

In this section, I will introduce an example taken from Galileo’s Dialogue concerning the
two chief world systems (Galilei, 1953, Second Day, pp 186-187) that will play an important
role in justifying the PESA. This example will be studied in more detail in Section 5.4.1
after introducing the PESA.

In Galileo’s example, a ship is moving smoothly and uniformly on water relative to a
shore. Galileo imagines the ship to have a cabin with closed windows so that the motion
of the ship relative to the shore is not visible or otherwise detectable within the cabin. He
points out that all observable phenomena in the cabin unfold in the same way whether
the ship moves relative to the shore or not.

The connection with the Galilean transformations introduced in the previous example
is straightforward. Because the ship is said to be moving uniformly, we can model Galileo’s
ship using a free Newtonian particle with position x(t) relative to the shore. Galilean
invariance then states that the Galilean transformations acting on x(t ) relate empirically
equivalent situations. Here, the ship can be thought of as a subsystem moving relative
to its environment, which in this case is the shore. When the windows of the cabin are
closed, there is no significant interaction between the ship’s contents and its environment.
It seems that the Galilean transformations should be thought of as gauge symmetries in
this case.

On the other hand, if the windows of the cabin are opened, a passenger can detect
relative motion between the ship and shore. Small interactions between the ship’s con-
tents and the shore have no noticeable effect on the motion of the ship but undermine
the justification for treating the Galilean transformations as gauge symmetries.

The difference between the two situations is clear: the epistemic access of the ship’s
passengers has changed. Knowledge about the location of the shore affects whether
motion with respect to it should be treated as gauge or not. Epistemic considerations
seem to dictate whether the Galilean transformations should be treated as gauge or not.

But epistemic considerations alone, however, do not suffice to give an adequate
understanding of gauge symmetry. Dynamical considerations are also essential. Consider
the proposal made in Rovelli (2014). There, it is argued that gauge symmetries are useful
in physics because they entail specific dynamical criteria for coupling isolated subsystems
to larger systems. In the example of Galileo’s ship, the fact that Galilean invariance works
as a gauge symmetry for the closed cabin restricts the kinds of possible interactions that
could exist between the ship and the rest of the universe. For example, if you learn about
the presence of the shore, you already know that the dynamics of the shore must not be
strongly coupled to the ship or its contents. This leads to specific constraints that must be
satisfied by the relative motion of ship and shore. Such constraints can also be articulated
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for more sophisticated gauge symmetries (e.g., Gomes (2021)), illustrating the generality
of this observation.

We see from this example that a good definition of a gauge symmetry must depend not
only on the epistemic access of an observer to a particular system but also on the details
of the dynamical interactions within that system. The challenge is then to articulate
the precise connection between epistemic and dynamical criteria. This will be a central
consideration when developing the PESA.

2.2.3.3. THE KEPLER PROBLEM

We now turn to the symmetries of the Kepler problem to illustrate some formal and
conceptual problems that will be crucial to our analysis later. The particular symmetry we
will consider in this section (Equation 2.3) has been discussed in Belot (2013) and Wallace
(2022b) as being particularly problematic for certain ways of defining a gauge symmetry.
It results from the conserved magnitude of the so-called Runge–Lenz vector.11 I will show
in Section 8.3.2 that this symmetry is actually a dynamical similarity and will indicate how
to treat it using the PESA in Section 5.4.2.

The Kepler problem is a name for a model developed to study planetary motion in
the solar system. A large central body (e.g., the sun) and a single satellite (e.g., a planet)
are modelled as point particles with different masses. The large body is taken to be at
the origin of a Cartesian plane. The motion of the satellite can then be represented in
terms of a radial coordinate r (t ) and angular coordinate θ(t ), which both evolve in time t .
Newton’s law of gravitation says that the acceleration of the satellite is proportional to the
inverse of the second power of r . It is possible to show (see Prince and Eliezer (1981) or
Section 3.2.2 of Gryb and Sloan (2021)) that the transformation

t → at r → a2/3r θ→ θ , (2.3)

where a is a dimensionless gauge parameter, takes DPMs of the Kepler problem to DPMs.
This symmetry is more difficult to visualise than the Galilean transformations because

it involves a rescaling of both space and time by different powers of a. This means that one
must rescale positions and velocities in different ways such that the angular momentum of
the system is rescaled. In particular, these transformations have the strange property that
the angular momentum, J = mr 2θ̇, transforms non-trivially (because of the non-trivial
transformation of t and r ) even though the angular coordinate, θ, is invariant. We will see
in Section 3.4 that such transformations are not just conceptually odd but that they are
mathematically different from most symmetries considered in the physics literature. As
a consequence of this, these symmetries don’t possess many of the standard properties
of well-studied gauge symmetries. And because of the particular role played by time in
these transformations, dynamical similarities will play a central role in our proposal for a
solution to the problem of the AoT.

Two important questions now arise:

1. Should symmetries of the form (2.3) be identified as gauge symmetries?

11The explicit form of this vector is not necessary for this discussion. See Equation (5) of Prince and Eliezer
(1981) for details.
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2. If so, what consequences would that identification have for the interpretation of
the models of the Kepler problem?

The considerations of our two previous examples would suggest that the answer to
the first question will depend, in part, on epistemic considerations and that the answer to
the second will have dynamical consequences. Indeed, standard use of the Kepler models
would suggest that DPMs related by (2.3) should be taken to represent different physical
situations. In the solar system, the angular momentum of planets, which transforms
under (2.3), is usually understood to be an observable quantity. In fact, Kepler’s third law
makes this explicit since the transformations (2.3) are a subset of the transformations
found in the third law.

Such a non-gauge interpretation of the transformations (2.3) is natural for modelling
the motion of planets in the solar system. The sun and single planet are treated as an
idealised isolated subsystem of the solar system as a whole. The motion of the other
planets, which is assumed to have no noticeable impact on the sun and planet, can
provide rods and clocks that set an external scale for r and t . Provided one has epistemic
access to these rods and clocks, the transformations (2.3) should therefore not be treated
as gauge.

On the other hand, in the absence of externally accessible rods and clocks, no external
scale for r and t can exist. Under such circumstances, it would be justifiable to identify
(2.3) as a gauge transformation. In this case, one would have to contemplate what it
would mean for the angular momentum to have no empirical consequences when the
angular coordinate does. This involves providing an answer to the second question above.
I will develop a prescription for doing this in general in Section 4.8.2, where I will find that
the resulting gauge theory has certain radically different features from the original Kepler
theory. The key thing to note at this stage is that identifying a gauge symmetry in a theory
can have non-trivial, and even unexpected, dynamical consequences for that theory.

The question that now arises is: even if we can find a definition of a gauge symmetry
that works for standard symmetries like the Galileo transformations, will this solution
also work for the less often considered symmetries of the Kepler problem and dynamical
similarities in general?

2.2.4. BELOT’S PROBLEM

In this section, I will identify the general difficulties encountered in the examples above
and formulate a concrete problem that connects them all. I begin by motivating the
discussion with a particular suggestion made by Earman. I will follow the discussion
starting in Section 3.4 of Earman (1989).

First recall that the constitutive structures of a theory are typically composed of
spacetime structures and matter fields (among other things such as coupling constants).
Earman then begins by defining a spacetime symmetry as a transformation that preserves
the fixed spacetime structures of a theory. These fixed structures are structures that are
the same for all KPMs. He then defines a dynamical symmetry as a map between DPMs
that is induced by some arbitrary shift of the spacetime structure where one drags along
the matter fields of the theory. These transformations represent all the different ways one
can rearrange the matter content of a theory by shifting it smoothly between spacetime
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points.12 He then goes on to argue for the following two “conditions of adequacy on
theories of motion:”

SP1 Any dynamical symmetry is a spacetime symmetry.

SP2 Any spacetime symmetry is a dynamical symmetry.

The justification for these conditions is the requirement that the theory have just
enough, but no more, spacetime structure than is strictly necessary to represent the mat-
ter content of the theory. Throughout Earman (1989), it is argued that these “conditions
of adequacy” exemplify good interpretive practice in physics. In particular, when these
conditions are satisfied, Earman argues that one should identify the spacetime symme-
tries with gauge symmetries, although he does not use that terminology. Belot (2013)
notes that this is a normative principle where “formal facts place interesting constraints
on (good) interpretation.”[Original parentheses.] While many things have been called
Earman’s Principle, we will follow Belot and associate this to Earman. Earman’s Principle
is then a proposal for identifying a certain class of gauge symmetries; i.e., those associated
with spacetime symmetries; for the purpose of constraining good interpretive practice.

Belot (2013) then poses the following question: is it possible to generalise Earman’s
Principle in a way that applies to any gauge symmetry? The answer given by Belot (2013)
is: almost certainly not. That is because the standard conditions used by physicists and
mathematicians to define gauge theories lead to contradictory conclusions in different
physical situations. We saw some examples of this already in the previous section. Belot
(2013) provides further examples. We will investigate some of these and others in Sec-
tion 3.2. To make matters worse, Belot (2018) argues that even Earman’s Principle fails for
the asymptotic symmetries of general relativity. The example of the translated or boosted
Kerr black hole given in the introduction (Section 1.3.1) makes the point similarly.

For a good general definition of gauge theory, what we need instead is a replacement
of Earman’s Principle that does not place undue burden and either purely dynamic nor
epistemic considerations. In other words, the challenge is to find a definition of gauge
symmetry with minimal epistemic and dynamic ingredients that is broad enough to
include all acceptable usages of gauge symmetries in physics but not too broad as to
include cases that relate models that are obviously empirically inequivalent. I will refer to
this challenge as Belot’s Problem:

Belot’s Problem

To find formal conditions on the symmetries of a theory that are, under
good interpretive practice, necessary and sufficient conditions for a gauge
symmetry.

Note that Belot himself does not give a formal statement of this problem — even stating
that: “it isn’t obvious how to give a precise and general formulation of the idea.” Because
of this, the bulk of my proposed solution in Chapter 5 will involve defining the problem

12Mathematically, these transformations are obtained by pulling back the matter fields by arbitrary diffeomor-
phisms of the spacetime. For scalar fields, this generates all possible scalar field configurations on spacetime
— but not for vector or tensor fields.
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in a more precise and general way to give clear conditions for what is meant by ‘good
interpretive practice.’

We will further investigate some difficulties that lead to Belot’s Problem in Section 3.2.
Many of the examples discussed in that section are also treated in Belot (2013). Our
discussion will clarify some points discussed in those examples and add new cases that
are commonly treated in the physics literature on gauge theories. In particular, we will
find that a proposal by Dirac, discussed in Section 3.3 and in more detail in Section 4.7,
has sound representational motivations and gives a good solution to Belot’s problem in
many, but not all, cases. I will then discuss difficulties with each proposal and motivate
our my proposed solution to Belot’s Problem. What we will find is that there does exist a
definition of gauge symmetry that solves Belot’s Problem in all the cases, and that this
definition suggest good interpretive practices for gauge theories.

2.3. MODELS AND REPRESENTATION

2.3.1. ACCOUNT OF REPRESENTATION

In this thesis, I am working within a semantic view of theories and am, therefore, using
models to represent phenomena. Models — specifically DPMs — have already played an
essential role in my definition of broad symmetry and will continue to play an essential
role in my analysis of gauge symmetry. My solution to Belot’s Problem will involve giving
specific prescriptive rules for good interpretive practice. This will require that I be explicit
about my account of representation. More specifically, I will need to carefully explain
how my account of representation encodes both the empirical context and the auxiliary
assumptions that define a theory. This is because what counts as a gauge symmetry, in my
view, can depend on these assumptions. Remarkably, although perhaps not surprisingly,
we will see that some of the structures that play a central role in my analysis of symmetry
also happen to be issues that are central to the literature on representation.

Instead of developing a theory of representation from scratch, I will borrow heavily
from an existing account of representation developed in Frigg and Nguyen (2020). This
account is called DEKI, which is an acronym for the names of the account’s defining
features: Denotation, Exemplification, Keying-up, and Imputation. DEKI gives a general
account of how a carrier object X can represent a target system T . Let me give a brief
description of this account and point out the structures that will be important for the
considerations later.

In DEKI, the carrier object X can be anything from a material to a fictional object.
We will restrict attention to a particular kind of fictional object: a mathematical object,
which requires somewhat special attention.13 The goal of the account is to give a way to
construct a model M from X that can give a representation of certain features Qa of a
target system T in terms of the features Xµ of X , where µ can range over a different (i.e.,
larger or smaller) set of integer values than a. The DEKI account requires a specification
of the context C of the representation or, in this case, the scientific investigation and
a key K , which specifies, among other things, the auxiliary assumptions underlying

13The DEKI account is described for material objects in Chapter 8 of Frigg and Nguyen (2020) and for fictional
and mathematical objects in Chapter 9.
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the representation. These two structures; i.e., the context and the key; will have direct
relevance to the original elements of my analysis of gauge symmetry.

The first step in the account is to provide an interpretation I to X . Suppose that X
is a Newtonian spacetime equipped with some set of coordinates y i . An interpretation,
I , might specify that the coordinates y i be interpreted as the position of a particle in
space. This introduces a structure, the structure X is to be interpreted as, which we call
Z . In our example, Z is the set of particle positions. The interpretation I then defines
a set of functions iµ : xµ → zµ that map the values xµ of some features X µ of X to the
values zµ of some corresponding features Zµ of Z . In the Newtonian example, I would
define, among other things, a map from the values of the coordinates y i to the value of
the particle positions p i . We then say that I defines a Z -representation of X .

In the next step, we define a model and use it to exemplify features of Z . In particular,
a model M is defined as an ordered pair consisting of a carrier object equipped with an
interpretation: M = 〈X , I 〉. We then say that a model instantiates a feature of Z when X
instantiates the corresponding feature of Z under the interpretation. Finally, M is said
to exemplify a feature of Z if it instantiates it and if the context C selects this feature as
relevant.14

What’s important for our purposes is that the context C must be explicitly spelled out
in order to specify which features of the bare mathematical object X are relevant to the
theory. Thus, what counts as a gauge symmetry will also depend on what features of X
are determined to be relevant to the context C . We already saw an example illustrating the
importance of the context to the definition of gauge symmetry. In Galileo’s ship, whether
the ship’s windows were opened or not determined whether the origin of the Cartesian
coordinate system was relevant to the theory’s models. In the DEKI account, we see that
such considerations are frequently encountered in the general problem of representation
and are not specific the considerations of gauge symmetry. In the more general case,
context can be encoded in the notion of exemplification as defined above.

The last step of the DEKI account will also play an important role in my analysis
of gauge symmetry. In this step, a key K is given and used to impute features of Z to
features Qa of a target T . To impute a feature to a target involves generating a hypothesis
that the target has that feature. For a key K to do this, however, it must give an explicit
description of how the particular features of Z are to be mapped to the features Qa of the
target. In general, this may involve an incredibly complicated procedure. For example, in
particle physics experiments, a huge amount of experimental machinery, simulation and
data processing are required to convert to the signals generated in the particle detectors
to numbers that can be compared to the output of theoretical calculations. In general,
as argued in Massimi (2007) and Bogen and Woodward (1988), this often involves a
specification of complicated data models. The key must contain all of this.

Additionally, the key must also specify the approximations, idealisations and other
auxiliary assumptions that must be satisfied for the features of Z to correspond to the
actual features of the target. This will often involve making judgements that make use of
community norms for determining the validity of some idealisation or approximation, and
may also rely on additional theoretical assumptions that need external validation. Putting

14In the full DEKI account, the relevant feature of Z must also be epistemically accessible in C . However, this is
only relevant when X is a material carrier object.
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all of this together, we see that the key K is a very complicated structure indeed, and
one that can easily be taken for granted. When we return to our problematic examples
in Section 5.4, we will see that unpacking the key is the main step in understanding
appropriate role for gauge symmetry in the relevant system.

To understand why this will be the case, take, yet again, the example of Galileo’s ship:
the conditions under which the existence and dynamics of the shore can be ignored
when modelling the motion of objects within the ship are given by the key. Thus, the key
determines when it is acceptable to consider the ship to be an isolated subsystem with an
approximate Galilean symmetry (or not). This will obviously affect whether a symmetry
should be treated as gauge or not within a particular context. The extra representational
structure of a key then gives us the resources to specify what a gauge symmetry should be
without committing to any particular notion of subsystem, etc. This is because different
keys correspond to different models which, according to my definition, lead to different
theories. And one shouldn’t expect different theories to have the same gauge symmetries.

In the final step of DEKI, one requires that the features imputed to a target also
denote them. To achieve this, it is sufficient to describe each structure of the account —
specifically the carrier object X , the interpretation I (and the corresponding structures of
Z ), the key K , as well as the target T and its features Qa — in some common language. In
this case, the features of X denote those of the target T precisely when they denote them
in the common language. In describing a mathematical object, the user of a scientific
theory is engaging in a game of make-believe where the mathematical object itself is not
a material object in the world but some fictional object in the scientist’s mind.15

2.3.2. EMPIRICAL ADEQUACY

In the previous section, I set up the representation theory that I will need later to give a
precise definition of gauge symmetry. This discussion focused on what I will mean when
I say that I have a model for some target phenomena. But to judge a scientific theory, we
also need to know whether the theory is doing a good or bad job of representing the target
system. The simplest criteria for doing so is Van Fraassen’s notion of empirical adequacy.

The notion of empirical adequacy was first introduced in Van Fraassen (1980). I will
focus on the specific definition given on page 64. There, empirical adequacy is defined as a
relationship between certain substructures of a theory’s models and measurement reports.
First, appearances are defined as “the structures which can be described by experimental
and measurement reports.” Then, the empirical substructures of a theory are defined as
“candidates for the direct representation of observable phenomena.” A theory is then said
to be empirically adequate “if it has a model such that all appearance are isomorphic to the
empirical substructures of that model.” In other words, a theory contains representational
structures that are hypothesised to describe observable phenomena, and the theory is
empirically adequate when those structures are isomorphic to measurement reports.

It is clear, however, from this definition that Van Fraassen’s representation theory

15In DEKI, it is emphasised that the dynamical laws of theory should be further encoded into the model
description in the form of generating principles. This extra layer, however, is encoded for us in the distinction
between a KPM and a DPM. The introduction of generating principles is then motivated by the fact that a
KPM, on its own, is not a particularly useful model of anything. But since we have already made a distinction
between KPMs and DPMs, we don’t have a need for such generating principles.
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is different from the one we defined in the previous section. For instance, there is no
mention of context or key in Van Fraassen’s definition. Instead, the focus is on the
empirical substructures and isomorphisms between these and measurement reports.16

While it is true that an interpretation I and key K will define an isomorphism between
some features of a carrier object and certain independent features of a target system, the
DEKI account requires more than a simple isomorphism.

Moreover, because Van Fraassen introduced the notion of empirical adequacy as a
tool for contrasting constructive empiricism with forms of scientific realism, empirical
substructures play an important role in his definition. Here, I will not be engaging in a
metaphysical debate about realism in science. The distinction between empirical and
non-empirical substructures will then not play a central role in my analysis. Indeed, when
using the word ‘observable’ I will refer to the physics usage of the word,17 which I will
make more precise in Section 5.2. Importantly, I will not be referring to its usage in the
philosophical literature when discussing the observable/unobservable distinction.

I will, however, be interested in defining a notion of empirical adequacy that fits
with the account of representation I am using. Fortunately, this is relatively easy to do.
Following (Frigg & Nguyen, 2020, p. 178), I say that a model gives a faithful representation
of a target when the target does indeed have the features imputed by the representation. I
will then define the following:

Empirical Adequacy

A theory is empirically adequate when it has at least one model that gives a
faithful representation of the intended target system in the DEKI sense.

Note that the process of imputation is accomplished in DEKI by the key, which, as I
have emphasised, can be a very complex structure that is often left implicit in theoretical
practice. Thus, there is a lot of work to be done ‘under-the-hood’ in giving a faithful
representation of a system.

The definition above has the advantage that one only needs to specify how the models
of a theory lead to representations in the DEKI sense in order determine whether a theory
is empirically adequate. In particular, there is no need to establish an isomorphism
between empirical substructures and measurement reports: the target system either has
the features imputed by the key or not.

2.4. FEATURES OF SYMMETRY

2.4.1. SYMMETRIES OVER A HISTORY AND AT A TIME

In this section, I will introduce several symmetry-related concepts that will be important
for the analysis later. I will start by making a distinction that is not usually emphasised in

16Van Fraassen does present an updated picture in van Fraassen (2008) where the conditions of use of a model
play a more central role in scientific theorising. While this is closer to our picture, we will stick to the DEKI
account of representation in our analysis, which is uncommitted to any stance in the empiricism/realism
debate.

17See, for example, the usage of the word ‘observable’ in Chapter 1 of Henneaux and Teitelboim (1992).



2.4. FEATURES OF SYMMETRY

2

37

the literature on symmetry but that I will find to be central to my insights about gauge
symmetry.

The distinction I will make involves different ways of understanding and representing
the action of symmetries in time. In this thesis, I will consider models that consist of
matter distributions defined over spacetime. Let us call such a model a history. We can
then distinguish two notions of symmetry: those that act only at a particular time, which
I will call at-a-time symmetries, and those that act over an entire history, which I will call
over-a-history symmetries. On the one hand, over-a-history symmetries seem natural
from a block-universe perspective, particularly when dealing with general relativity and
its relativity of simultaneity. On the other hand, observers only ever have access to local
information so that at-a-time notions of symmetry seem more natural from an epistemic
perspective. The two notions, however, are not only conceptually distinct but, as we will
see, can have different mathematical structure. I will argue that assuming, falsely, that
these distinct notions are always interchangeable can lead to confusion. To avoid such
confusion, I will take the view that the at-a-time notions are more fundamental because
they alone are directly relevant for doing physics. My definition of gauge symmetry
will then be based on an at-a-time notion from which the corresponding over-a-history
notions can be recovered when appropriate.

To define these two notions more carefully, let us first define an instantaneous state.
Given the spacetime structures of a theory, an instant is a collection of spatial structures
all labelled by the same temporal structure. The archetypal example is a spatial manifold
Σ labelled by a single value of time t . An instantaneous state is then a particular function,
or set of functions, of a KPM restricted to such an instant. An instantaneous state should
contain enough information to specify the state at the next time using the dynamical
laws.18 The instantaneous state space of a theory is then the space of all possible instanta-
neous states in the theory. A one-parameter curve on state space is then said to form a
history. More generally, I will take a history to be a collection of states that form a KPM. A
theory therefore attempts to model a target system using a set of instantaneous states.
While it is possible to define a state in more general terms without having to specify in-
stants — say by identifying states with entire histories — I believe that it is more standard
to speak of the state of a system at some instant of time. Unless otherwise specified, I will
therefore drop the word ‘instantaneous’ when talking about the ‘states’ or ‘state space’ of
a theory.

Let us define an at-a-time symmetry as a transformation between states. An over-
a-history symmetry is then a transformation that maps histories to histories.19 This
is a timeless notion of symmetry in the sense that it acts on all instants past, present
and future. Note that, since an ordered sequence of states forms a history, at-a-time
symmetries induce transformations over a history and therefore have corresponding over-
a-history symmetries. Translating between the two notions, however, can sometimes be
cumbersome so that an analysis in terms of one form of symmetry can be difficult to carry
over to the other.

18Note that nothing about this definition requires a KPM to consist of an ordered sequence of instants, that the
state represent a unique state of affairs, or that the laws be deterministic.

19The over-a-history/at-a-time distinction for symmetry was introduced in Gryb and Thébault (2023) (Sec-
tion 8.1 and Section 8.2 respectively).
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In contrast, a history may not correspond to an ordered sequence of states. In general
relativity, instantaneous states depend on the simultaneity convention and are sometimes
regarded as unnatural. Moreover, many models of general relativity of physical interest,
such as the Kerr model of a spinning black hole, cannot be expressed as ordered sequences
of instantaneous states. Over-a-history notions of symmetry are therefore essential
for understanding all the models of general relativity. However, as we will argue for in
Section 4.2, at-a-time notions of symmetry are sufficient and, indeed, preferable for giving
empirically relevant information. This is because all models of general relativity can be
re-expressed as collections of models that are ordered sequences of instants. Moreover,
the question of underdetermination of the laws by the phenomena, which is central to
our understanding a gauge symmetry, is best answered in an at-a-time setting.

Finally, quantum mechanics in its standard formulations takes observable operators
to be defined at-an-instant. In fact, the difficulty of reconciling this fact with the relativity
of simultaneity of general relativity is one of the great obstructions to formulating a
conceptually and mathematically coherent theory of quantum gravity. This highlights the
important physical role played by at-a-time notions.

2.4.2. SYMMETRY, REDUCTION AND SURPLUS STRUCTURE

I have defined broad symmetries as automorphisms on the space of DPMs. As a result,
all broad symmetries also form a group. Given this fact, one can define the orbit of a
symmetry transformation to be the set of all models related by that symmetry. The orbits
of a symmetry can be used to construct a projection from the space of DPMs to a smaller
space where all the models in a given orbit map to a single element. We can call this
smaller space the reduced space of the symmetry and the projected theory a reduction of
the theory by the symmetry. Note that reduction involves an elimination of the symmetry
because the symmetry has no action on the reduced space.

The projection defined above gives the mathematical structure necessary to define
a principal fibre bundle. In this case, the group orbits are the fibres and the reduced
space is the base space of the fibre bundle. Reduction and the corresponding fibre-
bundle structure take on a particularly striking role when the fibres are interpreted as
relating empirically indiscernible states. In this case, the base space naively encodes all
empirically relevant information while the fibres are interpreted as surplus structure — a
notion introduced in M. L. Redhead (1975).

For gauge symmetries, it might then seem appealing to perform a reduction and
eliminate the surplus structure. Often, however, explicit reduction is a bad idea. This
is sometimes because the reduced space cannot be explicitly constructed or cannot be
expressed in a single coordinate chart; e.g., because of issues associated with the so-called
Gribov Problem (Gribov, 1978).20 In other cases, the group action of the symmetry might
be broken by particular ways of representing the state. This occurs in general relativity
for at-a-time representations of the spacetime diffeomorphisms, which have a groupoid
rather than group structure. Finally, is it sometimes the case that the classical versions

20This arises when the gauge orbits intersect a section of the fibre bundle more than once. Removing this
ambiguity by selecting a particular region along individual fibres, or Gribov horizons, can not be done globally
in general. This probably typically affects gauge theories with compact non-abelian gauge groups.



2.4. FEATURES OF SYMMETRY

2

39

of the original and reduced theories lead to inequivalent quantizations. This is usually
understood to be because the quantum state is sensitive to global properties of the state
space. These global features can be part of the fibre-bundle structure but not the reduced
space. This can occur in the Aharonov–Bohm effect (Aharonov & Bohm, 1959) or when
there are anomalies.

A body of recent philosophical literature has emerged from such considerations and
involves studying the role of surplus structure in gauge theories. See M. Redhead (2002),
Healey (2007), Weatherall (2016), Nguyen, Teh, and Wells (2020), Bradley and Weatherall
(2020), and Fletcher (2020) for further explorations of the issues discussed above.

Even in cases where reduction is straightforward, there are often theoretical advan-
tages to not performing the reduction. I will explore different reasons for doing so through-
out the text. When explicit reduction is not advisable, it might be better to work with
the original symmetric set of models. In that case, the full orbits of the symmetry are
retained with an acknowledgement that all members of that orbit are symmetry-related.
The consequences of acknowledging this will be explored extensively throughout this
work, where I will establish strict norms for how to treat the members of an orbit when
the symmetries are gauge.

2.4.3. DEGREE-OF-FREEDOM COUNTING

It is common in theoretical physics to talk of the ‘degrees of freedom’ of a theory and
different ways of counting such ‘degrees of freedom.’ The concept of a ‘degree of freedom’
is supposed to reflect some modal dimension of the world along which different possible
states of affairs can be represented by different values of some variable. A degree-of-
freedom count is then some procedure for counting the different degrees of freedom of a
theory. For example, a theory of a free Newtonian particle in three dimensions might be
said to have three ‘degrees-of-freedom’ that reflect the three different spatial directions in
which the particle is allowed to move.

It’s important to recognize, however, that degree-of-freedom counting is often done in
different ways to reflect different modal aspects of a theory. In the free-particle example
just given, one might choose to count the number of independent initial data required to
fix a DPM of the theory instead of the number of spatial directions the particle is allowed
to move in. These counts are not the same because both the position and the velocity of a
free-particle (totalling 6 ‘degrees of freedom’ and not 3) must be specified to fix a DPM
using Newton’s second law. One must therefore be careful to specify precisely what is
being counted when determining the ‘degrees of freedom’ of a theory.

Degree-of-freedom counts are often made in physics when considering gauge symme-
tries. Loosely speaking, the presence of a gauge symmetry should be expected to reduce
the number of ‘empirically relevant’ degrees of freedom of that system, where one must
have some understanding of what ‘empirically relevant’ means. In the case of a gauge
symmetry, the counting is supposed to account for the number of structures that are not
fixed by the laws alone. So if some theory is said to have A representational structures
and B gauge symmetries, then it can represent at most A−B features of the target.

Counting degrees of freedom in this way can be an extremely valuable conceptual tool
for understanding the empirical content of a theory. That’s why physicists put so much
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effort in trying to do it. But the ambiguities involved in counting ‘degrees-of-freedom’
can lead to considerable confusion when the meaning of such counts are not spelled out
clearly.

In this work, it will be important to understand the difference between the kinds of
degree-of-freedom counts made using at-a-time and over-a-history notions of symmetry.
At-a-time counts usually correspond to the number of variables whose values need to
be specified at some time in order to fix a DPM by applying the dynamical laws. Over-a-
history counts, in contrast, usually correspond to a count of the quantities that need to be
specified in order to define a DPM as a whole. For example, if a symmetry transformation
can be specified using a function ϵ(t ) at all values of t , then an over-a-history approach
might count the values of ϵ at all values of t as a single functional degree of freedom. In
contrast, an at-a-time approach might simply count the value of ϵ(t ) and its derivatives at
a particular time t . This was the case in the free-particle example given above. Clearly,
such counts will not always match. The over-a-history approach counts functions over
a continuous domain while the at-a-time approach counts derivatives of that function
at an instant. While both notions are undoubtedly important for general theoretical
considerations, I will take the view that the at-a-time notion is more relevant for assessing
what can be independently measured by physical observers.

2.5. EXAMPLES OF SYMMETRY

In this section, I will briefly introduce different kinds of symmetry studied in the physics
and philosophy literature. The list is not exhaustive nor is it intended to be. The purpose
of the list is to give a brief description of the different kinds symmetries that will be
discussed later and to establish a consistent taxonomy to be used throughout the analysis.

2.5.1. DISCRETE SYMMETRIES

Discrete symmetries are symmetries where the group parameters take discrete; i.e., count-
able; values. Simple examples are the parity (often called ‘P ’) and time reversal (often
called ‘T ’) symmetries: x⃗ →−x⃗ and t →−t , where the group parameter takes the binary
values ±1. Discrete transformations in physics are usually global transformations that
reshuffle entire kinematical structures in some countable, and often finite, way. These
reshuffled structures don’t have to be spatiotemporal like the P and T symmetries men-
tioned above. Instead, they can be permutations of particles or changes to the coupling
constants of a theory. For example, the charge conjugation symmetry (often called C )
reverses the sign of the charge of electromagnetic particles.

Discrete symmetries are hugely important in a variety of physics and engineering
applications with philosophical and metaphysical implications. Parity symmetry, for
example, was central to Kant’s arguments in favour of the synthetic a priori and was men-
tioned among Leibniz’ arguments against Newton’s absolute space.21 CPT symmetry; i.e.,
the symmetry transformations obtained by successively applying C , P , and T operators;
played an important role in the development of the standard model of particle physics.

21See (Huggett, 1999, Ch. 11 and 8) for original texts and modern commentary on these points.
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For the purposes of this thesis, time-reversal invariance, or T -symmetry, will obviously
play a central role in our discussions about the AoT.

2.5.2. LEIBNIZ SHIFTS

A Leibniz shift, as introduced originally by Leibniz, is a constant translation, or ‘shift,’
in time or space.22 The apparent invariance of physical phenomena under such shifts,
manifest in the translational invariance of Newton’s laws, was used by Leibniz to argue
against the use of Newton’s absolute space and time as a way of determining true motion.

Modern debates about the nature of spacetime have evolved greatly since Leibniz’
original conceptions. A more modern way of thinking about a Leibniz shift is as an active
transformation of spacetime points by constant translations.23 Since these are a subset of
the Galilean transformations, which are the full set of spacetime symmetries of Newtonian
mechanics, it is sometimes helpful to generalise the notion of a Leibniz shift to the full
group of Galilean transformations. This involves both the continuous symmetries of (2.2)
and the discrete P and T symmetries mentioned above. In this way, the Leibniz shifts can
be taken as active versions of the global spacetime symmetries of Newtonian mechanics.
The Galilean boosts; i.e., translations of the velocities; are time dependent translations of
the spacetime points. This could be a reason to not regard them as true Leibniz shifts. By
default, we will not include boosts when referring to Leibniz shifts. For a more concrete
mathematical definition, see (4.30) and the surrounding discussion in Section 4.3.3.1.

2.5.3. BEST-MATCHING SHIFTS

The Leibniz shifts can be generalised by allowing the group parameters of (2.2) (excluding
the boosts, which would be redundant) to be arbitrary functions of time t .24 We will call
transformations of this kind best-matching shifts for reasons we will state below. Here,
the Galilean boosts can be seen as arising as a special case of time-dependent spatial
translations.

These symmetries have played a prominent role in relational models of Newtonian
mechanics such as those introduced in Barbour and Bertotti (1982). When thinking about
a Newtonian theory as a model for the universe as a whole, relational considerations
suggest imposing such symmetries as gauge symmetries of the theory. A procedure called
best matching was developed to modify the dynamics of a Newtonian system of particles
in a way were the best-matching shifts can be naturally interpreted as gauge symmetries.25

We will review the technical details of this procedure in Section 4.3.3.2.
When restricted to translations in the context of a Newtonian universe, it was shown

as early as Corollary VI of Newton’s Principia (Newton, 1962, 1999) that the best-matching
shifts lead to no observable consequences for the system. This suggests treating such
transformations as gauge symmetries of a Newtonian universe as argued in S. Saunders
(2013) and Knox (2014).

22See (Huggett, 1999, Ch. 8) for a nice introduction to the concepts of a Leibniz shift.
23See Section 2.6.2 for a description of the difference between active and passive transformations.
24For time translations, these should be required to preserve the temporal ordering.
25See Barbour (1995, 2010) and (Gryb, 2012, Ch. 2) for introductions to best matching.
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The motivation behind the best-matching procedure is similar to the one I will ad-
vocate in this thesis. In particular, the aim is to impose constraints on the dynamical
equations that introduce an underdetermination that reflects the underdetermination of
the models by the phenomena.26 While the final result is equivalent to applying standard
versions of the Gauge Principle to the translation group of Newtonian mechanics, the
intuition used to motivate this move is different from the justification given in standard
physics texts (e.g., Chapter 15 of Weinberg (1995)). I will briefly explain how best-matching
implements a version of the Gauge Principle in Section 4.3.3.2.

2.5.4. MAXWELL AND YANG–MILLS GAUGE SYMMETRIES

The gauge symmetries of Maxwell’s theory of electromagnetism and those of the Yang–
Mills fields of the Standard Model of particle physics are considered the exemplars of
gauge symmetry in the modern physics literature. In fact, Maxwell’s theory is a special
case of Yang–Mills theory but is worth consideration for its historical importance and
relative mathematical and conceptual simplicity. Much physics literature implicitly refers
to Yang–Mills theory (or generalisations thereof) when using the term ‘gauge theories.’

To understand these symmetries, it is easiest to first consider Maxwell’s theory of
the electromagnetic field. In this theory, redundancies in the representations of the
electric and magnetic field, Ei and Bi , are revealed by writing these fields in terms of the
derivatives of the electromagnetic potential Aµ as

Ei = Ȧi −∂i A0 Bi = ϵ j k
i ∂ j Ak . (2.4)

The transformation
Aµ→ Aµ+∂µφ (2.5)

thus leaves the electric and magnetic fields invariant under any choice of function φ(x, t ).
Since all electromagnetic phenomena can be expressed in terms of laws depending solely
on Ei and Bi (see Section 4.3.3.3 for an explicit illustration of this), the transformations
(2.5) are almost always considered to be gauge symmetries of Maxwell’s theory.27 These
transformations are taken to be representational redundancies that can be eliminated
by applying suitable conventions for fixing φ. It is also possible to explicitly reduced
Maxwell’s theory by the action of (2.5) in terms of quantities that are invariant under these
symmetries. But because such reduced representations are often not that easy to work
with in practice, and retaining manifest gauge symmetry is usually preferable. Moreover,
topological features of the gauge bundle (e.g., its cohomology) can describe non-local
physical effects that are not present in the reduced theory. Upon quantization, such global
features lead to observable effects such as the Aharonov–Bohm effect Aharonov and Bohm
(1959). Thus, reduced and non-reduced theories can be empirically inequivalent.

The most elegant way to express the gauge symmetries of electromagnetism and to
understand its generalisation to Yang–Mills theory is by using the language of differential
forms. In this formulation, the electric and magnetic fields are written as components of

26We will discuss this point more carefully in Section 3.2.2 and relate this to our proposal in Chapter 5.
27In the presence of matter fields, the matter fields must transform appropriately under different choices of φ.
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a single 2-form F . In this language, (2.4) becomes

F = dA , (2.6)

where d is the exterior derivative and A is the electromagnetic potential (a 1-form). The
exterior derivative is known to obey the identity d2 = 0. Thus, (2.6) is invariant under the
transformation

A → A+dφ . (2.7)

In Yang–Mills theory, F is generalised to take values in a Lie group G usually taken to
be semisimple. The gauge potential A is then taken to be valued in the Lie algebra g of G
and

F = dA+ [A, A] , (2.8)

where [, ] is the Lie bracket on g. For the group element g ∈G we then have that the gauge
transformation

A → g−1 Ag − g−1dg , (2.9)

sends F → g−1F g . Unlike in Maxwell’s theory, F itself is not invariant but covariant under
the gauge transformations (2.9). The nomic structures of the theory are then required to
define the DPMs independently of any value of g , and this puts some (mild) restrictions
on the kinds of nomic structures allowed. Maxwell theory is recovered when G is taken to
be the one dimensional group of unitary transformations.

The symmetries (2.9) then define orbits that can be interpreted as sets of empirically
equivalent representations of the theory. A projection that identifies the elements of
such orbits can be used to define a principal fibre bundle over spacetime. The gauge
potential A can then be interpreted as a connection on this principal bundle. This gives
the paradigm case for understanding gauge symmetries in terms of fibre bundles. It is
important to note that this notion of gauge orbit is formally different from the notion
discussed in Section 2.4.2, which was in terms of the instantaneous states of a theory.
The connection between the two notions is described in Gomes, Hopfmüller, and Riello
(2019); Gomes and Riello (2018).

Unlike in Maxwell’s theory, there is no known way to reduce Yang–Mills theories in
general. Because of issues like the Gribov ambiguity (Gribov, 1978) discussed earlier, one
can’t construct a global coordinate chart on a regular section of the gauge bundle. Thus,
for Yang–Mills theories, retaining a formulation in terms of redundant variables appears
to be necessary.

The different proposals for narrow definitions of symmetry almost all have the ex-
ample of Yang–Mills theories in mind. Many attempts to quantize gravity are based on
reformulations of general relativity that bring it close to Yang–Mills form.28 Much is
known about the formal properties and quantization of Yang–Mills gauge theories. For
this reason it serves as a useful guide to the characterization of gauge symmetries in gen-
eral. However, Yang–Mills gauge symmetries preserve the form of Hamilton’s equations,
and are therefore importantly different from the dynamical similarity transformations
that will be central to our analysis of the AoT.

28See, for example, Section 2 of Ashtekar and Lewandowski (2004) for a description of such formulations.
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2.5.5. COORDINATE AND REPARAMETRISATION INVARIANCE

The laws of general relativity are famously invariant under arbitrary (smooth) invertible
transformations of the spacetime coordinates xµ of the form

xµ→ f µ(xν) , (2.10)

where the f µ are smooth functions of the spacetime coordinates.29 Einstein initially saw
the enforcement of this symmetry as a foundational principle for his theory of general
relativity. As we have already noted, Kretschmann (1918) immediately argued that the
mere presence of such a symmetry can have no empirical significance because it can be
realised in any theory without changing that theory’s empirical content.30

Since Kretschmann’s observation, there has been much discussion about the empirical
significance of coordinate invariance and the role it plays in general relativity. One more
recent discussion involves a revival of the so-called hole argument in general relativity.31 I
will not attempt a systematic study of the hole argument here. Instead, I will point out
one important feature of these discussions that is relevant to my analysis.

Discussions about the hole argument centre around what ontological significance
to give to spacetime points. A key observation is that the coordinates of spacetime
points are underdetermined by the phenomena. While I am not interested in ontological
questions here, I will be interested in questions about the direct empirical significance of
spacetime coordinates. The fact that the spacetime coordinates are underdetermined by
the dynamical equations in a way that mirrors the way that they are underdetermined by
the phenomena implies that coordinate invariance is a gauge symmetry according to the
slogans introduced in Section 1.3.2. The fact that coordinate invariance is generally seen
as a gauge symmetry of general relativity validates these slogans. A more detailed analysis
of the hole argument using the PESA will be left to future investigations.

A noteworthy special case of coordinate invariance is when the f ’s transform only the
time coordinate

t → f (t ) . (2.11)

Theories with this symmetry are called reparametrisation invariant.32 In such cases,
it is almost always assumed that ḟ > 0, so that the transformed temporal coordinates
preserve the temporal order of instants within the theory (with the possible exception of
discrete T -symmetry defined above, which reverses the order of all temporal instants).
Symmetries of this kind will be important to my analysis because they will provide an
example, outside dynamical similarity and the examples discussed in Belot (2013), of how
my proposal can clarify an important conceptual problem, the so-called frozen-formalism
problem, in physics. I will describe this problem in Section 4.5 and my clarifications in
Section 5.4.3.

29The f µ are required to obey det
(
∂µ f ν

) ̸= 0.
30For a discussion of Kretschmann’s argument, see Norton (2003).
31For recent reviews of the hole argument see Pooley and Read (2024); Stachel (2014).
32Perhaps parametrisation invariance would be a better term? But I will use the standard terminology.
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2.6. OTHER NOTIONS OF SYMMETRY

I will end this chapter with a review of different notions of symmetry often encountered
in the literature in relation to the topic of gauge symmetry. While these notions do not
play a central role in my own analysis, it is nevertheless helpful to review these important
concepts and indicate how they relate, or not, to my formalism.

2.6.1. GLOBAL AND LOCAL SYMMETRIES

Because symmetries are transformations on the space of KPMs and KPMs are composed
of spacetime structure, symmetries can depend on the spacetime structure. This de-
pendence can be either global or local. A global dependence means that the symmetry
transformation is constant along the structure in question whereas a local dependence
means that the symmetry transformation is not constant. For example, a time-translation
of the form t → t +a, for some constant a, is global in time and space (it leaves spatial
coordinates unchanged) whereas a time-reparametrisation of the form t → f (t ), where
ḟ ̸=const, is local in time and global in space.

The global-local distinction has often been used as a tool for identifying gauge sym-
metries.33 Two influential theorems by Emmy Noether divide classes of symmetries along
these lines. I will discuss these theorems in Section 3.2.2.2 (see that section for refer-
ences) and prove them in Section 4.3.1 and Section 4.3.2. There, I will show that global
symmetries are often not good candidates for gauge symmetries while local symmetries
are.

The global-local distinction is undoubtedly a useful tool for identifying gauge sym-
metries in certain systems. There is, however, no good a priori reason think that global
symmetries should never be gauge symmetries. We have already seen an example in
Section 2.2.3.1 where there could be a perfectly good reason to treat certain global sym-
metries as gauge symmetries. Other examples are amply discussed in the philosophical
literature. See Brading and Brown (2004); Gomes (2021); Kosso (2000); Wallace (2022b) for
a sample. So while the global-local distinction is important for classifying the different
examples of symmetry that we will study, it is not a reliable criterion for identifying gauge
symmetries in general.

2.6.2. PASSIVE AND ACTIVE SYMMETRIES

A common distinction used to identify gauge aspects of symmetry is the distinction
between so-called passive and active symmetries. This terminology was introduced
in Bargmann (1957) in the context of Lorentz transformations in special relativity, but
the general concept applies to arbitrary symmetry transformations.34 In physics, the
active/passive distinction is made possible by the concept of a reference structure, which
is any structure that can be used to quantify some feature of material structure; i.e., a
structure representing some material objects in the world. An active transformation then

33See, for example, the motivations of the original paper, Yang and Mills (1954), introducing Yang–Mills theory
and the general discussion of gauge symmetry in ’t Hooft (1980).

34See Chapter 3 of Rosen (2008) for a more recent explanation of the distinction for applications in physics.
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acts on the material structure but leaves the reference structure invariant while a passive
transformation acts on the reference structure but leaves the material structure invariant.

A passive symmetry is interpreted as expressing a mere change of convention resulting
from different possible choices of reference structure. A typical example would be the
use of a different naming convention like calling the direction that the sun rises ‘west’
instead of ‘east.’ Contrastingly, an active symmetry is interpreted as a genuine shift in
representational structure corresponding to some target system. Thus, a change in the
rotation of the earth such that the sun travels from the American continents towards Asia
while people get older is an active transformation. In this way, any invariance under an
active symmetry is thought to signal the presence of genuine gauge symmetry.

While it is clear that the passive–active distinction does capture a difference between
trivial (i.e., passive) and non-trivial (i.e., active) notions of symmetry, it does not provide
a good definition of a gauge symmetry. In particular, it is not clear how to identify, in
general, what counts as a ‘reference structure’ and what counts as a ‘material structure.’
Nothing about the distinction specifies how this can be done in general. Moreover, it is
also not clear what the suitable notion of ‘invariance’ should be, and whether any specific
criteria can work for all situations. Finally, nothing about the notion of representational
redundancy seems to require the introduction of a reference structure. It thus seems
unnecessary to introduce such extra structure when defining a gauge symmetry. I will
thus try to avoid the use of such language and develop my proposal independently of this
distinction.

2.6.3. SUBSYSTEM SYMMETRIES

If a broad symmetry has a non-trivial action on some substructures of the KPMs but
leaves the remaining structures invariant, we call that symmetry a subsystem symmetry.
The concept of a subsystem symmetry is important in physics because there are many
applications where a particular transformation acts in a way that creates a contrast
between two systems; e.g., a system and its environment. For example, the passive–active
distinction made in the previous section can be recast in terms of subsystem symmetries
with material structure playing the role of a subsystem and reference structure playing
the role of the remaining part of the system.

Subsystem symmetries have important implications when a particular subsystem is
dynamically isolated. When this happens, the conditions for dynamical isolation imply
that any symmetry of the larger system should imply the existence of a corresponding
symmetry for the subsystem as illustrated in Greaves and Wallace (2014). The new symme-
try arises as a kind rigid transformation of the subsystem relative to the remaining system
(Gomes, 2021). Since dynamical isolation is never exact, such symmetries are typically
used to model approximate symmetries; e.g., the approximate Galilean symmetries of the
physics inside a smoothly running train.

Because approximately isolated subsystems are common in physics, subsystem sym-
metries have important physical relevance. For example, they seem to play an important
role in explaining the ubiquity and methodological advantages of gauge theories in
physics, as suggested in Rovelli (2014) and later in Gomes et al. (2021). However, such
discussions are tangential to the question of what defines a gauge symmetry in general.
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Moreover, just as with active symmetries, nothing about the concept of a gauge symmetry
seems to require the introduction of an isolated subsystem. I will therefore only require
that my definition of gauge symmetry be consistent with the definition of gauge symmetry
used to define a subsystem symmetry in the relevant literature. The examples discussed
in Section 5.4 should be sufficient to show how this can be done in general.

2.6.3.1. SUBSYSTEM RECURSIVITY

It is worth mentioning a property of a symmetry, called subsystem recursivity, that was
first defined in Wallace (2022a) and further illustrated in Wallace (2022b). In those papers,
subsystem recursivity is defined and shown to be a valuable methodological tool for
constructing gauge theories.

A theory is said to be subsystem recursive if the approximate symmetries of isolated
subsystems are also symmetries of the system as a whole. Galilean invariance in Newto-
nian mechanics is subsystem recursive because, as discussed in Section 2.2.3.1, Corollary
V of Newton’s Principia shows that any isolated subsystem will have approximate Galilean
symmetries, and Galilean symmetries are also symmetries of a Newtonian universe.

The idea is that, in practice, there is no way to know whether a theory is really captur-
ing all possible physical phenomena so that one can never be sure that one has actually
identified the all the matter in the universe. As a result, it is advantageous, from a method-
ological perspective, to assume that one can indefinitely embed any particular system
into a larger system without that larger system losing any of the symmetries of the original
system.

While it is true that subsystem recursivity is a powerful methodological tool for judging
theories with symmetry, it is not well justified as an epistemic or ontological principle for
defining gauge symmetry. Poincaré invariance, for example, is not subsystem recursive
in general relativity with closed spatial topology because isolated systems, such as black
holes, have the approximate symmetries of asymptotically flat spacetimes, which include
the Poincaré symmetries, but these are not symmetries of a spatial closed universe. But
general relativity with closed spatial topology is observationally distinguishable from
asymptotically flat general relativity (Ellis & Schreiber, 1986), where Poincaré symmetry is
subsystem recursive. Thus, it is possible and observationally meaningful for a theory to
not be subsystem recursive and to be empirically adequate.

I will, thus, not consider subsystem recursivity to be a necessary ingredient in defining
a gauge symmetry. This observation will be relevant to my analysis because I will argue
that dynamical similarity should not be a gauge symmetry of the Kepler problem but
should be a gauge symmetry of cosmology.35

35The potential failure of subsystem recursivity here, however, is not completely obvious since it is not the same
dynamical similarity acting on both kinds of system.
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EN ROUTE TO GAUGE SYMMETRY

CHAPTER SUMMARY

This chapter will serve two main purposes. Firstly, it will review a variety of different
attempts to define gauge symmetries in the literature. These include attempts to define
gauge symmetry using the spacetime dependence of the symmetry generators, the invariance
properties of the variational principle used to define the laws, and the underdetermination
of the equations of motion. Secondly, and more significantly for the purposes of this thesis, it
will highlight various problems with each attempt. As the chapter progresses, I will identify
elements that I find promising (or not) in each approach as I gradually motivate my own
proposal based on underdetermination following the motivations of Dirac. Finally, I end
the chapter by introducing the concept of dynamical similarity, highlighting the challenges
and opportunities it poses as a new kind of gauge symmetry in physics.
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3.1. INTRODUCTION

While the previous chapter defined and motivated Belot’s problem, this chapter and the
next will motivate my proposed solution and illustrate its distinctive features. I will start
by reviewing standard approaches to classifying symmetry in general and defining gauge
symmetry in particular. Many of these approaches are discussed in Belot (2013). I will
add several more, including a discussion of Dirac’s definition of gauge symmetry. We
will see that the motivations that he gives for his definition are similar to my own even if
his proposal, which was only ever intended to give a sufficient condition for a symmetry
being gauge, is more limited in scope. I will also describe Noether’s famous theorems and
contrast her methodology with Dirac’s. Then, I will argue that Noether’s methodology is
more direct, and reflects more accurately the conditions under which physicists construct
their theories in practice. I will then adopt a version of Noether’s methodology when
recovering Dirac’s formalism in Chapter 4.

The review in this chapter will serve two purposes. First, it will lay out a terminology
and introduce a set of concepts that I will refer back to later when explaining the benefits
of my proposal. Second, and more importantly, it will provide an opportunity to ask
why one might expect any given definition of gauge symmetry to be fruitful or not. By
identifying the reasons for the successes and failures of any given definition, we are given
hints at what a better definition might look like. This analysis will favour definitions of
gauge symmetry that involve a variational principle. In this case, the variation defining
the dynamics can be engineered to match underdetermination of the equations of motion
to underdetermination of the models by the phenomena. The ability to do this will be
required by the normative rules that will result from my own proposal. Nevertheless, I
will find that standard variational definitions are deficient in the sense that they cannot
implement underdetermination with respect to dynamical similarity. To understand this
last point, and to set up the formal manipulations of Chapter 4, I will end this chapter by
giving a detailed description and definition of dynamical similarity.

Many of the explicit models, mathematical derivations, and important theorems
referenced in this chapter well be detailed in Chapter 4. I link to relevant derivations
when appropriate.

3.2. PROPOSALS FOR NARROW SYMMETRY

In Section 2.2.1, I defined the notion of a broad symmetry and found it to be too broad to
be fruitful. In this section, I will describe more narrow definitions, in the sense defined
in Section 2.2.1, and discuss their advantages and difficulties. By working through these
examples, we will gain further insights into Belot’s Problem and potential routes to solv-
ing it. I will refer to the different proposals for defining narrow symmetries as ‘narrow
proposals’ in what follows.1

Existing narrow proposals have a common aim of trying to identify formal features
of symmetry that can plausibly be linked to the underdetermination of representations

1Note that it’s the symmetries that make up the proposal that are meant to be narrow not the proposals
themselves.
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by phenomena. One approach is to base the definition on the functional dependence of
the symmetry transformations on the spacetime structure. In particular, one can define
narrow symmetries in terms of different locality conditions imposed on this dependence.
I will say that narrow symmetries of this kind are based on locality-conditions and will
investigate them in Section 3.2.1. I will find that these are not good proposals for gauge
symmetry.

Another approach is to define narrow symmetries in terms of specific features of the
nomic structure that are preserved under the symmetry transformations. This is most
easily achieved when the laws are implemented by a variational principle. I will refer to
these as symmetries of the variational principle and investigate them in Section 3.2.2. I
will show that such symmetries are better motivated than symmetries based on locality
conditions because the underdetermination arising from a variational principle due to a
symmetry can be matched to the underdetermination of representations by phenomena,
as suggested by the first slogan of Section 1.3.2.

The most promising existing approach, my my opinion, is a proposal made in Dirac
(1964). This proposal does not focus directly on the properties of the variational prin-
ciple itself but specifically on the underdetermination of the equations of motion. The
drawback of Dirac’s proposal, as we will see, is that its specific implementation is too
narrow for my purposes. In particular, Dirac’s proposal applies neither to the case of
reparametrisation symmetry2 nor to the all important case of dynamical similarity.

Let us start by briefly reviewing proposals for symmetry based on locality conditions
so that we might highlight their basic aspects and limitations. Further details can be
found in Belot (2013). A beautiful mathematical exposition of classical symmetries can be
found in Hydon (2000). More advanced discussions of symmetry can be found in Olver
(2000).

3.2.1. SYMMETRIES BASED ON LOCALITY CONDITIONS

Belot (2013) reviews three different kinds of narrow proposals based on locality conditions
that he calls: classical, generalised and non-local. These proposals are closely related. In
fact, generalised and non-local symmetries are generalisations of classical symmetries.3

I will review these notions here to provide context and vocabulary for our subsequent
discussions.

Classical symmetries are defined in terms of the properties of their infinitesimal gen-
erators, which will depend on the KPMs of the theory in question. Recall that the space
of KPMs includes spacetime structure as well as matter and force fields. It is common to
refer to the quantities representing the spacetime structure as independent variables and
to the matter and force fields as dependent variables. But for our purposes, we need only
note that a specification of a KPM is equivalent to a specification of the independent and
dependent variables as well as the derivatives of the dependent variables (if necessary).

In Section 2.4.2, I noted that symmetries form groups. Continuous groups, or Lie
groups, have parameters that label their orbits. Using the group parameters, we can define

2This runs counter to orthodoxy in the canonical quantum gravity community. We will defend this claim later. A
more thorough defence is provided in Gryb and Thébault (2023).

3Other names for classical symmetries include point symmetries or Lie (point) symmetries.
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the infinitesimal generator of a group as the change along an orbit induced by a small
(i.e., infinitesimal) change in the group parameters about the group identity element.

One can learn a great deal about a group’s structure by analysing the properties of its
infinitesimal generators. These give all the local properties of the group. Many groups
share the same local properties because they have the same infinitesimal generators even
though they differ in their global properties. Moreover, discrete symmetries can’t be made
‘small’ in any sense and therefore have no infinitesimal generators. In many applications
however, global properties are not relevant. All symmetries in this section are defined
only in terms of the properties of their infinitesimal generators. These definitions thus
ignore global properties and exclude discrete symmetries altogether.

We can use the definitions given above to define a classical symmetry as a transforma-
tion on the space of KPMs that preserves the space of DPMs (i.e., is a broad symmetry
defined at the kinematic level) and whose infinitesimal generator is independent of the
derivatives of the dependent variables.

This extra locality condition on the form of the infinitesimal generator imposes a
strong condition on the allowable transformations. For most theories, this reduces the
symmetries to a tractable set of transformations that is often explicitly computable. For
Newtonian systems with arbitrary potential energy (i.e., the potential energy has no
additional symmetries), the classical symmetries are only time translations (see Hydon
(2000)). For general relativity in the absence of matter, the classical symmetries are
arbitrary coordinate transformations and global rescalings (see I. M. Anderson and Torre
(1996); Torre (1993)).

Classical symmetries are sometimes too narrow and sometimes too broad to reason-
ably be taken as gauge symmetries. Some examples of this are discussed in Belot (2013).
But it is interesting to ask why one might expect them to be gauge symmetries in the first
place. A simple answer might be that gauge symmetries should reflect the presence of
representational baggage; i.e., representational structure beyond what is strictly necessary
to model the phenomena. If that is the case, then it is natural to expect that such ex-
cess structure should be kinematical: any dependence of the dynamics on this structure
should imply some empirical consequence. One might try (misguidedly) to use this to
motivate the converse implication that all representational structure that is independent
of the dynamics should be considered excess structure. Then, maps between DPMs
that depend only on the kinematical structures might be expected to relate empirically
equivalent representations. Classical symmetries are transformations of this kind that
depend, in the simplest possible way, on the kinematical state.

While such an argument may sound persuasive, it is not. There is no particular a priori
reason that non-dynamical structure should be empirically irrelevant. Moreover, there is
also no guarantee that classical symmetries will always be dynamically irrelevant. Indeed,
the example discussed in Section 2.2.3.1 of the Newtonian free particle with Galilean
transformations as gauge and non-gauge symmetries illustrate both of these possibilities.

Generalisations of classical symmetries suffer from similar problems. A generalised
symmetry is a symmetry where the infinitesimal generator is allowed to depend on arbi-
trary derivatives of the dependent variables. Clearly, all classical symmetries are gener-
alised symmetries, and there are interesting theories that have no generalised symmetries
that are not classical (matter-free general relativity is an example). Nevertheless, there
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are important examples of non-classical generalised symmetries. We have seen one such
example in Section 2.3 in terms of the dynamical similarity of the Kepler problem.

Finally, one can also allow symmetries where the generator is allowed to depend on
non-local functions of kinematical structures. These are the non-local symmetries. I will
not discuss these in detail here but see (Belot, 2013, §4) for references to examples. I
will, however, make two short comments about such symmetries. First, one must be
careful in allowing for a non-local dependence of the infinitesimal generator on the
kinematical state to not broaden the definition of symmetry too much that one simply
recovers the full set of broad symmetries. Second, matter-free general relativity has been
shown to only have non-local symmetries aside from the pre-engineered symmetry under
coordinate transformations and global re-scalings. Thus, such non-local symmetries may
be indispensable in trying to understand a theory of quantum gravity.

The narrow notions of symmetry defined above are mathematically well-defined and
can be used to identify several physically salient notions of gauge symmetry found in the
physics literature. What I’d like to note here is that broadening or narrowing the notion
of symmetry along these lines does not achieve much in capturing a formal criterion
that can be used to identify gauge symmetries in general. The rough intuition that some
non-dynamical principle could be used towards this end is, at best, questionable and
runs into immediate problems when faced with explicit counter-examples.

One might hope that variational principles could provide a better-motivated approach
to identifying gauge symmetries. I will now investigate the extent to which this might be
achievable.

3.2.2. SYMMETRIES OF THE VARIATIONAL PRINCIPLE

The idea behind a variational principle is to define some mathematical quantity, usually
called the action, that depends functionally on the elements of a KPM and takes extreme
values on the DPMs. The DPMs of the theory can then be found by computing the extreme
values of the action. A difficulty arises when the extreme values are not unique; i.e, when
there are many DPMs for which the action takes the same extreme value. The nomic
structure defined by the action principle alone has no way to discern such DPMs. Formally,
one often finds that the equations of motion generated by the action are ill-posed in the
sense that they cannot be solved uniquely even with appropriate initial or boundary data.
I will call variational principles of this kind irregular, following standard nomenclature.

One might want to require that the mathematical underdetermination resulting from
irregular variational principles could be arranged to reflect the physical underdetermi-
nation between representations and phenomena suggested by the presence of gauge
symmetries. In fact, the way to resolve the underdetermination in the variational principle
is to assign arbitrary conventions, called gauge fixings, that assign a unique DPM to every
extreme value of the action. We will see a very general way of doing this explicitly in
Section 4.4.4. But good interpretive practice should prevent arbitrary conventions from
having observable implications. Thus, one might require that all gauge fixings be related
by gauge symmetries.

One could then try to engineer the variational principle to be irregular in just the
right way to reflect the features of the target system one is interested in modelling. In
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fact, we will see below that this is precisely how gauge symmetries are often understood
in physics textbooks. Theorems and algorithms can be formulated for identifying the
conditions under which a particular action will have particular irregularities, the gauge
symmetries implied by these irregularities, and the set of gauge fixings one can use to
remove the irregularities. The description of some of these tools can be found in standard
textbooks on gauge theory such as Sudarshan and Mukunda (1974), Sundermeyer (1982),
or Henneaux and Teitelboim (1992), and I will give a detailed description of many of them
in Chapter 4.

Given these impressive tools, it is perhaps no wonder that the opening Chapter of
Henneaux and Teitelboim’s book on the quantization of gauge systems makes the claim
that “the action itself enables one to decide what are the observables” (Henneaux &
Teitelboim, 1992, §1.5.2). Henneaux and Teitelboim take ‘observables’ to be the structures
of a theory’s models that are invariant under all gauge symmetries.4 As a result, if we take
their statement at face-value, it would seem to close the discussion on how to identify the
gauge symmetries of a theory. We will see, however, that the definitions and techniques
used by this standard book, which reflect the techniques used in the broader physics
community, have limited applicability. Moreover, it is often assumed by physicists that
the theory in question is empirically adequate, and thus physics definitions of gauge
symmetry appear to be silent on epistemic considerations. Finally, even within physics
textbooks there are several methodologies used to ‘decide’ on the observables of a theory,
and these can be inequivalent when applied to different examples of symmetry. I will now
briefly sketch some of these different approaches and highlight their differences.

3.2.2.1. VARIATIONAL AND DIVERGENCE SYMMETRIES

As described in the previous subsection, variational principles might plausibly be linked to
gauge symmetries when they lead to DPMs where the action takes the same extreme value.
Gauge transformations might then be defined by transformations that preserve both the
extremality condition and the value of the action. In general, actions are written in terms
of integrals of functions of the matter and force fields over the spacetime structure. If we
call the dependent variables ui and the independent variables x then the action S is an
integral over the Lagrangian function L (x,ui ) such that

S[γ] =
∫

M
L (x,ui )dx , (3.1)

where γ is a history of the theory.5 The integration region is a manifold M containing
different values of the independent variables. We then define a variational symmetry as a
transformation x → x̄, ui → ūi and M → M̄ such that∫

M
L (x,ui )dx =

∫
M̄

L (x̄, ūi )dx̄ . (3.2)

4Note that this definition is, importantly, not equivalent to the sense used in the philosophical literature on the
observable/unobservable distinction. We will give a precise definition of what we mean by an observable in
Section 5.2.

5We will define the action a bit more carefully in Section 4.2. For a more rigorous definition of a variational
symmetry, see (Olver, 2000, definition 4.10 p. 253).
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Clearly, transformations of this kind preserve the value of the action. Note that varia-
tional symmetries can also be classified into classical, generalised, and non-local by the
dependencies of their infinitesimal generators.

While many variational symmetries do correspond to obvious gauge symmetries,
many do not. One reason is that variational symmetries are, in a sense, too broad. In-
variance of the action does not imply that it is irregular. It is possible to find variational
symmetries that do not lead to any problems in solving the equations of motion. Time
translations and global Euclidean symmetries; i.e., the Leibniz shifts of Section 2.5.2; are
examples of this in Newtonian mechanics. More generally, any symmetry that is covered
by Noether’s first theorem, which we describe below, is a variational symmetry that doesn’t
obstruct the equations of motion. We will see the reason why in Section 4.4.3.1.

Another reason that variational symmetries should not be identified, in general, as
gauge symmetry is that they are too narrow: invariance of the action is stronger than the
preservation of the extremality condition. Galilean boosts, for example, are not variational
symmetries in Newtonian mechanics.

A slightly broader category of symmetries is that of divergence symmetries. These
symmetries are transformations that preserve the Lagrangian up to a total derivative; i.e.,

L (x,ui ) =L (x̄, ūi )+div φ , (3.3)

where φ is some arbitrary function of x and ūi . By the Divergence Theorem, divergence
symmetries can, at most, shift the action by a constant S → S +a, where a =φ∣∣

∂M̄ . Under
a divergence symmetry, the extreme values of the action can be shifted by a constant so
that DPMs remain DPMs. In this way, the variational principle, but not the action itself,
has no way of discerning DPMs related by divergence symmetries. Famously, the Galilean
boosts of Newtonian mechanics are divergence symmetries even though they are not
variational symmetries.6

Divergence symmetries, however, still do not capture all the features one might want
of a gauge symmetry. Since all variational symmetries are divergence symmetries, they
suffer from the same too-broad criticism laid upon variational symmetries. But they are
also too narrow as they don’t include the dynamical similarities of the Kepler problem
(under the right epistemic constraints) discussed in Section 2.2.3.3 or relatedly, the global
scaling symmetries of matter-free general relativity (see I. M. Anderson and Torre (1996)).
Still, it seems that the basic idea behind a variational and divergence symmetry is roughly
on the right track because it highlights a basic source of underdetermination in the
nomic principles used to define laws in physics. I will now explore several other related
definitions of narrow symmetry that attempt to highlight this issue more explicitly.

3.2.2.2. NOETHER SYMMETRIES

No discussion of symmetry would be complete without mention of Emmy Noether and
her powerful approach to understanding symmetry. Noether proved two theorems that
are of upmost importance to the understanding of the formal aspects of symmetry.7 Her

6For a proof, see Example 4.35 (p. 297) of Olver (2000).
7Her theorems were published in a 1918 paper (see Noether (1983) for a reprint and Noether (1971) for an

English translation). See Kosmann-Schwarzbach and Schwarzbach (2011) for an historical perspective, Olver
(2000) for a formal treatment, and Brading and Brown (2003) for a philosophical analysis.
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first theorem lays out certain conditions under which a particular variational principle
will define DPMs that have quantities, called constants of motion, that are constant along
a history. I prove a modern formulation of this theorem together with a description of
the necessary assumptions in Section 4.3.2. Noether’s second theorem derives a set of
identities satisfied by the theory when the action obeys certain conditions. A modern
formulation of the second theorem with a proof is given in Section 4.3.1. For now, I would
like to discuss the general attitude towards symmetry taken by Noether in deriving her
theorems and how her second theorem leads naturally to a particular definition of gauge
symmetry.

The basic idea behind Noether’s approach is to first restrict to the set of symmetries
that leave the action invariant. The invariance of the action is expressed as a mathematical
definition from which various conclusions are then deduced. Normally, the definition
of symmetry used is that of a generalised variational symmetry as given above — but
with more leniency regarding the action of the transformations on the boundary since
these have no effect on the equations of motion. This is perhaps the most historically
accurate definition. However, some modern texts, including Henneaux and Teitelboim
(1992), use a slightly different definition (see their Equation 3.22) in terms of the second
functional derivative of the action S.8 We find this definition enlightening because it can
be more directly manipulated and because it has a nice geometric interpretation, which
I will describe briefly below. For most applications, these definitions are equivalent.9

Regardless of one’s preference, I will simply refer to the relevant symmetries as Noether-
2 symmetries, which one can take as a placeholder for either a generalised variational
symmetry or the functional derivative definition. Noether-2 symmetries are then those
symmetries that are relevant to Noether’s second theorem.

The subset of Noether-2 symmetries that are constant functions of the independent
variables are the symmetries relevant to Noether’s first theorem. We will call those Noether-
1 symmetries. Let me now describe some consequences of these different symmetries and
leave the mathematical details for the next chapter.

First, it is important to note is that Noether-2 symmetries are used to define gauge
symmetries in many physics texts including in Chapter 3 of Henneaux and Teitelboim
(1992). This definition is probably the most commonly accepted formal criterion for
defining a gauge symmetry in the physics literature. Helpfully, the functional derivative
definition of a Noether-2 symmetry can be used to derive a formal equation (see (4.13))
that can, in principle, be used to solve for these symmetries explicitly.

Second, the intuition behind identifying Noether-2 symmetries as gauge symmetries
is the idea that an underdetermination in the variational principle should be linked to
underdetermination of representations by phenomena. But the underdetermination
implied by Noether-2 symmetries is often mistaken for a more pernicious form of under-
determination, emphasised by Dirac, where the variational principle is seen to produce
equations of motion that are not well-posed. In many cases of interest, the two notions
are equivalent — but not always. For example, I will show at the end of Section 4.3.2 that
all the Noether-1 symmetries are Noether-2 symmetries that do not lead to any underde-

8We will give this expression in Equation 4.11, which we explain in Section 4.3.1.
9A full comparison of these definitions is beyond the scope of this text, but potential differences may involve

the treatment of boundary conditions.
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termination in the equations of motion. Thus, Dirac’s argument, which is often used to
motivate Noether-2 symmetries as defining gauge symmetries, is actually inapplicable to
many Noether-2 symmetries of physical interest. This is important because I will argue
that underdetermination is the more reliable feature to associate with gauge symmetry.

Finally, it will be helpful to take note of Noether’s methodology when deriving her
theorems. First, she identifies some class of symmetries in terms of the formal properties
of the action. Then she deduces the consequences of those symmetries. This fits well
with how physicists build theories: they look for simple actions that they can engineer
to have the gauge symmetries they think reflect the phenomena they are trying to study.
In this way, one knows in advance at least some symmetries the action will have and
can use Noether’s theorems to deduce some consequences of those symmetries. This
will be in stark contrast to the methodology developed by Dirac for identifying the gauge
symmetries of a theory in which the symmetries are deduced by an algorithm designed
to iteratively repair the equations of motion generated by the variational principle. I will
describe Dirac’s approach in Section 3.3 below.

More on Noether-2 symmetries We can understand the formal features of the functional
derivative definition of Noether-2 symmetries by considering in more detail the concept
of a ‘variation’ of a history. By ‘variation’ I mean a small (i.e., infinitesimal) but arbitrary
change of the independent variables for every value of the dependent variables. The
variational principles used in physics consider arbitrary variations of this kind and then
define the DPMs as those KPMs such that the resulting change in the action as a result of
such variations is zero. Each small change in the independent variables defines a kind of
derivative for every value of the dependent variables. The variational principle therefore
requires that each of these derivatives is zero. Since, for most theories, the dependent
variables can take a continuous range of values, there is an infinite number of such
conditions. If everything works properly, these conditions will produce the equations of
motion that define the theory. See Section 4.2 for a formal statement of the variation and
the resulting equations of motion, (4.4).

A special case occurs when one considers particular variations of each of the deriva-
tives above and then requires those variations to be equal to zero. For all such variations,
the action will retain its extreme value. Thought of as the infinitesimal generators of
transformations on the space of KPMs, these variations match the intuitive notion out-
lined above for a proposal for the gauge symmetries of a theory because they preserve the
extreme values of the action. These are the Noether-2 symmetries. Using this condition, it
is a straightforward exercise using modern variational techniques to prove that Noether-2
symmetries imply certain identities on the DPMs of a theory. These are the identities of
Noether’s second theorem. An explicit mathematical derivation is given in Section 4.3.1.

The situation can be understood more intuitively by considering functions of only two
(instead of infinite) variables. A maximum (or minimum) occurs when the derivatives of
the function, in all directions, are equal to zero. But a special case occurs when the second
derivative in one particular direction is also equal to zero. Then the function has a flat
crest along the direction in question as shown in Figure 3.1. The Noether-2 symmetries,
as expressed by Equations 4.13, are then transformations along the flat directions in the
infinite dimensional space of ways in which one can infinitesimally change a KPM.
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Figure 3.1 | In a multidimensional space, a function can have a flat crest along a particular direction when both
the first and the second derivatives are zero along that direction. In this example, the function has a maximum

when r =
√

x2 + y2 = 1 in both r and θ directions, where θ = tan
y
x . But it is also flat (i.e., the second derivative

is vanishing) along the θ direction creating a flat crest. Directions such as that along θ point along the orbits of
Noether-2 symmetries.

3.2.3. SYMMETRIES IN FIRST ORDER SYSTEMS

Most classical theories in physics are expressed in terms of second order partial differential
equations, where, loosely speaking, accelerations are computed in terms of positions and
velocities. The relevant kinematical structures are therefore the independent variables
and at least two of their derivatives. At any given time, the independent variables and
their derivatives have the ability to represent independent features of a target system. In
analysing symmetry, a lot of leg work must go into keeping track of the fact that, while
variables and their derivatives can be used to represent independent phenomena, they
are nevertheless strongly intertwined by their mathematical definitions. Mathematical
structures called jet bundles can be used to keep track of the constraints between these
‘independent’ quantities that are not completely independent.10 The geometric picture,
however, is sophisticated and explicit calculations can quickly become intractable.

An alternative is to reformulate the second order system as an equivalent first order
system. We will be especially interested in doing this for the time dependence of the
dependent variables. Spatial boundaries can complicate the issue but in general this can
be done rather painlessly by following the general procedure outlined in Section 4.4.1. For
most theories — with the notable exception of general relativity — splitting the temporal
and spatial dependence allows for a relatively clean split of symmetry and dynamics.
Thus, systems that are first order in time are convenient for analysing the symmetries of
many theories.

First order systems come with extra constraints that must be satisfied in order for them
to be equivalent to the corresponding second order system. At the end of the day, solving

10For a simple illustration of how to do this, see the appendix of Belot (2013). For a comprehensive mathematical
treatment, see D. Saunders (2008).
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these constraints introduces all the extra complications of working with the second order
system directly. Despite this, first order systems have remarkable geometric properties
that can shed considerable light on the nature of symmetry. These properties are also
important for constructing corresponding quantum theories. I will thus find it extremely
valuable to consider first order systems here.

3.2.3.1. HAMILTONIAN SYSTEMS

A general class of first order systems are called Hamiltonian systems.11 To describe such
systems, it is customary to call the independent variables configurations and their time
derivatives velocities. One then defines a map, called a Legendre transform, between
the space of configurations and velocities to a space of configurations and momenta.
That specifies the state space of the theory, which is called phase space. To define the
dynamics, one needs two additional structures: a function on phase space called the
Hamiltonian and a differential structure called a symplectic 2-form that is antisymmetric
in configurations and momenta. The Hamiltonian function and the symplectic 2-form
can then be used to define a unique vector at all points in phase space. DPMs are then
defined to be those curves on phase space that are tangent to these vectors.

The equations of motion of Hamiltonian systems are called Hamilton’s equations,
which are a set of first order (in time) differential equations. These are split into two
sets of equations. The first of these, called Hamilton’s first equation, is a constraint that
reduces the first order system to an equivalent second order system. The second equation,
called Hamilton’s second equation, contains the non-trivial part of the dynamics. As I just
mentioned, Hamilton’s equations assign a direction and magnitude (i.e., a vector) to every
point in phase space. One then interprets the vector as giving the tangent to the DPM that
passes through that particular phase space point. The DPMs can be defined by starting at
a particular point in phase space and then flowing to a neighbouring point by following
the vector defined by the Hamilton function. Because this is similar to how fluid flows
through a medium, Hamilton’s equations are said to generate flows on phase space.

The utility of first order systems is that one can easily give mathematical criteria for
when the equations of motion can be solved. The vectors produced by the flow equations
define vector fields on phase space, and the existence, uniqueness and smoothness of
these vector fields give precise constraints on the solvability of the system. Any obstruc-
tions to solvability can thus easily be identified and, in some cases, remedied. Moreover,
it is usually also clear how many independently specifiable quantities are needed to
define the vector fields in the first place. This is important for my definitions of gauge
symmetry because I will focus on both the solvability of the equations of motion and on
the number of independently specifiable representational structures. All of this is most
cleanly achieved in a first order formalism.

First order systems are also ideal for studying symmetry transformations in general.
Because the kinematical structure has been coded into the structure of curves on phase
space, symmetry transformations with group structure can be generated by assigning vec-
tors to every point on the curve defining a KPM. These vectors can be taken to represent

11The canonical reference for the study of Hamiltonian systems in mechanics is Arnol’d (2013) or Arnol’d,
Dubrovin, Kirillov, Krichever, et al. (2001) for a more advanced treatment. A more conceptual introduction is
given in (Lanczos, 1949, ch. VI). For a review of the geometric methods and the link to symmetry, see Chapters
1-3 of Woodhouse (1997).
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the infinitesimal generators of an arbitrary symmetry transformation. In well-behaved
Hamiltonian systems, the DPMs never intersect since they are defined as integrals curves
of smooth vector fields. This means that all (smooth) maps between DPMs can be gener-
ated by vector fields and that one can represent an arbitrary (smooth) broad symmetry
in terms of an arbitrary (smooth) vector field on phase space.12 Thus, symmetries can
be thought of as arbitrary (non-dynamical) flows on phase space. In this way, all the
nice geometric conditions that can be used to understand the dynamical quantities of
Hamiltonian systems can also be used to understand the symmetric quantities.

One important class of narrow symmetries are those symmetries of Hamiltonian sys-
tems that preserve the value of the Hamiltonian. These are called Hamiltonian symmetries.
This is a slightly smaller space than the broad transformation described above, which are
only required to preserve the dynamical flow and not also the value of the Hamiltonian.
One can narrow the definition of Hamiltonian symmetries further by requiring that they
be generated by vector fields that satisfy locality conditions on phase space. Here, the
locality conditions usually involve restrictions on the number of derivatives of the phase
space quantities required to build the vector field in question the same way that classical,
generalised and non-local symmetries were defined earlier. Locality conditions of this
kind usually lead to a significant narrowing of the class of symmetries because a vector
field needs to “know” something about the dynamical flow in order to preserve it. That
usually requires more information than can be provided locally on phase space.

A narrowing of the Hamiltonian symmetries along these lines in order to identify gauge
symmetries might seem plausible for the same reasons that motivated classical and/or
generalised symmetries. Any Hamiltonian symmetry that depends locally on phase space
points could be argued to be non-dynamical in the sense that they have no way of gaining
information about the non-trivial dynamical implications of the Hamiltonian function.
This could motivate them to be identified with gauge symmetries. However, such ar-
guments are again vulnerable to the criticism levelled against classical and generalised
symmetries above.

As a final observation, we note that while the physics and philosophy literature almost
exclusively focuses on first order system that are Hamiltonian, these are not the most
general first order systems because such systems are required to admit a symplectic
2-form. More generally, one can define first order flow equations without introducing
a symplectic 2-form. An example of such a system is a contact system. We will see that
contact systems are the natural by-product of treating dynamical similarities as gauge
symmetries in Section 4.8.

3.2.3.2. VARIATIONAL PRINCIPLES IN FIRST ORDER SYSTEMS

Hamiltonian flows can be generated by variational principles. To achieve this, it is usually
sufficient to slightly modify the action of the corresponding second order system along
the lines laid out in Section 4.4.1. Just as in second order systems, the variational principle
can lead to irregularities. And just as in second order systems, one might try to match the
irregularities of the variational principle with the underdetermination of representations
by phenomena.

12This can be true even if that symmetry-generating vector field is the same vector field generating the dynamics.
This is the case of reparametrisation symmetry. We will argue in Section 5.4.3 that such symmetries should
never be treated as gauge symmetries.
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It is a significant advantage of first order systems that such an analysis can be done
directly in terms of the geometric structures and vector fields on phase space. In Sec-
tion 4.4.1 I will derive a simple expression, Equation 4.60, that will allow me to clearly
identify all the notions of symmetry applicable to Hamiltonian systems discussed through-
out this work and investigate their consequences. This expression provides a remarkable
unification of most of the different aspects of symmetry discussed in this chapter.

The basic idea that I will follow is to use Noether’s methodology and start by assuming
that one knows that the action has symmetries with certain formal properties. The
advantage of first order systems is that one can then easily match the presence of those
symmetries with degeneracies in the geometric structures of phase space. Simply knowing
that an action has symmetries of a particular form is sufficient to prove many immediate
consequences — including Noether’s theorems. These consequences reproduce many
results familiar to different approaches to gauge symmetry that have been developed in
the literature. I will show this explicitly in Section 4.4.3. Before doing this, let me first
review some of the central features of the most prominent of those approaches.

3.3. THE DIRAC ALGORITHM

In this section, I will describe a definition of gauge symmetry introduced by Dirac. The
motivations for this procedure, which I will describe in detail below, are also an important
motivation for the definition I will give in Section 5.2.

Dirac’s definition applies to Hamiltonian systems subject to constraints, and therefore
further illustrates the utility of first-order approaches. Dirac’s intuitions are often invoked
in physics textbooks13 to motivate the interpretation of gauge symmetry for constrained
Hamiltonian systems. Such systems form the basis for the BRST14 quantization methods
used to quantize the Standard Model (e.g., Chapters 13 and 14 of Henneaux and Teitelboim
(1992) or Chapter 15 of Weinberg (1995)) and canonical attempts to quantize gravity (e.g.,
Chapters 4 and 5 of Rovelli (2004) or Part I of Thiemann (2008)). Among practising
physicists working on gauge theories, Dirac’s is, thus, the orthodox view of a gauge
symmetry.15 Let us describe that view now.

In a short series of lectures (Dirac, 1964), Dirac developed an algorithm that identifies
the transformations of a theory that, in his words, “lead to changes” in the phase space
quantities “that do not affect the physical state.”(Dirac, 1964, p.20) Dirac seems to under-
stand the ‘physical state’ to be the state describing the physical state of affairs of the world.
He then insists (p.20) that this state not depend on any freely specifiable parameters
that may appear in the theory’s models. It is clear that Dirac’s notion of transformation-
that-does-not-affect-the-physical-state has since been interpreted as a notion of gauge
transformation, in our terminology, when a theory is empirically adequate.16 It is thus
justified to treat Dirac’s proposal as a proposal for defining gauge symmetry.

I believe that Dirac’s proposal is generally well-motivated. When extended to include

13E.g., Chapter 1 of Henneaux and Teitelboim (1992) or Chapter 2 of Woodhouse (1997)
14Named for Carlo Becchi, Alain Rouet, Raymond Stora and Igor Tyutin.
15A similar conclusion was reached in Earman (2003).
16See, for example §1.2.1 of Henneaux and Teitelboim (1992) that uses Dirac’s terminology of “transformations

that do not change the physical state” and explicitly identifies these with “gauge transformations.”
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certain minimal epistemic considerations, his motivation reflects that of my own proposal.
The applicability of Dirac’s proposal, as we will see shortly, is unfortunately too narrow to
serve all my purposes. To understand why, I will now briefly describe the key components
of Dirac’s algorithm. A more detailed technical account is given in Section 4.7. A modern
account of the Dirac method is given in Chapters 1 to 5 of Henneaux and Teitelboim (1992)
with a more complete description in Sundermeyer (1982) and Chapter 2 of Woodhouse
(1997) for a more geometric approach.

As stated above, Dirac’s proposal is formulated on phase space using the Hamiltonian
formalism. Central to his reasoning is the claim that, in Hamiltonian systems, irregu-
larities result in constraint equations on phase space. These constraint equations are
necessary for the consistency of the dynamical equations and reflect the fact that the
Legendre transform between configuration-velocity space, also called velocity phase space,
and phase space is many-to-one. Attempting to invert the Legendre transform then leads
to underdetermination in the equations of motion on velocity phase space. This under-
determination is precisely the underdetermination that Dirac wants to associate with a
gauge symmetry.

To understand the origin of the constraints, Dirac notices that the image of the Leg-
endre transform is defined by a constraint equation on phase space. This is what Dirac
called the surface of the primary constraints of the theory. These primary constraints can
be read-off directly from the action using the definition of the momenta. Consistency
of the theory then requires that the dynamical flow preserve the primary constraint sur-
face. If this is not automatically true, then new constraints, which Dirac calls secondary
constraints, must be imposed. Consistency then further requires that the dynamical
flow also preserve the secondary constraint surface. This, in turn, can generate new con-
straints. The process of identifying new consistency conditions and their corresponding
constraints continues until one finds that all consistency conditions are automatically
satisfied. If this occurs, the Dirac algorithm is said to close.

The output of the Dirac algorithm is then a set of constraints (primary, secondary,
etc) on phase space. If these constraints over-constrain the system then the original
variational principle is said to be ill-defined. Otherwise, one can use the outcome of
the algorithm to repair the irregularities of the original system. The first step of this
repair process it to identify the constraints of the system that are responsible for the
underdetermination in the equations of motion. This can be done using the form of the
constraints and the geometric structures of phase space. The details are technical and are
not important for understanding the repair procedure. I give a more detailed account in
Section 4.7. Dirac calls the constraints responsible for the irregularities first class, and the
remaining constraints second class.

The repair procedure involves introducing arbitrary functions, vα, as Lagrange multi-
pliers for all first class constraints πα. These are then added to the original Hamiltonian,
H , of the system to produce the extended Hamiltonian of the theory Hext = H + vαπα.
Hamilton’s equations for the extended Hamiltonian then lead to well-defined equations
of motion. This resolves the underdetermination in the system at the cost of introducing
the arbitrary functions vα.

Dirac then proceeds to argue for a conjecture that states that any change in the value of
the arbitrary functions vα should be thought of, in my language, as a gauge transformation.
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The motivation for his proposal is the idea that gauge transformations should reflect
underdetermination in the equations of motion, and that this underdetermination is
precisely reflective of the underdetermination between representations and phenomena
(as described by the physical state). To see this, it is helpful to quote Dirac directly: (Dirac,
1964, p.20)

. . . the q’s and p’s at later times are not uniquely determined by the initial
state because we have the arbitrary functions v coming in. That means that
the state does not uniquely determine the set of q ’s and p’s, even though a set
of q ’s and p’s uniquely determines the state. There must be several choices of
q’s and p’s which correspond to the same state. So we have the problem of
looking for all the set of q ’s and p’s that correspond to one particular physical
state.

He then proceeds to argue that this set is exactly the orbit, in my language, of a gauge
transformation.

Note that the same intuition persists in more modern treatments of gauge theory.
From (Henneaux & Teitelboim, 1992, §1.2.1,p.16):

The presence of arbitrary functions v a in the total Hamiltonian tells us that
not all the q’s and p’s are observable. In other words, although the physical
state is uniquely defined once a set of q ’s and p’s is given, the converse is not
true — i.e., there is more than one set of values of the canonical variables
representing a given physical state. To see how this conclusion comes about,
we notice that if we give an initial set of canonical variables at the time t1

and thereby completely define the physical state at that time, we expect the
equations of motion to fully determine the physical state at other times. Thus,
by definition, any ambiguity in the value of the canonical variables at t2 ̸= t1

should be a physically irrelevant ambiguity.[Original emphasis.]

Here, the word ‘observable’ is to be understood in the sense defined at the end of Sec-
tion 2.3. This notion of gauge symmetry clearly reflects Dirac’s understanding in terms of
underdetermination of the dynamics.17

Note that, in both of the quotes above, the emphasis is not just on the capacity of the
representations to contain the phenomena but on their ability to uniquely predict the
phenomena based upon knowledge of the initial data. This is the general idea I wish to
advocate in this thesis.

There are, however, several limitations to Dirac’s analysis of symmetry. Dirac’s starting
point requires the theory be formulated as a Hamiltonian system. This requires that the
theory be written as a system that is first order in time. Since most theories in physics
are second order in space, this requires a split between space and time leading to a
state space representation ‘at-an-instant.’ Dirac-style definitions of symmetry involve
transformations on states defined at an instant, and in this way are fundamentally at-an-
instant notions of symmetry. This leads to two noteworthy complications.

17Interestingly, while they use this to motivate their definition of gauge symmetry, they later (Chapter 3, §3.1)
adopt a definition based on Noether-2 symmetries, which are not always associated with underdetermination
because they include Noether-1 symmetries.
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First, at-an-instant symmetries require simultaneity conventions that are arbitrary in
relativistic theories. Requiring that these conventions have no empirical consequences is
often very difficult in the quantum formalism. In the standard model of particle physics,
Dirac’s proposal becomes intractable and is used only to motivate a more sophisticated
procedure, the BRST procedure mentioned above, that does not require explicit simul-
taneity conventions. In canonical approaches to quantum gravity, which follow Dirac’s
proposal, implementing the arbitrariness of simultaneity conventions is probably the
most important outstanding open problem. But even with a solution of this problem at
hand, there are classical spacetimes that can’t be represented as simple curves on phase
space. Dirac’s proposal seems ill-equipped to define gauge symmetries in such space-
times. Note, however, that I will nevertheless defend the use of at-an-instant symmetries
in this thesis using the arguments given in Section 5.2.1.

A second complication arises when the Dirac-symmetry generators are also generators
of evolution. This occurs in reparametrisation-invariant theories.18 When this happens,
an argument first given in Barbour and Foster (2008) and elaborated upon at the end of
Section 4.7 shows that Dirac’s original demonstration is invalid. Conceptually, this can
be understood in terms of a failure of the equivalence of at-a-time and over-a-history
notions of symmetry, as I will now describe.

The evolution generator takes the instantaneous state of a system and produces the
instantaneous state at a later time. In general, such states will not be physically equivalent
and should therefore not be identified with at-a-time symmetries. However, if one applies
such transformations along all points of a DPM taken as a curve in state space, then the
resulting curve is invariant. Thus, transformations of this kind should be regarded as
gauge symmetries over-a-history. Whether one approves of Dirac’s proposal in this context
therefore depends on whether one takes the physically salient notion of symmetry to be
at-a-time or over-a-history. Because the at-a-time notion is relevant to local observers,
we will take this to be the salient notion in our definition of gauge symmetry. See Gryb
and Thébault (2023) for a more detailed defence of this position.

There is one additional formal limitation of Dirac’s proposal that will be especially
relevant to the considerations of my solution to the problem of the AoT. This is the fact
that Dirac symmetries are associated with phase space constraints, which are defined in
terms of phase space functions. To get the infinitesimal generators of these symmetries
one needs to use the differential structure; i.e., the symplectic 2-form; of phase space
in addition to the constraints. But not all symmetries that preserve the dynamical flow
can be produced in this way. One notable exception are the dynamical similarities that
will be described in Section 3.4. Dirac’s procedure is silent on the gauge status of such
symmetries.19 The proposal we will introduce in Chapter 5 will, thus, need to generalise
Dirac’s idea in a way that can handle this case.

I end this section with a comparison between the Noether and Dirac methodologies
regarding symmetry. Recall that Noether starts with symmetries that obey certain formal
criteria when applied to the action and then investigates the consequences. Dirac, starts
with certain irregularities in the variational principle and then uses consistency conditions
to identify and classify all the irregularities present in the variational principle. The basic

18In general relativity, the evolution generator is specified uniquely by the simultaneity convention.
19Note that Dirac describes his criterion for a gauge symmetry as sufficient but not necessary.
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idea, in contrast to Noether, is then to start with some action and try to figure out the
ways in which it is problematic. Once this is done, Dirac develops a procedure for curing
the irregularities and producing well-defined equations of motion. This procedure then
motivates a proposal for defining the gauge symmetries of a theory because it clearly
identifies the arbitrary functions required to evolve the system.

In Chapter 4, I will follow Noether’s methodology but use Dirac’s insight to identify
a formal criterion for identifying the symmetries I want to investigate. In this way, I
will assume that physicists can engineer their variational principles to possess certain
gauge symmetries rather than guess blindly at an action and hope that this action can be
remedied in such a way that it reflects the desired gauge symmetries.

3.4. A DIFFERENT KIND OF SYMMETRY: DYNAMICAL SIMILARITY

One of the main claims of this work will be that dynamical similarity is a gauge symmetry
of modern cosmology. In this section, I will elaborate upon the general idea behind
dynamical similarities and show that they are broad symmetries of most systems whose
laws can be written using a variational principle based on an action. I will also give some
an epistemological argument for treating dynamical similarities as gauge symmetries in
certain contexts.

For the purposes of our general discussions about symmetry, the significance of
dynamical similarity is that it is problematic for many standard definitions of gauge
symmetry discussed in this Chapter. While I consider definitions based on underdeter-
mination to be on the right track, standard definitions assume that the symmetries have
formal properties that dynamical similarities do not.

In this section, I will describe the features of dynamical similarity that make it unique.
I will then explain how my new principle, the PESA (developed in Chapter 5), can treat
these unique features and solve many standard puzzles typically associated with gauge
symmetry. To get started, let me give an epistemic argument that will help illustrate the
features of dynamical similarity and the motivation for treating it as a cosmological gauge
symmetry. For a general discussion of dynamical similarity in this context, see Sloan
(2018) or further references in Section 4.8.1.

3.4.1. THE DYNAMICS OF SIMILARITY

Consider the passage by Poincaré from Science and Method (Poincaré, 2003) quoted in
Section 1.2.3 of the Introduction. There, we’re invited to image a universe like our own
that is identical in every respect except that it is a thousand times larger. Such a universe,
he argues, would be indiscernible from our own because any reference standard that
could be used to measure the length of a body would have grown in exact proportion
the length of that body, and therefore any measurement using this standard would be
unaffected. He calls such a transformation a similarity in reference to the same geometric
symmetry discussed as early as Euclid.

Poincaré’s argument for empirical indiscernibility under similarity can be applied
more generally to measurements of temporal duration. If duration is measured using
relative changes within a system — say by recording the number of oscillations of the
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pendulum of a clock — then, by Poincaré’s argument, the transformed system should be
indiscernible from the original, and therefore no change in duration can be measured.

But compared to length, representations of duration are made considerably more
difficult by dynamical considerations. Useful standards of duration are defined by their
ability to bring the dynamical laws into a particular form. For example, absolute time in
Newtonian mechanics is defined in terms of inertial motion, which in turn is determined
by the form of the dynamical laws. The precise way that a similarity transformation acts
on the representations of a dynamical system is therefore affected by how the temporal
standards depend on the laws. This requires a more comprehensive approach.

The most important consideration in defining such an approach is the way in which
the form of the laws affects the transformation properties of the velocities. In theories
based on variations of an action, length and time standards are related by the conventions
used to define the unit of the action. Heuristically, this unit defines a standard of angular
momentum that can be used to convert lengths to velocities using some convention for
inertial mass. I will call similarity transformations that take into account the dynamical
considerations involved in defining velocity dynamical similarities because of their rela-
tion to the transformations (2.3) of the same name studied in the context of the Kepler
problem. Specifically, they will involve a rescaling of the unit of the action that can act
differently on coordinates and their momenta because of how the temporal unit must be
rescaled in order to correctly implement the conventions described above.

If Poincaré is correct that a rescaled world would be indiscernible from our own,
then dynamical similarities, which transform spatial and temporal scales in a way that
preserves the dynamical laws of a theory, should be treated as gauge symmetries. I will
show that the PESA can be used to make this argument more precise.

3.4.2. DYNAMICAL SIMILARITY

In the previous section, I described how a similarity transformation intuitively acts on
the representations of a dynamical system. I highlighted the subtle role of the dynamical
laws in determining the transformation properties of the velocities using the example of
the Kepler symmetries of Section 2.2.3.3. I will now make these general comments more
precise by giving a more formal definition of dynamical similarity. This definition will
provide the starting point for the analysis of the remainder of this work.

The definition of dynamical similarity must involve a statement of the laws themselves
because these define the convenient temporal standards for the theory. It will thus
be helpful in my analysis to restrict to Lagrangian systems, which are defined by an
action principle — although applications to Hamiltonian systems are straightforward.20

A Lagrangian system is a system whose DPMs, γDMP, are stationary points of the action,
S[γ], such that the variations δS[γ]|γDPM about γDPM are zero. Given such a system, we
define a dynamical similarity as a transformation, T : γ→ γ′ = T (γ), that rescales the
action by a constant:

S[γ] → cS[γ′] . (3.4)

Under this definition, if γ is a DPM then γ′ is also a DPM because (3.4) preserves the
extrema of S[γ]. Dynamical similarities, when they exist, are therefore broad symmetries

20See Section 4.8 for a general treatment in terms of Hamiltonian systems.
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of a theory.
To understand how such transformations match the intuitions of the previous section,

consider that the units of S are the same as the units of angular momentum, and therefore
that the effect of a dynamical similarity is to actively rescale the global standard of angular
momentum for the system. Different choices of c therefore represent different ratios be-
tween the standards of length and the standards of velocity. Using these transformations,
one can then determine how to rescale the standards of both length and time, as in (2.3),
to produce a similarity transformation. Aside from the symmetries (2.3) of the Kepler
problem, another important example of a dynamical similarity is the global rescaling
symmetry of general relativity mentioned in Section 3.2.2.1. The fact that dynamical
similarities are symmetries of general relativity will be the basis for our cosmological
arguments about the origin of the AoT in Section 7.4.

We will embark on a more thorough investigation of dynamical similarities and their
formal properties in Section 4.8. For the moment, however, I would like to describe
in a bit more detail some features of dynamical similarity, alluded to the introduction
(Section 1.2.3), that make dynamical similarities different from many other notions of
symmetry. I pointed out above that because dynamical similarities rescale the action,
they must also rescale the unit of angular momentum. But the unit of angular momentum
fixes the differential structure of phase space. In particular, rescaling the unit of angular
momentum causes a rescaling of the symplectic 2-form, introduced in Section 3.2.3.1, that
is used for finding a first order representation of the DPMs of a system using Hamilton’s
equations. Almost all gauge symmetries in physics are assumed to preserve this structure.

What’s important for our purposes is that many basic theorems about the properties
of gauge symmetries assume that the symplectic structure of phase space is preserved by
that symmetry. Since dynamical similarities don’t do this, they change many of the rules
of the game.

For the purposes of Part I of the thesis, which is concerned with giving a general
definition of gauge symmetry, dynamical similarities simply violate the formal conditions
of Noether-2 and Dirac symmetries. Dynamical similarities then provide an important
test of any good definition of gauge symmetry. I will test my definition of gauge symmetry
on the dynamical similarities of the Kepler problem in Section 5.4.2.

For the purposes of Part II, which is concerned with giving a new solution to the
problem of the AoT, Liouville’s theorem states that Hamilton’s equations preserve the
Liouville volume-form. Because the Liouville measure, which integrates over the Liouville
form, is directly used to compute certain notions of entropy in classical mechanics,21

Liouville’s theorem is of central importance to attempts to understand popular explana-
tions of the AoT.22 But, as we will see in Section 4.8.3, dynamical similarities rescale the
Liouville measure. For this reason, treating dynamical similarity as a gauge symmetry
causes serious problems for these explanations of the AoT, where entropy considerations
are central. This argument will be presented in detail in Chapter 7. On the other hand,
the breakdown of Liouville’s theorem in the presence of dynamical similarity forms the
basis of the new explanation of AoT developed in Section 8.2.

21See Section 7.2.1 for more details and references.
22More specifically, those explanations that rely on a Past Hypothesis, which will be explained in Section 6.3.
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CHAPTER SUMMARY

In this chapter, I derive many of the formal results used to justify claims made through-
out the thesis. I develop a general formalism for understanding gauge symmetries in
Lagrangians and Hamiltonian systems. For Lagrangian systems, this formalism follows
standard treatments. I use it to derive many known results including Noether’s theorems
and other constraints that arise in the Lagrangian formalism. For Hamiltonian systems,
I present a new view based on velocity, rather than conventional, phase space and show
both how it can recover the standard Dirac analysis for constraint systems and shed light
on the Frozen Formalism problem of canonical quantum gravity. I apply my construction
to several examples that I refer to throughout the thesis. Finally, I develop a new set of
tools for treating dynamical similarity. I first give a more complete definition of dynamical
similarity and then show that quotienting by its action generically leads to flows on contact
space. This result, in particular, forms the basis for my analysis of the Arrow of Time in
Part II of the thesis.
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4.1. INTRODUCTION

In Chapter 2, I gave a general description of the concept of symmetry and its role in
theory. I formulated Belot’s Problem and illustrated it through several examples. In
Chapter 3, I found that, while some definitions of gauge symmetry based on variational
principles, particularly Dirac’s proposal, had more compelling motivations, none provided
a completely adequate solution to Belot’s Problem. Dirac’s proposal was seen to shed
light on some puzzles regarding Noether-1 symmetries but was ill-equipped to handle
reparametrisation symmetry and dynamical similarity. The discussion in the previous
chapters was kept as non-mathematical as possible in order to focus on the logical
structure of the arguments without getting lost in the technical details of particular
proposals. But to give a good solution to Belot’s Problem, it is necessary to understand the
particular formal features of reparametrisation invariance and dynamical similarity that
make them different from other gauge symmetries. These features will help explain how
dynamical similarity can shed light on the problem of the AoT. Finally, it is also necessary
to better understand the formal aspects of existing proposals that are responsible for their
promising features in order to find an adequate solution to Belot’s Problem.

In this chapter, I will investigate the detailed mathematical characteristics of different
standard gauge symmetry proposals. One goal will be to develop a general unifying
framework in which the main results of a variety of different approaches can be derived
from a single equation (the resulting equation is Equation 4.60). The formalism I will
develop in this chapter is thus interesting in its own right — independently of how it
advances our understanding of the AoT. But the unifying nature of the formalism will also
serve to give a deeper understanding of the role of gauge symmetry in theory.

The geometric properties of Equation 4.60 illuminate the formal mechanisms behind
orthodox definitions of gauge symmetry. First-order differential equations will be seen to
be general enough to model a vast array of systems using geometric flows on state space.
Irregularities in the variational principle will be identified with the breakdown of these
flows due to the degeneracy of the geometric structures on velocity phase space. This
will be seen to lead to a specific form of underdetermination in the equations of motion
associated with the need to introduce arbitrary functions in order to specify the models
of the theory.

While this overall picture is not new, the specific implementation in terms of manipu-
lations of a single equation on velocity phase space is simple and unifying. Moreover, the
treatment of reparametrisation invariance gives an example, independent of dynamical
similarity, of how my proposal can be used to clarify an important conceptual problem in
quantum gravity: the so-called frozen formalism aspect of the Problem of Time, which I
will define at the technical level in Section 4.5 and explain in more detail in Section 5.4.3.1

In all of these examples, reliable degree-of-freedom counts can be given under an at-a-
time conception of the state. These counts can be used to match the formal requirements
of the theory with minimal epistemic expectations. This will pave the way for my proposed
solution to Belot’s Problem, which I will give in the next chapter.

As a final application of this formalism, I will develop a Gauge Principle for dynamical

1While much of what is needed for this discussion was developed in Gryb and Thébault (2023), here I will study
how it is possible to understand the frozen-formalism problem using the PESA.
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similarity. I will then illustrate how the unique formal features of dynamical similarity
can generate time-dependent flows on state space. These ingredients will be essential for
formulating my solution to the problem of the AoT. The application of this new Gauge
Principle will produce results that are equivalent to the direct reductions performed in
Bravetti, Jackman, and Sloan (2023); Sloan (2018). However, by implementing dynamical
similarity as a gauge symmetry rather than eliminating it, it will be possible to consider
arbitrary gauge-fixings, which, in some cases, can lead to conceptual and mathematical
simplifications.

I will aim for the material of this chapter to be at the level of rigour of the theoretical-
physics community. This is because my results have interest in-and-of-themselves to this
community and because my proposed solutions to Belot’s Problem and the problem of
the AoT rely on mathematical results that have not been presented together elsewhere. I
hope that my framework provides conceptual insight as well as mathematical clarity to
the analysis of gauge symmetry.

4.2. LAGRANGIAN THEORIES

In this section, I will give a general framework for representing dynamical systems whose
laws are specified using a Lagrangian function.2 A general class of classical field theories
over arbitrary spacetime manifolds can be represented in this way. The formalism is
powerful enough to implement coordinate invariance in the independent variables of
a theory and can be adapted to arbitrary numbers of derivatives of any kind of tensor
or spinor field. In this way, one can use the framework to formulate classical models
of general relativity and the standard model as well as a variety of field theories and
particle models with applications to physics and engineering. In these theories, DPMs
are selected on the basis that they extremise a particular action functional, S, also called
Hamilton’s principal function. The output is a set of local equations of motion and
boundary conditions that can be used to represent the nomic constraints of the theory.3

The variational principle is constructed by first defining a KPM as a history γ : I →C ,
which defines an embedding of a temporal manifold I ⊂R into the configuration space
C ; i.e., a curve in C . The temporal manifold consists of temporal points that label instants
across space, and contains a natural ordering structure inherited from the real line. The
configuration space C represents the matter and field content of the theory; i.e., the
dependent variables; and is constructed from general field configurations at an instant.
For notational convenience, we will write the history γ in terms of the components of its
image q i (t) ∈C ∀t ∈ I . The action, which is a functional of the history q i (t), then takes
the general form

S[q i (t )] =
∫ t2

t1

L
(
q i , q̇ i , . . . , dk

dt k q i
)

dt , (4.1)

where L is the Lagrangian function that depends on k derivatives of q i . I will allow for the

2While I won’t follow any particular treatment here, most of this can be found in standard texts on analytic
mechanics. See Lanczos (1949) for a classical introduction, H. Goldstein, Poole, and Safko (2002) for a standard
treatment, and Arnol’d (2013) for an advanced text.

3In quantum mechanical generalisations of these theories, the laws can be specified in terms of the action using
a path integral rather than an extremization procedure.
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possibility that i range over a continuous spatial index x of n-dimensions. In that case,
the Lagrangian is itself a functional over instantaneous spatial configurations. I will show
how this can be treated in full generality below.

For most applications, it is sufficient to consider theories whose spatiotemporal
structure is that of a Lorentzian spacetime, M , of the form M = (M , g ), where M is a
smooth manifold and g is a spacetime metric; i.e., a bilinear map g : T M ×T M →R.
It is then most convenient to use the natural volume-form volg =√−|g |dn+1x induced
by g as the integration measure for S, where {dxµ} is some basis on the exterior algebra
of M . In order to write our variations in a convenient form below, it will be helpful to
perform integration by parts. This can be done most conveniently when the Lagrangian
can be expressed in terms of the metric compatible covariant derivative ∇g .4 Using these
ingredients, the action functional can be written as

S[q i (x)] =
∫
Ω

volg L (q i ,∇µq i , . . . ,∇(k)
µ···νq i ) , (4.2)

whereΩ is some connected spacetime region and L is the Lagrangian density. Note that
the q i stand for a general set of fields and, for instance, could also include the components
of the spacetime metric g .

I will be interested in formulating the equations of motion generated by the variational
principle in regionsΩ⊆M where (Ω, g ) is globally hyperbolic so that I can understand the
conditions under which they can be expressed in terms of a well-posed Cauchy problem.
Note that this does not necessary require M itself to be globally hyperbolic nor does
it provide a significant restriction on M since arbitrary M can be obtained by suitably
gluing together globally hyperbolic patches.5 If we consider a foliation ofΩ into spacelike
(Cauchy) hyper-surfaces Σt of constant time t , then (4.2) reduces to (4.1) when

L(t ) =
∫
Σt

volḡ NL , (4.3)

where ḡ is the restriction of g onto Σt and N is the lapse function such that
√−|g | =

N
√|ḡ | for t-coordinates adapted to Σt .6 The discussion below therefore applies generally

to any field theory with variational derivatives adapted accordingly and with boundary
terms supplemented by the appropriate contribution from the time-like or null boundary
of (Ω, g ). A full treatment of these boundary contributions can be done straightforwardly
but is beyond the scope of this work. I will, however, give a careful treatment of any
contributions to the variation due to the space-like boundary of (Ω, g ).

DPMs are specified by determining the extrema of S. This involves computing the
variation of S[q i (t )] in response to arbitrary variations of δq i (t ) and setting this variation

4This simplifying assumption can easily be avoided but won’t be significant in our discussions below.
5This is always possible provided M has an atlas.
6One can also view the lapse function of the normal component of the deformation vector normal to Σt .
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to zero. Doing this, we find

δS[q i (t );δq i (t )]
∣∣∣

q i=q i
cl

=
∫ t2

t1

 ∂L

∂q i
δq i + ∂L

∂q̇ i

d

dt
(δq i )+ . . .+ ∂L

∂
(

dk

dt k q i
) dkδq i

dt k

dt

=
∫ t2

t1

 ∂L

∂q i
− d

dt

(
∂L

∂q̇ i

)
+ . . .+ (−1)k dk

dt k

 ∂L

∂
(

dk

dt k q i
)


q i=q i
cl

δq i (t )dt

+
[
∂L

∂q̇ i
δq i + ∂L

∂q̈ i

d

dt
(δq i )− d

dt

(
∂L

∂q̈ i

)
δq i + . . .

]t 2

t1

= 0 (4.4)

after k applications of integration by parts. This equation must be satisfied for all smooth
variations δq(t) ∈ C k [t1, t2] that are arbitrary except (possibly) on the boundary. The
DPMs are the histories q i

cl satisfying this equation for a particular set of boundary con-
ditions. I will adapt a notion where the first argument of the variation δS indicates its
functional dependence on histories and the second argument specifies the smearing func-
tions used to perform the variation.7 The equations (4.4) are called the Euler–Lagrange
(EL) equations. The set of three dots in the boundary term indicates an increasingly
complicated set of boundary contributions whose explicit expression we will not use. If
needed, it can be straightforwardly obtained by integrating the first line by parts.

The EL equations can be usefully split into a local piece, in the integrand, and a
boundary piece. For the local piece, we define the EL ‘vectors’

αi (t ) ≡ δS

δq i (t )
= ∂L

∂q i
− d

dt

(
∂L

∂q̇ i

)
+ . . .+ (−1)k dk

dt k

 ∂L

∂
(

dk

dt k q i
)
 , (4.5)

which can be obtained by smearing the variation δS with a Dirac δ-function. Strictly
speaking, such a definition would only hold for t inside the interval (t1, t2) of variation
because the δ-function is not well-defined on the boundary. The local equations then
reduce to

αi (t ) = 0. (4.6)

These local equations must be supplemented by a boundary condition of the form[
∂L

∂q̇ i
δq i + ∂L

∂q̈ i

d

dt
(δq i )− d

dt

(
∂L

∂q̈ i

)
δq i + . . .

]t 2

t1

= 0, (4.7)

which can either be seen as a restriction on the boundary variation (Dirichlet boundary
conditions) or on the quantities ∂L

∂

(
dk

dt k q i

) (Neumann boundary conditions).

The boundary conditions above must be satisfied on the time-like, null or space-like
surfaces that form the boundary ofΩ. As stated above, I will only explicitly treat the space-
like terms.8 These terms should be thought of as specifying the conditions that must be

7The index structure of the arguments is mostly for illustrative purposes.
8The time-like part of the boundary, if it exists, will imply additional conditions usually referred to as ‘boundary’

conditions. Null boundaries can also be used to specify initial or boundary conditions. We leave these cases as
an exercise to the reader.
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satisfied by the independent initial data that must be used for solving the (k +1)th order
differential equations (4.6). Only initial data satisfying the boundary equation (4.7) can
be well-posed, although this condition is not sufficient for the existence or uniqueness of
solutions.

On a temporal slice Σt , all functions and their derivatives should be considered to
be independent functions obeying certain dynamical consistency conditions. We see
immediately that, in order to understand what the independently specifiable initial
data of the theory is, it is helpful to reformulate this kth-order system as an equivalent
first-order system where functions and their derivatives are treated independently, and
where the dynamical consistency conditions can be explicitly imposed. This will allow
us to more easily asses the integrability of the EL equations because first order systems
can be interpreted as geometric flows. We will do this explicitly in Section (4.4). There
we will obtain an explicit procedure for identifying the independently specifiable data,
and therefore obtain an at-a-time degree of freedom count using the straightforward
integrability conditions of first-order systems. This count will form the basis of my
proposal for identifying observables and gauge symmetries.

4.3. SYMMETRIES AND NOETHER’S APPROACH

After outlining concrete representations for general Lagrangian systems, we are in a posi-
tion to define and then assess different standard narrow proposals for gauge symmetry.
I will now present a formalism that begins with the variations defined in the previous
section and leads naturally to Noether’s second theorem and the (functional derivative)
definition of the Noether-2 symmetries introduced in Section 3.2.2.2. This formalism
follows, with minor modifications, the standard treatment of symmetry presented in
Chapter 3 of Henneaux and Teitelboim (1992), and constitutes the paradigmatic defini-
tion of gauge symmetry in theoretical physics orthodoxy.9 This definition will also cover
the Noether-1 symmetries, which feature in Noether’s first theorem, as a special case that
I will treat in Section 4.3.3.1. The differences between these symmetries and the systems
to which they are applicable will be used to highlight the limitations of this approach for
solving Belot’s Problem and to motivate my proposed solution.

The attitude taken towards symmetry in these derivations follows Noether’s method-
ology: one assumes that certain symmetries of the action are known — either because
they are known in advance or because they have been pre-engineered into the form
of the action — and the consequences of these symmetries are then investigated. Be-
cause the action is a functional of an entire history, the relevant notion of symmetry and
corresponding degree-of-freedom counts will be over-histories.

9See also (in order of mathematical sophistication) Sudarshan and Mukunda (1974), Sundermeyer (1982), Olver
(2000) for similar presentations.



4

76 4. REPRESENTING SYMMETRY IN DYNAMICAL SYSTEMS

4.3.1. NOETHER-2 SYMMETRIES AND NOETHER’S SECOND THEOREM

To begin, I identify some trivial transformations that do not lead to useful notions of
symmetry. For variations of the form

δq i = M i jα j , (4.8)

where M i j =−M i j are antisymmetric functions of the q i , the local term of the EL equa-
tions is automatically satisfied:

δSloc =
∫ t2

t1

dt αi M i jα j = 0. (4.9)

The vanishing of the boundary term requires Mi j = 0 on the boundary for unrestricted
Lagrangians and when αi ̸= 0. Note that, while these transformations are formally sym-
metries of the action off-shell (i.e., for arbitrary KPMs), they are trivially zero on-shell (i.e.,
when αi = 0). Such transformations are thus trivial broad symmetries that exactly vanish
when the classical equations of motion are satisfied. I include them here for complete-
ness, and because they are useful for considering symmetries in quantum mechanics (see
(Henneaux & Teitelboim, 1992, §3.1.5) for a more complete discussion of their characteri-
zation). But for the present purposes, I will be mainly interested in how symmetries act
on DPMs so that such symmetries can be ignored.

Define an infinitesimal broad over-a-history symmetry as a transformation of the
form

q i (t ) → q i (t )+δϵq i (t ); (4.10)

where ϵ stands for a freely specifiable “gauge”10 parameter, ϵα(t ), defined over an entire
history; such that if q i is a solution to the EL equation then so is q i +δϵq i . For our analysis,
we have assumed (see the form of (4.4)) that the infinitesimal generator δϵq i (t ) depends
at most on k-derivatives of the independent variable t .

Noether-2 symmetries can be defined as the subset of the infinitesimal broad sym-
metries that exactly preserve the value of the action functional along any KPM and that
do not exactly vanish on-shell. Such symmetries leave the action invariant even off-
shell (modulo the trivial transformations discussed above). Formally, we can write this
condition as

δS[q i ,δϵq i ] = 0, (4.11)

with δϵq i unconstrained on the boundary and q i not necessarily satisfying αi = 0. So far,
this relation is simply a definition. Nothing guarantees that such symmetries exists or
whether the action possessing such symmetries has any non-trivial solutions. However,
since we are following Noether’s methodology, we assume that one knows in advance at
least some of the symmetries that obey this criterion.

When the Noether-2 symmetries are not known in advance, it is possible to formulate
(4.11) in terms of a formal condition on δϵq i . Taking the functional derivative of (4.11)

10Note that it is standard physics nomenclature to call the group parameter of a transformation that will
ultimately be considered a gauge transformation as a ‘gauge’ parameter. We will use this standard terminology
while remaining open to the interpretation of the transformation in consideration.
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and using the EL equations αi = 0 to eliminate the term depending on the functional
derivative of δϵq i , we find the on-shell relation

δ2S[q i
cl;δq i ,δϵq j ] = 0. (4.12)

We have used a notation where the expression is to be evaluated at the value of the first
argument; i.e., F [q0; . . .] = F [q ; . . .]

∣∣
q=q0

for some functional F of q . The on-shell vanishing
of the second variation above is equivalent to the local expressions:∫ t 2

t1

dt ′
δ2S

δq i (t )δq j (t ′)
δq i (t )δϵq j (t ′) = 0 αi = 0, (4.13)

where the variations δq i (t ) are arbitrary except at the boundary, where they vanish. Given
this arbitrariness, the Noether-2 symmetries are found to be the null eigenvectors —
in the functional sense above — of the second functional derivative of S when the EL
equations are satisfied. This matches the conceptual picture used to describe Noether-2
symmetries in Section 3.2.2.2. Note that the fact that δϵq i (t) is defined over an entire
history highlights the over-a-history nature of this notion of symmetry. Each symmetry of
this kind thus reduces the solution space of δS = 0 by one functional degree-of-freedom.
In Section 4.4.4, I will compare this functional degree of freedom with the independently
specifiable initial data obtained from the at-a-time degree-of-freedom count.

A generating set for the Noether-2 symmetries can be systematically found by using a
basis for the on-shell kernel of δ2S. The definition (4.13), though mathematically elegant,
is usually not of much practical use because it is a functional eigenvalue equation subject
to a constraint. Solving this constrained second-order functional differential equation is
almost completely intractable in general unless particular solutions are known in advance.
That is why knowledge of particular solutions, as assumed in Noether’s methodology, is
so powerful. Note that the difficulty of solving (4.13) means that finding all the Noether-2
symmetries of a theory is a very difficult problem in general.11

The Noether-2 symmetries, when they are known to exist, indicate a strong form
of degeneracy in the nomic structure of the theory because there is a family of DPMs,
spanned by the function ϵα(t ) at all values of t , that cannot be distinguished by the nomic
structure. This indistinguishability is completely determined by the form of S alone. As
we will see shortly, in many, but importantly not all, cases this degeneracy will cause the
variational principle to produce underdetermined equations of motion.

Before seeing how this arises, I will first demonstrate how the existence of a Noether-2
symmetry immediately implies certain identities satisfied by the KPMs of the theory in
question. This will lead us to Noether’s second theorem. In fact, using the functional
notation of this section, expression (4.11) already contains all the information required
for Noether’s second theorem. It is, however, enlightening to separate (4.11) into its local
pieces, which are relevant to the second theorem, and the global pieces, which are relevant
to the at-a-time constraints that will shed light on the problem of underdetermination.

To do this, let us write the variations δϵq i in terms of a kth order differential operator

11Another possibility is to try to ‘discover’ these symmetries by identifying the degeneracies in the resulting
equations of motion. This is the idea behind the Dirac algorithm discussed below.
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T i
α(ϵα) of the form

δϵq i = T i
α(ϵα) ≡

k∑
a=0

T i
(a)α

da

dt a ϵ
α . (4.14)

We then define the adjoint T̃ i
α( fi ) such that∫ t 2

t1

dt fi T i
α(ϵα) =

∫ t 2

t1

dt ϵαT̃ i
α( fi )+ (boundary terms 1) , (4.15)

for all continuously differentiable functions fi ∈C k (t1, t2) and ϵα ∈C n+k (t1, t2). Normally
when defining the adjoint, the vanishing of the boundary terms appearing in its definition
is used to define its domain. But because we are using the adjoint to write Noether’s
second theorem, which is an identity we would like to hold off-shell, we have no particular
reason to restrict the domain of T̃ i

α in any way. In this sense, we will use a non-standard
definition of the adjoint and will need to explicitly compute the relevant boundary terms
for any given application.

Using this definition of the adjoint, the expression (4.11) now reads

δS[q i ;δϵq i ] =
∫ t 2

t1

dt αi T i
α(ϵα)+ (boundary terms 2)

=
∫ t 2

t1

dt ϵαT̃ i
α(αi )+ (boundary terms 1+2) = 0. (4.16)

Because the gauge parameters ϵα can be chosen arbitrarily, this yields the local equation

T̃ i
α(αi ) = 0, (4.17)

which is Noether’s second theorem in its standard form.12 Clearly, this is a necessary
condition for the existence of a Noether-2 symmetry.

Note that Noether’s second theorem is usually presented in a slightly broader context
than what we have done here. In addition to transformations of the form (4.10), one
usually also considers transformations of the independent variables. However, for theories
like the ones we are considering where the Lagrangian depends only on the independent
variables through the implicit dependence of the dependent variables, these additional
transformations are redundant. Any effect of transforming the independent variables can
be achieved by pulling back the dependent variables by that transformation. In any case,
it is a straightforward exercise to generalise our presentation when necessary.

4.3.2. LAGRANGIAN CONSTRAINTS AND NOETHER’S FIRST THEOREM

The local equation (4.17) is necessary but not sufficient for the vanishing of (4.11) and,
therefore, the existence of a Noether-2 symmetry. To obtain a necessary and sufficient
condition, which would give all the logical consequences of the existence of a Noether-2
symmetry, we must explicitly compute the boundary terms of (4.16) and require them
to vanish. Because the conditions obtained in this way arise from the boundary terms

12See for example (Neuenschwander, 2017, ch 5) and (Logan, 1977, §2.4).
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of the variational principle, we can think of them as constraints on the class of histories
for which the action has well-defined extrema. Restoring consistency of the variational
principle will be the primary motivation behind the Dirac algorithm described below in
Section 4.7. While space-like boundary terms are usually not the subject of discussions
about Noether’s theorem, I discuss them here because they provide an efficient tool for
studying the underdetermination problem in the equations of motion and the connection
with the Dirac formalism.

It is important to observe at this point that because the conditions I will derive here
result from boundary terms, they must hold at-a-time on the space-like surfaces that
bound the variation. On the other hand, because the choice of boundary surfaces is
arbitrary, the conditions we will find must also hold at any time. In this way, they will
generate at-a-time constraints on the state space of the theory. A more direct, though
equivalent, treatment will be given in Section 4.4.2 using a first-order approach, which
is adapted to an at-a-time analysis. It is nevertheless useful here to understand how
the same constraints arise as boundary conditions in an over-a-history approach. The
constraints I will derive here can be obtained through other standard means in texts such
as Sundermeyer (1982). Many aspects of the derivation below can be found in Chapter 8
of Gryb and Thébault (2023).

General expressions for the boundary terms we will need can be given using the ex-
pansion of the operator T i

α as defined by (4.14). Explicit expressions are more illuminating
if we stick to the lowest order non-trivial case of k = 1.13 Then, integration by parts of the
left-hand side of (4.16) gives

T̃ i
α =

(
T i

(0)α− Ṫ i
(1)α

)
−T i

(1)α
d

dt
(4.18)

and the boundary term[(
T i

(0)α
∂L

∂q̇ i
+T i

(1)ααi

)
ϵα+T i

(1)α
∂L

∂q̇ i
ϵ̇α

]t2

t1

= 0. (4.19)

The adjoint defined in (4.18) leads to the explicit form of Noether’s second theorem,
T̃ i
ααi = 0 when k = 1. Because the boundary terms must hold at-an-instant, the functions
ϵα and their time derivatives ϵ̇α should be treated as arbitrary independent functions. We
thus get two constraints. The first:

T i
(1)α

∂L

∂q̇ i
= 0, (4.20)

arises from the vanishing of the ϵ̇α term and is called the primary constraint of the theory.
It holds off-shell. A second constraint, which holds only on-shell (i.e., when αi = 0),
results from the ϵα term and is given by

T i
(0)α

∂L

∂q̇ i
≈ 0, (4.21)

13I.e., when the action is first order in the time and, therefore, when the EL equations are second order in time.
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where we have used the ‘≈’ sign to indicate an equation that is only required to hold
on-shell. The condition above doesn’t historically have a specific name since versions of
it were originally derived using the Dirac methodology where it can play different roles.
Note that, in deriving (4.21), I have assumed that ϵα has non-trivial time dependence —
an assumption I will revisit below when deriving Noether’s first theorem.

Let us investigate the consequences of the degeneracies of the variational principle
that result from Noether-2 symmetries for the solvability of the equations of motion.
This will be a central part of our analysis of gauge symmetry later. To do this, note that
d
dt = q̇ i ∂

∂q i + q̈ i ∂
∂q̇ i when k = 1. Thus,

αi = ∂L

∂q i
− d

dt

(
∂L

∂q̇ i

)
= ∂L

∂q i
− q̇ j ∂2L

∂q j∂q̇ i
− q̈ j ∂2L

∂q̇ i∂q̇ j
. (4.22)

The EL equations αi = 0 can then be seen as differential equations relating the accelera-
tions q̈ i to the velocities q̇ i and configurations q i at any given time t . To solve them, the
quantity

Wi j = ∂2L

∂q̇ i∂q̇ j
(4.23)

must be invertible as a matrix.14 The primary constraints (4.20), however, immediately
imply that Wi j is not invertible because they imply that the T i

(1) α lie in the kernel of Wi j :

T i
(1) αWi j = 0. (4.24)

This means that the primary constraints prevent the variational principle from generating
well-posed equations of motion in the precise sense that the accelerations cannot be
solved uniquely in terms of the configurations and their velocities at a given time. It is
this form of underdetermination that, I will argue, should be part of a good definition
of gauge symmetry — although I will argue that this can arise in a more diverse set of
circumstances than what we have seen here.

The condition (4.24) can be used in combination with the identity T i
(1) ααi = 0, which

is trivially satisfied on-shell, to produce the on-shell constraint

T i
(1) α Ki ≈ 0, (4.25)

where we have defined

Ki = ∂L

∂q i
− q̇ j ∂2L

∂q j∂q̇ i
. (4.26)

The constraints (4.25) are usually called the Lagrangian constraints of the theory, which
follow from the primary constraint and the equations of motion.

Normally the Lagrangian constraints are derived directly from the Lagrangian using
Dirac’s methodology as in Sundermeyer (1982). In this approach, one starts by reading
off the primary constraints directly from the form of the Lagrangian and then derives
additional constraints by consistency with the equations of motion. If one were to do
that here, one would want to impose that the time derivative of (4.25) vanish when αi = 0.

14We will see later, when we derive the Legendre transform, that Wi j is the Hessian of the Legendre transform.
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Using the fact that the T i
(1) α are in the kernel of Wi j off-shell, Noether’s second theorem,

which is also valid off-shell, then tells us that

d

dt

(
T i

(1) α Ki

)
= d

dt

(
T i

(1) ααi

)
= T i

(0) ααi . (4.27)

The condition T i
(0) ααi ≈ 0 then arises as a closure condition for the Dirac algorithm.

From the point of view taken here, the Noether methodology pre-assumes the exis-
tence of a Noether-2 symmetry. In this case, the on-shell condition (4.21) can be used, in
combination with αi = 0 to derive the two on-shell conditions

T i
(0) αWi j ≈ 0 T i

(0) α Ki ≈ 0, (4.28)

in the same way that the analogous conditions were derived for T i
(1) α .15 Together, these

conditions imply T i
(0) ααi ≈ 0, which closes the Dirac algorithm. We thus see that the

assumptions of the Noether methodology are mutually consistent: when a Noether-2
symmetry exists the Dirac algorithm is guaranteed to close. We also see that this closure
condition can be expressed as resulting from an off-shell identity; namely Noether’s
second theorem. The various distinctions between ‘primary’ and ‘Lagrangian’ constraints
arise simply from the formal distinctions between T i

(0) α and T i
(1) α . In the Noether

methodology, these arise as one tight, self-consistent package.
Let us note here that the amount of underdetermination in the equations of motion

depends explicitly on the form of the infinitesimal generator of the Noether-2 symmetry
in question. This can be read-off directly from the dimension of the kernel of Wi j . When
T i

(1) α is non-zero there are off-shell null vectors of Wi j for each value of α.

The same is nearly true when T i
(0) α is non-zero, although only on-shell. The argu-

ments leading to (4.21) assume that the gauge parameter ϵα is a non-trivial function of t . If
this is not the case (i.e., if the gauge parameters are constant functions of the independent
variables), then T i

(1) α = 0 (because ϵ̇= 0 definition) and (4.19) has the solution

d

dt

(
T i

(0) α
∂L

∂q̇ i

)
= 0. (4.29)

This implies, therefore, that T i
(0) α

∂L
∂q̇ i need only be a constant of motion and is not re-

quired to be equal to zero. This is Noether’s first theorem restricted to the case where
the action is not allowed to have explicit dependence on the independent variables. We
see now why the presence of Noether-1 symmetries, whose infinitesimal generators are
constant functions of the independent variables, leads to constants of motion. Impor-
tantly, the Noether-1 symmetries are still required to keep the action invariant but do not
lead to underdetermination in the equations of motion. They thus provide an important
example of why invariance of the action is, in general, not a reliable way to implement a
notion of gauge symmetry based on matching underdetermination in the equations of
motion with underdetermination of representations by phenomena.

15For simplicity, we have assumed here that
∂T i

(0) α

∂q̇i = 0 so that these expressions are valid only for classical

symmetries that are not generalised symmetries. The form of the primary and Lagrangian constraints,
however, does not require such an assumption.
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4.3.3. EXAMPLES

In this section, I will illustrate the general framework developed in the previous section
using concrete examples. This serves at least two purposes. First, it illustrates how
the general formalism develop above can be used in concrete terms. And second, it
shows how the formal narrow symmetry proposals based on variational principles can
be applied to the standard (non-discrete) symmetry notions introduced in Section 2.5.
Coordinate invariance can be treated using similar techniques but is beyond the scope of
this work. The interested reader is encouraged to consult (Gryb & Thébault, 2023, §14.3)
or (Thiemann, 2008, Ch 1).

4.3.3.1. LEIBNIZ SHIFTS AND NOETHER’S FIRST THEOREM

The Leibniz shifts, introduced in Section 2.5.2, correspond to the global (i.e., time in-
dependent) symmetries of Newtonian mechanics. These are the Euclidean symmetries
ISO(3) = SO(3)⋉R3 that have infinitesimal representations onR3N as

q i
I → q i

I +ϵi
j k q j

I θ
k +ai , (4.30)

in terms of the Euclidean coordinates q i
I ∈R3N and the time-independent parameters ai

for translations and θi for rotations. The index i ranges over the three spatial coordinates
and I ranges from 1 to N , which is the total number of particles.

We can match these generators to the general expansion (4.14) by splitting theα index
of T i

α into a translational piece, which we will call T i
I j , and a rotational piece, which we will

call R i I
j . Note that, because the gauge parameters are time independent, the generators

only get non-zero contributions from the 0th order terms labelled (0). These generators
can be read off from (4.30) and give

T i
(0)I j = δi

j R i I
(0) j = ϵi

k j qk
I . (4.31)

Noether’s first theorem can then be read-off from (4.29) giving

d

dt

∑
I

∂L

∂q̇ i
I

= 0
d

dt

∑
I
ϵ

j
ki

∂L

∂q̇ i
I

qk
I = 0, (4.32)

which, after identifying ∂L
∂q i

I
with the generalised momenta of the system, express the

conservation of global linear and angular momentum respectively.
We see that, in Newtonian mechanics, the presence of Leibniz symmetries implies the

existence of constants of motion and no underdetermination in the equations of motion.
It is clear that, because such constants have the potential to represent real measurable
quantities in the world, the Newtonian setting is not a natural one for treating Leibniz
shifts as gauge symmetries. Depending on the kinds of target systems to be modelled, this
could lead to the kind of mismatch between the formal definitions of gauge symmetry and
the epistemic expectations indicative of Belot’s Problem as illustrated in Section 2.2.3.1.
We see here that not classifying Leibniz shifts as gauge symmetries in Newtonian mechan-
ics is consistent with their presence not leading to underdetermination in the equations
of motion. The next example will show how to modify Newtonian mechanics so that the
Leibniz shifts may be matched to underdetermination in the equations of motion if the
empirical context warrants it.
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4.3.3.2. BB THEORY

We will call Barbour–Bertotti (BB) theory the theory that modifies Newtonian N -particle
mechanics in such a way that the best-matching shifts, defined in Section 2.5.3, are
underdetermined by the equations of motion of the system. This provides a plausible way
to treat Leibniz shifts, and indeed their generalisation as best-matching shifts, as gauge
symmetries. For simplicity, we will restrict to the case of translations, which illustrate
the general principles. The more general theory was introduced in Barbour and Bertotti
(1982).16

The underdetermination in BB theory is designed to match the epistemic consid-
erations resulting from relational arguments of Section 2.5.3. This match is achieved
by introducing into the usual Newtonian variational principle a translation shift field,
w i (t), whose role is to arbitrarily shift the Newtonian particle configurations q i

I (t) in a
time-dependent way. To do this, define the shift-invariant time derivative

D t q i
I ≡ q̇ i

I −w i (4.33)

that is invariant under the best-matching translational shifts

q i
I → q i

I +a(t ) w i → w i + ȧ(t ) . (4.34)

We then substitute this derivative for the usual time derivative appearing in the Lagrangian
of Newtonian mechanics to obtain the Barbour–Bertotti Lagrangian

LBB =
(∑

I

mI

2
δi j D t q i

I D t q j
I

)
−V (q i

I ) , (4.35)

where mI are the particle masses and V (q i
I ) is a translation-invariant potential function.

The Barbour–Bertotti action is then

SBB[γ] =
∫
γ

LBBdt , (4.36)

where γ is a configuration space curve parametrized by t .
The BB-action is, by design, invariant under the time-depend shifts of (4.34), which

are therefore variational symmetries of the theory. Because the gauge parameter a(t)
is allowed to be an arbitrary time-dependent function, the arguments leading to the
constraints of Section 4.3.2 apply. To write these explicitly we adapt our notation so that
the α index of T i

α splits into a piece acting on the variation of the w i variables, which we
will call U i

j , and one acting on the variation of the q i
I variables, which we will call R i

I j .

Then, the non-zero components of the operators U and R can be read off from (4.34)
giving

U i
(1) j = δi

j R i
(0)I j = δi

j . (4.37)

The adjoint operators Ũ i
j and R̃ i

I j can then be computed from this using (4.18). The result
is

Ũ i
j =−δi

j
d

dt
R̃ i

I j = δi
j . (4.38)

16See Section 2.5.3 for a more detailed list of references.
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Calling p I
i = ∂LBB

∂q i
I

, the w i -components of α are

α(w)
i =−∑

I
p I

i (4.39)

while the q i
I components are

α
(q)I
i =− ∂V

∂q i
I

− ṗ I
i . (4.40)

The Noether identities (4.17) are then

−∑
I

∂V

∂q i
I

= 0, (4.41)

which simply express the fact that the potential V has been required to be invariant under
translations of q i

I .
The primary constraint (4.20) only receives a contribution from the U -component of

T . This gives
∂L

∂ẇ i
= 0, (4.42)

which says that the w i are Lagrange multipliers of the theory. The resulting condition on
the w-components of the Hessian

∂L

∂ẇ i
W (w)

i j = 0 (4.43)

implies that the accelerations ẅ i are underdetermined by w i and ẇ i in the equations of
motion. This was the desired effect because the shift fields v i were introduced as arbitrary
functions into the variational principle. This confirms their role as Lagrange multipliers.

The Lagrangian constraints are given by computing the w-component of K :

K (w)
i =∑

I

mI

2
δi j D t q j

I , (4.44)

which leads to the well-known Barbour–Bertotti constraint

U j
(1)i K (w)

j =∑
I

p I
i ≈ 0, (4.45)

where we have used the explicit expression for p I
i using the BB Lagrangian. This constraint

expresses the on-shell vanishing of the total linear momentum of the system. A similar
constraint would have been obtained for the angular momentum had we introduced a
shift field for rotations instead. What we find is that the constants of motion, computed
in the previous example for the Leibniz shifts, that result from Noether’s first theorem are
no longer freely specifiable: they are constrained to be zero. This means that the modi-
fications of the variational principle introduced in BB-theory imply that the constants
of motion are fixed by the dynamical principles of the theory and therefore cannot be
used to model features of a target system where their measured value would need to be
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determined empirically. This matches the relational arguments that say that the total
linear momentum of a system is not measurable because it depends on the linear velocity
of the system, which is not observationally accessible through relational quantities.

These considerations are directly connected to further underdetermination in the
equations of motion. Using (4.37), a short calculation shows that the on-shell condition
(4.21) is equivalent to the Barbour–Bertotti constraint. The first condition of (4.28) then
implies that the vector R i

(0)I j is an additional null direction of the Hessian on-shell. This

represents underdetermination in the part of q i
I that is transformed under (4.34); i.e.,

the location of the origin of the Cartesian coordinate system used to write the q i
I . The

Noether-2 symmetries of BB theory thus imply underdetermination in both this origin
(on-shell) and the shift fields w i . Those are precisely the variables needed to match
underdetermination in the equations of motion with the underdetermination of represen-
tations by phenomena in a relational setting. We will return to this point in Section 5.4.1.2
after introducing the PESA.

The final on-shell condition, the second condition of (4.28), is automatically satisfied
because of the vanishing of the q-components of K due to the translational invariance
of the Lagrangian. Alternatively, this condition could be read as requiring translational
invariance in the Lagrangian in order for (4.34) to be a Noether-2 symmetry.

I end this section by noting that the procedure used in BB theory to promote the
Leibniz-shift symmetries of Newtonian mechanics, which are of the Noether-1 type, to
the best-matching-shift symmetries of BB theory, which generate underdetermination
in the equations of motion, is an implementation of the Gauge Principle introduced in
Section 2.2.2.

4.3.3.3. ELECTROMAGNETISM

In this section, I treat Maxwell’s theory of electromagnetism to illustrate how the various
theorems and constraints I derived can be generalised to the field theory case. The gener-
alisation to non-Abelian fields is straightforward so that this example also illustrates how
the concepts presented in this section apply to well-studied notions of gauge symmetry
in general.

Using the notation of Section 2.5.4 and the fact that the components of the electro-
magnetic field tenor can be written as Fµν = ∂µAν−∂νAµ, we note that the action for
matter-free electromagnetism is the functional

S[Aµ] =
∫
Ω

d4x FµνFµν (4.46)

of the vector potential Aµ(x), which depends on the spacetime point x, with µ and ν

spacetime indices. For simplicity, I have used a flat Minkowski metric in Minkowski
coordinates so that the volume form is trivial and indices can be lowered and raised
straightforwardly. The theory is manifestly invariant under the Noether-2 symmetries

Aµ→ Aµ+∂µϵ=
(

A0 − ϵ̇
Aa +∂aϵ

)
, (4.47)

where a is a spatial index.
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Using the general notation introduced in Section 4.3.2, the i ranges over all the fields
and therefore becomes a spacetime index µ and a continuous spatial coordinate x. More-
over, there is only one gauge parameter indexed over space. We then have T i

α → T µ(x).
The non-zero components of T i

α can be read off from (4.47), and in this notation are

T 0
(1) =−1 T a

(0) = ∂a . (4.48)

The adjoint can then be calculated using (4.18) and takes the form

T̄ µ =
( d

dt
∂a

)
. (4.49)

The EL vectors for electromagnetism are

αµ(x) = ∂νFµν =
(

∂aEa

−Ėa +ϵabc∂
bB c

)
. (4.50)

We thus find that the Noether identities are

T̃ µαµ = d

dt

(
∂aEa

)−∂a Ė +ϵabc∂
a∂bB c = 0, (4.51)

which is trivially satisfied and equivalent to the covariant equation dF = 0.
The non-zero expansion coefficients of T i

α in (4.48) lead to primary constraints

T µ

(1) α

∂L

∂Ȧν
=− ∂L

∂Ȧ0
= 0, (4.52)

which say that A0 is a Lagrange multiplier in the theory, and the Lagrangian constraint
(after using the primary constraint)

T µ

(1)Kµ =α0 = ∂aEa ≈ 0, (4.53)

which is the so-called Gauss constraint of the matter-free theory. From (4.21), we obtain
the Gauss constraint more directly because

T µ

(0) α

∂L

∂Ȧµ
= ∂aEa ≈ 0. (4.54)

The second condition of (4.28), T µ

(0) α
Kµ = ∂aKa ≈ 0, then says, after a straightforward

calculation, that the Gauss constraint is propagated in time ∂a Ė a = 0, guaranteeing the
closure of the Dirac algorithm.

Note the similarity between the overall structure of these constraints and those ob-
tained for BB theory. This is perhaps unsurprising since Maxwell theory can be obtained
by applying the Gauge Principle. BB theory thus serves as a useful toy model of standard
gauge theories in general. The equations of this section, however, illustrate how our
formalism can accommodate T operators that are differential operators in space.
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4.4. THE HAMILTONIAN FORMALISM

The notion of gauge symmetry developed in the first part of this chapter (above) is
fundamentally an over-a-history notion because its definition relied on the invariance
of a mathematical object, the action, that is a functional of an entire history. I already
pointed out, however, a difficulty with this approach as a solution to Belot’s Problem
because it would include Noether-1 symmetries as gauge symmetries. I will also show, in
Section 4.5, that such notions of symmetry have been interpreted as leading to the rather
strange conclusion that time evolution is unphysical in theories that are independent of
the choice of time parameter.

I will suggest that considerable insight can be gained on these and other issues by
adopting an at-a-time notion of symmetry. With such a notion, I will give a definition of
gauge symmetry that will be based on the number of freely specifiable initial data in the
equations of motion of the theory. We have already seen that such a notion is adequate for
pinpointing underdetermination in standard gauge theories and explains why Noether-1
symmetries should not be considered gauge. Later, we will also see how such a notion
can be used to clarify the case of time reparametrisation invariance.

I will now introduce a standard first-order formalism, the Hamiltonian formalism,
applicable to general systems that is well-adapted to an at-a-time analysis of symmetry.
This is because a first-order formalism treats configurations and velocities, which are
independent variables from an at-a-time perspective, on an equal footing. Moreover,
dynamical laws and symmetries can both be represented as flows generated by vector
fields on state space in a first order formalism. The integrability of these flows and
questions about underdetermination can then easily be assessed by the smoothness of
the relevant vector fields. This gives a clean and powerful way of counting at-at-time
degrees of freedom and identifying invariant structures. What we will find is that all the
interesting theorems and constraints derived in the previous sections can be extracted
from the analysis of a single equation following Noether’s methodology. Additionally, the
conceptual framework suggested by the formalism provides natural ways of handling
problematic cases. Thus, while an equivalent analysis can be obtained in a second order
formalism, the first-order formalism provides a superior toolkit for understanding gauge
symmetry.

The relationship between the following three different ways of representing a system
are particularly important. The first is a description of the system in terms of fields over
spacetime. The second is a description on the tangent bundle over configuration space,
which we called velocity phase space in Section 3.2.3. The third is a description on the
cotangent bundle over configurations space, which we called phase space. While most
discussions of gauge symmetry focus either on descriptions in spacetime or on phase
space, I will suggest that the description on velocity phase space is especially helpful in
characterising gauge symmetries.

4.4.1. HAMILTON’S EQUATIONS

Let us start this section by giving a general procedure for converting a second order
dynamical system to a first order system. This procedure can straightforwardly be gen-
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eralised to higher order systems. See, for example, (Woodhouse, 1997, § 2.3, pp 24) for
details.17 Our analysis in terms of a first order system can therefore be applied to a general
system of arbitrary order. As I’ve done throughout this chapter, I will restrict my atten-
tion to globally hyperbolic regions of spacetime. More complicated spacetimes can be
obtained by suitably patching together such regions.

The main idea is to double the variables of the second-order system by introducing
the velocity variables v i and then impose additional constraints on these variables so that
the resulting first-order system is equivalent to the old one when v i = q̇ i . An elegant way
of achieving this is to start with some second-order action with Lagrangian L(q i , q̇ i ) and
modify it in the following way:

S1 =
∫ t2

t1

dt

(
∂L(q i , v i )

∂v i
(q̇ i − v i )+L(q i , v i )

)
, (4.55)

where we replace q̇ i → v i in the Lagrangian L. When the quantities ∂L
∂v i are linearly

independent (i.e., they don’t satisfy constraints), then the extra term will enforce q̇ i = v i

on-shell. As we have already seen in Section 4.3.2, this requirement on ∂L
∂v i is precisely the

requirement that the resulting EL equations of the corresponding Lagrangian system are
well-posed. We will find a similar result below for Hamiltonian systems.

To unpack these claims more carefully we can take advantage of the first order form
of the equations of motion of the system to express the formalism in terms of more
geometric quantities. First, we define the velocity phase space Γ = T C as the tangent
bundle over C equipped with local coordinates (q i , v i ). Then, we define the 1-form

θL = ∂L

∂v i
dq i (4.56)

on Γ and the Hamiltonian function

H = v i ∂L

∂q i
−L . (4.57)

Consider a curve γ : I → Γ on Γ, where I ∈R is the temporal manifold, and the tangent
vector X ∈ TΓ to γ, which in coordinates is

X = q̇ i ∂

∂q i
+ v̇ i ∂

∂v i
. (4.58)

The derivatives above are with respect to the time parameter t ∈ I in the domain of γ.
Using these geometric quantities, the action S1[γ] then reads

S1[γ] =
∫ t2

t1

dt (ιX θL −H) =
∫
γ

(θL −Hdt ) , (4.59)

where ι denotes the interior product on the exterior algebra of Γ. In a slight abuse of nota-
tion, we define dt ≡ γ∗dt as the differential obtained by the pullback of the differential dt
by γ. We thus have that ιX dt = 1 and ιYi dt = 0 for all Yi such that [Yi , X ] ∈ Span(Yi ). This
can be taken as an alternative geometric definition of the vector X = d

dt .18

17Our analysis of constraints on phase space is inspired by Chapter 2 of Woodhouse (1997). For more standard
treatments of constrained Hamiltonian systems on phase space, see Henneaux and Teitelboim (1992) and
Sundermeyer (1982).

18I.e., X is the dual vector to dt .
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As in our second-order treatment, we will restrict to the case where the action has no
explicit dependence on the independent variables. Because of this, any variation due to a
change in the independent variables can be expressed as a variation of the dependent
variables by pulling these back by γ. Without loss of generality, we can thus express the
variational derivative of the action S[γ] in terms of infinitesimal variations generated by
a vector field u ∈ TΓ. Using our previous notation, we can express such variations as
δq i →Lu q i . For our analysis later, it will be convenient to split these variations into those
that lie tangent to γ, and therefore could correspond to variations of t and are parallel to
X , and those that are transverse to γ, and therefore satisfy Lu t = 0 and are spanned by
the Yi vectors above. But for a general u, the variation of S1 can be written in terms of the
Lie drag of S by the vector field u:

δS1[γ;u] ≡LuS1[γ] =
∫
γ

(
ιudθL − (Lu H)dt −HLudt +d(ιuθL)

)
=−

∫ t2

t1

(
ιu (ιXωL +dH)dt +HLudt

)
+ ιuθL

∣∣∣t2

t1
, (4.60)

where we have defined the closed 2-form ωL = dθL which is the symplectic 2-form of the
theory. Note that while ωL is closed, we will see below that it will often, but not always, be
degenerate when S1[γ] has Noether-2 symmetries. When ωL is degenerate, it technically
does not fit the mathematical requirements of a symplectic 2-form and is sometimes
called a pre-symplectic form instead.

Equation (4.60) is the main unifying equation of this chapter. It expresses the variation
of the action in terms of flows generated by the vector field u on velocity phase space.
By interpreting u in different ways, one can therefore use (4.60) to extract all interesting
information about the symmetries and dynamics of the theory using such flows.

Each term is significant. First let us consider (4.60) as an equation for fixing the
classical solutions (i.e., the integral curves of X ) for arbitrary u. For arbitrary variations u
transverse to X , Ludt = 0 and the integrand is only zero if the following equations

ιXωL +dH = 0 (4.61)

are satisfied. These are Hamilton’s equations. When ωL is non-degenerate, there is a
unique vector field X over Γ that solves this equation. Using

ωL = dθL = d

(
∂L

∂v i
dq i

)
= ∂2L

∂q i∂v j
dq i ∧dq j + ∂2L

∂v i∂v j
dv i ∧dq j (4.62)

and

dH = d

(
v i ∂L

∂v i
−L

)
=

(
v j ∂2L

∂v j∂q i
− ∂L

∂q i

)
dq i + ∂2L

∂v j∂v i
v j dv i (4.63)

as well as (4.58), Hamilton’s equations (4.61) become

ιXωL +dH =
[(

v j − q̇ j
) ∂2L

∂v i∂q j
+ d

dt

(
∂L

∂v i

)
− ∂L

∂q i

]
dq i +

(
v j − q̇ j

) ∂2L

∂v i∂v j
dv i . (4.64)

The dv i term enforces v i = q̇ i (for non-degenerate ∂2L
∂v i ∂v j ) and the dq i term enforces the

EL equations, αi = 0, as expected. The variational principle (4.60) is therefore equivalent
to Hamilton’s principle – at least when solutions exist and are well-posed.
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Hamilton’s equations (4.61) are an example of a general way of defining a vector field
v f in terms of some function f onΓ and a symplectic 2-formω. The unique solution to the
equation ιv f ω+d f = 0 then implicitly defines v f when ω is non-degenerate. The flow of
the vector v f is then called the symplectic flow (or sometimes the Hamiltonian flow) of f
on the symplectic manifold defined as the duple (Γ,ω). Thus, Hamilton’s equation define
the DPMs of a theory as the integral curves of the symplectic flow of the Hamiltonian.19

Note that we have excluded variations tangent to γ. This means that, in deriving
Hamilton’s equations, we have — at least for the moment — only considered theories
where the parametrisation of t on γ is fixed. The case where arbitrary parametrisations of
γ are allowed will be treated separately in Section 4.5.

WhenωL is non-degenerate, θL will have no kernel so that the vanishing of the bound-
ary terms requires u(t1) = u(t2) = 0. This means that the variation should be performed
with fixed temporal boundary conditions. A DPM is then uniquely specified by fixing the
initial and final values of the curve γ. We will explore the significance of these boundary
conditions in the degenerate case below.

4.4.2. NOETHER SYMMETRIES AND CONSTRAINTS

In this section, I will follow Noether’s methodology and explore the consequences of
a theory having Noether-2 symmetries. To do this, I treat (4.60) as an equation for the
variation of S1 for particular vector fields ui about arbitrary trial curves generated by X
(i.e., not necessarily the solutions of (4.61)). Noether-2 symmetries are then generated by
all ui satisfying Lui S1[γ] = 0 for all γ.

Let us now deduce some consequences of having such ui . Again, we begin by consid-
ering the case where the ui are transverse to X . In this case, we again have Lui dt = 0, and
for arbitrary X we must have separately that

Lui θL = 0 Lui H = 0. (4.65)

The first of these equations can be written using Cartan’s formula as

ιuiωL +d
(
ιui θL

)= 0. (4.66)

Using the definition of symplectic flow given above, this means that the ui are determined
by the symplectic flow of the velocity-phase-space functions ιui θL . Let us call these
functions hi . The general conditions for transverse Noether-2 symmetries is then that
they be generated by the symplectic flow of the hi (although we will see the limitations of
this direct reading below) and that they leave the Hamiltonian function invariant.

We can get a bit more insight about these conditions and, in particular, the significance
of the functions hi by considering the implications for the DPMs of the theory. To do this,
we use Hamilton’s equations (4.61) from which we can immediately deduce that

ιui ιXωL ≈−ιui dH = 0, (4.67)

19Note that v f is importantly not the same as the dual vector w f , which obeys w f (d f ) = 1, that is defined using
the duality between vector fields and different forms.
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because of the second independent equation of (4.65). On-shell, the vanishing of (4.60)
therefore implies that we must have separately that

ιuiωL ≈ 0 Lui H = 0 (4.68)

and
hi = ιui θL ≈ 0. (4.69)

Thus, the ui generate transverse Noether-2 symmetries of S on-shell when they are in the
kernel of both ωL and θL and are invariances of the Hamiltonian. These coordinate-free
expressions tell us, in principle, all the consequences of transverse Noether-2 symmetries.
It is useful, however, to investigate these conditions in more detail to see how they can
recover the standard results of gauge theory.

To make contact with the standard conceptions, it is convenient to define a map called
the Legendre transform L : T C → T ∗C , which maps the velocity phase space T C (i.e.,
the tangent bundle over configuration space) to the phase space T ∗C (i.e., the cotangent
bundle over configuration space). In coordinates, this map takes the instantaneous
configurations and velocities (q i , v i ) to the instantaneous configurations and momenta
(q i , pi ), where the momenta are defined as

pi ≡ ∂L

∂v i
. (4.70)

Using the new coordinates pi , ωL can be written in Darboux’s compact form

ωL = dθL = d
(
pi dq i

)
= dpi ∧dq i . (4.71)

From the definition (4.70), we see immediately that Wi j , defined in (4.23), is the part of
the Hessian of the Legendre transform associated with the transformation of vi to pi .
Because of its importance it is sometimes called the Hessian of the Legendre transform,
although the full Hessian would involve more components. If Wi j has a non-trivial kernel
then the definition (4.70) implies thatLwill be non-invertible. We will now see how the
non-invertibility ofL arises from the non-trivial kernels of θL and ωL .

Let us refer to hi = ιui θL ≈ 0 as the initial value constraints (IVCs) because their
vanishing results in the vanishing of the boundary term of (4.60), which, as we have
shown, must hold at all times on-shell. The ICVs can thus be interpreted as at-a-time
constraints on the instantaneous states — including, of course, the initial data. Using the
explicit definition of θL , we find

hi = ιui θL = p j ιui dq j ≈ 0. (4.72)

Let us assume that the theory has been set up in such a way that the dq i form a linearly in-
dependent generating set for the exterior algebra on C .20 The constraints (4.72) thus must
put constraints on the pi because the dq i are linearly independent. These constraints
define the image ofL. All degeneracies of ωL must therefore be due to the degeneracies

20This assumption can be lifted by introducing so-called second-class constraints into the Lagrangian. This extra
analysis, while valuable, requires considerable extra technical machinery and is tangent to the discussion of
symmetry. We will thus not consider this generalization in this work.



4

92 4. REPRESENTING SYMMETRY IN DYNAMICAL SYSTEMS

in dpi resulting from the constraints (4.72). This can also been seen directly from the
form of (4.71) and the completeness of the set of dq i . We conclude that the kernel of
θL results in IVCs in the form of on-shell constraints on the momenta pi and the kernel
of ωL results from the non-invertibility of L due to these constraints. This reproduces
the orthodox view that phase space constraints lead to underdetermination in velocity
phase space due to the non-invertibility of the Legendre transform. We note however,
that this underdetermination is already manifest on velocity phase space because of the
kernel of ωL without ever having to define a Legendre transform in the first place. We will
investigate this further below.

Because hi ≈ 0 it is not possible to treat (4.66) as equations defining the ui in terms of
the symplectic flow of ωL on-shell because the ui must lie in the kernel of ωL on-shell.
It is, however, possible to define the ui in terms of a genuine symplectic flow using the
canonical symplectic form

ω= dp̃i ∧dq i (4.73)

defined for unconstrained p̃i . Mathematically, ω is obtained by canonically extending ωL

off the image ofL over the extended phase space where q i and p̃i are Darboux coordinates
with the same dimensions. Note that the extended phase space inherits any non-trivial
global structure from ωL . Confusingly,21 the extended phase space obtained in this way
is usually referred to as the phase space of the theory. Using ω, we can then define ui

implicitly through ιuiω+d
(
ιui θL

)= 0.
The most reliable way to define the ui vectors, however, is to stick closely to Noether’s

methodology and assume that they are known in advance. Then, one can simply use them
to determine the null directions of ωL . Moreover, while phase space is important histori-
cally and is a useful computational tool (owing to the fact that ωL takes a simple form in
Darboux coordinates), the canonical constraints hi ≈ 0 can project out the action of some
ui as we will see in some examples below. This obscures, rather than clarifies, the role of
the ui in regard to underdetermination of the equations of motion. For conceptual clarity
over computational efficiency, I therefore recommend an analysis on velocity phase space
where all ui have a non-trivial action and where all quantities are unconstrained. This
will help us to more directly assess the amount of underdetermination in the equations of
motion.

Towards this end, consider a particular solution X1 of (4.61). We can then define a
new solution X2 by arbitrarily following the flow of the ui according to

X2 = X1 +ξi ui , (4.74)

for arbitrary functions ξi of the independent variables and velocity phase space. This
follows trivially from the fact that the ui are in the kernel of ωL . The ui , however, are
not just ordinary generators of broad symmetries. The complete arbitrariness of the
ξi suggests that the symplectic structure has no way of distinguishing the solutions X1

from any other X2. This will become even more apparent below when we investigate
more directly the invertibility of the equations of motion using more explicit expressions
for the ui . It is worth noting, however, that these conclusions were all derived under

21Perhaps this is because physicists usually work in coordinates where the extended phase space and, in
particular, its Poisson bracket, is trivial to write.
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the assumption that the ui have a non-trivial t-dependence. If this is not the case;
i.e., if the ui generate Noether-1 symmetries; then (4.60) simplifies considerably. In
Section 4.4.3.1, I show that one no longer obtains degenerate directions in ωL but instead
recovers Noether’s first theorem in accordance to what was found in the second order
analysis.

Let us now investigate the final condition Lui H = 0. Consider that (4.66) implies
ιX ιuiωL =−ιX d

(
ιui θL

)=− d
dt

(
ιui θL

)
. We thus have, using Hamilton’s equations, that

Lui H ≈− d

dt

(
ιui θL

)=−ḣi . (4.75)

The condition Lui H = 0 can then be seen as a condition for the propagation in time
along DPMs of the IVCs. Clearly the IVCs, the degeneracies of ωL and the invariance
of the Hamiltonian are not all independent. The precise relationship between these
conditions will depend on the precise form of the ui . We can get a better understanding
of these relationships by restricting to vectors ui that are induced by over-a-history
transformations of the action. This will put constraints on the nature of the ui and will
allow us to recover the entire formalism developed in the second order approach.

Before doing this, let us end this section by remarking on the geometric interpreta-
tion of the ui vectors. We have assumed throughout this section that such vectors are
transverse to the vectors X , which generate the DPMs. By imposing the IVCs, we have
assumed that the vectors ui generate no variation of the action even on the boundary.
Because they are transverse, this means that their action is to re-shuffle the initial (or final)
data at any instant of the theory. Recall that, in Section 4.4.1, when deriving Hamilton’s
equations, we initially required all boundary variations to be fixed. Satisfaction of the
IVCs means that this requirement can be lifted along the directions generated by the
ui . This provides a clean split between the data that must be fixed in the initial value
problem and the data that can be freely specified. The freely specified data are exactly
the data that are underdetermined by the equations of motion due to the degeneracies of
ωL in the ui -directions. Thus, the full set of IVCs gives us a precise means to determine
the at-a-time degrees of freedom that are gauge and those that are not when using the
definition of gauge symmetry that I will advocate in Chapter 5.

4.4.3. RECOVERING THE SECOND ORDER FORMALISM

In the previous subsection, I derived the general coordinate-free conditions (4.68) and
(4.69) resulting from the presence of transverse Noether-2 symmetries that are not global
(i.e., that do depend on t). In this section, I will give more explicit restrictions on the
ui that will allow us to make contact with all the expressions from the second order
formalism. To do this, I will rewrite the ui vectors in terms of the expansion coefficients,
defined in (4.14), for a general over-a-history symmetry. Because such symmetries involve
functional degrees of freedom, a single over-a-history symmetry can generate several
independent ui vectors arising from the independent derivatives of the gauge parameter
at a particular time.

To see how this arises, let us first note that for a general vector u to generate a symmetry
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of a second order system for a gauge parameter ϵ, we must have that

u = δϵq i ∂

∂q i
+δϵq̇ i ∂

∂v i
. (4.76)

As we have argued extensively, the terms of u depending on different derivatives of ϵ
should be considered independent vectors from an at-a-time perspective. This gives an
expansion of the form

u =
k+1∑
a=0

ua
α

da

dt a ϵ
α . (4.77)

Let us then use (4.14) for k = 1 to writeδϵq i andδϵq̇ i in terms of the expansion coefficients
T i

(0) α and match these to the corresponding ua
α in the expansion above. The result is:

u0
α = T i

(0) α
∂

∂q i
+ Ṫ i

(0) α
∂

∂v i

u1
α = T i

(1) α
∂

∂q i
+

(
T i

(0) α + Ṫ i
(1) α

) ∂

∂v i

u2
α = T i

(1) α
∂

∂v i
. (4.78)

In the rest of this section, I will insert the expansion above into the general expressions
(4.68) and (4.69) to obtain all the independent constraints that arise.

To begin, let us rewrite the ICVs hi ≈ 0. Inserting (4.78) into (4.69) we find two inde-
pendent conditions

T i
(0) α pi ≈ 0 T i

(1) α pi ≈ 0. (4.79)

This immediately gives us the primary constraints22 (4.20), and the constraints (4.21)
since pi = ∂L

∂q i . The vector u3 has no ∂
∂q i component and therefore adds no independent

constraint.
To obtain further conditions, let us rewrite (4.68). Since we are working with coor-

dinate expressions, we must use (4.62) and (4.63) for the explicit form of ωL and dH .
The simplest expressions to calculate are those resulting from u2 because these only
involve contractions with dv i . Both ιu2ωL ≈ 0 and Lu2 H = 0 lead to the same constraints
(although the second equation is a strong equality)

T i
(1) α

∂L

∂v i∂v j
= T i

(1) αWi j = 0, (4.80)

where we recall that Wi j is the Hessian of the Legendre transform. This recovers our
previous result (4.24), which states that the T i

(1) α are null directions of Wi j .

22In the first order formalism, weak equalities require Hamilton’s first equation q̇ i = v i to be satisfied. This
makes the first order formalism equivalent to the second order formalism. Thus, weak equalities have a
different meaning in the first order formalism. A careful examination of the primary constraint shows that it is
a strong equality when Hamilton’s first equation is satisfied.
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The next easiest terms to calculate are those due to ιu0ωL = 0 and Lu0 H = 0. From
ιu0ωL = 0, one obtains a 1-form equation with independent dq i and dv i components.
The dv i component is easily seen to imply

T i
(0) αWi j ≈ 0, (4.81)

which says that T i
(0) α are further independent null vectors of Wi j on-shell. This repro-

duces the first term of (4.28). Together, the two null vectors u0 and u2 of ωL are therefore
seen to be partially due to the two null directions of Wi j . We have already seen how the
kernel of Wi j contributes to the non-invertibility of the equations of motion produced by
the variational principle. Thus, the degeneracies of ωL are also directly connected to non-
inversion of the equations of motion when the Noether-2 symmetries are transverse.23

Because we are in a second order formalism, ωL has more non-trivial components
than Wi j . These can be combined with the symmetries of H to derive the remaining
identities from the second order formalism. The dq i term of ιu0ωL ≈ 0 gives24

Ṫ i
(0) αWi j ≈ T i

(0) α F[i j ] , (4.82)

where we have defined Fi j = ∂pi
∂q j

= ∂2L
∂v i ∂q j . When inserted into Lu0 H = 0, equation (4.82)

can be used to eliminate all terms depending on Ṫ i
(0) α . This resulting condition is

Lu0 H ≈ T i
(0) α Ki ≈ 0. (4.83)

This is the second condition of (4.28).
The final condition is obtained by inserting ιu1ωL ≈ 0 into Lu1 H = 0 following the

procedure used for u0 above. Doing this and using T i
(0) αWi j ≈ T i

(1) αWi j = 0 we find that

Lu1 H ≈ T i
(1) α Ki ≈ 0. (4.84)

This is the Lagrangian constraint (4.25).
A dynamical relationship between the IVCs and the invariances of the Hamiltonian

can be obtained by noting that, for a = {0,1} the above considerations tell us, using
ιuaωL ≈ 0, that

ιuaθL =T i
(a) α pi ≡ h(a)

α Lua H ≈−T i
(a) α Ki . (4.85)

We can then use (4.75) to find
T i

(a) α Ki ≈ ḣ(a)
α . (4.86)

There is no corresponding condition for a = 2 because the equations for u2 are trivially
satisfied. When a = 1, (4.86) says that the Lagrangian constraints are the time derivative
along a DPM of the primary constraints — in line with standard results (see, (Sundermeyer,
1982, p. 55)). We get a similar condition for a = 0. The role that the a = 0 conditions

23We will see that this is not necessarily the case for the non-transverse symmetries of reparametrisation
invariant theories.

24Note that the contraction of this equation with T
j

(0) α
is zero and thus not all components of Ṫ i

(0) α are fixed

by this equation. This is immaterial, however, for the argument that follows.
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plays in the formalism depends slightly on the theory in question. But, as we have seen,
this condition usually express the closure of the Dirac algorithm when considered in
conjunction with Noether’s second theorem.

To complete our analysis, we note that the identities of Noether’s second theorem
can be derived directly from our variational principle (4.60) by using the expansion
u =∑

a ua
α

da

dt a ϵ
α and performing integration by parts on the integrand. The resulting local

identity is ∑
a

(−1)a da

dt a

(
ιua

α
α

)= 0, (4.87)

where nowα is the 1-formα= ιXωL+dH . It is straightforward to show that this reproduces
the explicit form T̃ i

ααi = 0 of Noether’s second theorem upon inserting the expansion
(4.78) for u and using (4.18). We have now reproduced all the expressions obtained for
non-global symmetries in the second order formalism.

4.4.3.1. GLOBAL TRANSVERSE SYMMETRIES

To complete the analysis, I will now consider global symmetries whose variations are
transverse to the generator X of the DPMs of the theory. These symmetries are relevant
for Noether’s first theorem. To get all the symmetries relevant to this theorem, we must
also treat the case where the global variations are proportional to X . This will be done as
a special case at the end of Section 4.5.

For global transverse variations, u takes a particularly simple form. Again I will treat
transverse and tangential variations separately. Because the variations are transverse, we
have

u = T i
(0) α ϵ

α ∂

∂q i
(4.88)

for some constants T i
(0) α and group parameters ϵα. The variation u does not have a ∂

∂v i

component because the velocities q̇ i are invariant under global transformations. This
dramatically simplifies the variation of S because

LuθL =Lu

(
∂L

∂v i
dq i

)
= T j

(0) α
ϵα

∂2L

∂q j∂v i
dq i + ∂L

∂v i
d

(
T i

(0) α ϵ
α
)
= T j

(0) α
ϵα

∂2L

∂q j∂v i
dq i ,

(4.89)
where, in the second term, I have used the fact that T i

(0) α and ϵα are constants. The
vanishing of the second term implies that there is no longer any total divergence term
in LuθL , so that usual boundary term is no longer present. This indicates that there is
cancellation between the usual boundary term and the term proportional to ιuωL . For
this reason, transverse global symmetries neither imply IVCs nor degeneracies in ωL .
Thus, they are not directly related to a reduction of at-a-time degrees of freedom and should
not be identified with gauge symmetries according to the definition proposed in Section 5.2.
Global symmetries can be converted to gauge symmetries following, for example, the
Gauge Principle described in Section 2.2.2 and illustrated in BB theory in Section 4.3.3.2.

To derive Noether’s first theorem for transverse u we insert (4.89) into the variation
(4.60) to obtain

δS[γ;u] =
∫ t2

t1

[(
T j

(0) α
ϵα

∂2L

∂q j∂v i
q̇ i −Lu H

)
dt +Ludt

]
. (4.90)



4.4. THE HAMILTONIAN FORMALISM

4

97

For transverse u, the last term is zero and, using (4.63), the integrand becomes

ϵαT j
(0) α

(
∂2L

∂q j∂v i
(q̇ i − v i )− ∂L

∂q i

)
= 0. (4.91)

For arbitrary non-zero ϵα and when Hamilton’s first equation, q̇ i = v i , has been applied,
we obtain to the identity

T i
(0) α

∂L

∂q i
= 0. (4.92)

This condition requires that the Lagrangian be invariant under the global symmetries

generated by u. But using Hamilton’s second equation, which tells us that ∂L
∂q i = d

dt

(
∂L
∂v i

)
,

and the constancy of T i
(0) α we obtain Noether’s first theorem (4.29) (with ∂L

∂v i = pi ) for
transverse symmetries:

d

dt

(
T i

(0) α pi

)
= 0. (4.93)

4.4.4. GAUGE-FIXING AND DEGREE-OF-FREEDOM COUNTING

The analysis of the previous section allows us to make a clean at-a-time degree-of-freedom
count on velocity phase space for Lagrangian systems with k = 1 (i.e., first-order La-
grangians with second order equations of motion) in the presence of non-global, trans-
verse Noether-2 symmetries. In this case, the vectors {ua

α}α=2
α=0 give the independent null

directions of ωL . Depending on the theory, not all values of α may lead to non-zero
vectors (as can be seen, for instance, in the BB-theory in Section 4.6.1 below). However,
it is possible to read-off all non-trivial null vectors of ωL directly from the form of the
Noether-2 symmetry.

Each of the null vectors of ωL is an obstruction to solving Hamilton’s equation, which
involve solving for X in ιXωL +dH = 0. To find invertible equations, one can restrict to sur-
faces, called gauge-fixed surfaces, on velocity phase space that are everywhere transverse
to the non-zero components of ua

α. This means finding surfaces Gα
a : {x|Lub

β
Gα

a ̸≈ 0∀x ∈ Γ}

for some smooth functions Gα
a : Γ→R. One therefore needs to specify one independent

function Ga
α for each non-zero null vector ua

α of ωL . The restriction of ωL to such a gauge-
fixed surface is then non-degenerate. Gauge-fixed solutions can then be computed on
this surface.

Following Dirac’s notion of gauge-symmetry, we can then do an at-a-time degree-of-
freedom count by taking the number of independent velocity phase space quantities and
subtracting the number of independent gauge-fixing conditions required to solve the
system. In this way, the gauge-fixed surface itself is a candidate representation of the phys-
ical state. However, a gauge-fixing procedure of this kind will lead to a parametrisation
of this surface in terms of coordinates on the full velocity phase space. A parametrisa-
tion in terms of intrinsic coordinates on the gauge-fixed surface is equivalent to a gauge
reduction of the theory and is, in many cases, intractable as discussed in Section 2.4.2.

Note that in theories where the non-primary constraints are non-zero, these con-
straints may represent non-trivial surfaces in velocity phase space. In this case, the
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consistency of the variational principle in the presence of a particular Noether-2 sym-
metry requires a restriction to such surfaces. This could entail relationships between
the gauge-fixing functions Gα

a (see for example Section 4.6.1). This fact, however, does
not change the at-a-time degree-of-freedom count, which simply counts the number of
phase space functions that must be fixed by arbitrary functions regardless of how these
functions might depend on each other.

4.5. REPARAMETRISATION INVARIANCE

In this section, I will investigate an important application of this formalism to the case
of theories that are reparametrisation invariant, in the sense defined at the end of Sec-
tion 2.5.5 (which I will restate below). Reparametrisation invariance is important because
of the special role played in this formalism by variations that are tangent to the DPMs
γcl, which are intimately connected to reparametrisation symmetry, as we will see. In
orthodox treatments of gauge symmetry, which usually start from Dirac’s approach, the
interpretation of the outputs of Dirac’s algorithm is indifferent to whether the variations
resulting in those outputs are transverse or tangential. Our geometric analysis on velocity
phase space will suggest that this is a mistake. While the existence of transverse variations
leads to underdetermination in the equation of motion, I will show that the existence of
tangential variations defines the equations of motion and leads to no underdetermination.
This is a significant formal difference between these kinds of variations, and this formal
difference has important interpretational consequences.

Two such consequences regard the classical at-a-time degree-of-freedom count and
the quantization of reparametrisation invariant theories. In the orthodox view, time evo-
lution is formally and interpretationally indistinguishable from a gauge transformation.
This ultimately leads to a timeless quantum formalism. Recovering a meaningful notion
of time evolution in the quantum theory is often called the frozen-formalism problem,
which is an important aspect of the so-called Problem of Time in canonical quantum
gravity. I will describe this problem in more detail in Section 5.4.3, where I will show how
the PESA can address it. For now, I will focus on the mathematical details arising from
treating reparametrisation invariance using the formalism developed above.

In the view I will present here, time evolution is neither formally nor intepretationally
a gauge transformation. Tangential variations, unlike transverse variations, will not be
seen to lead to IVCs. They will lead to degeneracies in ωL , but these degeneracies will
define the DPMs rather than provide obstructions to solving them. Reparametrisation
invariance will be seen to constitute a tangential transformation, which I will identify
as evolution, and a particular transverse transformation, which I will identify as a gauge
symmetry. Velocity phase space will play a central role since this is the only space where
both of these transformations have a non-trivial action.

A clear demarcation between the gauge and evolution aspects of reparametrisation
invariance suggests possible solutions to the frozen-formalism problem. A particular pro-
posal along these lines, called Relational quantization, has been developed in Gryb and
Thébault (2023). I will not describe this procedure here. Instead, I will use reparametrisa-
tion invariance as a non-standard example of a symmetry that illustrates how my notion
of gauge symmetry can be used to clarify an important existing problem: the Problem of
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Time. This will be done in Section 5.4.3.

4.5.1. REPARAMETRISATION SYMMETRY

Let us start the analysis by giving a more precise definition of a reparametrisation-
invariant theory and then investigating some general consequences.25 A theory is said
to be reparametrisation invariant when its equations of motion are invariant under the
symmetry

t → t̄ (t ) , (4.94)

where t is a time parameter on the domain, I , of γ and t̄ is some monotonic smooth
function t̄ : I →R on this domain such that

f ≡ dt̄

dt
> 0. (4.95)

It will be important for our considerations below that this definition is given in terms
of an invariance of the equations of motion rather than the properties of an action. That
is because the properties of the equations of motion generated by a variational principle
depend only on the local terms, and not the boundary terms, of that variation principle.
In other words, a theory will be reparametrisation invariant if the local form of the action;
i.e.,

dt L

(
q i ,

dqi

dt

)
= dt̄ L

(
q i ,

dqi

dt̄

)
(4.96)

is invariant under (4.94). Note that we have already restricted ourselves to second-order
theories (i.e., theories with first-order Lagrangians) with no explicit t-dependence in L.
Importantly, the local condition (4.96) is not equivalent to invariance of the action. This
is because, in general, ∫ t2

t1

dt L

(
q i ,

dqi

dt

)
̸=

∫ t̄2

t̄1

dt̄ L

(
q i ,

dqi

dt̄

)
, (4.97)

even if (4.96) holds. This claim may seem strange at first, but its truth is obvious once
one realises that the quantity dt L is not, in general, a constant along a DPM. While the
functional form of the integrands of both sides of the expression above are identical,
their regions of integration, (t1, t2) versus (t̄1, t̄2), are not identical unless f (t1) = f (t2) =
0. Evaluating these integrals over different endpoints will thus, in general, lead to a
different result.26 Reparametrisations are, thus, not strict variational symmetries unless
one imposes the condition f (t1) = f (t2) = 0.27 This point will complement my analysis
and interpretation of reparametrisation symmetry below.

25See Sundermeyer (1982) or Chapter 4 of Henneaux and Teitelboim (1992) for standard treatments of
reparametrisation-invariant theories.

26A free particle is a notable exception.
27To see this another way, reparametrisation invariance would be an empty concept if the relevant notion of

invariance was a passive relabelling of the domain of integration. Instead, one must actively shift this domain
relative to the integrand to get a non-trivial notion of symmetry. If one does this, however, one must also
actively shift the region of integration in a corresponding way.
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Before giving my analysis using the first-order formalism, let us derive some imme-
diate consequences of the invariance (4.96). A sufficient condition for (4.96) is that the
Lagrangian L(q i , q̇ i ) be homogeneous of degree one in the velocities q̇ i . In that case,

dt → dt̄
f and L(q i , q̇ i ) → L(q i , f dqi

dt̄ ) = f L(q i , dqi

dt̄ ) so that dt L is invariant. A necessary and

sufficient condition for L to be homogeneous of degree one is that q̇ i ∂L
∂q̇ i = L.28 This is

equivalent to the vanishing of the Hamiltonian function in the second order formalism

H = q̇ i ∂L

∂q̇ i
−L = 0. (4.98)

This is called the Weierstrass condition and is valid off-shell. The vanishing of the classical
Hamiltonian is often considered the origin of the frozen-formalism problem. In addition
to the vanishing of H , if we differentiate (4.98) with respect to q̇ i we obtain

q̇ i Wi j = 0, (4.99)

which says that the velocities are in the kernel of Wi j . This suggests that reparametrisation
invariance is associated with some underdetermination in the equations of motion. We
will see in our first-order analysis that this underdetermination is associated with a
particular null vector of ωL and involves the freedom to arbitrarily choose the time
parameter along γ. We will also see, however, that there is an additional null vector of ωL ,
due to the vanishing of H , which is not associated with any underdetermination in the
equations of motion but instead defines the classical solutions. I will interpret the second
null vector as the generator of evolution.

Before proceeding, let me note that homogeneity of degree one in velocities is not
a necessary condition for reparametrisation invariance. In many theories, including
the ADM form of general relativity, reparametrisation invariance occurs because of the
transformation properties of a certain Lagrange multiplier function called the lapse.
Because it is a Lagrange multiplier, the lapse does not enter the theory as a velocity but
must transform as such in a well-defined variational principle. The vanishing of the
Hamiltonian thus occurs more generally when a theory is homogeneous of degree one in
all variables that transform as velocities in the variational principle.

4.5.2. REPARAMETRISATIONS AS GAUGE AND EVOLUTION GENERATORS

An infinitesimal reparametrisation can be written in terms of the pullback of q i (t ) by an
infinitesimal transformation of the form (4.94) using a Taylor expansion as

δ f q i (t ) = f q̇ i , (4.100)

where f plays the role of a gauge parameter. Matching this to (4.14), we find that the only
non-zero component of T in the first order formalism is T i

(0) = v i . Inserting this into (4.78)
gives

ū0 = v i ∂

∂q i
+ v̇ i ∂

∂v i
ū1 = v i ∂

∂v i
. (4.101)

28This is an application of Euler’s homogeneous function theorem.
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Thus, reparametrisations are generated at-a-time by the two independent vectors u0 and
u1.

The u1 vector can be treated as the generator of a standard transverse variation.
Importantly, it leads to no ICV because it has no ∂

∂q i component so its contraction with

θL is automatically zero. The conditions Lu1 H = 0 and ιu1ωL ≈ 0 both lead to

v i Wi j = 0, (4.102)

which is the first order form of (4.99). This can be understood by the fact that a redef-
inition of the time parameter corresponds to a rescaling of the velocities according to

q̇ i = f dqi

dt̄ . Thus, at any given time the overall size of the velocity vector v i should be
underdetermined by the equations of motion. This is precisely what is implied by the con-
dition (4.102). We therefore identify u1 as the generator of an at-a-time reparametrisation
reflecting the freedom to arbitrarily choose a time parameter in a reparametrisation invari-
ant theory. Interestingly, the flow of u1 is trivial on the image of the Legendre transform
since it is precisely this null direction that makes the Legendre transform many-to-one.
The flow of u1 can therefore only be understood on velocity phase space, where it is
non-trivial.

To fully understand the representation of reparametrisation symmetry, we must also
understand the consequences of the presence of the vector u0. When Hamilton’s first
equation is satisfied, u0 = X , which generates a tangential variation. Let us then study the
general consequences of such variations.

We wish to evaluate (4.60) when the variations are of the form u = f X for some
positive function f : T C →R

+ on velocity phase space. We are looking for the off-shell
consequences of tangential symmetries and, thus, we make no particular assumptions
about X . Inserting u = f X into (4.60) we find that the skew symmetry of ωL (due to it
being a 2-form) implies

δS1[γ; f X ] =−
∫
γ

(
LX H f dt +Hd f

)+ f ιX θL

∣∣∣t2

t1
. (4.103)

The vanishing of this variation requires the separate vanishing of the local and boundary
terms since the restriction of f to γ is an arbitrary function of t at all t . Because, in general,
f and d f are independent functions, both local terms must independently vanish. Except
in the case of global reparametrisations (i.e., time translations), which will be treated
separately below, the vanishing of the d f term implies the Weierstrass condition:

H = 0. (4.104)

This is an off-shell relation.29 The f term implies dH = 0 for arbitrary X , but this is
automatically satisfied when the Hamiltonian itself vanishes off-shell. We thus recover
the usual off-shell vanishing of the Hamiltonian in a reparametrisation invariant theory.

29In the Dirac formalism, which will be described below, the vanishing of the Hamiltonian is usually considered
to be valid only on-shell. The difference between this and the off-shell result on velocity phase space occurs
after performing the Legendre transform and extending the phase space beyond the constraint surface. By
doing the extension, the restriction to the constraint surface must be added as an extra on-shell condition.
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The vanishing of the Hamiltonian, however, does not imply that the DPMs are trivial
or that there is no dynamical evolution. Hamilton’s equations, which result from the
vanishing of (4.60) under transverse variations, imply

ιXclωL = 0, (4.105)

where Xcl is now taken to be the generator of a classical solution. Because of the explicit
definition, (4.62), of ωL as a function of L and its partial derivatives, the equations (4.105)
are non-trivial partial differential equations. These equations are simply the equations of
motion of the theory, and their solutions generate DPMs. Thus, unlike in the transverse
case, the vanishing of the local terms of (4.60) implies that one of the null-directions ofωL

defines the classical equations of motion. Finding solutions to the equations of motion is
then tantamount to solving these eigenvalue equations. Crucially, in the tangential case,
the existence of null-directions of ωL has no bearing on the invertibility of the equations
of motion. In fact, the equations of motion must be invertible in order for (4.105) to have
solutions at all, which is an assumption in the Noether methodology. If solutions don’t
exist, it’s because the action must have been poorly chosen for its saddle points and not
its symmetries. We will see an explicit example of how the classical equations of motion
are constructed from (4.105) and how to resolve the underdetermination due to u1 in
Section 4.6.2.

The vanishing of the local terms is sufficient for our definition of reparametrisation
invariance, which is defined in terms of invariances of the local equations of motion. It
is, nevertheless interesting to see why the boundary terms of (4.103) cannot be made to
vanish without trivialising at-a-time notions of symmetry. Using the off-shell vanishing of
H , we can rewrite the boundary term of (4.103) as

f ιX θL

∣∣∣t2

t1
= f ιX Ldt

∣∣∣t2

t1
= f L

∣∣∣t2

t1
. (4.106)

But for non-trivial theories, L can’t vanish. This means that the only way for a tangential
symmetry to be a strict variational symmetry is if

f (t1) = f (t2) = 0, (4.107)

as we saw earlier from our more general considerations. But since the choice of boundary
is arbitrary from an at-a-time perspective, f must be zero at all times, which would
trivialise the symmetry. We thus see that for reparametrisations that act at-a-time, the
boundary terms can never be made to vanish, in agreement with our previous consid-
erations. Note that, from an over-a-history perspective, it is possible to have non-trivial
reparametrisations of curves whose infinitesimal generators vanish on the boundary and
are thus strict variational symmetries. But this fact depends on singling out some initial
and final instant and has no bearing on the dynamical or epistemic considerations of
local observers. It therefore should also not be relevant in the identification of gauge
symmetries in general.

The fact that the boundary variations cannot be made to vanish for tangential sym-
metries implies that there are no IVCs associated to them. This is consistent with the fact,
which I have shown above, that tangential variations imply no underdetermination in the
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equations of motion. While the transverse variations reshuffle the data on the boundary,
tangential variations actually move the boundary. In this way, they can be seen to generate
evolution rather than underdetermination in the equations of motion.

In fact, the non-zero boundary terms due to tangential variations can be used to
distinguish these variations in a theory that also has transverse symmetries. Consider a
theory where the vectors u I

α cause the local terms of (4.60) to vanish off-shell. If we define
the change of basis

ū I
α =∑

J ,β
λ
αβ

I J u J
β

(4.108)

such that
ιūI

α
θL = δI

0δ
1
αL , (4.109)

then we can simply define ū0
1 as the tangential symmetry; i.e., the generator of evolution

when the ICVs are satisfied.30

4.5.3. GLOBAL TANGENTIAL SYMMETRIES

The last case of variations to consider, which lead to the vanishing of the local terms
of (4.60), are the global tangential variations. These variations have the form u = a0X
for some constant a0. Since X = d

dt , the variations u of this kind generate global time
translations of the form t → t +a0.

To study the consequences of these variations, it is best to use the variation of S in
the form of the second line of (4.60), where the new term, HLudt = Hda0 = 0 is now
vanishing because da0 = 0. We therefore do not get a condition of the form H = 0 for
global time translations as we did for local time reparametrisations. This also means that
Hamiltonian’s equations no longer imply that u is a null direction of ωL — even on-shell.
We find that global tangential u, like global transverse u, lead to no underdetermination
in the equation of motion.

To recover Noether’s first theorem for this case, note that the term ιX ιuωL = a0ιX ιXωL =
0 still vanishes automatically for all off-shell trajectories. The vanishing of the integrand
of (4.60) then implies

LX H = 0. (4.110)

This says that the total energy E , which is the value of the function H along a DPM, is
constant along the DPM generated by X . This is the usual result of Noether’s first theorem
as applied to global time translations.

30On the image of the Legendre transform, the evolution generator ū0
1 has an interesting geometric interpre-

tation using the formalism of contact geometry, which will be the primary tool used in Section 4.8.1. If we
assume that all degeneracies due to the transverse components have been eliminated (and restricting to the
image of the Legendre transform eliminates the degeneracy due to ū1

1), then dθL has only a one dimensional

kernel spanned by R = 1
L ū0

1 with ιRθL = 1. This means that (dθL )∧(N−1) is a contact form on this space.
Moreover, the normalisation ιū0

1
θL = 1 implies that R is simply the Reeb field on this contact space. The

dynamical evolution can then be interpreted as the Reeb flow on the image of the Legendre transform. Finally,
the condition ιRθL = 1 can be used to identify a conservation law for the Reeb flow. In this case, this simply
expresses the usual Hamiltonian constraint.
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As in a general reparametrisation invariant theory, the boundary term

a0ιX θL

∣∣∣t2

t1
(4.111)

is not zero. Again this expresses the fact that the local form of the action, and therefore
the equations of motion, is invariant even though the value of the action itself can change
because global time translation shift the region of integration by the constant a0. It also
means that global time-translations are not strict variational symmetries even thought
this has no consequences for Noether’s theorems.

4.6. EXAMPLES

4.6.1. BARBOUR–BERTOTTI SHIFTS

In this section, I will redo the BB-theory example introduced in Section 4.3.3.2 using the
first-order formalism. Recall that BB-theory was a theory of N Newtonian particles in
which time-dependent spatial translations have been made variational symmetries using
a version of the Gauge Principle. Using the notation of that section, the instantaneous
particle configurations are q̇ i

I and the shift-fields, which implement the translational

gauge symmetry, are w i . The variational symmetries (4.34) tell us that the T operator
splits into a q-component, which we called R i

I j , and a w-component, which we called U i
j .

Inserting (4.37) into the general expression for the u-vectors, (4.78), gives four non-zero
components

u0
(q)i =

∑
I

∂

∂q i
I

u1
(q)i =

∑
I

∂

∂v i
I

u1
(w)i =

∂

∂w i
u2

(w)i =
∂

∂v i
(w)

, (4.112)

where the (q) and (w) subscripts indicate the q and w components of u respectively and
(v i

I , v i
(w)) are the velocities of (q i

i , w i ). This tells us that there are four independent sets of
null directions of ωL .

We can now explicitly compute all the constraints arising from the first-order formal-
ism. The primary constraints, T i

(1) α pi , in this notation (note the i in the original notation
ranges over particle indices as well as spatial indices for q and w , and the α ranges over
spatial q and w indices) only have the w-component:

p(w)i = 0, (4.113)

which says that the momenta p(w)i conjugate to w i vanish. This means that the w-
component of the Hessian is zero so that its kernel is spanned by the vectors δi

( j ) (one

for each spatial dimension indexed by j ) in line with expectations. In this notation, the
Lagrangian constraints, T i

(1) α Ki , become∑
I

p I
i ≈ 0, (4.114)
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where p I
i are the momenta conjugate to q i

I . This is the standard BB constraint that says
that the total linear momentum of the system is zero. It is straightforward to see that the
condition T i

(0) α pi leads to the same BB constraint.
We can solve the BB constraint on velocity phase space using the definition

p I
i =

∂LBB

∂v i
I

= mIδi j

(
v i

I −w i
)

. (4.115)

Inserting this into (4.114) gives

w i = v i
cm ≡ 1

M

∑
I

mI v i
I , (4.116)

where we have defined the centre-of-mass velocity, v i
cm, with M =∑

I mI . On the surface
where this holds, a short calculation shows that the condition T i

(0) α Ki ≈ 0 reduces to the
condition ∑

I

∂V

∂q i
I

= 0, (4.117)

which is the requirement that the potential is translationally invariant as expected. One
can also see that, on this surface, the vectors δi

( j ) are in the kernel of the q-component

of the Hessian. This explicitly confirms all the constraint equations we derived in Sec-
tion 4.4.3.

We can go a bit further in our analysis by finding explicit gauge-fixing conditions for
all the different independent null directions of ωLBB given in (4.112). The w-components
of u1 and u2 suggest that w i and v i

(w) should be arbitrary functions. Indeed, the fact that

u1
(w)i (w j ) = δi

j and u2
(w)i (v j

(w)) = δi
j implies that setting w i and its velocity to arbitrary

functions is a valid gauge-fixing procedure for these null directions.
For the q-components of u0 and u1 we can use (4.116) to suggest a gauge-fixing

procedure that involves setting the centre-of-mass position, q i
cm, and velocity, v i

cm, to

arbitrary values. Indeed, it’s straightforward to verify that u0
(q)i (q j

cm) = δi
j and u1

(q)i (v j
cm) =

δi
j . This tells us that we can think of the shift variables w i and their velocities as well

as the centre-of-mass positions and their velocities as arbitrary functions at any given
time in BB-theory. This satisfies Dirac’s criterion, discussed in Section 3.3, for treating the
transformations (4.34) as gauge transformations. Note that, because of (4.116), the free
functions assigned to w i must match those assigned to v i

cm in order for the BB constraint
to be satisfied. All that this means is that the freely specifiable functions cannot be chosen
independently.

4.6.2. JACOBI THEORY

An important non-trivial example of a reparametrisation invariant theory is that of Jacobi’s
original variational principle for Newtonian mechanics.31 From a modern perspective,
Jacobi’s principle can be understood as a geodesic principle on configuration space.
This is the version of Jacobi theory that we will study here. As noted in Barbour and

31See, for example, (Lanczos, 1949, §V.7) for an introduction to Jacobi’s principle.
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Bertotti (1982), Jacobi’s theory not only covers virtually all theories of particle mechanics
but is closely related to the Baierlein–Sharp–Wheeler (BSW) action for general relativity,
introduced in Baierlein, Sharp, and Wheeler (1962).

Jacobi’s theory, as a geodesic principle on a configuration space C , can be imple-
mented by a variational principle with an action of the form

SJac[γ; q1, q2) =
∫ q2

q1

dt
√

gab q̇ a q̇b , (4.118)

where gab is a metric on C . The DPMs of the theory are then the geodesic curves of
extremal length S computed with the metric gab and with endpoints (q1, q2). It is straight-
forward to see that SJac is reparametrisation invariant owing to the fact that it is homoge-
neous of degree one in the velocities.

The EL equations resulting from this action lead to the geodesic equation:

q̈ a +Γa
bc q̇b q̇c = κq̇ a (4.119)

in terms of the metric compatible connection

Γa
bc =

1

2
g ad (

∂b gdc +∂c gdb −∂d gbc
)

(4.120)

and κ = d
dt

(
logL

)
, where we recall that the Lagrangian is L =

√
gab q̇ a q̇b . For an affine

parameter, κ= 0 and we obtain the more familiar form of the geodesic equation: q̇ a
;b q̇b =

0.32

Given that Jacobi theory is reparametrisation invariant, the considerations of Sec-
tion 4.5.2 tell us that the vectors

u0 = q̇ a ∂

∂q a + v̇ a ∂

∂v a = X u1 = v a ∂

∂v a , (4.121)

generate variations of SJac that preserve the equations of motion. We can now explicitly
illustrate the consequences of this in Jacobi’s theory to confirm the general considerations
of Section 4.5.2.

To do this, we compute the pre-symplectic form, ωL J , for Jacobi theory using (4.62)
and (4.118):

ωL J =
(

v̂c∂a gbc −
1

2
v̂b v̂c v̂d∂a gcd

)
dq a ∧dqb + 1

|v |
(
gab − v̂a v̂b

)
dv a ∧dqb , (4.122)

where we have defined the covectors va = gab vb , the norm |v | =
√

gab v a vb induced by
the metric g , and the unit vectors v̂ a = v a/|v |. The coefficient of the second term gives

32In Jacobi’s original formulation, gab q̇a q̇b = 2(E −V )T , where E is the total energy of the system, V (qa ) is the
potential energy function and T (q̇a ) is the kinetic energy. The equations of motion are then a reparametri-
sation invariant version of Newton’s laws where the increment of Newtonian time dτ is the choice of time

parameter where T +V = E . In terms of an arbitrary time coordinate t , we have dτ=
√

T (q̇a )
E−V dt .
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the explicit form of the Hessian,

W J
ab = δ2L J

δv aδvb

= 1

|v |
(
gab − v̂a v̂b

)
, (4.123)

of the Legendre transform. The geometric formulation of Jacobi’s principle allows us to
explicitly see that Wab is proportional to the orthogonal decomposition of the metric g
along the directions v̂ a . We can then explicitly verify the condition

v aWab = 0. (4.124)

In this picture, the above condition results from the fact that u1 is a transverse symmetry
so that

ιu1ωL = v a
(
gab − v̂ a v̂b

)
dqb = v aWabdqb = 0, (4.125)

which must vanish for all dqb . The vector u1 is therefore the generator of at-a-time
reparametrisations, which rescale |v |. This is related to the freedom to define the evolution
in an arbitrary time parameter as discussed in Section 4.5.2.

The vector u0 is a tangential symmetry. We thus expect its presence to imply that the

Hamiltonian function, H = v a ∂L J
∂v a −L J = 0, vanishes identically. This can easily be verified

by direct computation by noting that L J = |v |. Hamilton’s equations then tell us that the
eigenvalue equation ιu0ωL J = 0 should determine the DPMs. This is a one-form equation
with two terms that can be computed and set to zero separately. The first is the term
proportional to dv a :

ωL J

(
∂
∂v a ,u1

)
= q̇ a

|v |
(
gab − v̂a v̂b

)= q̇ aWab = 0. (4.126)

Since the kernel of Wab is v a , this equation tells us that q̇ a = v a , which is Hamilton’s
first equation for this system. The second term is proportional to dq a and leads to the
non-trivial condition

ωL J

(
∂
∂qa ,u0

)
= 1

|v |
(
Γabc vb vc − 1

2

(
vb v̂c v̂d∂b gcd

)
va + v̇b (

gab − v̂a v̂b
))= 0 (4.127)

after using q̇ a = v a and applying several simplifications. Note that this is equivalent to
the geodesic equation (4.119).33 As we can see in this explicit example, the null direction
u0 of ωL does not contribute to any underdetermination in the equations of motion but,
rather, defines these equations of motion in the sense that the solutions of the geodesic
equations define one of the null directions of ωL .

Importantly, the only degeneracy in this system is due to the presence of the transverse
vector u1. In order to solve for the acceleration v̇ a in terms of the velocities v a and
configurations q a one would need to invert the matrix Wab = (gab − v̂a v̂b)/|v |, which is
degenerate. One can overcome this issue by imposing gauge-fixing conditions on velocity

33Note that to show this one needs to expand the definition of κ in (4.119) and use q̇a = v a to prove that
1
2 v̂b v̂c v̂d∂b gcd = |v |κ− v̇ a v̂a .
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phase space. Such gauge fixings are given by restricting to surfaces transverse to the flow
of u1. This can be done, for example, by defining the surfaces on velocity phase space
satisfying

|v |− f (q, v, t ) = 0 (4.128)

for f such that v a ∂ f
∂v a ̸= |v |. A simple choice is f = 1. On this surface, the equation (4.127)

reduces to the invertible equation

v̇ a +Γa
bc vb vc = 0, (4.129)

which is the (well-posed) geodesic equation in an affine parametrisation. This explicitly
confirms both the statement that u1 generates reparametrisations and that u1 is the only
source of underdetermination in the Jacobi system.

4.7. THE DIRAC ALGORITHM

I will now give a more detailed introduction to the Dirac algorithm that was first described
in Section 3.3. I will state his proposal for identifying gauge symmetries and relate the
outputs of his algorithm to the formalism developed in the previous sections. This will
explain how my proposal is related to Dirac’s and what makes his too restrictive for my
purposes. I will loosely follow the presentation in Dirac (1964). For a more modern
treatment, see Chapter 1 of Henneaux and Teitelboim (1992) or consult the references of
Section 3.3.

Dirac starts by considering an arbitrary theory defined by an action of the general first
order form (4.1) (i.e., of a form that leads to second-order equations of motion), where
k = 1. He then performs a Legendre transformL : T C → T ∗C by defining momenta as
pi = ∂L

∂q̇ i . He is interested in a theory where the definition of the Legendre transform leads

to an immediate set of N independent identities, which Dirac calls primary constraints,34

of the form
{ϕα = 0}α=N

α=1 . (4.130)

As we have seen, identities of this kind define the image ofL. Dirac suggests treating these
as constraint equations on the unrestricted ‘phase space’ of the theory whose canonical
symplectic form ω takes the Darboux form

ω= dpi ∧dq i . (4.131)

In this way, Dirac is working in coordinates on what I have called the ‘extended phase
space’ of the theory, which is constructed by canonically extending the image ofL using
the pullback of ωL byL. On Dirac’s phase space, we can define a Poisson bracket

{
f , g

}=
ιω−1 d f ∧dg using the inverse, ω−1, of ω. In Darboux coordinates, this is

{
f , g

}= ∂ f

∂q i

∂g

∂pi
− ∂ f

∂pi

∂g

∂q i
. (4.132)

34Dirac attributes this terminology as being due to Bergmann.
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Using the Poisson bracket, the set {ϕα}α=N
α=1 forms a regular surface locally on Dirac’s

phase space when {
ϕα,ϕβ

}= cγ
αβ
ϕγ+Mαβ , (4.133)

where cγ
αβ

and Mαβ can be arbitrary phase space functions (subject to the appropriate

anti-symmetry). The first step in Dirac’s procedure is then to reduce this system to a
smaller set of constraints, which he calls first-class constraints, by restricting to a surface
of what he calls second-class constraints. On the second-class constraint surface, the
remaining set of first-class constraints {φα}α=M

α=1 , where M < N (and N −M is even), is
required to obey {

φα,φβ
}= cγ

αβ
φγ , (4.134)

where {·, ·} is now the restriction of the previous Poisson bracket to the second-class
constraint surface.

For the purposes of this analysis, I will assume that this first step has been carried
out any time second-class constraints happen to appear, and that these second-class
constraints can be explicitly solved for and eliminated. I will then work directly on the
second-class constraint surface, which from now on I will simply call phase space, and
coordinatize this by (q i , pi ) in a slight abuse of notation. This assumption will simplify
our considerations by eliminating aspects of the construction that are not related to gauge
symmetry. Second-class systems can safely be ignored in our analysis because the fact
that they can be eliminated using Dirac’s procedure ensures that they are not associated
with underdetermination in the equations of motion.35

The starting point is then a theory, possibly reduced from a theory with second-
class constraints, with a Lagrangian L(q i , q̇ i ) that generates the M primary first-class
constraints

{φα = 0}α=M
α=1 (4.135)

satisfying (4.134). Since Dirac is working on an unrestricted phase space, he must ensure
that the dynamical flow he defines on this space remains tangent to the surface defined
by the primary constraints. To do this, he starts by adding the primary constraints to the
original Hamiltonian, H = q̇ i pi −L, of the theory using Lagrange multiplier functions λα.
This defines what he calls the total Hamiltonian function

Htot ≡ H +λαφα . (4.136)

The total Hamiltonian can be seen as a way of building conditions into the variational
principle that lead to well-defined solutions when the original action generated primary
constraints. One can then tentatively propose the equations of motion

q̇ i =
{

q i , Htot

}
ṗi =

{
pi , Htot

}
(4.137)

and check whether these equations of motion preserve the primary constraint surface. To
do this, one needs to compute the time evolution of φα such that

φ̇α = {
φα, Htot

}≡ cβαφβ+χα , (4.138)

35The only exception is if a second-class system was obtained by imposing a constraint as a gauge-fixing condi-
tion for a first-class constraint. But in this case, one need only consider the amount of underdetermination in
the original first-class system.
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for some independent phase space functions cβα. If any of the functions χα are non-zero,
then Dirac proposes that these should be added as additional constraints to the theory. He
calls these secondary constraints. He then tentatively defines an extended Hamiltonian,

Hext ≡ Htot +ΛIχI , (4.139)

where I ranges over the number of independent secondary constraints. One must then
check that the new set of equations of motion generated by Hext preserve the surface
defined by both the primary and secondary constraints. If this is not the case, new tertiary
constraints are generated. The process continues in this way until no new constraints are
generated. If this happens, Dirac’s algorithm is said to close. One can then compile all
primary, secondary, tertiary, etc constraints into a complete set of R first-class constraints,
{πα}α=R

α=1 , satisfying{
πα,πβ

}=Cγ

αβ
πγ {πα, Htot} ≡Cβ

απβ , (4.140)

for {α,β} = 1, . . . ,R and for the arbitrary phase space functions Cγ

αβ
and Cβ

α . The full

extended Hamiltonian then takes the form

Hext = H + vαπα , (4.141)

in terms of the R arbitrary Lagrange multiplier functions vα.
Dirac then points out that the equations of motion of the system obtained in this way:

q̇ i =
{

q i , Hext

}
ṗi =

{
pi , Hext

}
, (4.142)

are only integrable when the functions vα are arbitrarily assigned specific values. Since
these functions can take any value, Dirac argues that they should not describe anything
physical in the theory and that changing them should have no effect on the ‘physical
state.’36 If one changes the values of the Lagrange multipliers vα by an infinitesimal
amount δvα, then an arbitrary phase space function f (q i , pi ) will see its velocity shifted
by

δ ḟ = δvα
{

f ,πα
}

(4.143)

according to (4.142). This means that the vector {·,πα} on phase space generates a trans-
formation that only involves an infinitesimal shift in the arbitrary functions vα, and
therefore should induce no change in Dirac’s physical state. Dirac proposes that such
changes are gauge transformations. Importantly, Dirac’s argument involves variations
that act transversely to the dynamical trajectories. His argument is therefore inapplicable
to tangential variations and is consistent with my analysis that tangential symmetries
generate evolution and not gauge transformations. This observation was first stated in a
slightly different form in Barbour and Foster (2008).

As a final step, Dirac proposed that the physical state be defined in terms of a complete
set of functions O I , now called Dirac observables, such that{

O I ,πα
}= gβαπβ ≈ 0, (4.144)

36We say what Dirac means by the ‘physical state’ in our language at the beginning of Section 3.3.
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for the arbitrary phase space functions gβα . On the constraint surface, πα ≈ 0 and (4.143)
tells us that

δȮi ≈ 0. (4.145)

Thus, the evolution of the Dirac observables is invariant under Dirac’s gauge transforma-
tions.

Note that the Dirac observables form an algebra on the constraint surface since, as
can be seen from the definition above, linear combinations of observables and products
of observables are also observables. Counting the dimension of a complete generating
set for this algebra therefore gives a natural at-a-time degree of freedom count on phase
space. This is often the degree-of-freedom count offered by physicists in standard gauge
theory analysis. Crucially, Dirac’s definition of gauge symmetries involve transformations
that only change the values of the arbitrary functions vα and his definition of observable
is just any phase space function whose evolution is independent of the vα. This gives a
more refined statement of the general observation made in Section 3.3.

4.7.1. RECOVERING DIRAC’S FORMALISM

To recover Dirac’s formalism from the geometric first-order approach developed in Sec-
tion 4.4, it is helpful to take note of the differences between these approaches. First,
our formalism was expressed on an unrestricted velocity phase space, whereas Dirac’s
approach is based on restricting the Hamiltonian flow to a constraint surface on phase
space. Second, Dirac’s algorithm makes no initial assumptions about the symmetry prop-
erties of the original action. Instead, the symmetries are derived by imposing consistency
conditions that keep the dynamical flow on the image of Legendre transform. From the
point of view of Noether’s methodology, the number of iterations of the Dirac algorithm is
fixed by the order of the Noether-2 symmetry. And the closure of the Dirac algorithm is
guaranteed by the assumption that the action has a particular Noether-2 symmetry (and
well-defined saddle points).

I will restrict attention to transverse variations because, as we saw in Section 4.5.2,
tangential variations generate over-a-history reparametrisations that are best studied on
velocity phase space. Because of the arguments made in that section I will consider the
tangential case to be problematic for the Dirac picture.

With these considerations in mind, we can start to connect the two formalisms by
identifying the primary constraints of our formalism with those that arise in the first step
(modulo second-class constraints) of the Dirac algorithm. Since Dirac is using explicit
coordinate expressions, we can compare his structures to ours using the explicit form of
the u vectors from (4.78) and pullback all expressions byL. For the primary constraints
(i.e., the second term of (4.79)) this is straightforward. We thus identify

φα = T i
(1) α pi . (4.146)

In Dirac’s approach, the secondary constraints are obtained by requiring that the time
evolution of the primary constraints is zero on the primary constraint surface. In our
formalism the time evolution is given, on-shell, by the a = 1 component of (4.86). This
tells us that Dirac’s secondary constraints are just given by the pullback of the Lagrangian
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constraints byL, or

χα = T i
(1) α Ki

∣∣∣
pi= ∂L

∂q̇i

. (4.147)

This reproduces the well-known connection between Lagrangian constraints and sec-
ondary constraints (Sundermeyer, 1982, p. 55).

In Dirac’s approach, the number of secondary constraints is not assumed to match the
number of primary constraints. Moreover, there may be more constraints generated by the
propagation of the secondary constraints. However, in my approach, which uses Noether’s
methodology and assumes that all second-class constraints have been eliminated, there
will be a match between the primary and secondary constraints unless the secondary
constraints happen to be trivial. Furthermore, Dirac’s algorithm is guaranteed to close

because of Noether’s second theorem, which says that d
dt

(
T i

(1) α Ki

)
≈ T i

(0) ααi on the

primary constraint surface, and the remaining constraints, which imply T i
(0) ααi ≈ 0

following the arguments of Section 4.3.2. This recovers the output of the Dirac algorithm
for the kinds of theories I’ve restricted to.

4.8. DYNAMICAL SIMILARITY

4.8.1. GENERATING DYNAMICAL SIMILARITY

In Section 3.4.2, I defined dynamical similarity as a transformation on the kinematical
structures of a theory that rescales the action S → cS for some non-zero constant c. I will
now give a more precise definition in terms of a transformation generated by a vector field
on velocity phase space that is a broad symmetry of a large class of Lagrangian theories.
The first attempt to write dynamical similarities as generated by a vector field was in Sloan
(2018). This definition was further refined in Bravetti et al. (2023). My definition will be
slightly more general than that given in Bravetti et al. (2023)37 and will be more geometric
than in Sloan (2018). Specifically, my construction will aim to develop a generalisation
of the Gauge Principle that will work for dynamical similarity in contrast to the reduced
view taken in these earlier works.

As argued in Section 3.4.2, any transformation that rescales the action will preserve
the stationarity condition of the action since δS = 0 → cδS = 0. These transformations
therefore map DPMs to DPMs and are broad symmetries. Note that such transformations
are only required to rescale the action on-shell for them to qualify as broad symmetries.
We will see that the on-shell requirement is a necessary for dynamical similarities to be
generated by vector fields on velocity phase space.

I will now give the conditions for the existence of a family of vector fields, which I will
call Dφ, on velocity phase space that are parametrized by a single velocity phase space
function φ and rescale the action when evaluated along a classical solution. I will also
show more explicitly that the flow of this vector field preserves the classical solutions up
to a global reparametrisation. I will restrict to regular Lagrangian theories that have a well-
defined symplectic form. This in no way limits the procedure since all of my arguments
can be applied to the gauge-fixed evolution of an irregular Lagrangian theory. What I will

37It will work for arbitrary values of parameter a defined below.
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find is that, for many theories, the conditions for the existence of Dφ put constraints on φ
which fix Dφ uniquely. Thus, this formalism can be seen as general way of inferring the
unique dynamical similarity present in a large class of dynamical systems.

My starting point, once again, will be Equation (4.60) for the variations of the first
order action S1 in the direction of a vector field u on Γ. I will then define a dynamical
similarity to be a transformation generated by the vector field D such that

LD S1[γ] = S1[γ] , (4.148)

where LuS1[γ] = 0 for all γ and transverse u that vanish on the boundary. As we’ve proved,
the last requirement states that γ is tangent to the vector field X obeying Hamilton’s
equation: ιXωL +dH = 0. If f is a point on the image of γ, this means that

ḟ =LX f . (4.149)

Absorbing the boundary terms into the first line of (4.60) tells us that (4.148) reduces to∫
γ

(LDθL − (LD H)dt −HLD dt ) =
∫
γ
θL −Hdt . (4.150)

When θL , H and dt are independent, we find that (4.150) has solutions when

LDθL = θL (4.151)

LD H = aH (4.152)

LD dt = (1−a)dt (4.153)

for some arbitrary constant a. Recall that we defined dt in terms of trial curves with
tangents X such that ιX dt = 1 and, when Hamilton’s equations are satisfied, the vector X
depends on H . Using the fact that LD (ιX dt ) = 0, we can invert Hamilton’s equations to
prove that, when LDθL = θL and LD H = aH , LD dt = (1−a)dt . This means that the latter
condition is a consequence of the former when X generates classical solutions. Only the
two independent conditions (4.151) and (4.152) are therefore required to define D .

I will now show that a vector field D satisfying (4.151) and (4.152) will preserve the in-
tegral curves of X up to a constant time parameter when X satisfies Hamilton’s equations.
An immediate consequence of (4.151) is that

LDωL =ωL , (4.154)

where we recall that ωL = dθL . Since we have assumed that our Lagrangian is regular
(or can be made regular by gauge-fixing), then ωL is non-degenerate, and we can write
X =−ω−1(dH). A straightforward computation then shows that

LD X = (1−a)X . (4.155)

The integral curves defined by (4.149) are therefore invariant under the flow of D if we
redefine t such that dt̄ = (a −1)dt . We thus see that the dynamical similarities generated
by D do indeed map DPMs to DPMs (up to a global time rescaling).
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We now turn our attention to a procedure for finding D as a solution to (4.151) and
(4.152). We can guess at a solution by replacing (4.151) by the weaker condition (4.154).
Using the fact that ωL is non-degenerate, we find that D can be obtained from (4.154) by
solving

ιDω= θL +dφ (4.156)

for the arbitrary phase space function φ. Contracting this with D and inserting the result
into the stronger condition (4.151) tells us that φ must satisfy

LDφ=φ . (4.157)

This gives us a means to solve explicitly for a family of vector fields D parametrized by the
function φ.

The second condition (4.152) on D depends on the explicit choice of the Hamiltonian
function H , and therefore does not have a general closed-form solution. However, we can
usefully re-write this condition using the solution of D from (4.156). First we note that,
for a general velocity phase space function f , (4.156) implies

LD f =ω−1(θL ,d f )+{
φ, f

}
, (4.158)

where {·, ·} is Poisson bracket constructed from the inverse of ωL . The condition (4.152)
then reduces to

ω−1(θL ,dH)+{
φ, H

}= aH . (4.159)

Using Hamilton’s equations we can write ω−1(θL ,dH) = ιX θL , which gives the first term
in a form that is independent of H . For most theories, the condition (4.159) can be seen
as a way of fixing the function φ. In fact, we will see that, for the examples of theories
that will be important for the analysis in this work, (4.159) will fix φ. Equation 4.159 is
therefore a strong constraint on D. In fact, there is no guarantee in general that (4.159)
has solutions at all. We will see, however, that solutions can be found for a large class of
physically interesting theories.

Before doing this, it is helpful to write our coordinate-free expressions in a convenient
set of coordinates. This will allow us to connect to previous results and will provide a
useful computational tool for solving specific examples. Because we have assumed a
regular Lagrangian, the Legendre transform is invertible. There is thus a one-to-one
correspondence between velocity phase space and phase space. We therefore find it
convenient to write our expressions using Darboux coordinates (q i , pi ) such that

θL = pi dq i ωL = dpi ∧dq i . (4.160)

In these coordinates, (4.156) has the solution

D = pi
∂

∂pi
+{

φ, ·} . (4.161)

The Lie drag of D on a phase space function f then takes the form

LD f = pi
∂ f

∂pi
+{

φ, f
}

(4.162)

and the condition (4.159) becomes

pi
∂H

∂pi
+{

φ, H
}= pi v i +{

φ, H
}= aH . (4.163)
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4.8.1.1. EXAMPLE: HOMOGENEOUS POTENTIALS

We can find explicit solutions for φ, and therefore D, if we restrict to Hamiltonians of a
particular form. The simplest case, which will also prove to be general enough for our
considerations in this work, is when the Hamiltonian has the form

H = 1
2 g ab(q)pa pb +V (q) , (4.164)

where the potential function, V (q), is homogeneous of degree n in q a and the inverse
of the kinetic metric, g ab(q), is homogeneous of degree m in q a . Euler’s homogeneous
function theorem says that, under these conditions,

q a ∂V

∂q a = nV q a ∂g bc

∂q a = mg bc . (4.165)

The ansatz
φ= kq a pa , (4.166)

where k is a constant, solves the condition (4.157) for all k. The homogeneity conditions
(4.165) further tell us that (4.163) has solutions for this ansatz when

a = 2n

n −m +2
k = 2

m −n −2
. (4.167)

This fixes both the form of φ and the transformation properties of H and dt under D.
Inserting our solution into (4.161) gives

D =
(

2

n −m +2

)
q a ∂

∂q a +
( n −m

n −m +2

)
pa

∂

∂pa
, (4.168)

which, as we can easily verify, has the required properties.

4.8.2. A GAUGE PRINCIPLE FOR DYNAMICAL SIMILARITY

In the previous section, we gave conditions that can be used to define a vector field (or
family of vector fields) on phase space for generating dynamical similarities when they
exist. The transformations generated by D where seen to preserve DPMs up to a constant
rescaling of the time parameter. Because we restricted to regular Lagrangian theories,
the equations of motion for the system where assumed to be invertible for all DPMs —
including those related by a dynamical similarity. This means that, in such theories, there
is no underdetermination caused by the dynamical similarities. I have so far hinted that
my proposal will be to treat gauge symmetries at the formal level as transformations
associated with underdetermination. It follows, therefore, that my proposal will regard
the dynamical similarities in theories of this kind as non-gauge symmetries.

I will, however, argue later that there are good epistemic reasons to treat dynamical
similarities as gauge symmetries in cosmology. For models of this kind, my proposal
requires a procedure for converting a theory that treats dynamical similarity as a non-
gauge symmetry into one that treats dynamical similarity as a gauge symmetry. I would
thus like to apply something like the Gauge Principle to dynamical similarity.
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Unfortunately, existing implementations of the Gauge Principle work only for sym-
metries that preserve the symplectic structure of the corresponding Hamiltonian system.
This is because those implementations start from modifications of the Lagrangian, which
is used to generate equations of motion using Hamilton’s principle. But dynamical sys-
tems of this kind are always non-symplectic — as we’ve seen from our general derivations
in Section 4.4.1. The difficulty with dynamical similarity is the fact that such transforma-
tions rescale the symplectic potential and 2-form according to (4.151) and (4.154). These
are immediate consequences of the definition of a dynamical similarity, as I’ve shown. I
thus need to develop a version of the Gauge Principle that works for symmetries that do
not respect the symplectic structure of the corresponding Hamiltonian system.

To do this, I will not use modifications of the Lagrangian to generate new equations
of motion via Hamilton’s Principle. Instead, I will directly modify the corresponding
Hamiltonian system of the original theory in a way that identifies all elements in the
gauge orbits generated by D.38 This will effectively treat phase space as a fibre bundle
with one dimensional fibres that are the orbits of dynamical similarity. Because we
are quotienting phase space by a one-dimensional group, the base space on which our
invariant dynamics is defined cannot be a symplectic manifold. We will see that the base
space is, in fact, a contact manifold with a natural contact form.39 The projection of the
original symplectic flows onto this space will be seen to be contact flows with a contact
Hamiltonian related to the Hamiltonian of the original symplectic system. Crucially,
neither the value of the contact Hamiltonian nor the natural volume form on the contact
space are guaranteed to be preserved by the contact flows. This observation will be the
central component of my proposed solution to the problem of the AoT.

To implement dynamical similarity as a gauge symmetry, I will project the flow of X
onto surfaces that are everywhere transverse to the flow of D in a time parametrisation
that is invariant under the action of D. Restricting the flow in this way will pick a single
element from each of the orbits of D along the dynamical flow of X . This will ensure
that all quantities that are invariant under D have identical dynamics, up to a time
parametrisation, and that the quantity that changes only under D is arbitrary. This
arbitrariness arises from the choice of transverse surface, which can be arbitrarily chosen
anywhere along the integral curves of D .

The procedure above can be implemented for any choice of transverse surface Gw =
{x ∈ Γ|w(x) = w0} for some smooth phase space function w : Γ→R and constant w0 ∈R
such that

LD w = 1. (4.169)

We can define the projected flow, X∥, of X onto Gw by removing the transverse component
according to:

X∥ = X − (LX w)D . (4.170)

We can use the function w and the scaling properties of dt from (4.153) to define a

38An alternative approach is to construct a modified variational principle different from Hamiltonian’s principle
that implements dynamical similarities explicitly. This can be done using Herglotz’s Principle as in Sloan
(2021a, 2021b, 2023). Showing the equivalence between the two approaches is interesting future work.

39For a general introduction to mechanical systems in contact spaces, see Bravetti, Cruz, and Tapias (2017).
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D-invariant time parameter τ using

dτ= e(a−1)w dt , (4.171)

where we recall that a is the scaling of H under a dynamical similarity. The flow equation
(4.149) then projects to the invariant flow equation

d f

dτ
=LXinv f ≡ f ′ , (4.172)

where
Xinv = e(1−a)w X∥ = e(1−a)w (X − (LX w)D) (4.173)

and where we have used primes to indicate derivatives with respect to τ. It is straightfor-
ward to check that [Xinv,D] = 0, where [·, ·] is the Lie bracket on Γ.

Equations 4.172 and 4.173 define an invariant flow on the gauge-fixed surface Gw . In
principle, this is all that one needs in order to produce D-invariant equations of motion
on phase space. Note that these equations of motion depend on the arbitrary values of
w that, by virtue of the transversality condition (4.169), transform non-trivially under
dynamical similarity. The theory defined by this projected flow therefore meets Dirac’s
criterion for calling dynamical similarity a gauge symmetry. This establishes my main
goals for this section.

It is extremely valuable, however, to characterise the invariant flows we’ve obtained
more geometrically. We can do this by using the gauge-fixing conditions, flow equations,
and geometric structures on phase space to define intrinsic geometric structures on
the gauge-fixed surfaces Gw . This will allow us to establish the geometric properties of
the flows on the base space obtained by quotienting out by the action of the dynamical
similarities.

Towards this end, note that we can define invariant structures in terms of ωL , θL and
H by using their transformation properties under D and the transversality of w . This can
be achieved by noting that w is translated under a dynamical similarity so that one can
construct invariant quantities, Q̄, by forming products with exponentials that involve the
appropriate scaling of Q under D ; i.e., Q̄ = e−swQ, where LDQ = sQ. Using this procedure,
we can define the invariant 1-form

ηΓ =−e−w ιDωL = e−wωL(·,D) (4.174)

on all of Γ and its restriction, η, to Gw :

η= ηΓ
∣∣
Gw

. (4.175)

Because ηΓ is D-invariant and Gw is transverse to D , η is independent of the choice of w .
On phase space, the function dηΓ has a two-dimensional kernel spanned by D and the
vector

RΓ = ewω−1
L (dw) = ew {w, ·} . (4.176)

But, when restricted to the gauge-fixed surface, the kernel of dη is just the vector

R = RΓ
∣∣
Gw

. (4.177)
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To see that RΓ is indeed in the kernel of dηΓ, we can use the scaling of ωL under a
dynamical similarity to prove the useful relation

dηΓ =−e−wωL −dw ∧ηΓ . (4.178)

Using the fact that LRΓw = 0, which follows from the anti-symmetry of ωL , and

ιRΓηΓ = 1, (4.179)

which follows from the definitions of RΓ and ηΓ, we get

ιRΓdηΓ = 0. (4.180)

Note that LR w = 0 can also be used to show that [R,D] = 0 using LD w = 1. This implies
that the restriction R to Gw is D-invariant. The two conditions (4.179) and (4.180) then
tell us that η is contact 1-form with Reeb vector field R. (See, Bravetti et al. (2017), for
definitions of the Reeb field and other contact structures.)

We can now use the contact structures; i.e., η and R; defined by D and ωL to show
that Xinv is a contact flow on the surface Gw . Since we’ve already shown that Xinv, ηΓ,
and RΓ are D-invariant, it is easier to do all calculations on Γ and then restrict to Gw

when required. For this reason, we will work on Γ below and suppress Γ subscripts for
convenience.

Following Definition 11 of Bravetti et al. (2023) and proofs given therein, we consider
a contact manifold with contact 1-form η and Reeb vector field R. We then define a
Λ-contact vector field Y generated by the function y as the unique vector field satisfying
the two conditions

ιY dη= dy −R(y)η ιY η=−Λy . (4.181)

This generalises the notion of Hamilton vector field on a symplectic manifold. It also
generalises the notion of a contact vector field for an arbitrary non-zero constantΛ. When
Λ= 1, we recover a standard contact flow. We will see below that, for Λ-contact vector
fields as for standard contact vector fields, the relation between Y and y is bijective (at
least locally on the contact space) so that a Λ-contact vector field Y also defines a unique
function y through (4.181).

We will now show that Xinv satisfies (4.181) for theΛ-contact Hamiltonian

Hc ≡ e−aw H , (4.182)

forΛ= a. The second relation,

ιXinvη=−ae−aw H =−aHc , (4.183)

follows trivially from the definitions of η and Xinv as well as Hamilton’s equations. To
show that the first relation holds, we can make use of the helpful result that

R(Hc ) = e(1−a)w {w, H } = e(1−a)wLX w , (4.184)

which tells us that
Xinv = e(1−a)w X −R(Hc )D . (4.185)
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The quantity R(Hc ) is the Reeb flow of the contact Hamiltonian. It will play a central role
in our discussions because, as can be seen from the form of Xinv above, it determines
the amount of deviation in the projected system from a conservative symplectic system.
Indeed, because D generates a local rescaling of the angular momentum scale, R(Hc ) will
play the role formally similar to a drag coefficient in a mechanical system. Following this
analogy, I will call R(Hc ) the drag consistent with our earlier terminology.

The formulas (4.178) and (4.184) can then be used in combination with the definition
of the contact Hamiltonian (4.182) and Hamilton’s equations to derive

ιXinv dη= dHc −R(Hc )η . (4.186)

Thus, when restricted to Gw , Xinv is indeed the a-contact flow generated by Hc .
It is useful to write the D-invariant flow equations (4.172) for the contact Hamiltonian,

the contact form and the natural measure on Gw . Using the above definitions and, in
particular, the relation (4.184), we find

H ′
c =LXinv Hc =−aR(Hc )Hc . (4.187)

Thus, the contact Hamiltonian is only preserved if w was a constant of motion in the
original symplectic system (i.e., when LX w = 0 ⇒ R(Hc ) = 0). We see that the quantity,
R(Hc ), which I have called the drag, is proportional to the decay (or growth depending on
its sign) coefficient of the total energy in analogy to the drag coefficient of a mechanical
theory. Note also that we get a slight modification to the usual evolution equation for the
contact Hamiltonian in a standard contact system where a = 1. This difference with a
standard contact system is more significant when we look at the D-invariant flow of η. In
this case, we can use the defining relations, (4.183) and (4.186), of an a-contact flow to
show that

η′ =LXinvη= (1−a)dHc −R(Hc )η . (4.188)

The extra term proportional to dHc is zero for a standard contact system where a = 1.
A natural volume form can be constructed from the contact form η. It is straightfor-

ward to show that the kernel of η is such that the top-form

ρ ≡ η∧dηn−1 , (4.189)

where n is the dimension of the configuration space of the original symplectic system, is
non-degenerate. The formula (4.186) can then be used to show that

ρ′ =LXinvρ = (1−a)dHc ∧dηn−1 −nR(Hc )ρ . (4.190)

This reproduces the standard contact evolution when a = 1. Note that, in general, this
measure will evolve along the dynamical flow. In particular, the quantity R(Hc ) that I
have called the drag acts as a decay coefficient for the measure µ. We see that the drag
quantifies the amount of non-conservative behaviour in the system in the form of loss
(or gain) of energy and focusing (or de-focusing) of solutions. The drag will thus be the
central quantity I will consider in later discussions about the arrow of time.
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As a final step, we can write our flow equations using special coordinates on Gw . Since
the gauge-fixed surface is a contact space, it is possible (see, for example, Bravetti et al.
(2017)) to write the contact form locally in the Darboux coordinates (S,Qa ,Pa) as

η= dS −PadQa , (4.191)

where the index a runs over one less value than the index i used for the Darboux coor-
dinates, (4.160), on Γ. We note that the equations (4.179) and (4.180), which define the
Reeb vector R, imply that

R = ∂

∂S
. (4.192)

Inserting these explicit coordinate expressions into (4.183) and (4.186) tells us that

Xinv =
(
−aHc + ∂Hc

∂Pa

)
∂

∂S
+ ∂Hc

∂Pa

∂

∂Qa −
(
∂Hc

∂Pa
+ ∂Hc

∂S
Pa

)
∂

∂Pa
. (4.193)

The contact flow equations, (4.172), then become

Qa′ = Xinv(Qa) = ∂Hc

∂Pa

P ′
a = Xinv(Pa) =−

(
∂Hc

∂Qa + ∂Hc

∂S
Pa

)
S′ = Xinv(S) =−aHc + ∂Hc

∂Pa
Pa . (4.194)

Note the factor of a in the equation of motion for S that is equivalent to the standard
contact case when a = 1. The system above differs from a symplectic system when the
drag, R(Hc ) = ∂Hc

∂S , is non-zero and because of the extra coordinate, S, along the Reeb
direction. We can see from the form above that the drag is indeed analogous to the drag
coefficient of a mechanical system described by the symplectic sub-system (Qa ,Pa). This
is consistent with our general findings that the drag is proportional the decay coefficients
for the contact Hamiltonian, Hc , and the density ρ.

4.8.3. MEASURES AND COUNTING SOLUTIONS

When it comes to counting solutions in a symplectic or contact theory, a useful tool is
the natural volume-form defined by the differential structures of these manifolds. This
volume-form can be used to define a measure µ on the relevant state space. A measure µ
is a non-negative function µ :Σ→R≥0 on a Borel σ-algebra, Σ, over a topological space,
X , that is countably additive and satisfies µ(;) = 0.40 In our case, X is a symplectic or
contact manifold so that µ(R) is a function of some open set R ∈Σ in X . A straightforward
way to obtain a measure in this case is to take integrals of the natural density defined by
the symplectic or contact structures over the regions R.

40More concretely, a Borel σ-algebra on a topological space X is the collection of all open sets of X that are
closed under countable union, countable intersection and relative complement. Countable additivity is

defined as µ

(⊔
i

Ri

)
=∑

i
µ(Ri ) for a countable collection {Ri }∞i=1 of disjoint sets. The set ; is the empty set.
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For a symplectic theory, this natural density is the Liouville form

ρL =ωn/2 , (4.195)

where ω is the symplectic 2-form of the symplectic geometry in question and n is its
dimension (which must be even). The natural measure is then the Liouville measure

µL(R) =
∫

R
ρL . (4.196)

For a contact theory, the natural density is

ρc = η∧dη(n−1)/2 . (4.197)

This can be used to construct a natural contact measure

µc (R) =
∫

R
ρc , (4.198)

which is, perhaps confusingly, often also called the Liouville measure — but of a con-
tact space. I will try to reverse the term Liouville measure for the natural measure of a
symplectic theory.

Because of the defining features of a measure given above (particularly its non-
negativity but also its additivity), a measure can be understood as attributing a size,
usually called a weight, to a region R . This weight is often loosely thought of as a count of
the number of elements in R . In this sense, the measures µL and µc give a counting of the
states in a region R of state space. This is not the same thing as a counting of solutions.
But, as we will see, it can be used to construct one. Still, it is important in the discussion
below to distinguish the properties of the natural measure on state space, which count
states, with the measures used to count solutions constructed from them. Some of these
properties are inherited but not all — particularly in the case we’ll be interested in where
the measure is not translation-invariant.

The Liouville measure of a symplectic system has several important properties that
make it a useful measure on phase space. In Darboux coordinates (q i , pi ), we have that
ω = dpi ∧dq i — a fact that can be used to see that the Liouville measure is invariant
under translations of the Darboux coordinates. In this sense, µL is a Lebesgue on Γ in
these variables. Sometimes, this fact has been used to motivate the Liouville measure
using a principle of indifference. But perhaps a more mathematically and philosophically
motivated justification relies on the invariance of the measure under any symplectic
flow. Because a symplectic flow generated by a vector field Y satisfies ιY ω = dy for
non-degenerateω and some phase space function y , the invertibility ofω leads directly to

LY ω= 0 (4.199)

for any function y . This means that the Liouville form of a symplectic theory is preserved
under the dynamical flow of any choice of Hamiltonian function:

ρ̇L(R) =LY ρL(R) = 0, ∀y . (4.200)
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This result is usually called Liouville’s theorem after a similar result first derived by Liou-
ville (Liouville, 1838). It is an incredibly powerful result precisely because it implies an
invariance property of a density (not just a measure) on phase space under a very large
class of transformations. One can think of Liouville’s theorem as a universality argument
for the dynamical invariance of the natural volume form under any choice of symplectic
evolution.

4.8.3.1. COUNTING SOLUTIONS IN A SYMPLECTIC THEORY

The Liouville measure can be used to count solutions in a symplectic theory. To do this, a
surface transverse to the dynamical flow is needed. Such a surface can be obtained by
finding a function τ such that

LX τ ̸= 0. (4.201)

Such a surface will intersect the integral curves of X exactly once. Its volume under
some measure can then be used to count solutions. I will ignore global issues to keep
the discussion as simple as possible. But note that it is, in general, difficult to explicitly
find surfaces of this kind that will intersect all the different branches of the solutions of a
theory (e.g., solutions with different energies) and that stay well-defined throughout the
entire evolution. Given this caveat, note that a simple application of Darboux’s theorem
allows us to show that there exists, at least locally on phase space, a class of functions
satisfying

LX τe = 1. (4.202)

I will call clocks of this kind ephemeris clocks. Given this relation, we can write X = d
dτe

so that LX H = 0 tells us that the Hamiltonian is τe -independent. Such clocks are only
defined up to canonical transformations on the level surfaces of τe since the vector fields
generating such transformations will be transverse to X by definition.

A very useful and common way to count solutions uses the Liouville form and an
ephemeris clock, restricts ρL to a level surface of τe , and then integrates:

µτe (R) =
∫

R
ρL

∣∣
τe=const , (4.203)

for some region R on the level surfaces of τe . In this case, the time invariance of ρL and
the normality of τe implies µ̇τe (R) = 0. A counting of solutions, defined in this way, is a
simple choice in the sense that the counting is the same for all values of τe .

Note that the time independence of measures on the solution space is, in general, not
true for an arbitrary clock choice τ. While the Liouville measure itself is time-dependent,
its restriction, ρL

∣∣
τ=const, onto an arbitrary co-dimension one submanifold can depend on

time. This is because the flow of X won’t be symplectically normal to the level surfaces of
τ if LX τ ̸= 1 so that the embedding of these surfaces into Γ can pick up a time dependence.
Thus, non-ephemeris clocks will induce measures on the space of solutions that are not
dynamically preserved despite Liouville’s theorem.

We can think of the flow of X projected onto the surfaces of constant τ as a new
flow on these surfaces. Let us call the Hamiltonian generating this flow Hτ.41 A similar

41In general, one can solve for Hτ by treating the conservation equation for the Hamiltonian as an equation for
the momentum, pτ, conjugate to τ.
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argument to the one made above for the measure can be used to show that, in general, only
ephemeris clocks will have an evolution that preserves Hτ. A description of a symplectic
system in terms of a non-ephemeris τ-clock is therefore non-conservative and will, in
general, contain dissipative or anti-dissipative behaviour depending on the value of LX τ.

The time invariance of the Liouville measure can then be understood as a way of
privileging a certain class of clocks — namely the ephemeris clocks — for counting
solutions because they lead to conservative, time-independent descriptions in terms of
internal clocks. Such systems are motivated, among other things, by the simplicity of a
time-independent Hamiltonian and the universal time invariance of the Liouville form.

One can gain further insight into the preferred role of time-independent descriptions
by inquiring into the physical nature of ephemeris clocks. The condition LX τe = 1 can
be seen as a partial differential equation on phase space for τe . Such an equation is
equivalent to finding a variable, τe , that is conjugate to an integral of motion. These
variables are clocks that are dynamically isolated from the system because they behave
exactly as isolated free particles. But for non-trivial theories, such clocks can be extremely
complicated functions of phase space. In most cases, one can only find explicit integrals
of motion when there are known symmetries in the system. Fortunately, for most everyday
situations, it is relatively easy to find (or build) clocks that are sufficiently isolated from
their environment — either because of contingencies or the presence of approximate
symmetries. Thus, the relative abundance of such clocks in everyday situations allows for
approximately conservative, time-independent descriptions of these systems in terms of
internal clocks and justifies the use of the Liouville measure for counting solutions (and
not what it is usually used for, which is counting states).

The assumption of the existence of readily available, dynamically isolated clocks is
manifest in theories with a fixed time parameter. This time parameter is assumed to be
external to the system and have no dynamical effect on it. In fact, the time parameter is
often modelled mathematically as a parameter on an extended phase space that is defined
to by dynamically uncoupled from the original system. There are, however, situations in
which no such convenient clocks exist. For such situations, one requires a theory that
is reparametrisation invariant. This is especially true in general relativity where, as we
will discuss more extensively in Section 8.1.3, integrals of motion are always non-local
functions on phase space (unless the space-time has asymptotic global symmetries).

In reparametrisation invariant theories, the non-conservative nature of most internal
clock parametrisations is apparent. As we proved in Section 4.5.1, the image of the
Legendre transform is restricted to a Hamiltonian constraint surface. This means that
the Hamiltonian takes the standard form H = NH = 0, where N is an arbitrary positive
definite Lagrange multiplier. Theories of this kind are invariant under changes of the
normalization of H of the form H → f H , where f > 0. This can be seen more explicitly
by noting that, because dH = 0, Hamilton’s equations simply state that X is in the kernel
of ω. On phase space, this is usually computed by solving ιXω= dH and then restricting
to the surface H = 0. But this procedure is clearly invariant under the transformation

X → f X H → f H (4.204)

when H = 0. This reflects the fact that the Lagrange multiplier N is arbitrary and, in
particular, says that a rescaling of the Hamiltonian constraint leads to a rescaling of the
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time parameter along the integral curves of X .
An immediate consequence of the ability to rescale H is that the normality condition

LX τe = 1 →LX τe = f −1 that we previously used to fix ephemeris clocks, is not invariant
under reparametrisation. Fortunately, because we have a fixed 2-form in a symplectic
theory, we can nevertheless define an ephemeris clock by requiring that µ̇τe =LXµτe = 0.
Because µτe is only defined in terms of the restriction of ω to the level surfaces of τe , it
is invariant under reparametrisation so that the condition LXµτe = 0 → f LXµτe = 0 is
invariant. Thus, the symplectic 2-form of a theory selects a preferred clock choice τe

where the laws take a time-independent form.
Nevertheless, gauge-invariance under reparametrisation suggests that all time-independent

descriptions are physically equivalent to the descriptions in terms of non-ephemeris
clocks, which will be time dependent in general. Moreover, the time-dependent descrip-
tions are highly fine-tuned to the choice of X , and are only computationally tractable
when dynamically isolated degrees of freedom can be found. For generic systems, this
is not possible. Thus, the simplicity argument for time-independent descriptions fails,
and the only reasonable justification of such descriptions comes only from the univer-
sality properties of the Liouville measure. This significantly weakens the argument for
privileging time-independent descriptions. Next, we will see that, when quotienting
by dynamical similarity, the universality argument based the properties of the Liouville
measure evaporates. Thus, the only good reason to favour time-independent descriptions
is that they are convenient when reliable clocks are available. And even this argument
evaporates in cosmology.

4.8.3.2. COUNTING SOLUTIONS IN A CONTACT THEORY

Just as the Liouville measure, µL , for a symplectic system can be used to count solutions
in a symplectic theory, the Liouville measure, µc , of a contact theory can be used to count
solutions in a contact theory. As in the symplectic case, one can look for level surfaces of
some function τ on the contact space that obey LX τ ̸= 0 and intersect solutions exactly
once. In this case, however, even if one can find a function τe that obeys LX τe = 1, the
time evolution of the induced measure µτ =µc

∣∣
τ=const will not be time independent. This

is because the time evolution of η in a contact system is, in general, not zero because of
the terms on the RHS of (4.190).

One could reverse engineer a clock that would induce a time-independent measure
by requiring LXµτe = 0 as was done in the symplectic theory. For such choices of clock,
the time dependence of the embedding of the level surfaces of τe would be required to
exactly cancel the time dependence of µc due to (4.190). This choice would, however,
be extremely fine-tune to the choice of contact Hamiltonian causing both the simplicity
and universality arguments present in the symplectic theory to fail. We thus conclude
that time-independent measures are no longer favourable in contact systems. This can
explain why contact systems have traditionally been used to model dissipative systems,
whose descriptions are generally time dependent.

The situation becomes even worse for time reparametrisation invariant theories.
Consider the case we are interested in where the contact theory is obtained by quotienting
a symplectic theory by dynamical similarity. In this case, let us recall that a gauge choice
that fixes the level surfaces of some function w obeying LD w = 1 leads to a contact form
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and Hamiltonian such that (see equations (4.174), (4.183) and (4.184))

η=−e−w ιDω Hc = e−aw H R(Hc ) = e(1−a)wLX w , (4.205)

for some flow X in the symplectic theory. Consider now what happens when we change
the gauge-fixing. To be concrete, consider the most general smooth transformation that
preserves the condition on w :

w → w − log f , (4.206)

where LD f = 0 and f > 0. Under such a transformation, the contact form, Hamilton, and
measure focusing factor transform as

η→ f η Hc → f a Hc R(Hc ) → f (a −1)
(
R(Hc )−LXinv log f

)
. (4.207)

Because we are quotienting by dynamical similarity, we must require that our theory be
reparametrisation invariant so that the contact Hamiltonian Hc is constrained to be zero.
Using this constraint, the a-contact equations, (see equations (4.181))

ιXinvη=−aHc ιXinv dη= dHc −R(Hc )η , (4.208)

which define the invariant flow Xinv, are invariant provided Xinv transforms as

Xinv → f (a−1)Xinv . (4.209)

The rescaling of Xinv by a positive function on the contact space means that differ-
ent gauge choices for w lead to reparametrisations of the integral curves of Xinv and
highlights the importance of having reparametrisation invariance as a gauge symmetry
when quotienting by dynamical similarity. This is rather remarkable because both the
contact form and the Hamiltonian are re-scaled under this transformation. For the con-
tact Hamiltonian, this is not a surprise because it corresponds to a different choice of
normalization of the Hamiltonian constraint. But for the contact form, this means that
the measure density ρc can be re-scaled up to a free positive function on the contact space
— saturating all freedom in the measure. Since these contact forms all lead to equivalent
solutions, reparametrisation invariance implies that there is no geometrically preferred
measure in the resulting theory.

We can work out some of the consequences of the previous argument in a bit more de-
tail by noting that the inhomogeneous transformation properties of R(Hc ) under changes
of w imply that the time evolution of the measure density transforms as

LXinvρc = ρ′
c =−nR(Hc )ρc → ρ′

c =−n
(
R(Hc )−LXinv log f

)
ρc (4.210)

when Hc is constrained to be zero. The new term involving LXinv log f is only restricted by
f > 0, and can be used to produce just about any possible amount of measure focusing or
dissipation. In particular, if f is chosen so that w ′ = w − log f is an integral of motion in
the symplectic theory; i.e., if LX w ′ = 0; then ρ′

c = 0 and the measure is conservative. We
see that, as in the symplectic theory, integrals of motion can be used to construct time-
independent descriptions of the system on the contact space. Again, such descriptions
are highly fine-tuned to the choice of dynamics and are difficult to identify without the



4

126 4. REPRESENTING SYMMETRY IN DYNAMICAL SYSTEMS

presence of simple, dynamically isolated degrees of freedom. But unlike the symplectic
case, there is no universality argument to privilege the Liouville measure of a contact
theory. We conclude that the choice of measure and, in particular, the amount of time-
dependence in the dynamics is entirely conventional in the contact theory.

I will return to this general problem in Section 8.1.3 where I will discuss the impli-
cations of this conventionality for my proposed solution to the problem of the AoT. For
now, note that the arguments in favour of time-independent descriptions, which were
already under threat in the symplectic theory because of reparametrisation invariance,
completely evaporate in the contact theory when obvious integrals of motion are unavail-
able. And as I will explain in Section 8.1.3, general relativistic solutions generically lack
simple integrals of motion — particularly in cosmological applications.



5
THE PRINCIPLE OF ESSENTIAL AND

SUFFICIENT AUTONOMY

CHAPTER SUMMARY

In this chapter, I give my definition of gauge symmetry, which I propose as a solution to
Belot’s Problem. I motivate this definition by formulating a principle, called the Principle of
Essential and Sufficient Autonomy (PESA). Using the examples introduced in Section 2.2.3,
I illustrate how my definition of gauge symmetry can be used to address the difficulties
encountered in those examples. My proposal generalises the physical insights of Dirac and
adds the representational insights of the DEKI account of reparametrisation presented in
Section 2.3.1. I end the chapter by applying my proposal to two novel cases: the Kepler
problem, which illustrates a simple application to dynamical similarity, and the Frozen
Formalism problem in reparametrisation invariant systems.
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5.1. MOTIVATION

In this chapter, I will give my proposed solution to Belot’s Problem and apply this solution
to several notable examples, including those used in Section 2.2.3 to motivate Belot’s
Problem. I will also apply my proposal to globally reparametrisation-invariant systems
and show how it solves the so-called frozen-formalism problem in those theories. This
illustrates how the proposal can be extended beyond the context of the standard examples
considered in the philosophy literature. An early version of this proposal was developed
in Section 2 of Gryb and Sloan (2021). Here, I will considerably develop upon this early
proposal and refine it using the representation theory outlined in Section 2.3.1.

Before stating the PESA, it is useful to take stock of what has been developed so
far and give context to some of the results of Chapters 3 and 4. In those chapters, I
began by considering two different ways to characterise symmetry. The first was in
terms of locality conditions on the symmetry generators and the second was in terms
transformation properties of the action. In Section 3.2.1, I gave reasons to flatly reject
definitions of gauge symmetry based on locality conditions because these definitions
provide no concrete way of matching epistemic expectations to the nomic structures of a
theory. In Section 3.2.2, symmetries based on properties of the variational principle were
found to be more promising because the variational principle itself could be engineered,
using some version of the Gauge Principle, to achieve the matching required. It wasn’t
clear, however, why certain properties of an action should have anything to do with
epistemic constraints. Indeed, I gave examples, such as the Noether-1 symmetries, that fit
the conditions for being variational symmetries but should not be understood as gauge
symmetries.

This led to a proposal by Dirac. In this proposal, outlined in Section 4.7, two states are
related by a gauge transformation if the time evolution of quantities that change under
the transformation involves a choice of arbitrary function.1 In terms of the equations of
motion, this means that solutions are underdetermined by the freely specifiable initial
data. Dirac has shown that, in Hamiltonian theories, this underdetermination can be
linked to certain kinds of constraints — first-class constraints — and has given a general
procedure for defining gauge transformations using these constraints.

In Chapter 4, I showed in detail how the constraints relevant to Dirac’s notion of gauge
symmetry and the identities of Noether’s theorems can arise from the properties of the
variational principle. I showed how the underdetermination of the equations of motion
resulting from Dirac’s constraints could be matched to well-known examples of gauge
symmetries. This suggested that Dirac’s analysis underpins all successful attempts to
use variational symmetries to define gauge symmetries. Finally, I gave examples of how
to implement different versions of the Gauge Principle to engineer actions that would
possess specific Dirac-style gauge symmetries.

This led to a promising strategy for solving Belot’s Problem in many contexts. There
are, however, important drawbacks to Dirac’s proposal. Firstly, Dirac’s proposal is rather

1Note that, in Dirac’ proposal, gauge transformations act on instantaneous states and thus correspond to
at-a-time symmetries unlike the over-a-history symmetries considered by Noether and treated in many physics
textbooks.
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unsophisticated regarding the relationship between theory and phenomena.2 Through-
out his analysis, Dirac does not clarify how representations are to be related to physical
phenomena and, in particular, does not define what he means by the ‘physical state’ of a
system. Secondly — and perhaps more restrictive for our purposes — is the fact that his
proposal applies only to Hamiltonian theories.

Regarding the second drawback: while it is true that Dirac’s proposal is tied to Hamil-
tonian systems, his motivation is much more general. Underdetermination of a system of
equations is a formal property of general dynamical systems, and can therefore be used
to pinpoint gauge symmetries more broadly. In this chapter, I will take this fact as the
basis of a general definition of gauge symmetry.

But as I have pointed out repeatedly, no purely formal definition of gauge symmetry
will be able to cover every possible way that a particular mathematical model can be
used to represent features of the world. To address the first drawback, I will thus need to
combine formal dynamical criteria with a normative principle that takes into account
the relationship between the theory in question and the particular phenomena being
studied.

I will take guidance for the construction of such a principle from a proposal due to
Caulton. In the proposal laid out in Caulton (2015), he begins by defining what he calls an
analytic symmetry. While he is using a slightly different formalism than mine for talking
about the relationship between theory, representation, and phenomena, it is possible to
loosely translate his concepts into the language I am using.3

Recall from Section 2.3.1 that, for a given mathematical carrier object X , the interpreta-
tion I and key K used by a theory to define its representations will impute the interpreted
features of X to features, Qa , of the target. In this language, an analytic symmetry in the
sense of Caulton translates most closely to a transformation on the space of values, xµ, of
X -features that preserves all the values, qa , of the features imputed to the target.4 Caulton
calls any function of xµ that is invariant under all analytic symmetries a physical quantity
because these are the quantities that the theory hypothesises to correspond to physical
features of the world. One of the main differences between the language used by Caulton
and the DEKI account used here is in the role played by the context and key. This extra
input, which is required in our model description, will play a central role in separating
puzzles related to building good models in physics and puzzles related to defining gauge
symmetry.

Dirac’s proposal for gauge symmetry can be used to illustrate how Caulton’s language
can be used. In Dirac’s proposal, Caulton’s physical quantities are the Dirac observables
and the analytic symmetries are the symmetries generated by first-class constraints.
One can think of analytic symmetries then as corresponding to the transformations of a
theory’s models that are hypothesised to preserve all the physically salient features of the
world that those structures are intended to represent. It is only by checking the empirical
adequacy of that theory that one can judge the validity of such hypotheses.

Empirical adequacy alone, however, only ensures that Caulton’s physical quantities

2This is not to say that Dirac himself was unsophisticated about the relationship between theory and phenomena
but rather that much was left unsaid in his writing in this regard.

3See §2.3 of Caulton (2015) for the definition is his language.
4Caulton leaves open whether these transformations should act at a time or over a history.
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have the capacity to represent the phenomena, and does not eliminate the possibility
that the physical quantities overdetermine the phenomena. Using the notion of analytic
symmetry, Caulton then proposes a methodological principle for aligning theoretical
descriptions with physical reality. This principle involves maximising a theory’s analytic
symmetries while preserving its empirical adequacy. The proposal is described in two
phases:

During the first phase we set up representational links between the theory and
the observable portion of the physical world, under the assumption that the
theory is empirically adequate (or similar). In the second phase, we maximise
the theory’s analytic symmetries, taking advantage of the representational
links forged in the first phase so as not to compromise empirical adequacy.
[§4]

This two-phase procedure is designed to ensure that a theory has enough physical quanti-
ties to represent phenomena — but no more than strictly necessary.

I will adopt a similar attitude in my own definition of gauge symmetry. In particular,
I will insist on identifying as many analytic symmetries as possible while preserving
empirical adequacy. In contrast to myself, however, Caulton is hesitant to commit to
any particular formal condition for identifying analytic symmetries. This may be partly
due to the fact that Caulton defines ‘gauge symmetries’ as a “cluster of closely related
formal notions” which are “often defined purely formally, as a space-, time- or spacetime-
dependent transformations in some internal space.” He then goes on to say:

It may indeed be claimed that all gauge symmetries are analytic and all ana-
lytic symmetries are gauge. But establishing that claim would be a significant
philosophical achievement: one that could be clear only in a language that
refers to them with different names. Besides, it seems to me that there are
both analytic symmetries that are not gauge and gauge symmetries that are
not analytic.

The last comment seems to reflect the difficulty of solving Belot’s Problem without a
consistent or precise definition of gauge symmetry.

In my proposal, I aim to bring clarity by proposing a concrete definition of gauge sym-
metry. I will use Dirac’s motivation as a guide for identifying a general formal condition
for an at-a-time notion of gauge symmetry. This condition will involve identifying a set of
structures that can be autonomously evolved uniquely using the equations of motion. As
we have seen in Chapter 4, for the gauge symmetries of well-known symplectic systems,
this involves identifying the rank of the dynamical equations. I outlined a general proce-
dure for doing that. (Specifically, one counts the number of independent null vectors of
the symplectic 2-form that are not tangential to the dynamical flow.)

For more general systems, it is not possible to be as specific in one’s definition. Instead,
I will focus on the general character of the equations of motion. Instead of adopting
Caulton’s language of physical quantities and analytic symmetries, I will use the terms
(candidate) observable quantities, since I am concerned with modelling empirical features,
and (candidate) gauge symmetries, to match my earlier terminology, but will sometimes
drop the word candidate as this can be understood from context.
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Using this terminology, I will require that the observable quantities form an algebra.
Physicists often refer to this as the observable algebra of a system, matching the terminol-
ogy I have introduced. In this language, the elements of the observable algebra define the
hypothesised set of features of a theory’s representations that are essential for imputing
all the features of the target system that are relevant to the modelling context. The sym-
metries that preserve the observable algebra are then the candidate gauge symmetries of
the theory.

The choice of an algebra as the basic mathematical component of the representational
structures is ultimately a pragmatic one. It provides a minimal set of operations (both
addition and multiplication) that allow for the group structure I’ve assumed and the
ability to express non-trivial laws (e.g., in terms of differential equations). The closure
property of an algebra is particularly important for my purposes since I want observables
to be defined in terms of a closed set of structures. Algebras also possess important
substructures, generating sets, that are minimal sets whose elements can be combined
using the basic operations of the algebra to construct any element of the algebra. Such
sets will be useful for counting the basic representational degrees of freedom of the system.
But perhaps the most important reason for choosing an algebra is that many, if not all,
observable quantities used in scientific theories can be represented by quantities that do
form an algebra.5 Nevertheless, it would not require much effort to extend the formalism
to some other (closed) mathematical structure.

After specifying the observable algebra of a theory, I will require that the equations
of motion be well-posed and autonomous in this algebra. The requirement that the
equations be well-posed is motivated by Dirac’s definition and requires that the solutions
be determined uniquely in terms of an element of a generating set of the observable
algebra.6 The requirement that the equations be autonomous requires that no additional
mathematical quantities need to be specified in order to solve the dynamical system.
Not only this, but specifying the values of any other variables in the theory should have
no effect on the evolution of any element of the observable algebra. This is precisely
how Dirac understood and defined his observables: for Dirac, the evolution of non-
observable variables requires the specification of arbitrary functions. Thus, any non-
trivial transformation of the instantaneous state of the theory that leaves the observable
algebra invariant is then a candidate gauge symmetry according to my definition.

I will then proceed along the lines suggested by Caulton: increase the number of
candidate gauge symmetries until empirical adequacy can no longer be maintained. This
aspect of my proposal is also similar to the process of Ramsification, advocated in Lewis
(1970), for identifying the empirical core of a theory. Note that empirical adequacy, in
my language, means that the target system does indeed possess the features imputed by
the theory’s representations. In general, this procedure will involve implementing some
version of the Gauge Principle (discussed in detail in Section 2.2.2) because the Gauge
Principle can be used to add specific amounts of underdetermination to a system of
equations. I have given examples for how to do this for various kinds of theories including
the Kretschmann and Stückelberg procedures described in Section 2.2.2 and the best-
matching procedure performed in Section 4.3.3.2. I have even provided a general scheme

5In quantum mechanics, for example, these could be the elements of a C∗-algebra.
6I will discuss the applicability of this formalism to stochastic and quantum systems in Section 5.2.1.
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for doing this for non-symplectic symmetries like dynamical similarity in Section 4.8.2.
While the details of such a procedure are not important for the general argument, the
net result of applying such a procedure is now clear: one should obtain a new dynamical
system where elements of the desired observable algebra are uniquely determined by
the dynamical equations and the remaining representational variables can be assigned
arbitrary values. Once we have obtained a formulation of the theory that maximises the
candidate gauge symmetries in this way, and if the theory is empirically adequate, then
we can identify the resulting candidate gauge symmetries as actual gauge symmetries.

By requiring empirical adequacy, I ask that the theory in question have sufficient
mathematical structure to represent the relevant phenomena. By maximally increasing
the candidate gauge symmetries while maintaining empirical adequacy, I require that
the theory have no more than the essential (or necessary) amount of structure for repre-
senting the phenomena. Autonomy says that the remaining representational structures
determining the instantaneous state can be specified arbitrarily without affecting the
dynamics of the essential and sufficient structure. Together, these requirements form
what I will call the Principle of Essential and Sufficient Autonomy (PESA),7 which I will state
more concretely below. This forms the basis of my proposal for solving Belot’s Problem.

In the remaining sections of this chapter, I will first give a more concrete statement of
the PESA. Then, I will briefly compare and contrast this proposal with a similar proposal
made by Barbour. Finally, I will give examples that will illustrate both how the PESA
should be used in general and how it provides a solution to Belot’s Problem for these
situations.

5.2. STATEMENT OF THE PESA

Let me now state the PESA. Consider a general theory whose representations include an
instantaneous state ψ(t ,b I (t )) at time t , labelling Cauchy surfaces, that depends on the
time-dependent elements of a set B = {b I (t )} that is a generating set of some algebra B.
Since the algebra B can be extremely general, this puts virtually no restriction on the
state other than it depend only on the current time t . Since t itself can be considered
an element of B, there is no loss of generality in writing ψ(t ,b I (t )) =ψ(b I (t )). The time
evolution of ψ can then be determined by pulling back the time dependence of the b I (t ).
Let me assume that this can be expressed in first-order form8

ḃ I (t ) = f I (b I (t )) , (5.1)

where dots are t-derivatives and the f I are automorphisms of B for which I won’t specify
any significant restrictions (in particular, they could depend on ψ itself). In general,
equations (5.1) are not required to be well-posed in terms of an element of the generating
set B . This means that a specification of initial data, {b I (t0)} at some time t0, does not
necessarily uniquely determine the solution {bi (t )} at some later time t for all t > t0. I do,
however, require that at least one solution does exist for some choices of initial data in a
non-trivial domain. This requirement excludes theories with inconsistent or otherwise
poorly defined equations of motion.

7Pronounced ‘PEA-zah’.
8I will justify this assumption in Section 5.2.1.
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Following the definitions of Section 2.3.1, I identify the algebra B as the algebra of
values, b I , of the features of the mathematical carrier object X used to define the theory’s
models. The theory must then assign an interpretation I : B →B that is a bijection on
B that maps values of the X -features to values of interpreted Z -features. The values of
these interpreted features are then fed into a key that associates them with features of the
target as candidates for imputation. If we denote the values of the target features as q a

and the algebra they belong to as P , then the key (among other things) defines a map
K : B →P that is usually non-bijective.

I now call A ⊆ B the observable algebra of a theory if it is the smallest subset of B

such that the composition of K with I obeys

K ◦ I (A ) = K ◦ I (B) . (5.2)

That is, the algebra is observable when its elements span the minimal set necessary
to impute all features of the target system deemed relevant by the interpretation and
key. Note that the observable algebra, as noted above, is defined a priori in terms of
the mathematical structures (specifically the maps I and K ) that are necessary to define
a theory’s models. The specification of an observable algebra therefore amounts to a
hypothesis about what features of a target system can be imputed by a theory.

We can now understand the PESA to be a normative principle that gives the condi-
tions for having a good interpretation and key such that the dynamical laws, defined by
Equation 5.1, and the observable algebra, defined by the maps I and K , are aligned with
the actual properties of the target system. To accomplish this, consider a generating set
A = {ai } ⊆ B of A and the restriction of (5.1) to A, i.e.,

ȧi (t ) = f̃ i (ai (t )) . (5.3)

We then have:

The Principle of Essential and Sufficient Autonomy (PESA)

If the equations (5.3) are

(i) well posed, and

(ii) autonomous in A,

and if

(iii) The observable algebra A is empirically sufficient; i.e., A has sufficient
structure to faithfully represent the target system,

(iv) The observable algebra A is empirically necessary; i.e., A has the neces-
sary amount structure to faithfully represent the target system,

then I and K are good.

I will define well-posedness, autonomy, empirical sufficiency and empirical necessity
more carefully bellow. I can now use the PESA to define a gauge symmetry as follows:
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Gauge symmetry

A gauge symmetry is a non-trivial automorphism of B that preserves A when
I and K are good.

Note that while gauge symmetries, when they exist, will be automorphisms by this defini-
tion, there is really nothing that guarantees, in general, that they be smooth or otherwise
nice in any particular way. The fact that they do often happen to be simple and well-
behaved transformations in our best theories of physics is a compelling fact worthy of
further investigation.

Let me now describe in more detail the formal features of the PESA to connect these
with the motivations of Section 5.1. As a definition of gauge symmetry, the PESA has two
important components. The first is the dynamical requirements on the representational
structures. These are expressed by the conditions (i) and (ii) on the equations (5.3). The
well-posed condition requires that the dynamical equations be invertible in terms of any
A. Condition (ii) enforces the autonomy of the evolution equations. This ensures that
changes to any element of B that is not in A will not affect the dynamical evolution of A .
In other words, autonomy requires that the empirical core of a theory is closed. Together,
these dynamical conditions are in line with Dirac’s conditions for observables.

The second important component of the PESA involves the empirical adequacy of the
theory and is encoded in the sufficiency condition (iii) and the necessity condition (iv).
Empirical sufficiency requires that the observable quantities specified by the theory are
sufficient for representing the relevant phenomena. This avoids that there are features
of the target system that the theory should describe according to its key but cannot. In
Section 5.4.1.3 we will see an example of how this condition can be violated. Empirical
necessity requires that the observable quantities of a theory only have the minimal
representational structure necessary to represent the phenomena. This avoids situations
where a theory purports to describe more features than what are actually relevant to the
modelling context. Violations of this condition are particularly difficult to spot, and will
be the subject of many of our considerations in Part II.

Empirical adequacy is often implicitly assumed in many accounts of gauge symmetry.
However, empirical considerations are essential for understanding the concept of gauge
symmetry because gauge symmetries are usually understood to be statements about the
relationship between theory and phenomena. Explicitly requiring that symmetries only
be considered gauge when they satisfy certain formal requirements and when the theory
can adequately describe the phenomena in question implies that both dynamical and
empirical considerations are relevant.

The PESA can then be used to decide what interpretive practice should be used to
align these dynamical and empirical considerations. It is then clear how my definition of
gauge symmetry corresponds to a proposed solution to Belot’s Problem. The PESA gives
conditions on good interpretive practice, through the specification of a good interpreta-
tion and key, that align dynamical and empirical considerations. When these are satisfied,
gauge symmetries are then given an exact definition in terms of the formal properties of a
theory’s models.

Let me say a bit more about the requirement that I and K be ‘good’. Goodness, in my
sense, requires that the theory’s models provide a faithful representation of the target. This,
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in turn, requires that the context C of the representation selects the appropriate features
of the mathematical carrier object X to be imputed to the target. This illustrates the
dependence of my definition of gauge symmetry on the experimental context. Moreover,
the key must specify the right idealisations, approximations, assumptions, judgements,
etc that will lead to a faithful representation. This extends and clarifies what Dirac may
have meant by gauge symmetries preserving the “physical state” of a system. By separating
the representational aspects of the proposal (i.e., the specification of a modelling context
as well as the necessary idealisations, approximations and other auxiliary assumptions)
from the dynamical ones (i.e., the conditions on the amount of underdetermination), a
clear definition of gauge symmetry is possible.9

Finally, the PESA leads to two clear prescriptive methodological rules:

1. If a theory violates condition (iv), then apply some version of the Gauge Principle
to eliminate the non-essential elements of A .

2. If a theory violates condition (iii), then extend the theory to accommodate new
phenomena.

In Section 5.4, we will see examples of how to implement these prescriptions. These
examples will illustrate how Belot’s Problem can be handled using the PESA and will relate
these discussions to known ways of treating gauge symmetries.

5.2.1. ON THE APPLICABILITY OF THE PESA

As presented above, the PESA assumes a theory that can be written as a dynamical system
of differential equations that are first order in time. In Chapter 4, I went to great lengths
to show how all of our most fundamental theories of physics, and indeed many non-
fundamental and non-physics theories, can be cast into this form. One notable difficulty
is general relativity — particularly its non-globally hyperbolic DPMs. I will now defend my
approach in light of this difficulty. My arguments will assume some technical expertise in
general relativity.

The attitude I will take here will be to think of theories as tools that scientists can use
to explain observable phenomena. In this regard, observers can only be assumed to have
access to information on their past light-cone. Using such information, these observers
can reconstruct a Cauchy problem for temporal evolution in their causal diamond.10 This
sort of usage of general relativity is perfectly compatible with the first-order formalism
I am assuming because Cauchy problems can be expressed in terms of the kind of first-
order differential equations at the basis of my proposal. Moreover, causal diamonds
can be patched together with other causal diamonds to obtain any possible DPM of
general relativity.11 Thus, my picture is not incompatible with a theoretician’s world-
view involving groups of different observers embedded in an arbitrarily complicated

9Focus on the context and key also brings to light the role of modelling assumptions in shaping what should
rightly be considered the empirical core of a theory.

10This can be done, for example, using a double-null decomposition of the spacetime in the causal diamond, as
introduced in Sachs (1962).

11This is because solutions in general relativity are Lorentzian space-times, which can be equipped with an
atlas. By taking infinitesimally small patches of causal diamonds, which are locally Minkowski, one can always
construct such an atlas.
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Lorentzian space-time — even if this would involve imposing complicated non-local
constraints between the different observable patches.

The attitude expressed above also justifies why I believe that an at-a-time notion of
symmetry is the physically salient one at the cosmological level. Using data on their past
horizons, observers can reconstruct the at-a-time state of a theory and check whether
this state has specific properties in relation to some laws. But such an observer cannot
‘observe’ an entire history — particularly the non-globally hyperbolic ones of general
relativity — and check whether that history has the desired properties. I therefore con-
clude that, under my understanding of how a theory should be used, at-a-time notions of
symmetry are more physically salient. The instantaneous states of first-order systems are
ideally suited to studying these notions of symmetry.

One last comment about the applicability of the PESA is that, by only assuming an
algebraic structure for observables that evolve according to differential equations, I can
accommodate quantum theories (including quantum field theories and classical stochas-
tic theories) whose observable algebras can be written in terms of operator algebras acting
on a Hilbert space or, more generally, C⋆-algebras. Indeed, my attempt to represent the
observable quantities of a theory in term an observable algebra was inspired by canonical
attempts to quantize gravity where the goal is to do this explicitly.12 Note that requiring
that the evolution equations be well-posed in terms of an observable algebra doesn’t
require that those equations be deterministic in the instantaneous state. This extends the
domain of applicability of my proposal to statistical and quantum mechanics.

5.3. BARBOUR AND “POINCARÉ’S PRINCIPLE”

I have already commented on the motivations for the PESA stemming from Dirac’s defini-
tion of gauge symmetry. Similar ideas have been expressed at least as early as Poincaré,
and have been re-emphasised more recently by Barbour (in, for example, (Barbour, 2010,
§5)). Indeed, the motivation for the formal conditions of the PESA are similar to what
Barbour has called Poincaré’s Principle. According to Barbour (2010), the attribution of
this principle to Poincaré results from an analysis in Chapter 7 of Science and Hypothesis
(Poincaré, 1913) where Barbour claims that Poincaré was attempting “to define relativity
in terms of the amount of information needed to be specified in coordinate-independent
(gauge-invariant) form if the evolution is to be predicted uniquely.” [p.1271, original
emphasis.]

In the relevant passage, Poincaré discusses the empirical consequences of the angular
momentum of the spinning Earth. He notes that what is relevant for describing the data
is the amount of independent data required to solve the evolution of the system: [p.114]

“Provided that the future indications of our instruments can only depend on
the indications which they have given us, or that they might have formerly
given us, such is all we want, and with these conditions we may rest satisfied.”

In this case, he points out that if “thick clouds hide the stars from men who cannot observe
them, and even are ignorant of their existence”[p.109] then only the value of the angular

12See, for example, Rovelli (2004) or Thiemann (2008).
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momentum and not the absolute orientation of the Earth is required to describe the
phenomena. In the language of the PESA, the prescriptive rule (1) would suggest applying
a version of the Gauge Principle to Newtonian mechanics where the angular momentum,
but not the orientation, would be part of the observable algebra.13

One can plausibly use the quote above to motivate the conditions (i) - (iv) used
to define the observable algebra of the PESA. In any case, these conditions are closely
aligned to how Poincaré’s comments have been interpreted by Barbour. This match was
used to motivate the naming of the elements of the observable algebra A the Poincaré
observables in Gryb and Sloan (2021). This naming is a nod to the Dirac observables,
which are generalized by the Poincaré observables. Note, however, that the account of
representation I am using (i.e., the DEKI account) was designed to be as metaphysically
neutral as possible. In this way, the PESA is not committed to Barbour’s relationalism.

5.4. PROBLEMS SOLVED

In this section, I will reconsider the examples discussed in Section 2.2.3 to illustrate Belot’s
Problem and show how they can be dealt with using the PESA. This will serve both to
show how common illustrations of Belot’s Problem can be dealt with using the PESA
and as a template for how to apply the PESA more generally. Towards this end, I will
also use the PESA to study the case of reparametrisation invariance and the resulting
frozen-formalism problem described in Section 4.5. The conceptual problems related to
reparametrisation invariance are not as well-known in the philosophical literature as, say,
those of Galileo’s ship. This example will then serve as a way to show that the PESA has
general applicability outside the original scope of problems considered in much of the
philosophical literature on symmetry. Finally, the example related to the symmetries of
the Kepler problem will relate to our broader discussions of dynamical similarity and the
applications of the PESA to cosmology.

An important aspect of the applications of the PESA we will consider is the way in
which the methodological prescriptions (1) and (2) appear in different contexts. The rule
(1) appears as a way of testing whether a particular theory has too many observables while
rule (2) occurs when the observables are too few. Interestingly, we will see that both cases
can be associated with significant theoretical advances. This highlights the importance of
both the sufficiency and necessity conditions (i.e., conditions (iii) and (iv)) of the PESA.

5.4.1. GALILEO’S SHIP

5.4.1.1. THE EMPIRICAL CONSEQUENCES OF GALILEAN TRANSFORMATIONS

In Section 2.2.3.1, I described the Newtonian free-particle and noted its invariance under
the Galilean transformations (2.2). I commented on the fact that treating the Galilean
transformations as a gauge symmetry would trivialise the theory since all solutions, (2.1),
of the free particle can be related by a Galilean transformation. This was seen as a generally
unfavourable outcome because a free particle can be used as a model for many physical
systems in the world that are not devoid of physical content.

13See Gomes and Gryb (2021) for an implementation of the Gauge Principle that achieves this in general, and
that also has other appealing explanatory features.
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One example of this kind is Galileo’s ship, which was discussed in Section 2.2.3.2. In
this case, the position of the ship relative to a fixed point on the shore could be modelled
as a free particle because, to a good degree of approximation, there are effectively no
forces impeding the motion of the ship along the shore.

The PESA requires that the observable algebra of this system be generated by the
minimal set of instantaneous representational structures required to model the system
in terms of first order differential equations. The Hamiltonian for the Newtonian free
particle is

Hfree =
p⃗2

2m
, (5.4)

where p⃗ is the particle’s momentum in the x⃗-direction and m is its mass. Here the vector
components range over the two-dimensional plane spanned by the surface of the water.14

Hamilton’s equations tell us

˙⃗x = p⃗

m
˙⃗p = 0. (5.5)

These equations are integrable for all values of (⃗x(t ), p⃗(t )) ∈R4 and autonomous in these
variables.

We know from experience that this theory is empirically adequate as it correctly de-
scribes the instantaneous position and velocity of the ship relative to the shore given the
approximations we are making. Moreover, removing any of the position or momentum
variables would ruin the empirical adequacy of the theory because we would be con-
straining the ship’s motion in an unphysical way. Thus, the PESA tells us that we have a
good interpretation of the system with an observable algebra generated by the set {⃗x, p⃗}.

We are then justified in using this observable algebra for defining the gauge symme-
tries of the theory. Because all the elements of {⃗x, p⃗} transform under Galilean transfor-
mations, the Galilean transformations are not gauge symmetries of the theory according
to my definition. This is precisely in line with the expectation that Galilean symmetries
should have empirical consequences when applied to Galileo’s ship.

This shows how the PESA deals with an earlier puzzle, noted in Section 2.2.3.1, re-
garding the gauge-status of the Leibniz shifts, which are the Euclidean subgroup of the
Galilean transformations. As I showed in Section 4.3.3.1, the Leibniz shifts are Noether-1
symmetries of Newtonian mechanics in general. They are therefore variational symme-
tries of the free-particle theory. However, because such symmetries are not associated
with underdetermination in the equations of motion and because the model we have
given is empirically adequate, there is no need to treat these as gauge symmetries in this
context according to the PESA.

5.4.1.2. GALILEAN TRANSFORMATIONS AS GAUGE SYMMETRIES

In contrast to the previous section, one might be interested in analysing the role of
Galilean transformations in the same system but in a slightly different context, and
one that was discussed by Galileo in his original thought experiment. In his Dialogue
Concerning the Two Chief World Systems, Galileo considers how everything moving inside

14We’re ignoring the constraint that the boat is not allowed to move onto the shore, which would only complicate
the model unnecessarily.
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the contents of a large ship’s cabin will move the same way no matter what the motion of
the ship, provided that motion is uniform. It is illuminating (and amusing) to quote the
wonderful passage directly: (Galilei, 1953, pp. 186-187 (Second Day))

Shut yourself up with some friend in the main cabin below decks on some
large ship, and have with you there some flies, butterflies, and other small
flying animals. Have a large bowl of water with some fish in it; hang up a
bottle that empties drop by drop into a wide vessel beneath it. With the ship
standing still, observe carefully how the little animals fly with equal speed to
all sides of the cabin. The fish swim indifferently in all directions; the drops
fall into the vessel beneath; and, in throwing something to your friend, you
need to throw it no more strongly in one direction than another, the distances
being equal; jumping with your feet together, you pass equal spaces in every
direction. When you have observed all these things carefully (though there is
no doubt that when the ship is standing still everything must happen in this
way), have the ship proceed with any speed you like, so long as the motion is
uniform and not fluctuating this way and that. You will discover not the least
change in all the effects named, nor could you tell from any of them whether
the ship was moving or standing still.

In this passage, Galileo is clearly describing a form a gauge symmetry: the physical
processes in the ship’s cabin proceed in the same way regardless of the velocity of the ship
relative to some reference point on the shore. And as long the cabin is closed off from
the rest of the world, there is no empirical way to detect the ship’s motion because the
location of a reference point on the shore in empirically inaccessible.

Let us use the PESA to analyse the symmetries of this system. First, we will try to
model the contents of the cabin as rigid objects with their locations approximated by
their centre of mass. This can be done using a system of N Newtonian point particles with
positions x⃗I and velocities ˙⃗xI interacting with some potential, V (⃗xI ), that we won’t need to
specify explicitly. In this model, one assigns coordinates to these N particles by imagining
that they are placed in some absolute Cartesian coordinate system. For observers in the
cabin, this can be done by choosing an arbitrary reference point inside the cabin — say
the centre-of-mass of all the contents. Let us call this theory Naive Newtonian Mechanics
(NNM) because it makes the (naive) assumption that the Cartesian coordinates and their
velocities are observable quantities. I will now give a more detailed model of the system
and show that the PESA tells us that NNM does not provide a good description of the
system. I will then use the prescriptive rules of the PESA to generate a new theory that
does provide a good description.

Newton’s laws can be expressed in first-order form using the well-known Hamiltonian

HNNM =∑
I

p⃗2
I

2m
+V (⃗xI ) , (5.6)

which leads to the Hamiltonian equations of motion

˙⃗xI = p⃗ I

m
˙⃗p I =−∇⃗V . (5.7)
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For suitably well-behaved potentials, which we will assume in this model, these equations
are well-posed and autonomous in the set ANNM = {⃗xI , p⃗ I }. Using the obvious interpreta-
tion and key of NNM from our description above, the algebra ANNM generated by ANNM

is observable because NNM assumes that all Cartesian coordinates and their velocities
can be measured. The algebra ANNM thus meets all the dynamical criteria of the PESA.
That should be unsurprising since, as a mathematical system, this model is nothing but a
direct generalization of the free-particle model of the previous section.

Now though, the target system of this representation is different (it doesn’t include any
reference frame outside the cabin), and so we must test whether the empirical conditions
of the PESA continue to be satisfied. I will assume that the Newtonian time can be reliably
measured for this system using some suitably isolated external clock. Under this assump-
tion, experience tells us that the sufficiency condition (iii) is satisfied because, by choosing
a reference frame inside the cabin, one should be able to correctly predict the behaviour of
this Newtonian system using Newton’s laws in the form (5.7). However, Galileo’s passage
above suggests that the necessity condition (iv) is no longer satisfied. This is because
one could choose any reference point moving with uniform velocity relative to the cabin
and predict all the same phenomena inside the ship’s cabin — provided one converts
all coordinates to centre-of-mass coordinates inside the cabin. This suggests that there
is more representational structure in ANNM than is strictly necessary to represent the
known features of the target. The PESA then tells us that NNM is not a good theory for
describing this system because its interpretation and key are not good.

In this way, the PESA reproduces standard relationalist critiques of Newtonian me-
chanics. But the prescriptive rule 1 allows us to go further. This prescription tells us that
we should use some form of the Gauge Principle to introduce the right amount of under-
determination into our equations of motion to match the underdetermination of NNM
by the phenomena. I have already given, in Section 4.3.3.2, a procedure for doing this
called best-matching. I called the theory obtained from this procedure Barbour–Bertotti
(BB) theory and worked out the first order analysis and degree-of-freedom counting in
Section 4.6.1. For the system considered here, the underdetermination is in the position
of the origin of the Cartesian system used to write the coordinates of the N particles. We
can therefore exactly use BB-theory, which best-matches spatial translations.

At the interpretational level, Galileo’s considerations suggest to us that the observable
quantities of the new theory should be invariant under translations. This defines a
particular interpretation and key of the theory where the observable algebra, ABB, of
BB-theory is translation invariant. Indeed, our analysis of the equations of motion of the
BB-theory first in Section 4.3.3.2 and later, in first-order form, in Section 4.6.1 confirm
this to be the case.

What we found in Section 4.6.1 (see that section for details) was that there were exactly
four directions (see Equations (4.112)) on velocity phase space for each translation (i.e.,
each spatial direction) in which the sympletic structure of the theory was degenerate.
This means that there are four representational quantities per translation that cause the
equations of motion to not be well-posed. Two of these correspond to the arbitrariness of
the gauge field and its velocity, which we introduced as part of the Gauge Principle itself.
It is then expected that the gauge theory be invariant under arbitrary changes of these
variables.
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More significantly, we found that the remaining two obstructing directions were
associated with the centre-of-mass position and velocity. These latter directions generate
arbitrary time dependent translations, which preserve the centre-of-mass coordinates.
Thus, while the first-order equations are not well posed on the velocity phase space of
Cartesian coordinates and their velocities, they are well-posed and autonomous in terms
of the centre-of-mass coordinates and their velocities. This is exactly a generating set for
the observable algebra, ABB, identified by the interpretation and key of the BB-theory.
Thus, the dynamical conditions of the PESA are satisfied.

Experience tells us that the sufficiency condition (iii) is also satisfied because the
evolution of the centre-of-mass variables can be used to predict all the relevant empirical
phenomena simply by choosing the right reference point within the cabin. But now, the
necessity condition (iv) is also satisfied because the observable algebra ABB is a maximal
translation-invariant set for this system.15 The PESA then tells us that the interpretation
and key used in BB-theory is appropriate for this system.

As a last step, we can identify gauge symmetries for the BB-theory as applied to this
system. Because the Galilean transformations leave the observable algebra ABB invariant,
it follows from my definition that they are gauge symmetries. This exactly matches
Galileo’s intuition above, and shows that the PESA can provide a good tool for determining
when and how to match the gauge symmetries of a theory with the physical features of
the target system in question.

Note that the prescriptive rules of the PESA don’t specify what version of the Gauge
Principle to use. Rather, the PESA puts reasonable constraints on the output of the
gauging procedure. Instead of using best-matching, one could have chosen to modify
the geometry of a neo-Newtonian space-time. However, the advantage of the canonical
analysis performed in Section 4.6.1 is that it gives us a direct tool for assessing the amount
of at-a-time underdetermination in the equations of motion.

5.4.1.3. EXTENDING GALILEO’S SHIP

There is one final context in which the PESA can illuminate our understanding of the
symmetries of Galileo’s ship. Consider what happens if the cabin of Galileo’s ship has
windows that can be opened to reveal a view of the shore. In this case, there is a small
but negligible interaction between the shore and the contents of the cabin that gives
observers in the cabin empirical means of detecting motion relative to the shore.

In this case, the BB-theory of the previous section will fail the sufficiency condition (iii)
of the PESA so that it is no longer an appropriate theory for describing the system. This is
because there is a new phenomenon — the motion of the ship relative to the shore — that
the BB-theory cannot represent. In this case, the prescription 2 tells us that we should
extend the system by enlarging the observable algebra to accommodate the new features.

When the insufficient theory is a gauge theory, there is an obvious way of doing
this extension: simply undo the Gauge Principle. It is easy enough to see that such
an extension will work in this case. Undoing the Gauge Principle of BB-theory simply
reproduces the NNM-theory of the previous section. But now the position and velocity of
the centre-of-mass can be taken to be measured with respect to some fixed point on the

15To see this, note that the centre-of-mass coordinates are the result of a formal quotient of the Cartesian
coordinates by the translation group.
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shore as in Section 5.4.1.1. With this interpretation and key, the observable algebra ANNM

satisfies all the conditions of the PESA, and NNM is therefore an appropriate theory for
describing this new system. Importantly, rigid Galilean transformations of the contents of
the ship’s cabin will change the position and velocity of the centre-of-mass of the cabin,
which is now part of the observable algebra. These Galilean transformations should then
no longer be considered gauge transformation according to the PESA in accordance with
our expectations.

Of course there is no guarantee that this sort of extension procedure will work for every
system. However, it is noted in Rovelli (2014) that this particular extension procedure16 is
an example of a general principle that can be used in many contexts to take advantage
of a gauge symmetry in order to describe the ways in which an isolated system can be
coupled to an external system. What I’d like to note here is that the different physical
situations of Galileo’s ship help to serve as a template for how the PESA can be used in
general to correctly identify the appropriate observable quantities and gauge symmetries
of a particular theory and its target phenomena.

5.4.2. THE KEPLER SYMMETRIES

In Section 2.2.3.3, we studied the symmetries of the Kepler problem. We found that
the DPMs of a Keplerian model were related by the dynamical similarity (2.3),17 which
is a broad symmetry of that system. In Section 3.4, I studied the formal properties of
dynamical similarity in general and gave an implementation of the Gauge Principle
applicable to that case. The Kepler problem therefore provides us with an opportunity
to test the applicability of the PESA to non-symplectic symmetries and gives us a simple
way to test the PESA outside the domain of applicability of Dirac’s proposal.

It is relatively straightforward to apply the PESA to the Kepler problem and, in partic-
ular, the symmetries (2.3). Let us consider the standard context of the Kepler problem
in which the aim is to model the motion of planets in our solar system. In this context,
Newtonian mechanics stipulates that we can measure the absolute values of t , r and
θ using external rods and clocks available to earth-based observers. The observable
algebra AKepler is then generated by a set that includes the coordinates (r,θ) and their
velocities: AKepler = {r, ṙ ,θ, θ̇}. Because the equations of motion of the Kepler problem are
just Newton’s laws, we know that they are well-posed and autonomous in AKepler. The
dynamical conditions of the PESA are therefore met.

The sufficiency condition (iii) of the PESA is also met because experience tells us that
we can use Kepler’s laws to model the motion of the planets in our solar system — at least
up to the approximations specified by whatever key Kepler might have used. Finally, the
necessity condition (iv) of the PESA is also met. This is because removing extra structure
from the Kepler model will prevent it from being empirically adequate. What one would
like to know regarding the necessity of AKepler is whether re-scaling the time t and spatial
size r according to (2.3) leads to an empirically equivalent system. If this were the case,
then one could reduce the size of the observable algebra without affecting empirical

16The example that he uses involves two rocket ships travelling through outer space, but this is mathematically
equivalent to the system of (navel) ship and shore that we’ve considered here.

17To see that these are dynamical similarities see, for example, Equations 8.13.



5

144 5. THE PRINCIPLE OF ESSENTIAL AND SUFFICIENT AUTONOMY

adequacy.
We know, however, from the standard use of Kepler’s laws that this is not the case.

There are external structures; e.g., other planets, the fixed stars, the spinning Earth; that
provide reliable external clocks and rods that can be used as references scales for the
system. The measurement procedures for using these clocks and rods are described in
the key of the standard Kepler theory even if they aren’t always explicitly stated. In light
of these empirical and interpretive considerations, the PESA tells us that the standard
Kepler theory is a good theory for describing the motion of planets in our solar system.

As a final consideration, the dynamical similarities (2.3) act non-trivially on AKepler,
and are therefore not gauge symmetries of the Kepler theory according to the PESA’s
definition. This is precisely what we would expect from the remarkable empirical success
of Kepler’s laws and Newton’s theory of planetary motion. We should however note that,
in the absence of external clocks and rods, the Kepler theory could fail the necessity
condition (iv). Then we would be forced to use the version of the Gauge Principle devel-
oped in Section 4.8.2 for dynamical similarity. A procedure for how to do this is given in
Section 3.2.2 of Gryb and Sloan (2021) In Section 7.4, we will see that precisely this sort of
condition will fail in modern theories of cosmology. This will be central to our analysis of
the problem of the AoT. It will also be an important and novel application of the PESA.

5.4.3. REPARAMETRISATION INVARIANCE

For the final section of this first part of the dissertation, I will apply the PESA to a con-
ceptual problem related to symmetry that is not often considered in the philosophical
literature on symmetry. This example will also serve to illustrate that the dynamical
conditions of the PESA are non-trivial and have important consequences for identifying
the gauge symmetries of a theory.

The problem I will consider is the frozen formalism problem of classical reparametri-
sation invariant theories. The quantum analogue of this problem is the subject of much
debate in the theoretical physics literature on canonical quantum gravity.18 But the classi-
cal problem captures all the main conceptual difficulties. Here, I will consider the global
problem, where the time parameter is constant across spatial slices.

The frozen formalism problem appears by combining Dirac’s proposal for gauge sym-
metries with the fact, proved in Section 4.5.1, that reparametrisation invariant theories
have vanishing Hamiltonians. (Recall that this is the Weierstrass condition of Equa-
tion 4.98.) In Dirac’s proposal, the gauge symmetries of a theory are generated by the first
class constraints of the Hamiltonian formalism (see Section 4.7). But because the Hamil-
tonian is generally represented on phase space by a first class constraint, the evolution
generator and the gauge generator are taken to be the same thing. This results in the oft
repeated slogan appearing explicitly in (Henneaux & Teitelboim, 1992, p. 103): “motion
is just the unfolding of a gauge transformation.” The problem here is that, if this slogan
is to be taken literally then past, present and future are all physically indistinguishable.
This has led Rovelli (1991) to question whether time exists at all in quantum gravity and
Barbour (2001) to proclaim “The End of Time.” The challenge is then seen to be to recover
our perceived notion of time from a timeless formalism. We will now see that the PESA

18For an introduction to the frozen formalism problem, see Section 3 of E. Anderson (2012).
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puts into question whether the formalism is really timeless in the first place.
One might suspect that the empirical conditions of the PESA would be enough to

conclude that, given any reasonable key, states at different times should be considered
empirically inequivalent in any theory. This is partly because the PESA regards at-a-time
notions of symmetry to be more fundamental than over-a-history notions, where all
instants differ only by a partial order on the real line. But given the extensive literature
on trying to extract an emergent notion of time from a timeless formalism, it is clear that
metaphysical preferences are playing a role in deciding what reasonable expectations
there should be on a theory’s key regarding temporal structure.

For this reason, it is noteworthy that even before these metaphysically fraught con-
siderations, there are good reasons to believe that the dynamical conditions of the PESA
suggest that time evolution should not be identified with a gauge symmetry. This is
because Dirac’s proposal, which is purely dynamical, is based on assumptions that are
violated in reparametrisation invariant theories. The reason why is technical and is ex-
plained at the end of Section 4.7, and is inspired by an argument made in Barbour and
Foster (2008). What we will see now is that an analysis on velocity phase space, rather than
Dirac’s extended phase space, can bring technical clarity to the discussion.

I have already treated the case of reparametrisation invariance in detail in Section 4.5,
and there is no need to repeat the technicalities here. What we found there is that, on
velocity phase space, the vector field generating an at-a-time reparametrisation was
emphatically not the generator of the dynamical evolution. And while the generator of
at-a-time reparametrisations was responsible for underdetermination in the equations of
motion, the evolution generator was not. Instead, the evolution generator defined the clas-
sical solutions rather than providing any obstruction to solving them. In particular, when
the time variable labelling instantaneous states along a DPM is included in the observable
algebra of the system, the evolution equations are well-posed and autonomous. Thus,
including this time variable in the observable algebra satisfies both dynamical conditions
of the PESA. This directly contradicts the expectations one gets from Dirac’s proposal
since the first-class Hamiltonian constraint changes the value of such time parameters.
This leads to no inconsistency, however, due to the fact that the conditions of Dirac’s theo-
rem, on which his more general conjecture is based, are violated for reparametrisation
invariant theories.

Finally, the extended observable algebra that includes the value of a time parameter
(but not its velocity) labelling instantaneous states is also the algebra we concluded above
should result from any reasonable key (modulo more exotic temporal metaphysics). Thus,
a theory that uses this extended algebra would also satisfy the PESA’s sufficiency and ne-
cessity conditions (iii) and (iv). We thus conclude that this extended algebra is appropriate
for describing the system according the PESA, and that time evolution transformations
are not gauge symmetries. The main insight of this analysis is the observation that while
the evolution generator is, in fact, a null direction of the symplectic 2-form, the existence
of this null direct does not make the equations of motion ill-posed but, rather, defines
them. This solves the frozen formalism problem of the classical (global) theory.
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6
THE PROBLEM OF THE ARROW OF TIME

CHAPTER SUMMARY

In this chapter, I introduce and motivate the main problem that I will be concerned with
in Part II of the thesis: the problem of the Arrow of Time. I begin by defining the general
problem and add two important sub-problems: the smoothness problem, which involves
explaining extreme smoothness of the early universe, and the red-shift problem, which
involves explaining the rapid cooling in the early universe. After motiving these problems, I
discuss two standard approaches to these phenomena. The first involves explaining the
Arrow of Time using a Past Hypothesis and the other using time-asymmetric laws. I identify
several difficulties with these approaches and conclude that a new kind of solution is
welcomed.
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6.1. INTRODUCTION

I will now shift attention to the problem of the Arrow of Time (AoT). In the introduction
(Section 1.2.1), I referred to this as the problem of finding an explanation for the large
amount of time-asymmetry seen in physical processes given the (near) time-reversal
symmetry of our best physical laws. In this chapter, I will try to justify the claim that
there is considerable time-asymmetry in the universe and pinpoint precisely where that
asymmetry lies. I will then review some standard ways of explaining the AoT and argue
that no single explanation is completely adequate. This will motivate the need for a new
way of thinking about the AoT, which I will provide in the last chapter (Chapter 8).

The problem of the AoT has its origins in a debate about the recovery of the laws
of thermodynamics, which describe many time-asymmetric processes, from the laws
of statistical mechanics, which are fundamentally time-reversal invariant.1 A central
figure in this discussion is Ludwig Boltzmann who championed an influential view for
explaining the time-asymmetric behaviour of thermodynamic systems from statistical
mechanics.2 I will summarise this view using modern concepts in Section 7.2.1. For now,
let me note that, while Boltzmannian explanations of time-asymmetry were originally
designed to address the specific time-asymmetries observed in thermodynamic systems,
they have become a template for explaining time-asymmetries more generally.3

Renewed interest in the problem of the AoT is illustrated by an influential argument
made by Roger Penrose in Chapter 7 of Penrose (1989) in which Boltzmannian expla-
nations were argued to provide an account for a multitude, if not all, of the different
time-asymmetric processes observed in the Universe.4 This view has been notably advo-
cated in Albert (2009) and further developed in works such as Price (2004), in a way I will
elaborate upon below, resulting in an entire literature of explanations of the AoT in terms
of the so-called Past Hypothesis (PH).5 Explaining the AoT using a PH is undoubtedly
the dominant approach currently taken in the literature on the AoT. Acceptance of such
explanations, however, is not universal. We will study the different reasons for that in
Chapter 7.

In this second part of the thesis, the goal will be to develop a new kind of approach for
explaining time-asymmetry using a symmetry argument rather than a Past Hypothesis.
This new approach is inspired by a related approach developed in Barbour, Koslowski,
and Mercati (2014) and Barbour (2020). In these approaches, explanations for the AoT
are based on the same hypothesis about dynamical similarity;6 namely that it is a gauge
symmetry of modern cosmology; and share common explanatory mechanisms such as

1See Brush (1976) for historical context, Frigg and Werndl (2011) for a modern introduction to the central issues
and Sklar (1993) for a philosophical analysis of the problem of recovering time asymmetry in thermodynamics
from statistical mechanics.

2This view was espoused, for example, in Boltzmann (1895) or Boltzmann (1964).
3For some notable examples where Boltzmannian reasoning is used to explain general time-asymmetries in the

universe, see Price (2002), Lebowitz (1993), S. Goldstein (2001), S. Goldstein and Lebowitz (2004), and Albert
(2009).

4For different approaches with a similar goal, see Reichenbach (1956) and Horwich (1987). For a review of the
relative merits and draws backs of these different approaches, see Callender (2024).

5For an introduction to the PH with a detailed list of references, see Chapter 7.
6See Section 1.2.3 and Section 3.4 for an introduction to dynamical similarity and Section 4.8 for a detailed

treatment of the symmetry.
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Janus points. However, there are many details that differ between the two approaches,
particularly regarding the definition and implications of the resulting AoT. In addition,
the motivations presented here are based on the empirical principles of the PESA and not
on the relational ontology of Barbour et al. (2014) and Barbour (2020).7

Before turning to my proposed explanation of the AoT, I will give more detail about the
specific problem I will aim to solve. This will involve giving a progressively more detailed
descriptions of the phenomena believed to define the AoT and, thus, what I think a good
solution to the problem of the AoT should be able to explain. We will see that the AoT
is, in fact, a multifaceted problem resulting from the interplay between specific physical
processes during the evolution of the Universe. In Section 6.2, I will lump the resulting
collection of problems into the broad headings of the smoothness and red-shift problems
that were briefly introduced in Section 1.2.1 of the introduction. A good solution to the
problem of the AoT must at least be able to solve both of these problems.

This leads to two different kinds of explanatory projects: a modest project, which
involves giving a general procedure for extracting some AoT from nearly time-symmetric
laws, and an ambitious project, which involves using that general procedure to explain
the many specific empirical features of our world that lead to the observed AoT.8 Our goal
in this second part of the dissertation can then be stated as giving a proposal that will
complete the modest project and make significant headway towards the ambitious one.

My proposed solution to the modest project will involve the realisation of the Janus–
Attractor scenario that was sketched in Section 1.2.2 of the introduction. I will give a more
detailed account, including all the necessary definitions, of that scenario in Section 8.2.
There, I will show how the existence of Janus points and attractors can formally define a
general AoT for observers approaching an attractor. This will address the modest project.

I will then turn attention to the ambitious project. One way that a Janus–Attractor
scenario can be seen to come about in a time-reversal invariant theory is by applying
the Gauge Principle developed in Section 4.8.2 to dynamical similarity. By looking at
two separate classes of models, the N -body Newtonian particle models of Section 8.3
and the cosmological models of Section 8.4, I will show that the gauge theory resulting
from applying my implementation of the Gauge Principle will lead to a Janus–Attractor
scenario and, therefore, an AoT under certain specified physical assumptions. I will then
argue that the resulting AoT can separately solve the smoothness and red-shift problems
in the corresponding model. This suggests a new and promising path towards solving the
ambitious project by combining those models into a more realistic and comprehensive
model of the Universe.

But before I can claim to have made progress in solving the ambitious project, I must
first give a convincing reason to justify treating dynamical similarity as a gauge symmetry
of the Universe. This is where my definition of gauge symmetry, carefully crafted in
Part I of the thesis, will be necessary. The PESA will be used first in Section 7.4 and then
in Sections 8.3 and 8.4 to argue that dynamical similarity should be treated as a gauge
symmetry when using those models to represent phenomena in the Universe. For the
purposes of the second part of the thesis, the first part can be seen as a way of developing
the conceptual and mathematical tools necessary to make progress on the ambitious

7For a more complete discussion of the differences between the two approaches, see Section 8.1.2.1.
8The modest/ambitious terminology has been adapted from a private exchange concerning D. J. Ryder (2022).
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project.
Before describing my proposed solution, however, I will first motivate the need for

a new programme by reviewing the known problems in the existing approaches. I will
embark on this task in Section 6.4 of this chapter. Chapter 7 will be dedicated to describing
and critiquing explanations of the AoT in terms of a PH. What we will find is that no
existing approaches to explaining the AoT are completely adequate. I will then contrast
this with my own proposal in the concluding chapter (Chapter 9).

6.2. IDENTIFYING THE EXPLANATORY TARGET

In this section, I will try to identify the different physical processes that physicists have
attributed to the AoT. This will give a more precise idea of what the AoT is and what is
involved in the ambitious project of explaining the AoT. To do this, we must engage with
various details of particle physics, cosmology, astrophysics, thermodynamics and even
speculations about quantum gravity. One of the purposes of this analysis is to pinpoint
the basic phenomena that need explaining. This is an important task because, as we will
see, authors disagree about what those basic phenomena should be. What we will find is
that this disagreement exists because there are at least two distinct classes of phenomena
that are responsible for many of the relevant aspects of the AoT.9

Before describing these phenomena, let me say a few brief words about entropy.
Entropy was first introduced as an extensive property of a thermodynamic system. Its
tendency to increase in time, usually attributed to the second law of thermodynamics,
is often identified with the thermodynamic AoT, which, as I have said, was central to
early debates about the problem of the AoT. The second law, however, has been argued
to not be sufficient for proving entropy increase (rather than decrease), and requires at
least one further assumption: the tendency of thermodynamic systems to evolve towards
equilibrium. This is the so-called zeroth law of thermodynamics advocated for in Uffink
(2001) and Brown and Uffink (2001).

As I have described, many attempts at explaining the AoT take statistical-mechanical
accounts of the thermodynamic AoT as the basis for more general attempts at explaining
time asymmetry. In such accounts, the statistical mechanical notion of entropy normally
considered is that of the Boltzmann entropy, which is a classical notion of entropy that
I will define more carefully in Section 7.2.1 (see Equation 7.2). The Boltzmann entropy
can be generalised in various ways to be compatible with open classical systems using
the Gibbs entropy and for quantum systems using the von Neumann entropy. For many
considerations about the AoT, however, quantum effects can be ignored and the systems
in question can be argued to be well-approximated by closed systems. The Boltzmann
entropy is thus often tacitly assumed (or explicitly mentioned) in many discussions about
the AoT. One advantage of the proposal given in Chapter 8 is that I won’t need to define it
directly in terms of entropy, avoiding having to make such distinctions.

Let me now describe two distinct kinds of phenomena which together encompass key
aspects of the AoT. The first regards the local behaviour of matter degrees-of-freedom
in the observable universe — particularly its homogeneity and isotropy. I will refer

9For a more comprehensive account of the different puzzling aspects of the AoT that may not be covered by
these two problems, see Callender (2024).
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to the problem of explaining this behaviour as the smoothness problem and use the
word ‘smoothness’ as a stand-in for approximate homogeneity and isotropy. This is the
problem emphasised by Penrose (1979), Price (2002), Albert (2009), and others. As we’ll
see below, much of the discussion in the literature focuses on explaining the apparent low
(Boltzmann) entropy of matter in the early Universe. Price is so convinced by Penrose’s
arguments that he states in Price (2004) that the extremely smooth distribution of matter
in the early Universe “is the only anomaly necessary to account for the vast range of low
entropy systems we find in the universe.” [Original emphasis.]

In contrast, the second mechanism regards the global properties of the observable
universe — particularly the red-shift phenomenon normally associated with the rate
of expansion of the Universe. I will call this the red-shift problem. This problem is
emphasised by Rovelli (2019) and Wallace (2023). Rovelli considers the behaviour of an
important cosmological variable, called the scale factor, that roughly describes the size of
the Universe at any given time (see Section 8.4 for a more precise definition). He then takes
this to be the primary explanatory target: “it is the scale factor and only the scale factor that
was [...] the ultimate source of low entropy.” (Rovelli, 2019) [Emphasis added.] We will see
in Section 7.4 that the PESA will suggest that the scale factor should not be considered part
of the observable algebra of cosmology. Nevertheless, its rate of change is a measure of
the amount of red-shifting at any given time in the observable universe. This information
is contained in the so-called Hubble parameter H used by cosmologists. The PESA will
say that the Hubble parameter should be part of the observable algebra. Fortunately, all
the significant points made by Rovelli actually carry through if one considers the Hubble
parameter as the source of low entropy rather than the scale factor itself. We will study
the reasons for this in Section 6.2.2.

Given these two point of view, it is useful to define:

(1) The smoothness problem: Why was the Universe so remarkably smooth early in its
history?

(2) The red-shift problem: Why was the Hubble parameter, which measures the rate of
red-shifting in the Universe, so large and monotonic in the past?10

I will argue that, to complete the ambitious project, one must at least solve both the
red-shift and smoothness problems. Thus, Price and Rovelli are ultimately correct in
identifying necessary conditions for explaining the AoT but wrong to think that those
conditions are also sufficient.

Let me make a couple of comments before giving a more detailed description of the
smoothness and red-shift problems. First, as I have already emphasised, there are many
kinds of time-asymmetric phenomena (sometimes referred to as different arrows of time)
that can be associated with the problem of the AoT. Penrose (1979) highlights no less than
seven. For the most part, reasonable arguments can be given to either show that these
different time-asymmetric phenomena have a common cause or that some subset of
them is irrelevant.11 But many open problems remain — many of which won’t be directly

10Note that the Hubble parameter is the relative rate of expansion and is monotonically decreasing, not in-
creasing, towards what we normally call the ‘future’ (and which I will later identify as the direction of the
approaching de Sitter attractor).

11See Penrose (1979); Price (2004); Rovelli (2019) and (Penrose, 1989, Ch 7) for arguments of this kind.
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addressed in this work. For example, even the thermodynamic AoT itself is no longer
a clear explanatory target if one follows the criticisms that I will describe more fully in
Chapter 7. If the entropy of the universe cannot be well-defined, which may be the case
given the arguments of Chapter 7, then it is no longer obvious that what actually needs to
be explained is the very low entropy of the very early universe.

Second, in the discussions below, I will often refer to equilibrium and non-equilibrium
states of different variables. In the study of thermodynamic systems, the notion of equilib-
rium can be made precise and represents a steady state of affairs in terms of a particular
macroscopic description of the system. For my purposes, I will simply regard equilibrium
states as states that do not noticeably vary in the natural time scales relevant to the pro-
cess in question. This notion can apply to basically any variable in the theory. It will also
be helpful to introduce the notion of a local, which is sometimes also called metastable,
equilibrium. Local equilibrium states are states that reach an approximate equilibrium
over some physically relevant timescale before exiting that state at some later time. Such
local equilibria are common to thermodynamic systems and, as we will see below, can be
used to describe many phases of the Universe’s evolution.

6.2.1. THE SMOOTHNESS PROBLEM

Let me begin by defining the smoothness problem and explaining its relevance to the
AoT. The call to explain why the early universe was extremely smooth — i.e. why the
distribution the energy-momentum and geometric degrees of freedom was approximately
homogeneous and isotropic — is familiar from the Past Hypothesis literature. Price (2004)
argues:

The crucial thing is that matter in the universe is distributed extremely
smoothly, about one hundred thousand years after the Big Bang.

... In effect, the smooth distribution of matter in the early universe provides a
vast reservoir of low entropy, on which everything else depends. The most
important mechanism is the formation of stars and galaxies. Smoothness is
necessary for galaxy and star formation, and most irreversible phenomena
with which we are familiar owe their existence to the sun.

The motivation here is that smoothness leads to a very low-entropy state when the system
is self-gravitating. Standard arguments from the statistical mechanics12 of the N -body
system suggest that, because the force of gravity is attractive and leads to the clumping of
point masses, smooth states that are not clumpy are highly entropically suppressed.13

The observation that the contents of the Universe were very smooth at a particular point
in its evolution then implies that the Universe was in a low-entropy state at that time.

In reference to the arguments given above, Price (2004) goes as far as declaring that
the “discovery about the cosmological origins of low entropy is the most important
achievement of late twentieth century physics.” As I have already stated, according to

12See Padmanabhan (1990) for detailed derivations of gravity’s unusual thermodynamic properties and how the
statistical mechanics of the gravitational N -body problem can be applied to galaxies.

13More specifically, clumpy states occupy large phase space volumes because the −1/r gravitational potential is
peaked on them.
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him, this observation is the only thing that needs explaining in order to account for the
thermodynamic AoT because it entails “most irreversible phenomena with which we are
familiar.”

Let us evaluate this claim.
To begin with, it is true that, in order to even apply thermodynamic notions to the

universe, we must already take advantage of the observational fact that it is, to a good
approximation, relatively smooth on large scales — at least during the epochs to which we
have direct observational access. To understand why, consider a patch of space containing
smooth matter whose boundary evolves as if it were made of free dust particles. Such
a patch of space acts as a kind of box through which there is effectively no heat flow
because the homogeneity of the matter distribution implies that any heat flowing out of
the box should be balanced by an equal amount flowing in. This allows us to define the
thermodynamic properties of the matter in that box provided a variety of other physical
conditions on the states of the matter itself are met.14 If we take the box to be the spatial
boundary of the visible universe; i.e., the finite part of the whole ‘Universe’ that is causally
accessible to us (which we will henceforth call the ‘universe’ with no capitalization); then
we have what we need to talk about the temperature and entropy of matter (or radiation
or geometry). Because of this, smoothness is a necessary, but not sufficient, condition for
being able to define the entropy of the universe in the first place.

We can now evaluate the evidence for the universe being ‘smooth’ in its ‘early’ state.
The epoch of 105 years after the Big Bang, mentioned by Price, is relatively late in the
evolution of the early universe. This is roughly the time of recombination in which the
universe cooled to the point where the first electrically neutral hydrogen atoms could form,
releasing the first visible light in the universe called the Cosmic Microwave Background
(CMB) radiation.15 The fact that any cooling occurred at all is an essential assumption
of Price’s claim, and one that I will criticise shortly in Section 6.2.2. But putting this
assumption aside for now, there is good evidence that the universe was relatively smooth
at the time of recombination. This evidence comes from direct observations in radio-
astronomy of the CMB, indicating temperature variations of 1 part in 105 over background
levels.16

This confirms that the universe was smooth up to variations of 10−5 at the epoch
of 3.78×105 years. But is this state ‘smooth’ and ‘early’ enough? While we don’t have
direct observations of the large-scale structure of the universe before recombination, we
do have reliable indirect evidence that the universe was even smoother at earlier times.
Some of this evidence comes from the inflationary paradigm of modern cosmology. It’s
important to note, however, that our knowledge of the evolution of the universe gets more
speculative as one approaches the Big Bang. Fortunately, just how early the universe
was smooth and the extent of this smoothness is not particularly relevant to the overall

14For example, the timescales of changes in the temperature and other thermodynamic quantities must be
large compared to the mixing times of the matter.

15More precisely, recombination occurred 3.78×105 years after the Big Bang. It’s not completely clear whether
Price meant this period or some slightly earlier epoch.

16The details about this and other cosmology evidence discussed in this section can be found in any good
cosmology text book such as Dodelson and Schmidt (2003), Mukhanov (2005), or Weinberg (2008). My own
treatment roughly follows Baumann (2022). See Chapter 7 of Baumann (2022) for an introduction to the CMB
observations.
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structure of the argument. At a minimum, one needs to explain the extremely smooth
state of the CMB, and there is no good reason to suspect that the universe was less smooth
until very early in its evolution.17

According to well-known arguments, clumping due to the self-gravitation of the
over-dense regions of the CMB dramatically amplified the inhomogeneities that were
small at recombination. This clumping led to the formation of the dense gas clouds
that produced the first stars. These processes have been modelled by state-of-the-art
numerical simulations, such as the Millennium Simulation (Springel et al., 2005), and the
resulting matter distributions match the observed large scale structure of the universe.
The early stars created in those gas clouds undoubtedly produced material that collapsed
under gravity to produce later generations of stars including our Sun — although the
exact details of this process are still not completely understood. The Sun, in turn, is a
vast reservoir of entropy that we understand to ultimately be the source of nearly all the
time-asymmetric processes on Earth. As we will see in the next section, however, this vast
reservoir of entropy is not completely, or even mostly, due to the gravitational collapse of
the CMB inhomogeneities.

The chain of arguments just described leading from the clumping of homogeneities
in the CMB to the emergence of a local entropic AoT here on Earth are generally well-
understood and uncontroversial. Further details are provided in Chapter 7 of Penrose
(1989). I conclude from this that there are strong arguments to suggest that the initial
smoothness of the CMB guarantees that the conditions favourable to star formation
happened at roughly the same time and in roughly the same way across the entire visible
universe. As I will argue below, this combined with a solution to the red-shift problem
ensures both that an observer near a particular star will see a strong entropic AoT and
that the direction of this AoT will be consistent, to a very high degree, across the visible
universe. Solving the smoothness problem is thus necessary for explaining the AoT. But
because of the caveats mentioned above, explaining smoothness is not sufficient. I will
turn to these now.

6.2.2. THE RED-SHIFT PROBLEM

6.2.2.1. RED-SHIFT AND THE COSMOLOGICAL ARROW

Most of the heat, and therefore the entropy, produced by stars is produced in nuclear
fusion reactions. A simple calculation (see, for example, Wallace (2010)) shows that
the entropy generated by such nuclear reactions dwarfs the entropy generated by the
gravitational collapse. The primary role of gravitational collapse is thus not to explain
entropy gradients on the Earth but to trigger, as a kind of catalyst, the start of nuclear
reactions in stars, which are the real driver of entropy increase. Thus, the time-asymmetric
processes caused by the Sun and other stars can only be properly understood by giving
an explanation for the existence of the entropy reservoir stored in the Sun’s nuclear fuel.

The origin of this entropy reservoir is tightly connected to the large rate of expansion
in the very early universe, as I will show below. Firstly, when we talk of the universe

17A reasonable estimate for what ‘very early’ might be is the epoch when inflation is thought to have ended (if it
occurred at all). This is because inflation was introduced as a mechanism for smoothing out the contents of
the universe.
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as “expanding” we mean, from an observational perspective, that the spatial distance
between bound systems free of external forces is increasing relative to the characteristic
size of those bound systems. The fact that expansion in this sense is a relative notion will
be central to the symmetry argument I will present in Section 7.4. On cosmological scales,
expansion is manifest in the form of light waves having increasingly larger wavelength the
further they get from their source. This is the red-shifting phenomena in terms of which
the red-shift problem will be understood. The relative rate of change of the red-shift is
Hubble parameter, H , which is a central quantity in observational cosmology.18

Central to my argument later is the fact that it is the relative rate of expansion, H ,
and not the absolute size of the universe itself that is responsible for creating the entropy
reservoir stored in the Sun and other stars. To understand why, let us first recognise that
the temperature of the early universe scales like

p
H according to standard arguments.19

As a result, decreasing values of the Hubble parameter corresponds to decreasing tem-
perature.20 Let us now see how decreasing temperatures lead to the entropy reservoir
stored in stars like the Sun. Two timescales are relevant to the discussion: the average time
between particle interactions tc and the characteristic timescale of expansion tH ∝ 1/H .
When tc ≪ tH , the rate of interactions is large compared with the rate of expansion, and
the particles in the universe reach a local thermal equilibrium. But tc and tH usually
scale differently with temperature so that tc grows relative to tH over time as the temper-
ature decreases. When tc ≳ tH , universal expansion is too rapid for significant particle
interactions to occur and the interactions effectively stop. Whatever relative abundances
of different particle species exist at that time then get “frozen-out.” Because different
particle species interact at different rates, this “freeze-out” time is different for different
interaction types.

Many freeze-out events are believed to have occurred over the history of the uni-
verse. These freeze-out moments define the boundaries of different cosmological epochs,
whose relevance to the local AoT on Earth we will discuss below in Section 6.2.2.2. For a
given freeze-out event, the relative abundances of particle species in the universe can be
computed using different cosmological models, and the abundances predicted by these
models can be compared to their observed values. The match between these predictions
and observations is one of the great successes of modern cosmology, confirming our
understanding of the physics of these freeze-out moments. It should be stressed, however,
that the earlier the freeze-out moments, the more speculative our understanding of them
becomes.

From the perspective of the cosmological AoT, what is mysterious about these freeze-
out moments is the fact that they occurred at all. The freeze-out process is time-asymmetric,
and thus can’t be explained with time-symmetric laws alone. Importantly, if the universe
had started out in a global equilibrium state, then the second law of thermodynamics sug-
gests that it should stay that way on the timescales relevant to cosmology. No freeze-out
moments could ever occur because the state would effectively be permanently frozen.

18The Hubble parameter is usually defined in terms of the scale factor, a, as H = ȧ
a , which is related to the

red-shift, z, by z(t ) = 1−a(t )/a(0), where t = 0 is some arbitrarily chosen reference time. We will see that the
definition in terms of the scale factor is actually unnecessary and, even, misleading.

19See, for example, Equation 3.55 of Baumann (2022) and the surrounding derivation.
20Recall that the Hubble parameter is the relative rate of the expansion, which is decreasing even as the red-shift

itself is increasing.
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The question then is: what could be responsible for the lack of global equilibrium we
observe?

Before the freeze-out times of most cosmological epochs, the particles in the universe
are not in global equilibrium. They are, however, in local thermodynamic equilibrium.
When freeze-out occurs, the system is driven out of that local equilibrium and eventu-
ally settles to a new one on timescales determined by the tc relevant to the dominant
interaction of that epoch. Crucially, this drive away from equilibrium is caused by a
single phenomenon: the decreasing relative rate of expansion of the universe. This is
only possible if the Hubble parameter was itself wildly out of equilibrium in the early
universe and at each subsequent freeze-out time. Thus, the time-asymmetry created
by the sequence of freeze-out moments that occurred in the universe can be directly
linked to the monotonically decreasing Hubble parameter, which indicates a significant
departure from equilibrium. I will then understand a good explanatory account of the
extremely large initial Hubble parameter and its monotonic decrease as a solution to the
redshift problem.

6.2.2.2. FROM A COSMOLOGICAL TO A LOCAL ARROW

Let me now give a chain of arguments explaining how the freeze-out moments in cos-
mology lead to the thermodynamic AoT observed on Earth. During the period starting
at roughly 3 minutes after the Big Bang, the light elements started to form in the epoch
called Big Bang Nuclearsynthesis (BBN). During this epoch, cooling made proton-neutron
pairs (deuterium nuclei) stable, and this in turn enabled a wave of early nuclear fusion
reactions that used any available neutrons, binding most of them, together with pro-
tons, into the more stable helium nuclei. Given the stability of helium, if the universe
had stopped expanding at this point nuclearsynthesis would have slowly continued and
eventually — although on a very large timescale — helium (and other heavier elements)
would have been produced until no hydrogen would have remained. This would have
effectively burnt up all stellar fuel and prevented any stars from forming. Instead, the
relative expansion rate continued to decrease and drastically reduced the rates of nuclear
reactions leaving enough stellar fuel for our sun to form.

The connection between the red-shift and the origins of the large entropy reservoirs
produced at the end of BBN has been emphasised by Wallace (2010). It is not, however,
the whole story. In practice, the bottleneck that effectively stopped the production of
further light elements during BBN was the availability of neutrons. Creating deuterium
directly from protons, as is done in the Sun, is exceptionally slow at the temperatures
and timescales of BBN. Thus, helium and other light elements needed to be formed from
the neutrons produced in the earlier epochs of the universe. Before BBN, neutrons and
protons were in local thermodynamic equilibrium and roughly equal in number through
the process of β and inverse β-decay:

n +νe ↔ p++e− (6.1)

n +e+ ↔ p++ ν̄e . (6.2)

However, because of the slightly heavier mass of the neutron, protons gradually became
more dominant once the universe cooled below the mass difference of the neutron and
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proton. Eventually, the reactions mediating these exchanges turned off and the neutron-
proton ratios became “frozen-in.” Neutron decay further limited its numbers. Once the
conditions for deuterium production became favourable, the fraction of neutrons was
only about 1/8 so that no more than 1 helium atom could be formed for every 4 atoms of
hydrogen. This excess of hydrogen is the origin of the main source of stellar fuel in the
universe.

While the details above are interesting and necessary for evaluating different cosmo-
logical models, what is important for this discussion is the striking role played by the
various different freeze-out moments in the epochs discussed above. From the time the
process of (6.1) turned off until the end of BBN, the universe passed between several
phases with local equilibria dominated by different processes. At each stage these local
equilibria are disrupted by the relentless decrease of the Hubble parameter. The entropy
that got trapped at the end of these processes in the form of excess hydrogen is a direct
result of the universe being forced out of its trajectory towards a global entropy maxi-
mum into metastable states in the new local equilibrium. These are all well-understood
processes in modern cosmology even though the special role of the Hubble parameter
in driving them is not always emphasised. Understanding the behaviour of the Hubble
parameter in the universe is thus essential to understanding the origins of the AoT.

Rovelli (2019) highlights the importance of the relatively long period of local equi-
librium that the universe enjoyed while the processes in (6.1) were dominant, and he is
clearly right about its relevance to the origins of the local thermodynamic AoT observed
here on Earth. However, it is clear that even this period of relatively long-lived equilibrium
was preceded by other epochs where different equilibria were present. For example, since
free neutrons are metastable through β-decay, their abundance in the early universe
represents a new kind of entropy reservoir similar the entropy reservoir of hydrogen
atoms. Why was the early universe put in a low-entropy state with any neutrons to begin
with? The answer can presumably be found by looking at the structure of the freeze-out
moments in the even earlier universe; i.e., those that triggered by the beginning of the
so-called hadron epoch between around 10−5 s and 1s after the Big Bang.

Before this was the quark epoch where the universe was in a state of quark-gluon
plasma, in which no hadrons, such as protons and neutrons, had yet formed as bound
states. Again, the decreasing expansion rate of the universe caused cooling which allowed
such bound states to form. The disruptive push of the decreasing Hubble parameter drove
the universe into a new local equilibrium storing entropy in the form of new metastable
bound states.

From our knowledge of particle physics experiments, we can predict several earlier
freeze-out moments including the period of electroweak symmetry breaking, where the
electromagnetic force and the weak nuclear force are not yet distinct and the Higgs
mechanism has not yet taken place to give rise to the masses of elementary particles.
Earlier still we encounter less understood and somewhat controversial physics like the
very rapid period of early expansion of inflation and the reheating period that follows it.

Eventually, we reach the scale where quantum gravity effects are believed to be im-
portant. According to untested but widely accepted theories, the highest entropy state
during this epoch is a black hole state. In Chapter 7 of Penrose (1989), it is estimated that

such a state would be 1010120
times more entropically favoured than that of the current
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observed universe. While certain aspects of this estimate could easily be disputed, the
shear size of this number indicates the scale of the problem.

Interestingly, Penrose (1979) uses an early version of this estimate to motivate the
so-called Weyl curvature hypothesis, which is a constraint on the smoothness of the
geometry of the universe at the Big Bang.21 The Weyl Curvature Hypothesis, however, has
the potential to address the smoothness problem, but it has no way of addressing the
red-shift problem because the Weyl curvature does not constrain the behaviour of H .22

The explanatory chain leading to various entropy reservoirs in the universe can, thus,
be pushed back as far as our understanding of physics allows. At each link in the chain, the
explanatory target is clear: the decreasing relative rate of expansion of the universe. The
entropy reservoirs produced by the decreasing Hubble parameter create the conditions
necessary for nuclear synthesis to begin in stars once enough gravitational collapse has
occurred. The local AoT observed on Earth and other star systems then results from the
combination of the gravitational clumping of early inhomogeneities and the presence of
nuclear potential energy trapped in hydrogen. I conclude that any reasonable explanation
of the AoT should thus solve both the smoothness and red-shift problems.

6.3. PRICE’S TAXONOMY

In the previous section, I described several important phenomena that comprise the
AoT. I outlined a series of processes that appear to have led from a smooth state far
from equilibrium in the very early universe to a significant, spatially uniform, monotonic
entropy gradient across our present observable universe. The problem of the AoT is then
to provide an explanation for this universal observed gradient in terms of laws that have
no apparent time asymmetry. The AoT is puzzling to the degree that it is puzzling to have
a universal physical feature that is not in any way suggested by the known universal laws
of nature. I will now discuss different approaches to finding a solution to this problem.

Price (2002) provides a helpful taxonomy for distinguishing different existing ap-
proaches to explaining the AoT. While Price was mainly motivated by the smoothness
problem, his classification applies to general explanations of the AoT, and is therefore ap-
plicable to the red-shift problem as well. The distinction he draws in between two different
approaches he calls “causal-generalism” and “acausal-particularism.” Causal-generalism
is characterised as follows:

On one side are what I shall call Causal-General theories. These approaches
take the explanandum to be, at least in part, a time-asymmetric generalisa-
tion—the general fact that entropy never decreases, or some such. Broadly
speaking—perhaps taking some liberties with the terms causal and dynami-
cal—they seek a causal explanation of this general fact in dynamical terms.
Approaches I take to fall under this heading include ‘interventionism’ and
certain appeals to asymmetric initial microscopic independence conditions,
as well as to suggestions grounded on law-like asymmetries in the dynamical

21Specifically, the conjecture holds that the Weyl curvature of the spacetime metric is zero at the Big Bang.
22To understand why, note that the Weyl curvature only depends on the conformal degrees of freedom of the

metric while the scale factor caries units and is therefore non-conformal.
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laws themselves. What unifies these diverse approaches, in my view, is their
sense of the nature of the project. All of them seek a causal-explanatory
account of a time-asymmetric generalisation about the physical world as we
find it. (p. 90)

According to the opposing, acausal-particularist views,

All the time-asymmetry of observed thermodynamic phenomena resides in
an existential or particular fact—roughly, the fact that physical processes in
the known universe are constrained by a low entropy ‘boundary condition’
in one temporal direction. Against the background of a time-symmetric un-
derstanding of the normal behaviour of matter, this particular fact alone is
sufficient to account for the observed asymmetry in thermodynamic phe-
nomena. The task of explaining the observed asymmetry is thus the task
of explaining a particular violation of contrast class (b)—a particular huge
entropy gradient, in a world in which (roughly) none are to be expected. (p.
92)

For the purposes of this thesis, I will sidestep causal questions about the AoT and will
refrain from using the terminology of cause and effect. Instead, I focus on whether any
given approach hypothesizes time-reversal invariant laws or not.

A complication arises from the fact that the laws of nature encoded in our best current
theories are not completely time-reversal, or T , invariant but only “nearly” T -invariant. In
particular, the Standard Model of elementary particle physics is notably not T -invariant.
For example, the time-reversed dynamics of a “left-handed” electron are those of a “right-
handed” anti-electron (positron). There is some disagreement among philosophers
regarding the appropriate metaphysical implications of this lack of T -invariance. Some;
e.g., (Earman, 1989, Ch 7); argue that this supports substantivalism about temporal
orientation while others; e.g., Pooley (2003); Price (1997); disagree.23

But when it comes to the quantitative empirical question of whether the amount
of time asymmetry resulting from T -violations in the Standard Model is sufficient for
providing an adequate explanation of the cosmological AoT, the overwhelming consensus
is an emphatic ‘no.’ In particular, T -violations in the Standard Model are neither able to
explain the shear amount of smoothness seen at recombination nor the dramatic red-
shift in the early universe. Thus, while T -violation in the Standard Model does constitute
evidence for time asymmetry in the known fundamental laws, this time asymmetry is not
able to provide an adequate explanation for the AoT.

Given the numerical insignificance of the T -symmetry violations in the Standard
Model, I will regard our fundamental laws as T -invariant For All Practical Purposes (FAPP).
With this terminology in place, I propose the following taxonomy of “generalist” and
“particularist” accounts of the AoT:

Generalism: accounts of the AoT according to which the true laws of nature are
time-asymmetric and make the thermodynamic AoT an expected feature.

23For a discussion of how such T -violations can be understood and a summary of some of the issues involved,
see Roberts (2022) — particularly Chapter 7.
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Particularism: accounts of the AoT according to which the laws are FAPP time-
symmetric while there is some particular, contingent, fact that makes the AoT
expected.

Examples of attempts to provide generalist accounts of the AoT involve using sponta-
neous collapse models of quantum mechanics to introduce fundamental and significant
time asymmetry into the laws. A well-known example, advocated in Albert (2009), makes
use of the spontaneous collapse theory introduced by Ghirardi, Rimini, and Weber (1986).

Alternatively, particularist theories make use of some version of the PH. The most
common way to implement a PH is in terms of a low-entropy initial state. However, low-
entropy is not the only way to frame a PH. The Weyl curvature hypothesis, discussed near
the end of Section 6.2.2.2, is a PH that imposes a constraint on the spacetime geometry of
the initial state, and such a constraint has no obvious (or proven) connection to any notion
of entropy. Additionally, while smooth states in self-gravitating systems are certainly low-
entropy, it’s not clear whether the same can be said about states with a rapidly decreasing
Hubble parameter. Thus, there is no good reason to assume that low-entropy is the right
kind of condition on a past state for solving the red-shift problem. Instead, what makes a
PH is that the past state falls into a class of states (eg, smooth, highly red-shifted or low in
Weyl curvature) that are deemed to be atypical according to some reasonable measure on
the state space of the theory. We will see the reason for this in a moment.

Price argues in favour of acausal-particularism or, in our terms, particularism. The
basic idea behind this type of approach is based on an old argument by Boltzmann (see,
for example, Boltzmann (1895)) regarding the thermodynamic AoT in free gases.24 This
style of argument is then claimed to underpin a general explanation of how an atypical
past state can explain the AoT. In Price (2002), the approach is described as follows:

[T]he basic character of Boltzmann’s statistical approach is well known. Con-
sider a system not currently in equilibrium, such as a vial of pressurised gas
within a larger evacuated container. We want to know why the gas expands
into the larger container when the vial is opened. We consider what possible
future ‘histories’ for the system are compatible with the initial set-up. The key
to the statistical approach is the idea that, under a plausible way of counting
possibilities, almost all the available microstates compatible with the given
initial macrostate give rise to future trajectories in which the gas expands. It
is possible—both physically possible, given the laws of mechanics, and epis-
temically possible, given what we know—that the actual microstate is one of
the rare ‘abnormal’ states such that the gas stays confined to the pressurised
vial. But in view of the vast numerical imbalance between abnormal and
normal states, the behaviour we actually observe is ‘typical’, and therefore
calls for no further explanation. There is no need for an asymmetric causal
constraint to ‘force’ the gas to leave the bottle—this is simply what we should
expect it to do anyway, if our expectations about its initial state are guided by
Boltzmann’s probabilities.(p. 92)

The assumption of the initial non-equilibrium state of the system, in this case the “vial of
pressurised gas within a larger evacuated container,” is the key ingredient of the proposed

24I will describe this in more detail in Section 7.2.
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explanation of the observed behaviour of the gas. Because the Boltzmann entropy is the
log of the phase space volume of a macrostate, low-entropy states are atypical under the
natural measure on phase space. If Boltzmannian entropy is low for some time t0 (i.e.,
the state at t0 is atypical), then entropy increase is expected for times t > t0 (i.e., the states
after t > t0 are expected to become more typical). Thus, the riddle of the thermodynamic
AoT is removed. The only explanatory task left, the idea goes, is to account for why the
state at the early time t0 is so atypical.

The framing of this argument in terms of the typicality of states is central to its gen-
erality: states of low-entropy, vanishing Weyl curvature and rapidly decreasing Hubble
parameter are all understood to be atypical — at least according to standard arguments.
In this way, the particularist strategy claims to be able to provide an explanation for the
AoT. I will revisit whether early smoothness and rapidly decreasing Hubble parameter
are atypical states in light of the symmetry arguments presented in Section 7.4. But for
now, let us accept the general premiss and assess the relative merits of particularism and
generalism.

Price defends particularism and opposes generalism. His main reason for doing so is
that, as he sees it, generalists must also explain, in addition to the AoT, the highly unusual
early state of the universe. As a result, the overall generalist explanation of the AoT is less
economical:

It is surprising that such a stark contrast — the invocation of one temporal
asymmetry in the latter [Acausal-Particular] approach as against two in the
former [Causal-General] — seems to have received little explicit attention in
the literature. The contrast suggests that prima facie, at least, the Acausal-
Particular approach has considerable theoretical advantage. To the extent
that asymmetry is a theoretical ‘cost’, the Causal-General approach is a great
deal less economical than its rival. (p. 99)

Price here notes that the generalist is as burdened to explain the atypicality of the past
state as the particularist.25 The bulk of Price’s paper is then devoted to an exorcism of
the idea that a causal mechanism or “engine” must be specified in order to explain why
entropy rises even after the assumption has been granted that it starts out low. Once the
idea that such a mechanism is needed has been debunked, the motivation for generalism
is undermined, as he sees it, and it is clear that particularism is the only way forward.

I agree with Price that, inasmuch as generalists face the same challenge as particu-
larists to account for why the very early universe is in a highly atypical state, generalism
provides no added benefits. But I disagree that the path to victory for particularism is
as clearly laid out as he takes it to be. In the next section, I will describe an impasse
according to which both particularist and generalist accounts of the AoT appear to have
highly unattractive features, seemingly leaving no good option available.

25While Price’s original argument focused on the smoothness problem, it could easily be generalised to include
the red-shift problem as well.
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6.4. AN IMPASSE

In this section, I will argue that both generalist and particularist approaches to explaining
the AoT face serious objections. All the lines of thought underlying these objections are
familiar from the philosophy of physics literature, though only some have been harnessed
explicitly as objections against particular views of the AoT. I will outline the objections in
what follows, first for generalism, then for particularism.

6.4.1. OBJECTIONS TO GENERALISM

G.I Objection from redundancy This objection is just Price’s primary criticism of gen-
eralism, which I have described in Section 6.3. It says that any generalist approach
must posit special initial conditions in addition to time-asymmetric dynamics.
This makes the move of postulating time-asymmetric dynamics redundant and
undermines the rationale for generalism.

G.II Objection from lack of independent motivation: The fundamental known laws
of physics, as currently encoded in the Standard Model of elementary particle
physics and general relativity, are time-symmetric in the FAPP sense defined above.
These laws are extremely successful in describing the physics and microphysics
underlying all known processes in nature, including those which instantiate the
thermodynamic AoT on a macroscopic level. The hints we have about where
new physical laws are needed – for instance the inability of the Standard Model
of elementary particle physics to account for dark matter – do not seem to be
related to the time symmetry of the Standard Model and general relativity. There is
thus no independent empirical motivation, beyond potentially the AoT itself, for
believing that time-asymmetric laws would be correct instead. It is also unclear
how any account that incorporates generalism could preserve the facts that are so
well accounted for by time-symmetric laws while simultaneously accounting for
the thermodynamic AoT in terms of its significant time-asymmetric aspects.

G.III Objection from historical progress From a historical perspective, comparing the
evolution of our understanding of the spatial dimensions with the time dimension,
it would be surprising if the laws of nature turned out to be time-asymmetric
after all. “Naive” physics, based on our everyday experience, suggests that there
is a principled difference not only between opposite time-directions “past” and
“future”, but also between opposite spatial directions “up” and “down.” Progress
in understanding the world around us has made it clear that the laws of nature
make no principled distinction between two opposite space direction when it was
recognised, already in antiquity, that the Earth is spherical. The distinction between
“up” and “down” has since been understood in terms of a particular fact: the Earth,
as the body that exerts the strongest gravitating pull on us, defines what counts
locally as “down.”

Since Newtonian times, our best laws of physics — from Newton’s theory of grav-
itation to the Standard Model of elementary particle physics — have treated the
time-coordinate analogously to the space-coordinates in this respect. They do not
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treat the two time-directions qualitatively differently. It is very natural to believe
that this feature is not accidental and that fundamental laws to be discovered in
the future will treat the two time directions analogously — at least on the “global”
level for which this is true for the spatial directions. The CPT-theorem of quantum
field theory even mixes time-reversal with reversal of spatial coordinates and thus
provides further support that this analogy is not accidental. It can of course not
be ruled out that future physics might treat the past and future directions radically
differently. But this would seem to be an odd turn in the historical development of
our understanding of time and its role in the laws of nature — not something that
we would otherwise expect.

These objections to generalism have had a stinging impact on the philosophical
community. While there are still attempts to conceive of explanations of the AoT by
appealing to time-asymmetric laws, many modern approaches embrace particularism
instead. Bus as we will see next however, particularism faces serious problems as well —
problems that have been glossed over by Price in his endorsement of it.

6.4.2. OBJECTIONS TO PARTICULARISM

Here I note three important categories of objections against particularism. I will describe
these here only very briefly to balance the discussion. Later, in Section 7.3, I will expand
on each of these points in greater detail. The categories of objections I will consider are:

P.I Objections from mathematical and conceptual ambiguity: These objections arise
from the fact that the particular state required by particularist explanations is dif-
ficult to characterise mathematically and motivate physically. The PH, requires
that the early state be atypical. This requires a reasonable typicality measure for
“counting” the states of a theory. At early enough times in the universe’s history, gen-
eral relativistic degrees of freedom must also be taken into account. Unfortunately,
recent research has brought to light several daunting difficulties involved in doing
so.

As discussed at length in Earman (2006), Schiffrin and Wald (2012) and Curiel
(2015); even in homogeneous cosmology, which is a dramatically simplified version
of general relativity, there are serious ambiguities in defining a measure on the
space of possible models of the theory. In Ashtekar and Sloan (2011), it is noted that
such ambiguities lead to estimates of the probability of inflation that differ by up
to 85 orders of magnitude (e.g., Kofman, Linde, and Mukhanov (2002) compared
to G. W. Gibbons and Turok (2008)). Using more realistic models only adds to
the problem. As is show in Schiffrin and Wald (2012), the infinite dimensional
nature of the state spaces of perturbed cosmological models leads to considerable
mathematical and interpretational problems.

In addition to these arguments, the arguments I will present in Section 7.5 show that
for a PH to have explanatory force, it must make a distinction without a difference.
This distinction arises by over-counting empirically equivalent states that are simply
global rescalings of each other.
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P.II Objections from the breakdown of thermodynamic assumptions: These arise
from a lack of precision often involved in defining the entropy of the universe or in
connecting the typicality of the universe’s states to the notions of entropy relevant
to the local thermodynamic arrow. Since the universe is a complicated many-body
self-gravitating systems, it is not clear whether there is a good notion of entropy
that can be applied consistently to the universe as a whole. Moreover, even if such
a notion were available, the particularities of the dynamics of these systems raise
questions about whether thermodynamic concepts are even appropriate to use at
various levels.

P.III Objections from lack of explanatory force: These arise from the absence of any
good candidate explanations for the particular fact used to explain the AoT itself.
Without such an explanation, it is not clear whether particularist accounts can have
any real explanatory force. Even Price (2002) admits that a “solution to this new
puzzle [of explaining why the PH holds] is not yet in hand. Indeed, it is not yet clear
what a solution would look like.” (p.118) As pointed out by Callender (2004a), it is
difficult to see what kind of explanation there could even be for such a particular
fact and whether demanding such an explanation is even warranted at all.

I conclude from this catalogue of objections against generalism and particularism
that attempts to account for the AoT seem to be at an impasse: none of the available
approaches seems promising, let alone clearly laid out.
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AGAINST THE PAST HYPOTHESIS

CHAPTER SUMMARY

In this chapter, I argue that explanations for time-asymmetry in terms of a ‘Past Hypothesis’
face serious difficulties. After reviewing the basic assumptions of the Past Hypothesis, I
strengthen grounds for existing objections by outlining three categories of objections that
put into question essential requirements of the proposal. Then, I provide a new argument
showing that dynamical similarity should be treated as a gauge symmetry of cosmology.
Finally, I use this result to show that an advocate of the Past Hypothesis faces a dilemma:
introduce a distinction without difference or lose explanatory force by introducing a time-
independent measure. This further motivates the need for the new solution I will present in
Chapter 8.
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7.1. INTRODUCTION

In the previous chapter, I introduced the problem of the AoT and presented two different
approaches — particularism and generalism — to solving it. I noted that generalism faces
severe challenges, and that particularist approaches have been favoured in the recent
literature. But particularism faces its own set of difficulties. I outlined different categories
of objections to particularism in Section 6.4.2. In this chapter, I will investigate these
objections more carefully. Then, I will use the PESA to raise a new one. My conclusion will
be that particularist accounts of the AoT face serious problems. This adds to the impasse
introduced in Section 6.4 and paves the way for a new solution, which I will provide in
Chapter 8.

My critique of particularism will be based on the observation that one of the key
assumptions on which it is based — particularly the assumption of a time-independent
measure — is incompatible with a straightforward application of the PESA to cosmology.
Thus, the particularist must either reject the PH as a viable explanation of the AoT or
reject the PESA. In this thesis, I will do the former and embrace the norms of the PESA.
This will lead to my new solution, which I will present in Chapter 8.

It will be essential for the motivations of my proposal to understand why dynamical
similarity is a gauge symmetry of cosmology according to the PESA. The argument for
this will be given in Section 7.4. There, I will show that the PESA is in perfect alignment
with standard practice in modern cosmology. In particular, the measure used by cosmolo-
gist (Equation 7.6), which they regard as physically acceptable, is time-dependent and
invariant under dynamical similarity. This is in contrast to another measure introduced
by cosmologists, the Gibbons–Hawking–Stewart measure (Equation 7.5). This measure is
modelled off the Liouville measure and, therefore, is time-independent and not invariant
under dynamical similarity. Importantly, however, this measure is not regarded as physi-
cally plausible by cosmologists for reasons we will discuss in Section 7.4. Consequently,
proponents of the PH, who make use of the time-independence of the Liouville measure,
must not only reject the PESA but also standard practice in cosmology.

In order to better understand why this is the case, it is useful to recall from Sec-
tion 6.1 that particularist explanations are modelled off Boltzmann’s proposal for deriving
time-asymmetric thermodynamic behaviour at the macroscopic level from time-reversal
invariant statistical mechanical laws at the microscopic level. In this approach, the time-
symmetry of the laws is broken by asymmetrically restricting one’s theory to DPMs that
have highly atypical initial (but not final) states. In this way, Boltzmann attempted to
explain why one might readily expect a cup of coffee to fall and shatter onto the ground
but would not expect a mess of coffee and shards of cup to reassemble themselves. Be-
cause the cup of coffee is a highly unusual state in the space of possible ways that the
constituents of the cup and coffee could be arranged, it is more typical to see the pieces
scatter haphazardly than to see them reassemble as a cup of coffee.

Particularist approaches to the AoT result from trying to extend Boltzmann’s reasoning
to the Universe as a whole. But while this kind of explanation works reasonably well for
simple thermodynamic systems, complications arise when attempting to apply this
strategy to our actual Universe. It is not clear whether Boltzmann’s reasoning can be used
to iteratively provide an explanation for why nested subsystems of the Universe — such
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as a coffee cup in a room in a city on a planet etc — should individually be expected to
start off in atypical states. For the rest of this chapter, I will be considering the viability of
particularist approaches and, specifically, the use of a PH.

Early versions of the PH date back to Boltzmann himself (1964) and comprehensive
improvements making use of modern lessons from cosmology have been advanced mostly
notably by Roger Penrose (1979; 1994), Joel Lebowitz (1993), Shelly Goldstein (2001; 2004)
and Huw Price (1997; 2002; 2004). A well-known formulation has been advocated in Albert
(2009) where the phrase ‘Past Hypothesis’ was coined after an initial proposal by Richard
Feynman (2017, p.116).

Despite the dominance of particularist proposals in the literature, the status of the
PH remains controversial: it is not difficult to find both glowing appraisals and scathing
criticism. Barry Loewer rates the problem of the AoT as “among the most important ques-
tions in the metaphysics of science” (Loewer, 2012) and the PH as “the most promising
approach to reductive accounts of time’s arrows”. Huw Price rates the discovery of the
low entropy past as “one of the most important [achievements] in the entire history of
physics”(2004).

Despite these grand claims, criticism abounds. John Earman (2006) puts it bluntly:

This dogma [the Past Hypothesis], I contend, is ill-motivated and ill-defined,
and its implementation consists mainly in furious hand waving and wishful
thinking. In short, it is (to borrow a phrase from Pauli) not even false.

Schiffrin and Wald (2012) deliver a scathing critique of the basic technical premises of
the idea identifying “a number of serious difficulties in” attempting to formulate concrete
implementations of the proposal.

In this chapter, I will first provide a comprehensive analysis of existing objections to
the PH for the purpose of assessing its status. The three broad categories of objections
introduced in Section 6.4.2 will be expanded upon at the beginning of Section 7.3. These
categories provide a formal scheme for describing and evaluating different objections to
the PH that have been advanced in the literature. To add precision to this process, I will
start in Section 7.2 by giving a modern presentation of the arguments motivating the PH
and identify a list of important conditions (in Section 7.2.3) that underlie these arguments.
I will then analyse several particular objections, taken as exemplars, in each category by
identifying the specific conditions that each objection puts into question. One important
conclusion I will draw is that the time independence of the counting procedure used
by advocates of the PH is essential for justifying its use. This observation will play an
important role in the considerations of Chapter 8.

While the list of objections I will consider is not meant to be exhaustive and no single
objection may be seen as providing grounds to reject the entire proposal, when taken
together these objections are sufficient to raise serious concerns regarding the PH. The
resulting analysis already paints a rather grim picture for the prospects of formulating a
PH in an unambiguous way using sound mathematical and physical principles.

One common response to such objections is that they amount merely to an un-
reasonable insistence on technical rigour given the immense mathematical difficulties
associated with defining measures in general relativity. In response to such objections, I
will show in Section 7.5 that the PH encounters a troubling dilemma that persists even



7.2. THE PAST HYPOTHESIS

7

173

if all such technical concerns are removed. This dilemma is an uncomfortable choice
between a loss of explanatory power — the first horn (see Section 7.5.1) — and violation
of the PESA and standard practice in cosmology — the second horn (see Section 7.5.2).

To establish this dilemma, I will begin by using the analysis of Section 7.2 and 7.3 to
describe the first horn. In Section 7.2 I will show that it is essential to the arguments of
the PH to provide a justification for the measure used in the required typicality argument.
Then in Section 7.3 and Section 7.5.1 I will argue that the existence of a unique time-
independent measure on the cosmological state space is essential to the explanatory
claims of the PH. In Section 7.4, I will show that this unique measure is not gauge-invariant.
Using this, I will establish the second horn of the dilemma, in Section 7.5.2, by arguing that
a failure of the measure to be gauge-invariant according to PESA introduces a distinction
without difference by over-counting empirically indistinguishable states. This leads to
the following dilemma: either reject a time-independent measure and undermine the
explanatory basis for the PH (horn 1) or introduce a distinction without difference by
breaking a gauge symmetry (horn 2). Since violation of the second horn is a rejection of
the norms of the PESA and standard practice in cosmology, the only reasonable option
is to reject the first horn and abandon the PH. This opens the door to a new approach,
which I will present in Chapter 8.

7.2. THE PAST HYPOTHESIS

In this section, I will first provide a modern outline of Boltzmann-style explanations of
time-asymmetry (Section 7.2.1) and then use this framework to illustrate the basic logic
of the PH (Section 7.2.2). I will compile a list (Section 7.2.3) of conditions necessary for
the arguments of the PH collected from Section 7.2.2. In Section 7.3, we will see that are
good reasons to question the validity of many of the conditions identified below when
applying this style of explanation in general relativity.

7.2.1. BOLTZMANNIAN EXPLANATIONS OF TIME-ASYMMETRY

In the Boltzmannian reasoning, the ultimate goal is to explain within a given system the
time-asymmetry of some macroscopic processes from the fundamentally time-symmetric
microscopic processes that underlie it. The main formal ingredients of this procedure
therefore involve a specification of the macro- and microstates of the system, a particular
reductive map between them, and a way to describe their behaviour.

This is usually achieved using the Hamiltonian formalism introduced in Section 4.4.
In this formalism, the microstates of the systems in question are represented by points in
phase space Γ. The Liouville measure, µL , defined in Section 4.8.3, then gives a privileged
translation-invariant measure on Γwhen the phase space is finite dimensional. Moreover,
as illustrated by Liouville’ theorem in Equation (4.200), the flow of the density correspond-
ing to this measure (i.e., the Liouville form) is also time-independent for any choice of
Hamiltonian. An immediate caveat of this result is that, up to a constant, the Liouville
form is the unique (smooth) measure preserved by any choice of Hamiltonian.1 This

1Proof: Formally Liouville’s theorem implies LχH ρ = 0,∀H : Γ 7→R where ρ = ωn and ω is the symplectic
2-form on Γ and the vector field χH is determined via dH = ιχH ω. Writing an arbitrary smooth volume-form



7

174 7. AGAINST THE PAST HYPOTHESIS

fact is doubly useful for Boltzmann’s reasoning: it provides, at the same time, a potential
justification, via uniqueness, for the choice of measure µ and a consistency argument,
via the invariance property under evolution, for being able to use the same measure at
different times.

The considerations above lead to a host of difficulties in finding meaningful measures
when trying to follow Boltzmann’s programme in realistic theories of the Universe. In
particular, the programme assumes that there exists a mathematically precise and unam-
biguous measure µ (not necessarily the Liouville measure) on Γ. I will identify both of
these as conditions; Conditions-A1 and -A2 respectively; that are necessary to the PH.

With an appropriate measure one can assign weights to arbitrary regions of phase
space. These weights can be used to define a notion of typicality for these regions. For
example, one can say that a particular region A is typical on phase space if its weight as
determined by µ is sufficiently large with respect to the weight of phase space itself:

µ(Γ)−µ(A)

µ(Γ)
≪ 1. (7.1)

In general, a set S is said to be typical with respect to some property P and measure µ if its
weight according to µ is large as compared with all other sets that possess the property P
(Frigg, 2009). Clearly, any notion of typicality requires some interpretation for the weights
provided by µ in order to have any meaning. For the purposes of Boltzmann’s argument,
we will see below that it will be necessary to interpret the weight µ(Σ) as the relative
likelihood of finding the system in a particular region Σ (as opposed to somewhere else
in Γ) at any given time.2 I identify this as an additional requirement (Condition-B) of
the formalism. Note also that in order for the notion of typicality to be non-trivial, Γ
must have finite Liouville volume if µ(A) is finite. Such considerations are also relevant to
Conditions A1 and A2.

The next formal step is to define the macro-states of a system. Physically these
correspond to macroscopic states of the system such as temperature, volume, pressure,
etc. Formally they are represented by some macro-state space M which must have a
(much) smaller dimension than Γ. Because Boltzmann was usually considering closed
systems where the total energy E is preserved, it is customary to consider states restricted
to constant energy surfaces ΓE = Γ|E=constant (i.e., the micro-canonical ensemble).

In general, many microscopic states will be indistinguishable from each other at
the macroscopic level. This indistinguishability is modelled as a projection from ΓE to
M . The microstates identified under this projection define a partitioning of ΓE into the
partitions Γm , where m ∈ M ranges over all macro-states in M . These partitions represent
equivalence classes of macroscopically indistinguishable microstates. In order for these
to be meaningful physically, there must exist some epistemologically motivated coarse-
graining procedure that realizes this projection. For example, if the macroscopic variable
in question is the temperature, then the temperature must be a well-defined quantity. I
identify this requirement with a further condition (Condition-C). With these ingredients in
hand it is now possible to define the Boltzmann entropy (from now on called the ‘entropy’

as v = f ρ, where f is some arbitrary smooth positive function f : Γ 7→R+, then Liouville’s theorem and the
condition LχH v = 0 immediately lead to f = constant.

2This is sometimes called the statistical postulate.



7.2. THE PAST HYPOTHESIS

7

175

Figure 7.1 | A small, atypical initial state will typically spend most of its future in a large equilibrium state Γeq.

unless otherwise stated) of a particular macro-state m as the logarithm of the Liouville
weight of the partition Γm :3

SB = kB log[µL(Γm)] . (7.2)

We are now equipped to give a modern synthesis of Boltzmann’s reasoning. First one
must show that for the system in question there exists an exceptionally large macro-state
Γeq that takes up most of the phase space volume of the system. I take this to represent
a further requirement that Γeq be a typical state in ΓE (Condition-D). The relevance of
Condition-D can be seen by the interpretation given to the weights of µ given Condition-B.
If µ(Γeq) gives the relative likelihood of finding the system in µ(Γeq) then for all practical
purposes Γeq is a steady or equilibrium state of the system because the system will almost
always be found there. More significantly, if an equilibrium state exists, then a system that
starts in a small macro-state will typically spend most of its future time in Γeq. The basic
picture is depicted in Fig 7.1. This picture is plausible because the counting suggested
by the required interpretation of µ immediately suggests that a system starting outside
Γeq has little option but to quickly wander into Γeq, where it will remain for a very long
time. But now there is a puzzle. Applying the same reasoning backwards in time suggests
that a state finding itself in a small macro-state will also typically spend of all its past in
equilibrium. Because this apparently violates our knowledge that the past entropy of
the universe was low, we are faced with the so-called second problem of Boltzmann (see
Brown and Uffink (2001)). To solve this problem, one can posit an extremely atypical
condition on the earliest relevant state of the system. Under this condition, the system
will typically find that it will approach the equilibrium state in the future. Note the
temporal significance of the measure (Condition-B) and its central role in grounding the
explanation of time asymmetry.

Before ending this section, I will mention one further requirement on the measure that
is motivated by the representational considerations of Part I. Because a gauge symmetry

3kB fixes the units of SB.
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relates states that describe empirically equivalent situations according to my definition, a
measure that is not gauge-invariant will count empirically equivalent states as distinct,
introducing a distinction without a difference.

To see this more explicitly, consider a region R that lives in the domain D(µ) of some
general measure µ and a transformation T : D(µ) → D(µ) that maps this domain onto
itself. Assume that T map states of a system to empirically indistinguishable states. The
set of states in the region R is therefore empirically indistinguishable from the set of
states in the transformed region R ′ = T (R). In general, the non-invariance of µ under T
implies that the weight of the transformed region is not necessarily equal to the weight
of the original: µ(R) ̸= µ(R ′). But if this is true then the weights µ(R) and µ(R ′) provide
a distinction at the representational level between the regions R and R ′. Given our
assumptions, this distinction cannot represent any empirical difference. In this sense, the
measure µ therefore introduces a representational distinction that can’t be captured by
the empirical properties of the world.

This general argument is reinforced by standard practices in particle and statistical
physics whereby the physical measure is required to be invariant under all gauge symme-
tries. In the standard model of particle physics, the gauge invariance of the path-integral
measure is a central foundational principle of the theory. More generally, the Faddeev–
Popov determinant, which enforces the gauge invariance of the path-integral measure, is
considered a necessary ingredient in gauge theory (see (Weinberg, 1995, Chap 15) for an
overview and defence of this standard practice), in statistical physics, Jaynes (1973) has
argued influentially that measures should be invariant under transformations that relate
indistinguishable states of a system. I therefore conclude that there are strong reasons for
requiring that the measure be invariant under all gauge symmetries, in agreement with
the norms suggested by the PESA. I will refer to this as Condition-A3.

7.2.2. THE PAST HYPOTHESIS

The main idea behind the PH is to invoke the Boltzmann-style reasoning of the previous
section to explain time asymmetry in the actual Universe. The system in question is
then taken to be the entire Universe and the PH itself translates into a special condition
on the earliest relevant state of the Universe. All the mathematical quantities discussed
above — phase spaces, measures, macro-states, etc — are then taken to represent aspects
of the Universe as a whole. The proposed explanation is given in terms of a typicality
argument: Universes that obey the appropriate PH, it is claimed, will typically evolve
towards an equilibrium state in the future. Time-asymmetry arises by asymmetrically
applying the special condition to past, rather than future, states. That the Boltzmann
reasoning, whose empirical success is traditionally realised in closed sub-systems of the
Universe, can provide explanatory leverage when applied to the Universe as a whole is
then taken as a further condition (Condition-E) for the PH. Empirical support for the
extreme atypicality of the initial state of our Universe is taken to be implied by abundant
cosmological evidence for a low-entropy (e.g., near-thermal CMB power spectrum) and
large red-shift early Universe. I take the existence of this empirical evidence to be a final
condition (Condition-F) for the viability of the PH.
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7.2.3. REQUIREMENTS OF THE PAST HYPOTHESIS

I will now state all conditions identified in Section 7.2.1 (this list of conditions is not
intended to be exhaustive).

A There exists a measure, µuniverse, on the phase space of the Universe, Γuniverse, that
is simultaneously:

A1 mathematically precise,

A2 empirically unambiguous, and

A3 invariant under all gauge symmetries.

B It is justifiable to interpret the weights given by the chosen measure in terms of the
relative likelihood of the system being in a given region at a given time.

C There is an epistemologically meaningful and mathematically well-defined projec-
tion from the microscopic phase space of the Universe, Γuniverse, to a macroscopic
phase space, Muniverse.

D There exists a unique and exceptionally large state, defined to be the equilibrium
state Γeq, that is a typical macro-state on the phase space of the Universe at any
given energy E ; i.e.,

µuniverse[ΓE,universe]−µuniverse[Γeq]

µuniverse[ΓE,universe]
≪ 1.

E Typicality arguments have explanatory power when applied to the Universe.

F There is cosmological evidence for the PH being true.

7.3. OBJECTIONS TO THE PH

In this section, I will set the stage for the arguments motivating the considerations of
Section 7.5. I will recapitulate the three objections raised in Section 6.4.2 and reformulate
them in terms of the concepts and language I have developed in this chapter for describing
the Boltzmannian programme.

I Objections from mathematical and conceptual ambiguity:. These objections ques-
tion whether the formal quantities necessary for stating the PH can be given precise,
unambiguous mathematical definitions.

II Objections from the breakdown of thermodynamic assumptions. These objections
grant (I) but question whether the resulting formal quantities have the physical
characteristics required for a Boltzmannian explanation — especially when gravita-
tional interactions are taken into account.
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III Objections from lack of explanatory force. These objections grant both (I) and
(II) but question the explanatory form and physical motivation of the typicality
arguments used when applied to the Universe as a whole.

Division of objections into the above categories emphasizes the reliance of the latter
objections on being able to provide adequate responses to the former. If, for example,
one cannot meet the standards of Category-I, then the framework must be rejected and
the considerations of Categories II and III become irrelevant. We will see below that there
are already significant worries raised at the level of Categories I and II even though a
significant amount of philosophical literature is focused on evaluating objections falling
into Category-III. I will now discuss several examples, taken as exemplars, of specific
objections in order to illustrate each of the above categories. This analysis will help
illustrate the importance of the distinct properties of the Liouville measure that provided
the basis for the dilemma that we will present in Section 7.5. It will also help to elaborate
on the discussions of Section 6.4.2. Finally, this analysis will lead me to conclude that
the time independence of the Liouville measure is the only good argument in favour of
choosing it as a typicality measure.

7.3.1. OBJECTIONS FROM MATHEMATICAL AND CONCEPTUAL AMBIGUITY

In this section, I will primarily be concerned with issues arising from Conditions-A due
to infinite phase spaces. Such phase spaces entail serious mathematical problems for
measure-theoretic approaches to explanation. These problems stem from two distinct
sources. The first arises because measures evaluated on an infinite interval can only be
defined according to a limiting procedure that typically leads to physically significant
regularization ambiguities. These problems are compounded in field theories because
of a second source of ambiguity due to the phase space itself being infinite dimensional.
As I mentioned in Section 7.2.1, non-trivial translation-invariant measures do not exist
for this case, and this often leads to ambiguities related to the truncation of the phase
space. Ambiguities of these two kinds lead to a tension between mathematical precision
(Condition-A1) and uniqueness (Condition-A2). To make matters worse, the purely mathe-
matical problem of defining any measure on the phase space of general relativity invariant
under all spacetime symmetries is far from being solved. This open technical problem
is in fact one of the main formal obstructions to obtaining a canonical formulation of
quantum gravity. With this in mind, it is advisable to explore various approximations
to general relativity that render the computations of measures more tractable. But even
in this simplified setting, one encounters immediate and troubling difficulties that are
emblematic of the more general case.

Pioneering work in G. Gibbons, Hawking, and Stewart (1987) that was elaborated on
by several authors in both the physics (Ashtekar & Sloan, 2011; Corichi & Karami, 2011;
Hawking & Page, 1988; Hollands & Wald, 2002; Schiffrin & Wald, 2012) and philosophy
literature (Curiel, 2015; Earman, 2006; Frigg, 2009) shows that the natural measure on
homogeneous and isotropic cosmologies has infinite phase space volume. In the refer-
ences listed, different schemes are provided for handling these divergences, and these
schemes introduce ambiguities. A particular illustration of this will be outlined in detail
in Section 7.4. To resolve these mathematical ambiguities (of the first kind discussed
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above), new inputs, which are often physical in nature, must be introduced. It is thus
paramount that the extra inputs needed to resolve these ambiguities neither conflict with
other symmetry principles, in accordance with Condition-A3, nor implicitly assume what
is trying to be explained: i.e., the time-asymmetry of local thermodynamic processes.
Otherwise, the explanatory force of the PH is lost.

To illustrate the extent to which these ambiguities are problematic, consider the
concrete results of different authors with different intuitions performing computations of
the relative likelihood of cosmic inflation. Advocates for inflation (Carroll & Tam, 2010;
Kofman et al., 2002) proposed a measure according to which the probability of inflation
was found to be infinitesimally close to 1. Inflation skeptics (G. W. Gibbons & Turok, 2008)
proposed an alternative measure where the probability of inflation was found to be 1 part
in 1085! This remarkably huge discrepancy reflects the extent to which individual beliefs
can affect cosmologist’s determinations of the appropriate physical principles used to
justify their measure and the difficulties of resolving the tensions between Condition-A1
and Condition-A2.4 Any conclusions drawn on the basis of a typicality argument must be
assessed in light of such remarkable disagreement between cosmologists.

Ambiguities of this kind are not improved when more realistic models including
cosmological inhomogeneities are considered. Any preliminary hopes, such as those
alluded to in Callender (2010), that adding an infinite number of degrees of freedom
would help resolve these ambiguities can be seen to be in vain when explicit models
are considered. This has been done, for example, in Schiffrin and Wald (2012). What
was found there was that the additional degrees of freedom introduce corresponding
regularization ambiguities of the second kind discussed above. It is therefore necessary
to introduce new physical principles in order to resolve these ambiguities. Given the
daunting nature of a full general relativistic treatment, these considerations raises serious
doubts regarding the possibility of being able to attribute any meaningful notion of
typicality to the Universe as a whole.

7.3.2. OBJECTIONS FROM THE BREAKDOWN OF THERMODYNAMIC ASSUMP-
TIONS

In this section, I will consider the unusual properties of gravitational dynamics that com-
plicate our entropic intuitions for the Universe, assuming that a well-defined truncation
of the phase space exists on which a Liouville measure can be defined. Consider the equi-
librium state of a free gas. It is smooth, homogeneous and nothing like the current state
of the Universe, which is characteristically clumpy and uneven. Those clumps comprise,
among other things, star systems — one of which supports the far-from-equilibrium
biological system we find ourselves in. On the other hand, analysis of CMB temperature
fluctuations reveals only a small 10−5 deviation from homogeneity. How can these obser-
vations be compatible with a low entropy past state? The standard response to this is that
the gravitational contribution to the entropy should dominate at late times because of

4The origin of this ambiguity lies in the insistence of treating the time-dependent measure of Equation (7.6) as a
measure for counting solutions. I will suggest an alternative way of thinking of such measures as giving weights
for sets of states conditioned on knowledge about the current state. This interpretation will play a central role
in my proposed explanation for the AoT.



7

180 7. AGAINST THE PAST HYPOTHESIS

the unusual thermodynamic character of the gravitational interactions. This contribution
is so great that it more than compensates for the decrease in entropy observed through
the clumping of matter. Intuition for this comes from entropic considerations in New-
tonian N -body self-gravitating systems, which have been used to model, for example,
the dynamics of dust and stars in galaxies and galaxy clusters. But even in this simplified
and well-tested setting there are difficulties that are emblematic of the considerations of
Section 7.3.1.

Because Liouville volume is a volume on phase space, the inverse square potential due
to gravity and the large momenta it can generate flip expectations for what constitutes a
high and low entropy state. The steep gravitational potential well taps a large reservoir
of entropy allowing for the kind of sizeable low entropy fluctuations we see in biological
systems on Earth. These features as well as the difficulties they entail are reviewed nicely in
Padmanabhan (1990, 2008), which gives detailed proofs of many of the results referenced
below. This flipping of expectations is argued to occur not only for N -body systems, but
also in a full-fledged general relativistic treatment of entropy. Thus, advocates of the
PH (for example Albert (2009); S. Goldstein and Lebowitz (2004)) emphasize the N -body
intuition pump as providing an explanation for why the early homogeneous state of the
CMB should be thought of as having low entropy and the current clumped state, which
contains steadily accumulating stable records, as having high entropy. Moreover, this
intuition was a primary motivation for early attempts at formulating an explicit PH such
as Penrose’s Weyl Curvature Hypothesis (1979).

The N -body intuition pump, however, also raises potential concerns. Firstly, if we
follow the past state far enough into the early Universe, a full general relativistic treatment
becomes unavoidable. But as we have already seen in Section 7.3.1, such a treatment
suffers from troubling ambiguities, and it is not clear that the simple Newtonian intuition
will remain valid. Another significant worry is the definition of equilibrium itself. The
notion of equilibrium in gravitational systems is complicated by two sources of divergence
(for details see Padmanabhan (2008)): i) the infinite forces particles exert upon each other
when they collide, and ii) the infinite distances particles can obtain when ejected from a
system. To cure these divergences, it is necessary to render the entropy finite by imposing
additional constraints. This involves closing the system at some maximum size, so that
particles are not allowed to escape, and forbidding two particles from being able to collide.
This requires extra assumptions that must be grounded in physically acceptable principles.
It is therefore paramount that these physical idealizations be well-motivated. But the
fact that these idealizations break down under specified conditions implies difficulties in
defining stable equilibrium for the system. Indeed, N -body systems are known to only
have local — but no global — maxima (Padmanabhan, 2008). Thus, gravitating systems
do not have genuine equilibrium states, and Condition-D cannot be strictly satisfied. In
absence of an equilibrium state, thermodynamic quantities such as macro-states and
their entropy cannot be defined and Condition-C is strictly violated. While this is not
problematic for local meta-stable systems like a galaxy, it can certainly be problematic for
globally defined systems like the entire Universe. Moreover, even when local equilibria
exist, there is still no guarantee that gravitational dynamics will actually steer the system
towards these local equilibria in order to satisfy Condition-B. The crucial role of dynamics
in the Boltzmannian argument has been emphasized in Frigg (2009) and Brown and
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Uffink (2001).

7.3.3. OBJECTIONS FROM LACK OF EXPLANATORY FORCE

This section will firstly be concerned with the essential need to satisfy Condition-B by
finding a valid justification for using Liouville volume as a typicality measure, assuming all
concerns of Category I and II have been resolved. In conventional statistical mechanical
systems, this justification proceeds along two traditional routes. The first and oldest
route relies on a theorem by Birkhoff (1931) that states that for ergodic systems the
average time spent in a particular phase space region becomes roughly proportional
to its Liouville volume if the timescales in question are much longer than the Poincaré
recurrence time. Unfortunately, for almost all systems — and certainly for the Universe
— the Poincaré recurrence time is significantly longer than the estimated time since the
Big Bang. The second route, usually favoured for its practicality, is to argue that the
system undergoes a process called mixing. Roughly speaking, a system is mixed when the
long-run evolution of the measure of a system becomes approximately homogeneous,
and therefore Liouvillian. Many systems exhibit this property and the relevant mixing
timescales can be computed explicitly. Unfortunately, Schiffrin and Wald (2012) argue
that the observed expansion of the Universe is too rapid to allow the large scale structures
of the Universe to interact often enough for mixing to occur on these scales. This suggests
that it is unreasonable to expect the Universe as a whole to undergo mixing. It would seem
that in terms of conventional justification schemes for the Liouville measure Condition-B
cannot be made compatible with the observational requirements of Condition-F.

It is possible to look for justification schemes satisfying Condition-B that do not
originate from conventional statistical mechanical considerations. One proposal made
by Penrose (1979; 1994) and later advocated (either implicitly or explicitly) by S. Goldstein
(2001), Lebowitz (1993), and Albert (2009) is a version of the Principle of Insufficient
Reason (PIR) as formalized by Laplace. In Penrose’s version, a blind Creator must choose
initial conditions for the Universe among the space of all possibilities. Being indifferent
to which conditions to choose, the Creator assigns equal likelihood to each possibility
according to the Liouville measure. Given the failure of standard justifications schemes,
Schiffrin and Wald (2012) point to Penrose’s proposal as the only available alternative.
Unfortunately, the PIR has a troubled history in the philosophy of science and suffers from
several well-known difficulties. At least four prominent criticisms are identified in Uffink
(1995). While some of these are addressed implicitly throughout this text, one line of
criticism dating back to Bernoulli is noteworthy because it also directly puts into question
the validity of Condition-C. In this line of criticism one derives paradoxes that originate
in an incompatibility between the measures obtained when applying the PIR to different
choices of partition for the microstates of a system. These paradoxes occur when the
partitions correspond to disjunct coarse-grainings or refinements of each other (Norton,
2008). There is nothing in the PIR that tells you which partitioning of the microstates is
the “correct” one precisely because this would require some non-trivial knowledge about
how these partitions may have been gerrymandered. Without direct knowledge of the
“correct” partitioning of microstates, the PIR loses all explanatory power.

The only remaining justification for the Liouville measure is the uniqueness argument
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under time-symmetry. If one requires a time-independent measure, then the uniqueness
of the Liouville measure under the requirement of being preserved by arbitrary Hamilto-
nian evolution does single it out. However, as we will see in Section 7.4, an application of
the PESA to cosmological systems puts into doubt any motivations for using the Liouville
measure to establish a notion of typicality for models in the Universe.

Finally, let me mention a prominent ongoing dialectic between Price (2002; 2004)
and Callender (2004a; 2004b) on the explanatory power of the PH that questions the
validity of Condition-E. In this dialectic Price argues that the PH itself should require
explanation in pain of applying a “temporal double standard” to a past state when an
atypical future state would plainly require explanation. Callender responds by stating
that contingencies rarely (or never) require explanation, and an initial condition such as
a PH is a contingency of this kind. Indeed, I will revisit Price’s temporal-double-standard
objection in the conclusions (Section 9.1.2.2) and show that my proposed solution in
terms of a Janus–Attractor scenario provides a natural response.

Concluding remark The analysis of this section has established that there are many
concerns regarding the justification of the choice of typicality measure used to formulate
a PH. In Section 7.3.2 it was argued that self-gravitating systems have unusual thermo-
dynamic properties and in Section 7.3.3 these arguments where combined with known
facts about the Universe to suggest that conventional statistical mechanical justifications
fail when applied to the Universe. Justifications that rely on indifference principles where
also criticised on epistemological grounds. I conclude from this section that the only
defensible justification for choosing the Liouville measure as a typicality measure is an
argument based on its time independence. This time independence is essential to the
Boltzmannian reasoning since, without it, the time dependence of the measure could
itself be used to explain time asymmetry. And the Liouville measure really is the unique
measure under this requirement.

7.4. DYNAMICAL SIMILARITY AS A GAUGE SYMMETRY OF THE

UNIVERSE: COUNTING WHAT COUNTS

I will now argue, using the PESA, that dynamical similarity should be treated as a gauge
symmetry in cosmology. This result will not only be essential to my reasons for rejecting
the PH but will also form the basis of the new proposal that I will give in Chapter 8. Addi-
tionally, I will show that, while the Liouville measure is, in general, not invariant under
dynamical similarity, it is straightforward to find a measure for cosmology that is. Interest-
ingly, as we will see, this measure is deemed to by physically plausible by cosmologist, in
contrast to the time-independent measure build directly from the Liouville. An important
property of the physically plausible measure is that it is highly time-dependent. I will
use this fact to raise serious doubts about whether a convenient measure can be found
that can be both time-independent, as is assumed by the PH, and gauge-invariant, as is
required by Condition-A3.

Recall from Section 4.8.1 that a dynamical similarity is a transformation generated by a
vector field on phase space that rescales the action according to S → cS for some positive
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constant c . I will now show that modern theories of cosmology have dynamical similarities
as (broad) symmetries. In the Standard Model of Cosmology, the spacetime geometry
and matter content of the theory is separated into a background contribution and linear
perturbations. The background is represented by a Friedmann–Lemaître–Robertson–
Walker (FLRW) model, which is dynamically decoupled from the perturbations. Because
of this decoupling, the symmetries of the background model must also be symmetries
of the full theory. We can then restrict our attention to the FLRW model without loss of
generality.5

I will give a more mathematically complete description of the FLRW model in Sec-
tion 8.4. For now, all we will need is to define the basic variables of the theory and state
the equations of motion in terms of these variables. The geometry of spacetime in the
FLRW model is represented by the volume, v , of a patch of space co-moving with respect
to test particles travelling along geodesics. I will choose a time variable that is an affine
parameter of these geodesics. The first time derivative of v can be encoded in the Hubble
parameter H introduced in Chapter 6. The matter content of inflationary cosmology
is represented by n scalar fields φi , the inflaton fields, and their first time derivatives,
v i
φ ≡ φ̇i . See Section 8.4 for a more complete definition of these variables. The equations

of motion for the geometry and matter of the FLRW inflationary model are given by the
Friedmann and Klein–Gordon equations respectively:

H 2 = 8π

3

∑
i

(
v i
φ

)2

2
+V (φi )

 v̇ i
φ+3H v i

φ+
∂V

∂φi
= 0, (7.3)

where V (φi ) is the inflationary potential, and we have set various constants (including
Newton’s constant and the scalar field masses) to one.6

In terms of the variables {v, H ,φi , v i
φ}, it is straightforward to see that the theory

defined by the equations of motion above is invariant under the transformation

v → c(t )v , (7.4)

where all other variables are held fixed. In Section 8.4.2, I show that this is a dynamical
similarity of the FLRW theory. This fact follows trivially from the observation that the
equations of motion (7.3) are completely independent of the variable v . Because of this,
c in (7.4) can take arbitrary values at different times without affecting the dynamics of
quantities in the set A = {H ,φi , v i

φ}. This means that the equations of motion of the FLRW
theory are already gauge-invariant with respect to dynamical similarity and autonomous
in A.

It is now straightforward to apply the PESA to investigate the role of dynamical simi-
larity in inflationary cosmology. The equations (7.3) define the complete dynamics of the
background geometry in the FLRW inflationary model. They are first order and continu-
ous, as long as V (φi ) remains finite, and autonomous in A. I will investigate the continuity

5This breaks down away from the regime where perturbation theory is empirically justified; i.e., when the
Universe is not smooth.

6I have also taken k = 0 for simplicity. Generalisation to other values of k is possible but does not add anything
substantive to the analysis.
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of these equations at the Big Bang in Section 8.4.4. But for now, it is sufficient to restrict
our attention to a range of values, far away from any potentially singular regions, for the
variables in A where the FLRW theory is empirically reliable. This means that the algebra
A satisfies the dynamical requirements of the PESA in the FLRW theory.

The algebra A also satisfies the empirical requirements of the PESA. Removing any of
the variables in A would render the theory physically unviable since all of these variables
appear in quantities that can be observed in cosmology.7 This means that the necessity
criteria is satisfied. But the sufficiency requirement is also satisfied — at least in terms of
determining the background structure. As we will see below, it is a well-established fact
that the value of the scale-factor, which is just the cubed root of v , is arbitrary in cosmology,
and therefore does not correspond to any meaningful observable. This is reinforced by
the fact that the dynamics of the scale factor are not fixed by the equations of motion.
And since the background equations are decoupled from the perturbative equations,
the same holds for the full inflationary theory. The PESA therefore tells us that a good
interpretation of the FLRW inflationary theory is to identify the set A as a generating set
for the observable algebra of the theory. Since A is invariant under dynamical similarity,
we immediately find that dynamical similarities are gauge symmetries of cosmology.

I now turn my attention to the properties of the Liouville measure for the FLRW theory.
Without even having to write down this measure we know from general considerations
that it will not be invariant under dynamical similarity. This can be seen by noting that
the symplectic 2-form ω of a theory is required to rescale under a dynamical similarity
because of the relation (4.154) so that the Liouville form, (4.195), is also rescaled. In
the FLRW case, one can understand this because the phase space will contain v , which
transforms non-trivially under dynamical similarity according to (7.4), and momentum
variables conjugate to φi , which must transform non-trivially so that ω has the correct
weight under dynamical similarity.

To count solutions however, the Liouville measure must be restricted to a surface
of constant clock time, which intersect all DPMs once, and the Hamiltonian constraint
surface implied by the reparametrisation invariance of the theory. This is the general pro-
cedure for counting solutions described in Section 4.8.3.1. A common way to implement
this procedure8 is to restrict to a single scalar field and choose constant-H surfaces so
that the Hubble parameter is treated as an internal clock for the system with the value
H = H⋆. The Hamiltonian constraint can then be solved by eliminating the momentum
conjugate to the scalar field. The restriction of the Liouville measure to these surfaces is
then given by the Gibbons–Hawking–Stewart (GHS) measure (G. Gibbons et al., 1987)

µGHS(r ) =
∫

r

√
(H⋆)2 −m̃2φ2dv dφ , (7.5)

where r is a region on the surface H = H⋆ that is compact in φ but not in v .
Importantly, the GHS measure is not regarded as physically meaningful by cosmolo-

gists in part because of its non-compact domain in v , which causes a divergence, but also
because of the non-physicality of v itself. As is pointed out in Section IV of Schiffrin and

7For example, the slow-roll parameters depend on these quantities.
8For a readable summary of how to do this, see Schiffrin and Wald (2012).
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Wald (2012), physical predictions do not depend on the initial value of the scale factor but
only on φ:

Whether or not inflation occurs in a given universe only depends on the initial
value of φ. In particular, it does not depend on the initial value of a — as one
would expect, since the value of a does not affect the dynamics when the
spatial curvature vanishes.

This decoupling of a is in-line with our own motivations for eliminating a. However,
G. W. Gibbons and Turok (2008) go further stating:

... we identify the divergence as being due to the dilatation symmetry of flat
FLRW universes, and we show it is removed if one identifies solutions which
cannot be observationally distinguished. [p. 11, emphasis added]

Here, they explicitly discuss a “dilatation symmetry” as the origin of the non-physicality
and use this to motivate the removal of the scale factor a, although they do not identify it
directly with dynamical similarity.

Let us see how the removal of a or, in our case, v is performed. While the procedure
was first introduced in Hawking and Page (1988), our treatment will follow most closely
that of Schiffrin and Wald (2012). The idea is to eliminate the divergence due to the
integral over v by integrating over all of its possible values and normalising. The resulting
measure

Prob(rφ) = lim
vmax→∞

∫ vmax
0 dv∫ vmax
0 dv

∫
rφ

dφ
√

(H⋆)2 −m̃2φ2∫
rφmax

dφ
√

(H⋆)2 −m̃2φ2
→ finite (7.6)

is finite due to the cancellation of the v-integrals in the numerator and denominator. The
result depends only on the ratio of the integrals over the region rφ, which can be used
to define inflation, and the finite region rφmax , which is given in terms of the dynamical
constraints of the theory.

From the perspective of the PESA, the integration over v is motivated by requiring that
the physical measure be invariant under what it unambiguously identifies as the gauge
symmetries of the theory. The integral over v is an integration over the orbit of the dynam-
ical similarity (7.4). The fact that the physicality of the measure (7.6) and, conversely, the
non-physicality of the measure (7.5) has been independently acknowledged by practising
cosmologists is evidence that the PESA is producing acceptable results.

The use of the gauge-invariant measure (7.6) leads, however, to a serious problem
for the PH. The measure (7.6) is explicitly time-dependent in the sense that it depends
on the value H⋆ of the internal clock. This time dependence introduces significant
time-asymmetry into theory. As discussed in Schiffrin and Wald (2012), the values of
the measure at different H⋆ span a range of 85 orders of magnitude between the onset
of inflation and the present.9 This was identified as a kind of regularization ambiguity
in the treatment of the divergence due to the integrals over v . But by identifying the
v-integration as a reduction of dynamical similarity, which is a non-symplectic symmetry,
we see instead that the time-dependence is due to the non-conservative flow of measures

9These are the same 85 orders of magnitude resulting in the disagreement between inflation advocates and
critics that was discussed in Section 7.3.1.
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on contact spaces. Understanding how to adapt our reasoning to a time-dependent
measure without introducing ambiguity will be the main focus of Chapter 8, and will
be central to our new understanding of the AoT. For now, note that the significant time-
asymmetry introduced by this procedure poses a serious problem for PH accounts of the
AoT.

7.5. A DILEMMA FOR THE PAST HYPOTHESIS

7.5.1. THE FIRST HORN: LOSS OF EXPLANATORY POWER

As I have argued, the Liouville measure is indeed singled out as being the unique measure
on phase space that is preserved by an arbitrary choice of dynamics. At first sight, this
uniqueness appears to be particularly convenient for a particularist because a time-
independent measure is very natural in the context of a PH. But time independence in
the measure is more than a question of convenience in the context of a PH. In fact, as I
will now argue, it is an essential ingredient for the PH.

Following Price (2002), the logic of the PH presented in Section 7.2.1 constitutes a
contrastive explanation of the form: if A then B rather than C. The explanans A — i.e., the
PH itself — is taken to explain the explanandum B — i.e., the fact that typical processes
are seen to overwhelmingly occur in a time-asymmetric way. The outcome C is then
a typical member of a contrast class of outcomes that would be likely if not for A. The
explanatory force of A comes from increasing the likelihood of B relative to C.

In the case of a PH, the contrast class is the set of worlds where typical processes
overwhelmingly occur in a time-symmetric way. According to this logic, in order for the
PH to be a good explanation of time-asymmetry, it must be the only significant source of
time-asymmetry. Clearly this is consistent with the apparent FAPP time-symmetry of the
form of the fundamental laws.

This consistency however is not sufficient. When a time-dependent measure is intro-
duced into the formalism, the time-dependence of the measure could itself provide an
explanation for the time-asymmetry of typical processes.10 This is especially true if the
time-dependence of the measure introduces a significant numerical temporal gradient
as was shown in the previous section for the case of cosmological models. Moreover, the
time-dependence of the measure introduces an ambiguity in terms of which moments in
time should be used in order to obtain a unique measure on the space of models. Such an
ambiguity can only be resolved by including some additional principle to the PH — thus
undermining much of its explanatory appeal. It is therefore essential to the logic of the
PH that the measure employed be time-independent, and especially important that the
measure not be badly time-dependent. Otherwise, we would have no reason to believe
that processes would not occur in a time-dependent way even if the PH were not true.
Note that these considerations hold regardless of any other justificatory considerations
regarding the measure. This establishes the first horn of the dilemma.

10We will see that time-dependence alone is not enough and that, to introduce time-asymmetry, we will have to
introduce an extra structure on phase space called a Janus point.
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7.5.2. THE SECOND HORN: VIOLATION OF A GAUGE SYMMETRY

At the end of Section 7.2.1, I argued that a measure that is not gauge invariant will gener-
ically introduce a distinction without a difference. On top of badly violating epistemic
expectations I also showed that this goes against standard practice in physics. I will now
use this fact to state the second horn of our dilemma. As I argued in Section 7.4, the
PESA prescribes that dynamical similarity be a gauge symmetry of inflationary cosmology.
Thus, a measure that is not invariant under dynamical similarity will introduce a distinc-
tion without a difference. But as was shown in Section 7.4, the Liouville measure is not
dynamically similar. It follows that the use of the Liouville measure as a typicality measure
in inflationary cosmology introduces a distinction without a difference, as reflected in the
fact that cosmologists do not regard the GHS measure to be physical. This is the second
horn.

Now recall the first horn of the dilemma. Boltzmannian accounts of the PH must make
use of the unique time-independent Liouville measure in order to retain their explanatory
force. Thus, Boltzmannian accounts of the PH must face the following dilemma: either
lose explanatory force or introduce a distinction without a difference.

7.6. FINAL REMARKS: WHY WE DON’T NEED THE PAST HYPOTH-
ESIS

We have seen that Boltzmann-style explanations of time-asymmetry that make use of
a PH depend upon a number of very restrictive conditions. The analysis of Section 7.3
has uncovered several good reasons to question whether these conditions can ever be
simultaneously satisfied. Broadly speaking we found that the nature of the phase space,
dynamics and symmetries of general relativity provide reasons for pessimism regarding
the prospects for providing and justifying a satisfactory notion of typicality for models
of the Universe. A common response against critiques of this kind is to observe that
strict insistence on mathematical rigour has often been unreasonable in the development
of theoretical physics. Controversy over difficult technical problems such as defining a
measure on the solution space of general relativity should not, it is argued, halt progress
altogether. It should still be reasonable to advance conjectures regarding the plausible
features of measures that may one day become available.

While such a strategy — effective or not — is available in response too much of the
analysis of Section 7.3, it is no longer available in response to the dilemma of Section 7.5.
This is because the dilemma is the result of a simple symmetry argument applied to a
very general way of formulating the laws of the Universe. To reject dynamical similarity as
a gauge symmetry is to reject the arguments in favour of the PESA. To reject the Liouville
measure is to abandon one of the most basic aspects of the Boltzmannian logic. To
not require the gauge-invariance of the measure is to introduce a distinction without
difference and to reject standard practice in particle physics and cosmology. None of these
escape routes is particularly appealing. Even if one grants all the technical assumptions
required by the PH, the dilemma persists.

On the other hand, a full-throated rejection of the PH as an explanation for time-
asymmetry avoids the dilemma completely. But how, then, is one to explain the problem
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of the AoT? In the next section, I will use the significant time dependence of dynamically
similar measures not as a potential obstruction but as the basis for a new and compelling
explanation for the AoT independent of a PH.



8
A NEW EXPLANATION FOR THE ARROW OF

TIME

CHAPTER SUMMARY

In this chapter, I present my proposal for explaining the Arrow of Time. The general scenario
requires the presence of special features of the solution space; namely attractors and Janus
points; and defines an Arrow of Time pointing from the Janus surface to an attractor for
an observer that is in a state close to the attractor. This proposal requires neither a Past
Hypothesis nor a time-asymmetric law, and therefore evades the impasse of Chapter 6.
After defining the general scenario, I illustrate it in two concrete models: a non-expanding
Newtonian N -body gravitational systems and homogeneous and isotropic cosmology. In
the N -body model, I show that observers near an attractor typically see smooth states on
the Janus surface. This solves the red-shift problem within this model. In the cosmological
model, I show that observers near an attractor generically see a monotonic and divergent
Hubble parameter in the past defined by my proposed Arrow of Time. This solves the
red-shift problem within this model.
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8.1. INTRODUCTION

8.1.1. A NEW HOPE

In this chapter, I will present a general scenario in which a significant AoT can arise in a
theory with time-reversal invariant laws. I will show that this scenario is realised in models
that capture the features of our world. In particular, I will give two physically well-motived
models; namely, an N -body model and a cosmological model; that respectively solve the
smoothness and red-shift problems introduced in Section 6.2. Remarkably, by removing
dynamical similarity in an N -body system, I will show both that there are attractors and,
more surprisingly, that observers near such attractors will typically see smooth states in
their ‘past’.1 The combination of having a time-dependent measure and conditioning on
being close to an attractor is what leads to a result so different from the usual expectations
of the N -body theory. Similarly, removing dynamical similarity from the cosmological
model presented below and imposing some reasonable physically-motivated constraints
will result in attractors. Observers near such attractors will generically see states will large,
monotonic Hubble parameters in their ‘past.’ These results, obtained for specific models,
suggest a more general resolution of the problem of the AoT in terms of a unified model
that combines the features of the ones presented here.

Before describing in more detail the concrete results of this chapter, let me first
recall some key results from earlier chapters that will be necessary for constructing the
argument. First, there is the PESA-based argument of Section 7.4 that concludes that
dynamical similarity should be treated as a gauge symmetry in FLRW cosmology. This
argument says that the absolute size of the Universe, as encoded by the scale factor, is not
an observable of the theory. I will show in this chapter that removing the scale factor from
the observable algebra leads to an odd-dimensional contact system.

In Section 4.8.2, I developed a general procedure for applying a generalization of
the Gauge Principle to dynamical similarity. I showed that contact systems are formally
similar to non-conservative, friction-like systems. The degree of non-conservation can be
quantified in terms a quantity I called the drag because of its formally similarity to the drag
coefficient of a mechanical system.2 I showed that the drag is the decay coefficient in time
both of the Hamiltonian (see Equation 4.187) and of the measure (see Equation 4.190).
Positive drag therefore signals non-conservation in terms of loss of energy and focusing
of solutions.

In this chapter, I will focus on the behaviour of the drag in the N -body and cosmologi-
cal models mentioned above. In both cases, I will find that the drag defines a significant
temporal gradient away from a Janus point (which I will define in Section 8.2.2), where it
is momentarily zero, under certain reasonable physical assumptions detailed below. On
either side of the Janus point, the drag is monotonic along solutions, reaching attractors
(which I will define in Section 8.2.1), asymptotically. This leads to a Janus–Attractor sce-
nario, as described in Section 1.2.2 of the introduction and defined more rigorously in
Section 8.2.3 below, where observers near an attractor will generically see a significant

1Where I will be careful to define past according to states on a history relative to those observers.
2Specifically, the drag was defined as the Reeb flow of the contact Hamiltonian. See the discussion below

Equation 4.184.
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numerical gradient in the drag pointing from a Janus point to the attractor they are near
to. This gradient then defines an AoT as guaranteed by our general considerations. In the
Newtonian gravitational model, the gradient explains the growth of structure while, in
the cosmological model, it explains the decrease of the Hubble parameter.

These AoTs arise from the generic behaviour of the drag, which is a scalar function
on a contact space. Since contact systems arise from my general implementation of the
Gauge Principle for dynamical similarity, JA-scenarios can occur when treating dynamical
similarity a gauge symmetry. It is important to note, however, that the AoT itself is not
a global feature of the theory. Rather, an AoT arises in the JA-scenario from directed
gradients seen by a certain class of observers; namely those near attractors. Indeed,
observers near attractors on different sides of a Janus point will see AoTs pointing in
different directions (if such attractors exist). Moreover, observers near a Janus point will
not be able to detect any significant gradient in the drag, and will therefore not be able to
identify an obvious AoT of the kind I am proposing. But while AoTs in this picture arise
for specific classes of observers, they are ultimately made possible by the existence of the
Janus points and attractors themselves. These structures, however, are global features of
the theory since they are sets determined by the contact dynamics. In the JA-scenario, an
AoT thus emerges for certain observers because of global structures on the state space.

This understanding allows us to compare my proposal to existing explanations of the
AoT. Importantly, the dynamical flow — and consequently the Janus points and attractors
— in my picture is invariant under a change of time orientation, and therefore does not
privilege any particular time orientation. My mechanism for generating an AoT is, thus,
not generalist because the laws themselves are time reversal invariant.

But while my picture is not generalist, it is also not particularist. Neither the existence
of a Janus point nor of an attractor requires an hypothesis about a particular fact. Rather,
these structures are generic features of a dense set of solutions of the theory. Their
existence can be proven rigorously using the mathematical properties of the dynamical
laws. In particular, there is no need to postulate an atypical early state.3 The explanation
for the AoT in a JA-scenario is therefore neither particularist nor generalist. In this way,
I evade the impasse of Section 6.4 by showing, in Section 9.1.2, how it is a false choice
resulting from the assumption that the scale factor of the Universe is observable.

Let me wrap up these introductory remarks by summarising the main aspects of my
proposal and how they can be seen to introduce an AoT. The basis of my proposal is
the PESA-based argument for treating dynamical similarity as a gauge symmetry. This
argument states that cosmological systems are best described as contact systems. In such
systems, time-independent measures are no longer natural the way they are in symplectic
systems. The problem of the AoT, which is ultimately a problem about how typical our
highly time-asymmetric world is given the time reversal invariance of the laws, then takes
on a different character. In particular, the drag appears as a dynamical quantity that
naturally highlights certain highly time-asymmetric features of the world, making them
seem more likely and, even, expected.

In Section 8.2, I will describe the JA-scenario in general and give mathematical def-
initions for the structures that give rise to an AoT. Then, I will carefully define the two

3The behaviour on the Janus point, for example, is typical in the N -body model and generic in the cosmological
model.
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models that realise a JA-scenario and show how they, respectively, solve the smoothness
and red-shift problems. Before doing this, I will motivate these two models by describing
them qualitatively and explaining how each provides an account of the phenomena I have
set out to explain. But before moving on to a more complete treatment, I will address, in
Section 8.1.3, an ambiguity in my procedure regrading the amount of drag in the system.

8.1.2. THE MODELS

8.1.2.1. N -BODY MODEL

The first model I will consider is a Newtonian N -body system of self-gravitating point
particles. This system idealises the large-scale structure of the Universe by representing
galaxies as point particles interacting under their mutual gravity. In this model, the
intension is to capture the growth of structure resulting from the gravitational collapse of
over-dense regions of matter in the visible Universe. Red-shift is ignored for simplicity
because we are interested periods of time after recombination where the effect of the
red-shift is not significant in determining the qualitative features of local structure. Below,
I will sketch how this model leads to one of the main results of this thesis; namely, that
observers in states where lots of clumping has been seen to occur will typically see nearly
smooth states in one time direction (i.e., their ‘past’) and even clumpier states in the other
time direction (i.e., their ‘future’). Details are given in Section 8.3.

This model was introduced by Barbour, Koslowski and Mercati (BKM) in the three pa-
pers Barbour et al. (2014), Barbour, Koslowski, and Mercati (2013), and Barbour, Koslowski,
and Mercati (2015) for the purposes of understanding the origins of the AoT. These papers
formed the basis of the analysis appearing in Barbour (2020). While my treatment in
Section 8.3 will have significant overlap with those papers, there are important differences
that are worth noting. First, there are some formal differences between our procedures.
While they apply the Gauge Principle by performing an explicit reduction, I will retain full
gauge invariance. Second, my analysis focuses on different aspects of the AoT. While I
am primarily concerned with using this model as a way of addressing the smoothness
problem, BKM were primarily concerned with understanding the emergence of local ther-
modynamic AoTs in terms of the accumulation of stable records. As a result, my approach
will have different modelling assumptions and will focus on the behaviour of different
mathematical quantities.4 Finally, I will extend some of the BKM analysis to include a
more direct quantitative measure of smoothness.5 These differences notwithstanding,
the analyses are not contradictory, and can be taken as serving complementary goals.

The idealisation I will use here is similar to, although less sophisticated than, the so-
called Millennium Simulation of Springel et al. (2005) that can reproduce the empirically
adequate large-scale structure of the Universe by explicitly simulating an N -body system
on a red-shifting background.6 Thus, with some improvements, the model used here

4In particular, the main quantity that defines an AoT in my view is the drag, while in the BKM view, it is a
function they refer to as the complexity. I will call this function the C -function (see Equation 8.39) instead. In
my work, the role of the C -function will be to establish that the AoT defined by the drag is consistent with a
smooth initial state.

5See, for example, the analysis of Section 8.3.4.4.
6While the Millennium Simulation is mainly an N -body simulation with initial conditions determined by

the parameters of ΛCDM, it also involves some modelling of galaxy formation in addition to an expanding
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could be upgraded to give an empirically adequate description of large-scale structure
formation since recombination.

For now, my goal is not to achieve empirical adequacy but to understand the broad
qualitative features of N -body systems that are relevant to the smoothness problem. In
particular, I’d like to know what observers in an N -body Universe where lots of structure
has formed will typically see in their ‘past,’ where some definite procedure should be
given to determine the ‘past’ direction. Because I am treating the N -body system as a
cosmological model, the PESA-based argument of Section 7.4 for the scale factor being
unobservable should apply. This means that the overall size of the N -body system should
be taken as gauge. In Section 8.3.2, I will model changes of size of this kind as a dynamical
similarity of the N -body system. I will thus apply the Gauge Principle for dynamical
similarity developed in Section 4.8.2 to this system.

Given the reasonable physical constraints described below, I will show that the natural
contact system obtained from this procedure contains a drag term whose value generically
goes through zero so that there is a Janus point on generic solutions. The drag then grows
monotonically away from the Janus point towards an attractor. The monotonicity of the
drag results in a number of attractors that characterise the asymptotic behaviour of the
N -body system.

What we can infer about these attractors is known from theorems derived in Marchal
and Saari (1976). There, it is shown that the N -body problem for non-negative energy
splits into at least two subsystems whose centre-of-mass motion asymptotes to that of
a free particle. In general, there will be many of such subsystems when N is large that
expand in different directions so that the overall size of the system grows arbitrarily large
compared to the maximum size of any subsystem. The attractors of the scale-invariant
description thus resemble highly structured clumped states.

Contrastingly, the Janus points are characterised by arbitrarily more diffuse states of
particles. These can then be interpreted as smooth ‘initial’ states from the perspective of
‘late’-time observers near an attractor. Here, the distinction between ‘initial’ and ‘late’ can
be given in terms of the value of the drag, which is zero at the initial state and maximum
in the asymptotic future. Using this understanding, my results suggest that early states
are necessarily much smoother than the states at late times.

Note that while the behaviour of the drag — particularly the existence of Janus points
and attractors — can be proven generically from the dynamics using mathematical the-
orems, the link between the drag and the ‘clumpiness’ of the state is less direct. I will
investigate this link more carefully using the behaviour of a particular quantity that I will
call the C -function that is at the centre of BKM’s analysis. I will argue that the value of C
is a good quantitative way to measure the amount of clustering, and takes a minimum
when the state is smooth. I will then argue that a robust class of measures can be given
that have the property that the initial state on a Janus surface is overwhelmingly likely
to be near the minimum of C , and therefore nearly homogeneous.7 This claim, which I
have emphasised earlier, forms the basis of my solution to the smoothness problem in
the N -body model.

The physical conditions needed to derive these results are that the total energy of the

background.
7I will be able to make this claim also in terms of more direct measures of homogeneity.
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original symplectic system, E , must be greater or equal to zero and that the total linear
and angular momentum, P⃗ and J⃗ , must vanish. The vanishing of P⃗ and J⃗ is required
because non-zero values of such constants indicate the existence of a simple integral
of motion whose conjugate variable could be used as a clock. As we saw at the end of
Section 4.8.3.2, when simple integrals of motion are available, it is straightforward to
construct conservative descriptions of the contact system where the drag is exactly zero.
Physically, this signals the presence of an external clock that is dynamically decoupled
from the rest of the system. Such external structures could be argued to be unnatural
in a relational theory of the Universe. Indeed, this is how such conditions were initially
motivated in Barbour et al. (2014). In any case, the vanishing of P⃗ can always be achieved
by going to centre-of-mass coordinates and the vanishing of J⃗ is consistent with cosmo-
logical observations in the sense that there does not seem to be a preferred rotational axis
in the Universe.

The condition that E ≥ 0 is required because negative total energy would allow for
solutions where all the point particles could re-collapse under their mutual gravity. This
would mean that the monotonicity of the drag — and consequently the existence of the
Janus points and attractors — would not be guaranteed without extra constraints on the
initial conditions. Treating the case of E > 0, however, requires a more general procedure
for implementing the Gauge Principle for dynamical similarity when there are multiple
dimensionful couplings. This procedure is described in Sloan (2021b) and Section III.C of
Bravetti et al. (2023). For simplicity, I will only consider the E = 0 case in this work.

Physically, the more general condition E ≥ 0 can be motivated by noticing that this
condition mimics a situation that is the well-known from general relativity, and which
will be central to my considerations later, where a positive cosmological constant can
be shown to prevent a re-collapsing Universe. Since I have ignored the ref-shift in this
model, the simplest way to prevent the system from re-collapsing without a cosmological
constant is to require E ≥ 0. Ultimately, I would prefer a more realistic model with an
N -body system expanding on an FLRW background, where only the requirement of a
positive cosmological constant would be necessary. I will leave this to future work.

8.1.2.2. FLRW COSMOLOGY

The second model I will consider is an FLRW cosmology coupled to a finite number of
scalar fields. Below, I will sketch how reasonable physical assumptions in this model
guarantee the existence of a global attractor such that observers near that attractor
generically see states with large Hubble parameters in the time direction pointing away
from the attractor (i.e., the natural ‘past’ states of the observers). A detailed treatment will
be given in Section 8.4.

We already encountered the relevant cosmological model in Section 7.4. Models of
this kind are used in inflationary cosmology to describe the evolution of the background
geometry of the Universe. The effects of dynamical similarities in such models were first
considered in Ashtekar and Sloan (2011). A more explicit treatment can be found in Sloan
(2019), an action is given in Sloan (2021a), and a geometric procedure on state space is
developed in Bravetti et al. (2023). Generalizations of these models to homogeneous but
non-isotropic cosmologies were first given in Koslowski, Mercati, and Sloan (2018) with
an action given in Sloan (2023). These results perform an explicit reduction of the theory
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by the action of dynamical similarity. None are concerned directly with the problem of
the AoT. In this chapter, I will reproduce many of the key results from this previous work
but using the general Gauge Principle developed in Section 4.8.2. This gives the resources
needed to easily switch between different representations of the system resulting from
different gauge fixing conditions. In Section 8.4.4, for example, I will use a particular
representation that will allow me to easily understand the geometry of the solutions,
including the behaviour at the Janus point.

By coupling this cosmological model to linear perturbations, it would be possible
to produce an empirically adequate model of the power spectrum of the CMB using
standard techniques in cosmology. But as in the N -body model, the goal for now is not to
produce an empirical adequate model but, rather, to give a model that roughly captures
the broad empirical behaviour of Hubble parameter in the Universe. Thus, I will not
yet couple linear perturbations to the model and will assume homogeneity and isotropy
throughout.8 The purpose of this model is therefore to try to solve the red-shift problem
in an idealised setting where it is assumed that the Universe is perfectly smooth. While
the N -body model cannot address the red-shift problem because red-shift effects are
explicitly ignored, the cosmological model given here cannot address the smoothness
problem because inhomogeneities are explicitly ignored. Nevertheless, the hope is that
these simple models, when taken together, make it plausible that a more realistic model
could address both problems simultaneously.

In addition to homogeneity and anisotropy, I will make the following physical as-
sumptions: i) a positive cosmological constant, ii) vanishing spatial curvature (i.e., k = 0),
and iii) the weak energy condition for the matter fields. As we will see in Section 8.4.3,
these conditions are sufficient (but not necessary) to guarantee the monotonicity of the
Hubble parameter, and consequently the existence of an attractor. More intuitively, these
assumptions prevent the space-time from re-collapsing under its own gravity, preventing
it from reaching a stable fixed point.

Physically, a positive cosmological constant is motivated by the fact that it is favoured
by observations. The vanishing of spatial curvature is a simplifying assumption9 that is
consistent with observations. And the weak energy condition, which formally requires
that the matter density as seen by any time-like observer be non-negative, is a relatively
weak assumption consistent with all known local observations.

When these reasonable conditions are satisfied, I will show that the Gauge Principle
for dynamical similarity developed in Section 4.8.2 leads, for this model, to a contact
system where solutions generically have a unique Janus point, normally interpreted as
the ‘Big Bang,’ about which the drag increases monotonically towards a global attractor.
The spacetime geometry of the global attractor is that of de Sitter. Near the attractor, the
Hubble parameter reaches a minimum and depends only on the cosmological constant.
Because the attractor is global, we are led to the second key result of this chapter: ob-
servers in any solution near the de Sitter attractor will see an arbitrarily large numerical
gradient in the drag pointing from the Janus point to the attractor. This model thus pro-

8The paper Koslowski et al. (2018) relaxes these assumptions slightly by considering a finite number of
anisotropies.

9Lifting it would put mild constraints on the attractive basin of the attractor and require the more general
procedure, alluded to above, for removing dynamical similarity in theories with more coupling constants of
Sloan (2021b) and Section III.C of Bravetti et al. (2023).
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vides an explanation of the large monotonic decrease of the red-shift factor, and solves
the red-shift problem.

A rather remarkable consequence of applying the Gauge Principle for this model is that
the contact system obtained after removing the dynamical similarity is Lipschitz continu-
ous at the Janus point.10 This result, which was first obtained in a different representation
in Koslowski et al. (2018), is notable because the original system is discontinuous at the
Janus point, and this discontinuity is interpreted as the ‘Big Bang.’ Thus, states that are
singular in the original description are non-singular as contact systems. To be sure, such
states are still remarkable points of the dynamics even in the contact system. But there is
no obvious need to treat them as a fundamental breakdown of the dynamical equations.
Thus, the dynamical-similarity-free description of the system has the potential to both
solve the red-shift problem and remove the initial singularity.

8.1.3. TIME, LAWS AND CONVENTION

Before giving a detailed treatment of the results sketched above, I will take a moment to
address a potential issue that has been lurking in the background since Section 4.8.3.2.
This issue has to do with the conventionality of the drag in reparametrisation invariant
contact systems. What we saw near the end of Section 4.8.3.2 was that the contact
equations have a particular symmetry (given in Equation 4.207) for reparametrisation
invariant theories that allows one to simultaneously rescale the contact form, redefine
the Reeb vector, and change the time parametrisation of the system. This allows one
to represent the contact dynamics using any value for the drag.11 When the contact
system is obtained by applying the generalised Gauge Principle of Section 4.8.2 on a
symplectic system that is dynamically similar, we saw that a conservative representation
of the contact system (i.e., a system with zero drag) can always be given when an integral
of motion is known in the original symplectic system.

On the one hand, this result might not be too surprising. An integral of motion, by
definition, is a phase space function that is preserved under the evolution. Any variable
that is canonically conjugate to such a phase space function will grow linearly in time
by Hamilton’s equations, and can therefore serve as a kind of external clock for the
remaining degrees of freedom.12 It should not be surprising that one can then construct an
equivalent drag-free contact system where this external clock is the parameter along the
Reeb direction. Since reparametrisation invariant theories are invariant under different
choices of parametrisation, this procedure will be gauge invariant. Indeed, from a physical
perspective it is encouraging that one can always recover a symplectic subsystem with
Hamiltonian dynamics whenever one can find a sufficiently isolated clock.

On the other hand, one may rightfully worry that the existence of a drag-free repre-
sentation could undermine the entire programme of finding a solution to the problem
of the AoT using a JA-scenario. If it is always possible to find a description of the system
with a time-independent measure and no dissipative terms, then why not always use
the resulting time-independent measure to count solutions in your theory? Doing so

10See Section 8.4.3 and 8.4.4 for details.
11The procedure for doing so is given after Equation 4.210.
12An action-angle variable would be an example of such a clock.
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would reintroduce the problem of the AoT since worlds like ours, which have a signifi-
cant amount of time-asymmetry, would undoubtedly have low weight according to this
time-independent measure.

My response to this worry is to argue against the use of such measures in the cos-
mological setting because, as I will explain below, they are extremely cumbersome to
construct in practice and lack the theoretical virtues normally expected of a good measure.
In FLRW cosmologies and N -body systems (with zero linear and angular momentum),
integrals of motion are very hard to identify because there are no genuinely isolated
clocks — at least not during the time periods that are relevant to explanations of the
AoT. Mathematically, there are general procedures for finding integrals of motion (at
least locally) provided the dynamical equations obey certain integrability conditions.13

But even these procedures, which make strong assumptions about the regularity of the
equations of motion, involve solving partial different equations so that the integrals of
motion are expressible in terms of non-local operators on phase space. The presence of
global symmetries can dramatically reduce the complexity of such a procedure, but such
symmetries are notoriously absent from theories of the Universe, which are generally
relativistic. Physically, this is because the universally attractive nature of gravity means
that no degree of freedom can ever be completely isolated from any other.

For these reasons, it is well-established in the literature on general relativity that con-
stants of motion, in general, are non-local operators on space-time. A classic formulation
of this result was proved in Torre (1993). As these results where being developed, Karel
Kuchař called constants of motion in general relativity perennials due to their forever
unchanging nature, and described them thus:14 (Kuchar, 1993, p.24)

Perennials in canonical gravity may have the same ontological status as
unicorns — a priori, these are possible animals, but a posteriori, they are
not roaming on the Earth. According to bestiaries, the unicorn is a beast of
fabulous swiftness, strength, and beauty, but, alas, it can be captured only by
a virgin. Corrupt as we are, we better stop hunting mythical beasts.

In this spirit, I advise against seeking a measure that would require the capture of such an
elusive prize.

Following Kuchař’s analogy, the situation most often encountered in physics, where
systems can be sufficiently isolated from their surroundings, is an Eden-like utopia where
unicorns roam plentifully and humanity retains its innocence. The absence of absolute
scale in cosmology, however, is the poison apple, condemning us to use measures that
depend on time.

What is lost in recognising that dynamical similarity is a gauge symmetry of the
Universe — and it is indeed a great loss — is the ability to find a measure that can rival
the unicorn-like virtues of the Liouville measure of symplectic systems. It is worthwhile
to list some of these now:

13For example, a proof of the Liouville–Arnold theorem will give a prescription for obtaining a canonical
transformation to action-angle variables, which are conjugate to a set of Poisson commuting integrals of
motion. Identifying the generator of such a canonical transformation involves solving a differential equation
similar to the Hamilton–Jacobi equation. For details about this procedure, see Chapter 10 of Arnol’d (2013).

14I include this quote in full because paraphrasing it simply could not do it justice.
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• simplicity: the Liouville measure takes a dramatically simple translation-invariant
diagonal form when written in Darboux coordinates on phase space,

• universality: it is preserved by any choice of Hamiltonian,

• uniqueness: it is the unique measure that is universal in the sense above,

• utility: it has been hugely successful in the history of physics in terms of empirical
adequacy, novel prediction, and explanatory power.

But such theoretical virtues lose their persuasiveness when they come into conflict with
clear epistemic principles such as the PESA. And the PESA tell us that, in cosmology, our
beloved Liouville measure double counts physically indistinguishable states. In other
words: it counts as distinct states that differ only by an absolute value of the scale factor.
Thus, in the cosmological setting, the symplectic Liouville measure is wholly inadequate.
Perhaps suggestively, this is also the setting where the utility of the Liouville measure
may also be questioned because it fails to place high weight on worlds like ours that have
significant time asymmetry; i.e., it can’t explain the AoT.

The challenge is to find a better measure that is invariant under dynamical similarity,
but that has at least some of the rather formidable theoretical virtues of the Liouville
measure of a symplectic system. However, we can only assess these virtues once we have
seen explicit examples of the kinds of measures that arise from our generalised Gauge
Principle. As I have outlined, the natural choice of measure is determined by the choice
of the drag in the contact dynamics. What we will find in the model below is that, while
there is no obvious unique drag, there are families of drags that are simple, universal
and explanatory in ways that resemble the virtues of the Liouville measure in symplectic
systems.15

We will see that the explanatory virtues we will find will arise when the behaviour
of the drag is complimentary to the Janus and attractor structure of the theory. The
JA-scenario is therefore central to how one can motivate a preferred representation of the
dynamics. In order to be clear in stating my proposal, it is thus necessary to define the
mathematical structures of the JA-scenario precisely. I will do this in the next section.

8.2. THE JANUS–ATTRACTOR SCENARIO

In this section, I will describe the Janus–Attractor scenario for obtaining an AoT in a theory
with laws that are time-reversal invariant. To do this, I will first give the mathematical
definitions of attractors and Janus points — or, more specifically, the related notion of a
Janus surface — and then show how an AoT can arise when both are present. I will then be
able to illustrate more specifically why this scenario is neither generalist nor particularist,
and why it allows me to evade the impasse discussed in Section 6.4. Later, I will apply this
general procedure to the two models outlined above to illustrate independent solutions
of the smoothness and red-shift problems.

15Nevertheless, I regard it as a compelling open problem to find a choice of drag that will single out a unique
measure that can rival the Liouville measure of a symplectic theory.
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I introduced the notion of time-reversal invariance in Section 2.5.1, where I referred
to it as T -symmetry. There I defined T -symmetry rather simply as a broad symmetry (i.e.,
an isomorphism on the space of DPMs) induced by inverting the time parameter t →−t
on the temporal domain of the DPMs. This definition can be generalised to quantum and
general relativistic systems as long as the DPMs can be defined in terms of some sort of
temporal orientation that can be flipped. In this case, I am considering systems where
the DPMs are defined by the flows generated by a vector field on a state space.16 Since
these state spaces have an orientation,17 T -symmetry says that swapping orientations of
the vector field generating the flow will lead to integral curves that are also DPMs of the
theory. But this is just another way of saying that the DPMs are undirected integral curves
on state space.

It is rather easy to see that the DPMs of the theories we are interested are indeed
undirected curves on state space. Since any Hamiltonian system can be written as a
Lagrangian system with an appropriate boundary term and since the value of the action
is completely symmetric under the swapping of initial and final data, a change in the
orientation of a curve must preserve the corresponding action, and therefore its solutions.
Because no information about temporal orientation is affected by taking the quotient
of a vector field, the contact system we obtain by quotienting by dynamical similarity
should also preserve the action, and therefore T -symmetry should be a broad symmetry
of the system. More straightforwardly, vector fields and differential forms must transform
in a fixed way under a change of orientation for the consistency of the exterior algebra
of oriented manifolds.18 Thus, because Hamilton’s equations (4.61) and the contact
equations (4.181) are equations involving different forms, they must be invariant under
a change of orientation. This can also be checked by examining the transformation
properties of the equations of motion in Darboux coordinates.

This confirms that both symplectic and contact systems are indeed T -symmetric.
However, as I have repeatedly emphasised, contact systems have a term proportional to
the drag that mimics what happens in dissipative systems. I would now like to suggest
that one way to quantify the effect of this drag is by showing that it can lead to attractors.
Let me now define an attractor and illustrate how its existence is compatible with T -
symmetry.

8.2.1. ATTRACTORS

The concept of an attractor is well-known in the study of dynamical systems. Loosely
speaking, an attractor is a set A that is invariant under the dynamical flow induced by
a function, f , on a manifold, M . Attractors are particularly interesting when they are a
proper subset of M in which case there is a basin of attraction, B(A), that differs from A
by more than a set of measure zero. This basin of attraction is the set of points that flow
into A asymptotically. It is important to recognise that attractors can be proper subsets

16The state space in our case can be either a phase or a contact space. In Section 4.2 and Section 4.4 I illustrated
just how general these considerations are.

17The existence of a Liouville volume-form on a phase or contact space is a sufficient condition for these spaces
having an orientation.

18For example, because vector fields pick up a minus sign under T -symmetry while scalar fields are invariant,
one-forms must pick up a minus sign for the consistency of the interior product.
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of attractors so that sometimes the word ‘attractor’ is reserved for a minimal attractor,
which is an attractor with no proper subsets that are attractors.

There are many notions of attractor used in the literature that vary depending on their
generality and intended application. I will adopt a standardly used definition given in
Milnor (1985) that is well-suited to my purposes. These attractors are sometimes called
measure attractors because they are defined using an unspecified measure, µ. However,
the measure is only used to exclude sets of measure zero in the definition of A. My
definition of an attractor will thus be independent of the particular measure chosen.
Since we are working on phase or contact space, there will always be a preferred Liouville
measure that allows us to explicitly implement this definition.

To make this definition more precise, I need to define a dynamical system with a bit
more rigour. Consider a real dynamical system, also called a flow, defined by the tuple
(T , M , f ), where T in an interval onR, M is a smooth manifold usually assumed to be
compact,19 and f is a continuously differentiable function f : T ×M → M . For such a
system, T is the temporal domain parametrizing the flow, M is the state space on which
the flow is defined, and f is the evolution function that defines the flow in time.

If t ∈T is a time coordinate and x ∈ M an instantaneous state, then it is customary to
denote the evolution function as f (t , x). This function then defines an orbit γx = { f (t , x) :
t ∈T } passing through the state x. For our applications, the orbits are the integral curves
of the vector field that satisfies either the Hamilton or contact equations and M is either
a symplectic or contact manifold. However, the concept of an attractor is more general
so that this construction can be easily generalised. These definitions, thus, connect the
formalism of this section to the language I have been using throughout.

At the base of the notion of an attractor is the notion of an ω-limit set. If there exists a
sequence (tn)n∈N in T such that

lim
n→∞ tn →∞ (8.1)

lim
n→∞ f (tn , x) = y (8.2)

then y is called an accumulation point of the orbit of γx through x. The ω-limit set ω(x)
of a point x is then the set of all accumulation points of x. The set ω(x) thus acts like a
kind of asymptotic limit of the flow passing through x.

The final ingredient I will need is a measure µ on M . In this case, one can always
use the Liouville measure on a symplectic or contact manifold — but any measure will
do. Following Milnor (1985), we can now define an attractor as a closed subset A ⊂ M
satisfying the follow two conditions:

1. The basin of attraction B(A), consisting of all points x ∈ M for whichω(x) ⊂ A, must
have a strictly positive measure; i.e., µ(B) > 0; and

2. there is no strictly smaller closed set A′ ⊂ A such that B(A′) is equal to B(A) up to a
set of measure zero.

19Compactness is useful for proving theorems in general dynamical systems. For example, when M is compact,
the ω-limit set of an orbit is non-empty, compact and simply connected (Milnor, 1985). But since I am
interested in specific cases where attractors are already known to arise, I won’t always need to assume
compactness. If necessary, however, it is always possible to compactify M by adding a point at infinity.
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It should be clear that this definition implements the intuitive notion I gave for an
attractor at the beginning of this section. The first condition says that there exists a set
of points; i.e., the basin of attraction; with non-zero measure that will asymptotically
flow into A. This guarantees that the attractor is not a completely vacuous structure. The
second condition ensures that all parts of A play an essential role in its definition. The
main role played by the measure is to exclude attractors that have basins of attraction
that are sets of measure zero. These are rather formal considerations aimed at giving
mathematically clean definitions of an attractor. We will not need most of these subtleties
in our analysis. But it is useful to note, for our purposes, the conditions under which
such rigorous definitions can be given. For example, while the notion of a measure
played a kind of auxiliary role in my definition, the underlying state space still needs to
be measurable for my definition to work. This could be an important issue for defining
attractors in field theories with infinite dimensional state spaces.

The crucial aspect of this construction that will be important for my analysis is that an
attractor is defined as the limiting set of some flow. One result of this is that an attractor is
a fixed set of the flow; i.e., A is such that f (t , A) = A for all t ∈T . Moreover, the definition
in terms of a measure guarantees that in the limit tn →∞ the distance between f (t , x)
and A goes to zero according to any Riemannian metric on M . This allows us to talk
more rigorously about a notion of “closeness” to an attractor: a point x is getting close to
an attractor as its distance to an attractor goes to zero. While the actual distance along
an orbit to an attractor will depend on the metric chosen, its vanishing in the limit is
metric-independent. More importantly, this gives us a way to identify the time orientation
on an orbit for which the flow is ‘approaching’ an attractor. We can say that the flow is
approaching an attractor along the time orientation where increasing t decreases the
distance to A.

This construction is important because the definition of an ω-limit set given above is
not necessarily T -symmetric for any particular choice of x. In general, taking the limit
tn →+∞ of the flow from a point x may lead to a different asymptotic structure than
taking the limit to −∞ from x. Ultimately, this is why I will be able to use the concept of
an attractor to introduce an AoT for an observer at a certain point x.

This, however, doesn’t mean that the orbit γx passing through x is not a DPM for
either time orientation. In other words, the DPMs of a theory can be undirected curves on
state space even if those curves asymptote to different structures at either endpoint. All
that T -symmetry implies is that the corresponding action is stationary for each choice of
time direction along its DPMs. Hence, the T -asymmetry of the ω-limit set of a particular
choice of x is not incompatible with the overall T -symmetry of the theory.

We can see now that what creates the potential AoT is the singling out of special points,
x, along an orbit — namely those that are close to the attractor — which I view as resulting
from particular facts about special observers in the world. Using the notion of closeness
to an attractor defined above, observers at those special points can indeed distinguish
between time directions toward and away from the attractor along γx . That allows for the
possibility for being able to identify an AoT relative to a particular measure, or family of
measures, on the state space. But to fully realise this possibility, I will need to introduce a
further notion: that of a Janus point.
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8.2.2. JANUS POINTS

The concept of an attractor allows us to distinguish between time directions that point
towards and away from a particular attractor when starting from a point x along a dy-
namical flow. This is a necessary ingredient to identify kind of AoT I want to establish
for observers at x. But while an attractor can give a way to distinguish between time
directions along an orbit, it can’t give any good reason to align such directions with an
AoT because an undirected orbit may start and end on two different attractors, and the
symmetry between them gives no way to privilege any particular time direction.20 To
give a full account of an AoT as I wish to formulate it, I will need to break the symmetry
between the endpoints of a curve and show that there exists a significant monotonic
gradient in some quantity towards one of the endpoints in question. To do this, I will
introduce an extra structure along an orbit of the flow that I will call a Janus point.

The idea of a Janus point was first introduced in Barbour et al. (2014) and played a
central role in a later book by Julian Barbour (Barbour, 2020). In these works, the Janus
point is understood at a state along an orbit out of which point oppositely directed AoTs
— hence the reference to the two-faced Roman god of beginnings and transitions. It is
difficult, however, to find an explicit formal characterisation of a Janus point in terms of a
general dynamical system. An early attempt to do so was given in Gryb and Sloan (2021),
where a classification of Janus points was given in order to characterise some differences
between the Janus points considered in cosmological and N -body systems. I will not need
to make such a classification here and will attempt to provide a general definition that
both implements the basic idea of a Janus point and works for all the different systems I
want to consider. Note, however, that my presentation may differ in letter, though not in
spirit, from other earlier constructions in the literature. Also, I should distinguish between
a Janus point, which is a state space point, from Barbour’s related concept of a point α,
which is a special, highly homogeneous point on configuration space.

The intuition underlying my construction is to understand a Janus point as a point j
along the orbit γ j of a real dynamical system where the flow is instantaneously preserving
a measure µ. Loosely speaking, the derivative of the measure, µ̇, has a zero at the Janus
point (in a way that I will make rigorous below) that is unique in an open interval of j
on γ j . This means that µ̇ must pass through zero at j and that there exist two oppositely
directed time orientations on γ j , where µ̇ is definite on either side of j . The idea is that
these different time orientations define candidate directions for an AoT about j .

To make my definition of a Janus point precise, it will be helpful to introduce the
notion of a Janus surface J . Consider a flow F = (T , M , f ) and measure µ on M . If we
write µ(R) = ∫

R ρ for some volume-form ρ on M ,21 then we can define the restricted
measure µS (R) onto a codimension-1 submanifold S ⊂ M as µS (R) = ∫

R ρ
∣∣
S .22 A Janus

surface J (F,µ) is then a codimension-1 submanifold of M transverse to the orbits of f

20For example, there is no natural way to say that a point x is closer to one attractor than it is to the other
without introducing a preferred metric on M .

21This can always be done when µ is a measure on a smooth manifold that comes equipped with an exterior
algebra.

22The restricted measureµS (R) defined in this way is equivalent to defining a measure for counting the solutions
on the surface R similarly to what we did for symplectic and contact systems in Section 4.8.3.
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such that
dµ f (t ,J )

dt

∣∣∣
t=0

= 0. (8.3)

It should now be clear that the derivative
dµ f (t ,J )

dt is what I was referring to as µ̇ in my
sketch above. In terms of ρ, this can be restated as a surface on which

LXρ
∣∣
J = 0, (8.4)

where X = d
dt is the generator of the flow. This latter definition is slightly more direct

geometrically and convenient to use in practical calculations. A Janus point is then a
point j ∈J .

This definition has several advantages for our purposes. First, it provides a natural

scalar quantity: the focusing factor − ρ̇
ρ representing the rate at which the density of DPMs

is being focused along the flow at a point in M . This quantity can serve as a candidate
for a gradient to be used to define an AoT. As can be seen from these definitions, the
zeros of this quantity define the Janus points and its sign determines the monotonicity
of the measure. Second, if the measure µ, used to define j , admits a reasonable physical
interpretation as a counting of DPMs, then a potential AoT arising through this procedure
would define a counting of DPMs that reflects a certain degree of time-asymmetry along
the orbits. Thus, under the measure µ, typical solutions would be time-asymmetric. In
particular, one could compare the amount of time-asymmetry in the phenomena to the
amount expected from the focusing of µ. Finally, there is a natural way to implement this
definition on a contact system in terms of the behaviour of the drag. Because the drag is
just proportional to the focusing factor in a reparametrisation invariant contact system
(as a result of Equation 4.190) it is the natural structure to use to define an AoT. In such an
implementation, the Janus point then becomes a point along the dynamics where the
drag is zero so that the contact system is momentarily isomorphic to a symplectic system.

A potential downside of my definition of a Janus point is its dependence on a particular
measure µ. Different choices of µ will in general have different Janus surfaces. Note also
that the freedom to chose µ is the same freedom discussed in Section 8.1.3 to choose the
contact form η and corresponding Reeb vector R in a reparametrisation invariant contact
system. Each η defines a Liouville measure on the contact space via µc =

∫
R η∧dη(n−1)/2.

Thus, the freedom to rescale η by a positive function means that we can identify any µ
with the Liouville measure of a particular choice of η. The Janus points of µ can then
be found by finding the zeros of the drag in the representation of the flow where µ is
Liouvillian.

We can thus think of Janus points and the AoTs that may potentially arise from them as
features of a particular way of representing the dynamics of a contact system. Because this
choice of representation and, correspondingly, of measure is not fixed by the formalism,
it must be judged by the theoretical virtues that single it out from other choices. This
introduces a certain degree of conventionality into the definition of a Janus point that
does not exist when defining attractors alone because the definition of an attractor did
not depend on any particular choice of measure. Thus, a certain degree of conventionality
seems to be unavoidable in my proposal. I will defend the choices I make in my proposal
more fully in Section 9.1.3.3 of the conclusions.
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8.2.3. THE JANUS–ATTRACTOR SCENARIO

In this section, I will give a general scenario for establishing an AoT using the concepts of
an attractor and a Janus point. The idea will be to consider an observer that attributes a
state x to the current state of the world, where x is approaching an attractor A that it is
close to. For such an observer, an AoT will arise when the backward flow from x reaches a
Janus point j . This AoT points from j to the set on the forward evolution of j , ω( j ) ⊂ A,
on the attractor.

To see how this comes about, I will say that there is a Janus-Attractor(JA) scenario in a
real dynamical system (T , M , f ) when there is a Janus surface J that has an intersection
with the attractive basin B(A) of an attractor A ̸⊂J that has strictly positive measure on
the Janus surface; i.e., µJ (B(A)) > 0 for some measure µJ on J . The condition that A
not be a proper subset of J ensures that there is some non-trivial flow of a set of positive
measure away from some part of J onto A.

Let me now argue that an AoT will arise in a JA-scenario relative to a point x ∈ B(A)
that is near to A. Since B(A) intersects J there will be a Janus point j along γx that is
different from x itself. This Janus point defines a time orientation from j to ω(x) because
it breaks the T -symmetry of γx that would exist if γx was bounded by two attractors.

Consider now the distance function d(a,b), calculated with some Riemannian metric
on M , between two points a,b ∈ γx . There is then a time orientation from j to ω(x) that is
such that increasing t sends d

(
f (t , x),ω(x)

)→ 0 when t →∞. Closeness to the attractor
can then be quantified by d(x,ω(x)), which goes to zero when x is ‘close’ to A.23 The
inverse of this quantity, 1/d(x,ω(x)), is not only monotonic on the interval ( j ,ω(x)) but
grows unboundedly when x is close to A. This quantity then defines a large temporally
directed numerical gradient pointing from j to ω(x) as needed for an AoT.

What I need to argue for now is why a distance function d should define a physically
interesting AoT. One reason to believe that it should is that attractors are fixed sets of the
dynamics. They therefore correspond to an equilibrium of the system. The stability of
such equilibrium sets is guaranteed when one can find in the system a so-called Lyapunov
variable (Lyapunov, 1992), which is a function whose gradient along the flow is always
negative (except at ω(x)). A function bounded by the distance d(x,ω(x)) is a special class
of Lyapunov function (see Definition 5 of Beretta (1986)). Whenever such a function L(x)
exists, one can always construct a function S(x) =−L(x) that is monotonically increasing
along the flow and reaches its maximum near equilibrium. These functions have been
identified with non-equilibrium entropy functions in Beretta (1986). When there is a
JA-scenario, a natural candidate for such an entropy function S(t) = −1/d( j , x) is the
negative of the inverse of the distance d( j , x) from the Janus point j to the point x = f (t , j ).
Closeness to an attractor is thus a reasonable notion for defining and AoT since such an
AoT is aligned with the temporal direction in which the system is equilibrating such that
a natural entropy function can be defined.

These considerations give us general reasons to believe that an AoT with certain ac-
ceptable physical characteristics will arise in a JA-scenario. However, there is no guarantee
that for any particular physical system there will be a choice of entropy function that is
simple and physically interesting. One possibility, which will be explicitly realised in the

23Clearly this notion is only metric-independent in the limit.
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two models treated in this chapter, is that the drag behaves like d( j , f (t , j )); i.e., that the
drag is monotonically increasing from the Janus surface.24 Measures with such properties
are potentially interesting for a variety of reason. First, they highlight the geometric fea-
tures of the state space in such a way that a Janus surface appears as a set with no focusing
and attractors as sets that are maximally focused. This could be useful if the Janus points
and attractors have interesting physical significance within the theory. Conversely, if the
focusing itself can be understood in more physical terms, then that understanding could
be used to explain the physical significance of the Janus points and attractors.

One possible way to understand the physical significance of the focusing is to interpret
the measure as a way of quantifying the amount of dynamical variability in a region.
This seems justified if the measure shrinks rapidly near attractors where the system is
becoming dynamically fixed. In particular, for a region R ⊂ B(A), the measure is a way
of counting the number of distinct dynamical possibilities in R that will converge onto
the attractor A. This is indeed a way of quantifying the variability of the dynamical
possibilities in the region R.

Under such an interpretation, the measure picks up epistemic significance: regions
with smaller measure are more dynamically stable and therefore represent more reliable
records of the state of the system. The Janus surface can then be thought of as a region
where there is lots of dynamical variability in the orbits so that virtually no stable records
can exist. In a JA-scenario, the orbits in a region become more dynamically stable over
time with records getting more reliable as the system approaches the attractors. The AoT
then points from the unstructured past states to the increasingly more structured future
states, as might be expected.

In Sections 8.3 and 8.4, I will detail the two models introduced in Section 8.1.2 and
show that they implement a JA-scenario where the measure does indeed focus DPMs onto
attractors. I will then apply the general arguments above and claim that the AoT resulting
from each model does indeed match these epistemic expectations. I will also show that
the N -body model exhibits the features required to solve the smoothness problem and
that the cosmological model exhibits the features required to solve the red-shift problem.

8.3. SOLVING THE SMOOTHNESS PROBLEM IN NEWTONIAN GRAV-
ITATION MODELS

In this section, I will define the Newtonian gravitational N -body model described in
Section 8.1.2.1 and show that, when dynamical similarity is removed, the resulting system
has attractors and a natural Janus surface when the reasonable physical assumptions of
Section 8.1.2.1 are satisfied. I will then show that observers close to an attractor typically
see smooth states in their past history when that history crosses the Janus surface. This
result is based on an argument from the central limit theorem in the large N limit, and is
therefore robust against the choice of measure. This solves the smoothness problem in
this model.

24Note that it is already defined to be zero there.
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8.3.1. MODEL DEFINITION

The model I will consider here consists of N self-gravitating point particles in 3 spatial
dimensions with masses mI , where I = 1, . . . , N . The positions of these point particles
are represented by the configuration variables q i

I , where i = 1,2,3. The Lagrangian of the
theory takes the form

SN =
∫ t2

t1

(
1

2
M I J

i j q̇ i
I q̇ j

J −VN (q)

)
dt , (8.5)

where VN (q) is the Newtonian potential

VN =−GN
∑
I<J

mI m J

r I J
(8.6)

GN is Newton’s constant, M I J
i j is the mass matrix

M I J
i j = mIδ

I Jδi j , (8.7)

r I J is the Euclidean distance between the I th and J th particle,

r I J =
√

(q i
I −q i

J )(q j
I −q j

J )δi j , (8.8)

and mI is the mass of the I th particle. To simplify notation, I will revert to a single index
a for both particle and spatial indices so that q i

I → q a . We then have M I J
i j → Mab with

suitable identifications. For most considerations, the only property I will need of the
potential, VN (q), is its homogeneity of degree −1:

q a ∂VN

∂q a =−VN . (8.9)

Using these definitions, the Hamiltonian for the system can easily be seen to be

HN = 1

2
M ab pa pb +VN (q) , (8.10)

where M ab is the inverse of Mab and pa = ∂L
∂q̇a = Mab q̇ a . Clearly, the Legendre transform

is invertible when the mass matrix Mab is as well. The Hamiltonian equations of motion
the take the form

ḟ =LX f = {
f , HN

}
(8.11)

for all functions f (q, p) on the phase space Γwith symplectic form ω= dpa ∧dq a .

8.3.2. REMOVING DYNAMICAL SIMILARITY

I will now show that this model has a dynamical similarity using the results of Sec-
tion 4.8.1.1. The N -body problem is a particular case of the example considered in
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that section where we take gab(q) = Mab so that the quantities m and n of that section
take the values m = 0 and n =−1. Using this, we find that a =−2 and

D = 2q a ∂

∂q a −pa
∂

∂pa
. (8.12)

This gives us the following scaling properties under a dynamical similarity with parameter
c:

t → c3t q a → c2q a pa → c−1pa . (8.13)

This matches the dynamical similarities of the Kepler problem studied in Section 2.2.3.3.25

We can apply the Gauge Principle for dynamical similarity developed in Section 4.8.2
by defining the gauge-fixed surfaces Gw on Γ as the level surfaces of the function

w = 1
4 log I , (8.14)

where we have defined the dilatational inertia I as

I = Mab q a qb . (8.15)

It is straightforward to verify that D(w) = 1. Given the above definitions, note that the
gauge-fixed surfaces Gw are also surfaces of constant I .

To find the invariant equations of motion, it is useful to compute the drag, which is
the Reeb flow, R(Hc ) of the contact Hamiltonian on Gw . Using (4.184), we find

R(Hc ) = e(1−a)w {w, HN } = q a pa

2I 1/4
. (8.16)

The generator of the invariant contact equations is then

Xinv = I 3/4X − q a pa

2I 1/4
D . (8.17)

In terms of the Darboux coordinates on Γ, this gives the flow equations:

q a′ = I 3/4M ab pb −
qb pb

I 1/4
q a (8.18)

p ′
a =−I 3/4 ∂VN

∂q a + qb pb

2I 1/4
pa . (8.19)

It is straightforward to check that I , and therefore the gauge-fixing condition w = w0, is
preserved by this evolution.

This gives us a particular gauge-fixing of the equations of motion in Γ. It is, however,
useful to use these gauge-fixed equations to construct a particular reduced representation
of the dynamics on an invariant state space. This will also help us to compare to the
formalism of Barbour et al. (2013, 2014).

25To see this more explicitly, use a = c3 and note that r = r12, which scales like q i
I .
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Because I is constant under this flow, it is possible to construct invariant quantities by
noting the weight of the Darboux coordinates under D and dividing by the appropriate
power of I to obtain quantities with weight zero. To find a suitable choice of Darboux
coordinates {q̂ a , p̂a ,S} on the reduced contact space, we can guess an expression for p̂a

from Equation 8.18 and for S from Equations 8.19 and 8.16. This suggests the definitions

q̂ a = I−1/2q a p̂a = I 1/4

(
pa − qb pb

I
Mac qc

)
S = 2

q a pa

I 1/4
, (8.20)

which are constrained such that

Mab q̂ a q̂b = 1 q̂ a p̂a = 0. (8.21)

We can invert these definitions to obtain

q a = I 1/2q̂ a pa = I−1/4
(
p̂a + 1

2 SMab q̂b
)

. (8.22)

We can find invariant flow equations by re-writing (8.18) and (8.19) using the defini-
tions above to obtain

q̂ a′ = p̂a (8.23)

p̂ ′
a − (qb p ′

b)Mac qc =−∂VN (q̂)

∂q̂ a − S

4
p̂a (8.24)

S′ = 2M ab p̂a p̂b +
S2

4
+2VN (q̂) . (8.25)

Note that only the trace-free part (where the trace is taken by contracting with q̂ a) of p̂ ′
a

is fixed by the equations above. This is because the trace of p̂ ′
a is fixed by (8.21) and (8.23)

to satisfy
q̂ a p̂ ′

a +M ab pa pb = 0. (8.26)

To obtain (8.24), we used the homogeneity of the potential to derive the expression

I
∂VN (q)

∂q a = ∂VN (q̂)

∂q̂ a −VN (q̂)q̂ a . (8.27)

The equation for S′ can be computed using the contraction (8.19) with q a , the homogene-
ity of the potential, and (8.26).

We can compute the contact Hamiltonian for this system using the N -body Hamil-
tonian (8.10) and the general definition (4.182) of a contact Hamiltonian. Using the
homogeneity of the potential we obtain:

Hc = 1
2 M ab p̂a p̂b + 1

8 S2 +VN (q̂) . (8.28)

Note that the equations of motion (8.23) - (8.25) are simply the contact equations for
this contact Hamiltonian subject to the constraints (8.21). This results from the fact that,
under such constraints (which imply q̂adq̂ a = 0 and q̂ adp̂a =−p̂adq̂ a), the contact form
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can be written in {q̂ a , p̂a ,S} coordinates in Darboux form by taking exterior derivatives of
(8.22) as

η=−e−w ιDωL = I−1/4 (
2q adpa +padq a)= dS − p̂adq̂ a . (8.29)

We can now compute the drag directly in terms of the reduced variables and compare to
(8.16). Recall that the drag was defined as the Reeb flow the contact Hamiltonian. In the
reduced coordinates, the Reeb direction can be read-off as R = ∂

∂S . The drag is then S/4,
which is the S-derivative of the contact Hamiltonian 8.28, in agreement with (8.16). This
gives us a fully reduced version of the N -body theory.

8.3.3. A JANUS-ATTRACTOR SCENARIO FOR THE N -BODY SYSTEM

Let me now use the previous results to describe the generic behaviour of this system. I will
first show that the natural contact form on the reduced space defines a Janus surface. Then
I will describe the attractors for this system and, finally, show that there is a JA-scenario.
This implies that there is a particular AoT pointing from the Janus surface towards the
attractors of the theory. We will see that, in the representation we have provided, the drag
behaves generically like the inverse of a distance function to the attractors so that the
measure has all the nice epistemic features we hoped for at the end of Section 8.2.3. Most
importantly, the measure that we will find has the property that the states on the Janus
point are typically smooth, homogeneous states when N is large, offering a solution to
the smoothness problem for this model.

Let us begin by finding the Janus surface of this theory and showing that it contains
a generic set of solutions, where I’ll understand ‘generic’ to mean the entire solution
space up to a set of measure zero. To do that, I will first prove an important property of
the dynamics: the generic monotonicity of the drag, S. Let us require that the theory be
reparametrisation-invariant so that we may interpret the evolution on any gauge fixed
surface Gw as physically equivalent. To achieve a reparametrisation-invariant description
of this system, we know from (4.98) and the general considerations of Section 4.5 that the
Hamiltonian is a constraint of the form H = N Hc , where N is a Lagrange multiplier that
also indicates the time parametrisation used when undoing the Legendre transform. The
net result of this is that the contact Hamiltonian is constrained to be equal to zero so that

Hc = 1
2 M ab p̂a p̂b + 1

8 S2 +VN (q̂) = 0 (8.30)

with all differentials of τ appearing in the contact equations replaced by dτ→ N dτ.
We can now use the vanishing of Hc and (8.25) to prove the important relationship

S′ = M ab p̂a p̂b . (8.31)

Because M ab p̂a p̂b ≥ 0, this tells us that S is either monotonic or constant. Solutions for
which S is always constant form lower-dimensional strata on the solution space, and are
therefore sets of measure zero. We exclude them from our considerations here since we
are interested in the generic behaviour of the system and because solutions with p̂a = 0
are not interesting dynamically. We then have that S′ > 0 so that S has a zero at some
instant during the evolution.

We can now use the general expression (4.190) to determine the time evolution of the
privileged measure density ρ = η∧ (dη)(n−1)/2 on contact space. Using the vanishing of
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the contact Hamiltonian (8.30) and our expression of the drag in this system (8.16), we
find that

ρ′ =−3N S

4
ρ . (8.32)

Our general definition of a Janus surface says that one exists when the measure density
corresponding to this Janus surface has a time derivative equal to zero. Thus, the set of
states where S = 0 is a Janus surface. Since generic solutions contain exactly one zero of S,
there is a unique Janus point on generic solutions.

Under the modelling constraints specified in Section 8.1.2.1, the N -body problem
is known to have an intricate asymptotic structure. This structure has been studied
rigorously in Marchal and Saari (1976), and the results that are useful for our purposes
have been conveniently summarised in Appendix A.1 of Barbour et al. (2013). We will
mainly make use of Theorem 1 of Marchal and Saari (1976), which states that as t →∞,
excluding special cases of measure zero,26

q a → Aa t +O (t 2/3) , (8.33)

where Aa is a (possibly zero) constant and the q a must be expressed in centre-of-mass
coordinates. The physical interpretation of this theorem is straightforward: for large
times, the centre-of-mass coordinates of particles for which Aa ̸= 0 grow linearly with
time as the system splits into subsystems whose characteristic size grows at most with
O (t 2/3). Corollary 3 of Marchal and Saari (1976) then states that, for the E = 0 case we are
treating, at least two particles must escape27 so that there are at least two subsystems for
which Aa ̸= 0.

The overall picture, that can also be reproduced in numerical simulations (Barbour et
al., 2013), is that of an N -body system gradually evaporating as it splits into progressively
more tightly bound isolated subsystems whose centre-of-mass is moving with constant
linear momentum. These subsystems also have emergent structures, studied in Marchal
and Saari (1976), and behave like approximately isolated p-body systems, where p < N .
On top of having constant linear momentum, they also have conserved non-positive
energies and angular momenta (Marchal & Saari, 1976, Theorem 2). In Barbour et al. (2013,
2014), these constants are proposed as candidate records of the full state of the system,
becoming more reliable as t →∞. In this work however, I will mainly be concerned with
the existence of attractors.

The asymptotic behaviour, (8.33), of the Cartesian centre-of-mass coordinates q a does
not lead to attractors because the q a grow linearly with t . The insight here is to notice that
attractors do emerge when dynamical similarity is treated as a gauge symmetry. When
that is done, we find that the dilatational inertia I , whose square root is the characteristic
size of the whole system, behaves like I →C t 2 +O (t 5/3), where C = Mab Aa Ab , so that

q̂ a → B a +O (t−1/3) , (8.34)

For some new constants B a . This says that the configurations q̂ a accumulate at ω(q̂ a) =
B a . In general, the B a will depend on the choice of initial condition for q̂ a .

26When E = 0, these cases are particle collisions and super-hyperbolic escape.
27Excluding the measure zero set of solutions that exhibit superhyperbolic escape.
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To investigate attractors on the contact space, we need to know the behaviour of the
remaining quantities, S and p̂a , at late times. We are working with a reparametrisation
invariant system, so we must ultimately parametrize the evolution using one of the state-
space variables. Because S is monotonic, this is the obvious choice. Since S is a parameter
of the flow, it must increase monotonically with t rather than having a fixed point itself.
Indeed, we can see from the fact that

pa = q̇ a = Aa +O (t−1/3) (8.35)

for large t so that the definition of S in (8.20) tells us that

S ∝ t 1/2 , (8.36)

which is monotonic as we showed more generally above.
Understanding attractors in a reparametrisation invariant theory is complicated by

the fact that the standard definitions of attractors assume a fixed time parameter t for the
flow. An ambiguity occurs in defining the ω-limit set for velocity variables because the
asymptotic behaviour of a velocity can depend strongly on the parametrisation chosen.28

This ambiguity seems unavoidable. Fortunately, the variable S is singled out as the unique
choice of monotonic variable that can be easily constructed from the original physical
quantities like the position and velocity of particles. Using it as a clock requires a choice
of lapse of the form N = 1/(M ab p̂a p̂b), which guarantees that S′ = 1. With this choice,

q̂ a′ = N p̂a = p̂a

M bc p̂b p̂c
=O (t−1/6) (8.37)

since inserting the asymptotic expansions of q a and pa into the definition of p̂a gives

p̂a =O (t 1/6) . (8.38)

This means that, using S as a time parameter, the velocities v̂ a ≡ q̂ a′ will accumulate at
zero.

Finally, as long as there is one subsystem with at least two particles, then any initial
conditions for that subsystem will converge to the same accumulation point. Thus, the
set of points flowing into that accumulation point will have strictly positive measure.

It is now straightforward to show that the dynamically similar description of this
system has attractors. For all initial conditions, xi = (q̂ a

i , v̂ a
i ), leading to subsystems with

at least two particles, there will be an attractor consisting of theω-limit sets,ω(xi ) = (B a
i ,0),

of those initial conditions. Note that these attractors are guaranteed to be stable fixed
points because of the existence of the monotonically decreasing Lyapunov function 1/S,
which goes to zero near the attractor. Similarly, there is a natural entropy function, −1/S,
for this system that is monotonically increasing and reaches its maximum at equilibrium.

As a final step, we show that there is a JA-scenario in the model. Because there is
a Janus surface at S = 0 and attractors at S → ∞ for generic solutions, there is a time

28We choose to focus on velocity variables rather than momenta because the Legendre transform is non-
invertible in a reparametrisation invariant theory, and therefore the momenta do not uniquely map to
observations. On the other hand, velocities in terms of a particular choice of internal clock do have direct
observational significance.
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direction of growing S along the orbits of the flow that points from a Janus point to an
attractor (and an opposite time direction with similar properties for growing −S). An AoT
will then arise for an observer close to one of those attractors pointing along that time
direction.

8.3.4. THE SMOOTHNESS PROBLEM

8.3.4.1. A MEASURELESS ARGUMENT

Our task now is to argue that the AoT defined by the JA-scenario described above can also
explain early smoothness. On our way to doing that, let us first notice that the monotonic
behaviour of the drag is helpful for explaining the existence of the attractors. Because
S is monotonic and also proportional to the drag, the system is dissipative along the
AoT defined by the JA-scenario so that the kinetic energy and the phase space volume
available to the states (q̂ a , p̂a) is slowly decreasing. This causes the system to seek out
fixed points of the flow. Because the measure is focused on fixed points, we can interpret
it as giving a measure of the dynamical variability in a set of solutions as discussed in
Section 8.2.3. The dissipative behaviour therefore provides an explanation for why the
system is approaching an equilibrium state. We now need to argue that these equilibrium
states are less smooth than the states near the Janus points.

To do this, it will be helpful to consider the properties of the (negative) of the scale-
invariant potential C = −VN (q̂). This quantity was initially called the complexity in
Barbour et al. (2014) because highly clustered states were understood as being more
‘complex’ than smooth states. But to avoid confusion with the term ‘complexity’ that is
standardly used to for studying chaos in dynamical systems, I will refer to this quantity
simply as the C -function.29 To see that C is indeed sensitive to clustering, first recall that

C =−VN (q̂) =−I 1/2VN (q) . (8.39)

The Newton potential, VN (q), is sensitive to the inverse of the two-point separation
of particles in the system. When subsystems cluster, these separations shrink causing
VN (q), and therefore C , to grow (i.e., to get more negative). Indeed, −VN (q)−1 can be
used as a measure of the minimum separation between particles in a system (Marchal
& Saari, 1976, Equation 1.11). Similarly, the dilatational inertia I gives a measure of the
maximum separation in the system (Marchal & Saari, 1976, Equation 1.10). Thus, when
I grows, bound subsystems can be interpreted as clustering in the sense that the size of
any subsystem gets smaller compared to the overall size of the system. This combination
means that C is doubly sensitive to the amount of clustering. We thus expect states where
the value of C is large to be highly clustered.

Alternatively, it is known from direct numerical investigations, first performed in
Battye, Gibbons Paul, and Sutcliffe (2003), that states with low values of C are highly
uniform. In particular, Battye et al. (2003) investigated the absolute minima of C on an
N -body configuration space.30 These minima are called central configurations. What
was shown is that central configurations become very close to a uniform distribution

29Conveniently, ‘C’ can also refer to ‘clustering’ or ‘clumpiness.’
30Note the discussion around Equation (2.17) of Battye et al. (2003) to understand why their minimization

problem is equivalent to a minimization of C .
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as N gets large. More specifically, numerical simulations in the large N limit with equal
masses show that the two-point separation distribution between particles in a central
configuration approaches that of a perfectly uniform mass distribution. They do not
quantify this in terms of a specific statistical criterion for closeness, but I will do this
more carefully below. My analysis will confirm that minimum-C configurations are nearly
uniform in the sense that they have high probability of having been sampled form a
uniform distribution.

Further evidence that low-C configurations are also nearly uniform even when they
are not at the absolute minimum can be found in Barbour et al. (2014). There, numerical
simulations were performed by sampling from a uniform distribution on the unit-sphere
inR3N (to remove overall scale dependence) after taking a quotient by the translational
and rotational invariance of the system. What was seen (e.g., Figures 4 and 5) is that the
probability density function (PDF) for C peaks strongly close to the minimum of C —
particularly for large N . In the next subsection, I will reproduce these simulations and give
a way of estimating these distributions analytically. This analysis provides independent
confirmation of those conclusions and gives a theoretical understanding of them. This
tells us that states sampled from a uniform distribution are tightly peaked on low values
of C .

From these considerations, I conclude that C is a good (inverse) measure of smooth-
ness because it is close to its minimum when states are nearly smooth and large when
states are highly clustered.

Let us now come to the crucial point regarding the relevance of the AoT in the JA-
scenario to the smoothness problem. Because Mab p̂a p̂b ≥ 0, the Hamiltonian constraint
(8.30) tells us that C ≥ S2/8. Since S is monotonic and grows unboundedly, C must
also grow unboundedly as t → ∞. This behaviour has been confirmed in numerical
simulations (e.g., Figure 2 of Barbour et al. (2014)). The unbounded growth of C near an
attractor tells us that the attractors are highly clustered states. Thus — regardless of the
initial state at the Janus point — as one gets arbitrarily close to an attractor, the value of
C will be arbitrarily larger than it was near j . We then arrive at a general result: using
the inverse of the C -function as measure of smoothness, observers near an attractor will
generically see smoother past states.

8.3.4.2. THE ROBUSTNESS OF INITIAL SMOOTHNESS

The statement in the previous section explains early smoothness by showing that, as a
system approaches an attractor, the early states appear more and more homogeneous
compared to the current one. This statement is useful because it can be made without a
measure. However, it makes no guarantee about the absolute smoothness of the states on
a Janus surface or how close they might be to uniform distributions. One might then ask
whether one can strengthen the statement by making use of a class of measures. After all,
because smoothness comes in degrees, it doesn’t make much sense to talk about initial
smoothness in any precise way without the use of some measure. In particular, we’d
like to known whether there is a natural class of measures under which low-C states are
typical on the Janus surface. If so, a measure in this class would tell us that typical past
states are smooth.

A proposal for such a particular measure of this kind was given in Barbour et al. (2015).
There, a dynamically similar measure on the space of solutions was constructed using
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methods similar to those presented above. The dynamical similarity was gauged-fixed in
that paper by fixing the magnitude of the momenta, M ab pa pa , rather than the magnitude
of the configurations, Mab q a qb , as I have done here. It is thus difficult to compare directly
with their results. Nevertheless, it is argued in Appendix A of Barbour et al. (2015) that, in
the 3-body problem, the gauge-fixing they use leads to a measure on the space of DMPs
that is both compact, so that the measure can be used to define a genuine probability
distribution, and uniform over the configurations and momenta (see their Equation 67).

If similar properties continue to hold for larger N , then the PDF of any quantity mea-
suring inhomogeneities will always be independent of the integration over momentum
space. But since the measure on configuration space is uniform, the states sampled from
that density are as likely to be uniform as they can be. For large N , we therefore expect
the PDF of any quantity sensitive to inhomogeneities, such as C , to be peaked close to
its minimum. This is indeed what was seen in Figures 4 and 5 of Barbour et al. (2015).31

I conclude that, according to the measure of Barbour et al. (2015), states on the Janus
surface are overwhelmingly likely to look like homogeneous states when N is large. Since
N ∼ 1010 for N -body simulations of the Universe such as the Millennium Simulation (and
each of those particles can represent many galaxies in the real Universe), this is clearly
the limit relevant to our model.

The question I will turn to now is: what features of the measure used in Barbour et al.
(2015) guarantee that smooth states are typical on the Janus surface? Answering this will
help us to understand when the same conclusions will hold for a more general class of
measures. Indeed, the argument above led to the desired result because we reasoned that
functions of uniformity would generally be narrowly peaked for large N when sampled
from a uniform distribution.

Support for such reasoning can be leveraged upon a version of the Central Limit
Theorem (CLT), which I will explain in detail below. If that reasoning were robust, then
we would be able to define a large class of measures that will have the same properties
as the uniform measure for large N . We will see that this is nearly the case: the PDF of C
generally follows what one would expect from the CLT except that it has fat tails for large
N . These fat tails restrict the class of measures that behave like the uniform measure at
large N . Fortunately, these tails can be removed by introducing a modest cut-off on the
short distance behaviour of the system. I will now explain how this can be done.

Consider an arbitrary measure density ρ = f (q̂ , p̂)ρ0 different from the uniform den-
sity ρ0 because the function f (q̂ , p̂) is not equal to a constant. If the CLT theorem holds,
then we’d expect the PDF, gX (x) = ∫

X=x ρ0, generated by the measure ρ0 of any quantity
X that is sensitive to inhomogeneities will be sharply peaked near its minimum for large
N (because smooth states have few inhomogeneities). That would mean that, in order for
the PDF, g̃X (x) = ∫

X=x ρ = f (x)gX , generated by any different measure to not be peaked
near its minimum, f will have to grow faster in x away from the mean than a normal

distribution decays. In other words, f would have to grow faster than ∼ ex2
. This would

put a strong constraint on the measures that behave differently from the uniform measure

31Note, however, that the measure used by BKM simply is a uniform measure on two copies of the unit sphere.
Thus, the samples taken from that measure define the smooth states. Figures 4 and 5 can therefore not be
used to illustrate that the states are smooth in the sense claimed by BKM. Rather, their results can be used to
conclude that uniform states have low values of C .
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for large N . Moreover, it is not clear that there is any function naturally formed from the
Hamiltonian that would have such growth. Either way, understanding the decay rates of
the PDF of C will help us understand how to define a class of measures where uniform
states are typical.

Before we can draw any definite conclusions, however, we must first be more explicit
about the limitations of the combinatorics arising in the proof of the CLT as applied
to this case. We can do this by explicitly estimating various parameters of the PDF of
the C -function. The C -function is the sum of N (N − 1)/2 (normalised) inter-particle
distances. A naive application of the CLT would then suggest that the standardized mean,
µ̄C = µC /σC of C , where µC and σC are the mean and standard deviation of C , should
scale like O (N ). This tells us that the approximate width, σC , of the PDF of C decreases
like O (1/N ) compared to the mean, giving us a way to quantify how tightly the distribution
of C is peaking as N gets large.

This simple picture, however, tells a slightly incomplete story because the inter-
particle separations are not completely independent random variables: they obey, for
example, triangle inequalities and depend only on 3N particle positions. To get a more
accurate estimate of the scaling of the moments of C with N , we need to be more explicit.
First, let us restrict the spatial extent of our sample of particles to a sphere of radius
R. This introduces a new relative scale, R/

p
I , into the system. Physically, this can be

interpreted as some large distance beyond which we have no epistemic access; e.g., the
Hubble horizon.

We can then use known results regarding the two-point separation function, p(ri j ), of
a uniform ball of radius R:

p(ri j ) =
3r 2

i j

R3 −
9r 3

i j

4R4 +
3r 5

i j

16R6 . (8.40)

This distribution, called the Williamson distribution, gives the probability of finding two
particles separated by a distance ri j when sampled from a spatially uniform ball of radius
R . A derivation of the Williamson distribution is given in Section 2.f of Battye et al. (2003).
Using this, it is relatively easy to find that the expectation value of any power n >−3 of ri j

is (see also Equation (2.30) of Battye et al. (2003))〈
r n

i j

〉
= 72(2R)n

(n +3)(n +4)(n +6)
. (8.41)

For n ≤−3, the expectation values diverge — a fact that will be important below.
We can use the expression above to explicitly compute the mth-order moments of C .

This can be done because, while the inter-particle separations are not independent, their
relationship to each other is symmetric. For the mean, this implies that each term in sum
takes the same value. If we additionally use the approximation

I ≈ 〈I 〉 =
〈

N∑
i=1

r 2
i

〉
= N

〈
r 2〉= N

∫ R
0 r 4dr∫ R
0 r 2dr

= 3

5
N R2 , (8.42)

where r is the distance between a particle and the origin, which is valid for large N ,32 we

32The approximation I ≈ 〈I 〉 for large N is justified because I is a genuine sum of N independent random
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find:

〈C〉 =
〈∑

i ̸= j

p
I r−1

i j

〉
≈ N (N −1)

2

√
〈I 〉

〈
r−1

i j

〉
=

(
3N

5

)3/2

(N −1) . (8.43)

The higher order moments of C can be computed similarly but involve binomial coeffi-
cients arising from raising the sum in C to the power of m. Being careful to split this sum

into diagonal terms involving
〈

r−2
i j

〉
and off-diagonal terms involving

〈
r−1

i j

〉2
, we find

that the terms in the standard deviation of C involving N 2(N −1)2 cancel so that:33

σ2
C =

〈(
C −µc

)2
〉
≈ N (N −1)

2
〈I 〉

[〈
r−2

i j

〉
−

〈
r−1

i j

〉2
]
= 35

103 N 2(N −1) . (8.44)

This confirms the naive CLT-based argument that showed that σC /µC ∼O (N−1).
Following the same reasoning, it is easy to see that the mth standard central moment,

µm
C /(σC )m = 〈(C−〈C〉)m〉

σm
C

, scales like O (N 2−n) for n > 2 due to cancellations similar to those

seen above. Since the standardised moments tell us how the shape of a distribution
deviates from normality, this scaling of the moments with N suggests parity with the CLT.
Where we get divergence from the CLT is that, for m ≥ 3, the moments will involve terms
of order at least as low as 〈r−m〉. Because these term diverge, the higher order moments
are not well-defined. So while the CLT gives us the correct scaling in terms of N for the
standardized moments of C , this scaling is irrelevant for the higher order moments of C ,
which simply do not exist. This tells us that the PDF of C is likely fat-tailed.

To check the reliability of our idealisations, we can estimate the moments in a more
direct way by performing a Monte Carlo simulation using M ≫ 1 samples of N -body
systems, compute the C -function for each of those samples, and use those results to
estimate the statistics of C . Figure 8.1 shows the results of such a simulation for the mean
and standard deviations of C at different values of N .34 Also plotted in Figure 8.1 are the
Monte Carlo and theoretical estimates of 〈I 〉 and σI showing a sharp peaking behaviour
in the PDF of I for large N . The agreement between the two methods generally confirms
that our theoretical idealisation is valid even for N as small as 6. To get an idea of what a
typical distribution looks like, the Monte Carlo estimate of the PDF of C for N = 20 and
M = 106 is shown in blue in Figure 8.2a.

variables; namely the distance of each particle to the origin. The CLT then tells us that µI /σI ∼ O (N 1/2).
Explicit calculation confirms this since, using the method explained in the text, σ2

I = 12
175 N R4. Both of these

results for I agree with numerical simulations as can be seen from Figure 8.1. This means that the PDF of I is
more tightly peaked than C by O (N 1/2).

33This cancellation is the basis of the CLT.
34Units have been chosen so that the minimum value of C is equal to one. A good estimate for large N of the

absolute minimum, Cmin, of C can be obtained from the lower bound derived in Section 2.d.ii of Battye et al.

(2003). Using their Equations (2.38), (2.13), (2.15) and (2.16), we find that Cmin =
(

3
5 N (N 2/3 −1)

)3/2
.
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Figure 8.1 | A comparison of two different estimates of: (a) 〈C〉, (b) σC , (c) 〈I 〉 and (d) σI using a direct Monte
Carlo simulation (blue dots) and a theoretical estimate (blue dashed line) for different values of N . The number
of samples is chosen to scale like N−2 to keep the computation time constant for each data point with 106

samples for N = 6. All curves show excellent agreement between the directly simulated quantities and the
theoretical estimates in accordance with expectations from the CLT. Unfortunately, similar trends do not hold
for moments of order higher than 2 as a consequence of the divergence of the integrals involved.

For statistics depending on moments larger than 2, such as the skewness and kurtosis,
the estimates become unreliable even for large (∼ 107) values of M . This highlights the
sensitivity of those statistics to outliers in the tail confirming our theoretical arguments
about the divergence of moments larger than 2. Together, the lines of evidence above
provide a compelling argument that the PDF of C is indeed fat-tailed.

The divergence of the moments of C limits the space of functions f (c) such that, using
the notation defined above, the PDF of C , g̃C (c) = f (c)gC , generated by ρ = f (c)ρ0 will
behave like that of the PDF generated by the uniform distribution ρ0. This is because∫

f (c)gC dc will diverge if f (c) is a polynomial of order 3 or higher so that the statistics of
C under g̃C are not well-defined. This will become problematic in the next section when
we consider a particular natural choice of ρ that will violate this condition.

To overcome this problem, I will impose a physically well-motived cut-off on the short
distance behaviour of the system. In particular, it is not physically reasonable to assume
that the particles in our model are indeed genuine point particles. If we assume that they
have a typical size rc , then rc sets the minimum size of the inter-particle separations of
the theory. Because the divergences are sensitive to the most extreme outliers of inter-
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particle separation, a modest cut-off should cure the divergences without introducing
unreasonable physics. Indeed, such cut-offs are commonly used in N -body statistical
mechanics to cure the unphysical divergences in the 1/ri j potential Padmanabhan (2008).

We can find the mathematical requirements on such a cut-off by examining the source

of the divergences in the moments. If we cut off each integral in
〈

r n
i j

〉
at some minimum

inter-particle separation rc , then the definition ϵ= rc /R tells us that, to leading order,〈
r m

i j

〉
∼ ϵ−m+3 (8.45)

for m > 3.35 These are also the leading divergences in the mth central moment µm
C of

C . Using our previous result arising from the combinatorics of the CLT, we found that
µm

C /σm ∼O (N 2−m) so that, for m > 2, the mth standardised moment µ̃m
C =µm

C /σm
C scales

like
µ̃m

C ∼ (Nϵ)2−m ϵ . (8.46)

For small ϵ, the standardised moments vanish provided Nϵ< 1. However, if m is large,
then small differences in the numerical coefficients of each term could get amplified by
raising the term multiplying Nϵ to a large power of m if Nϵ∼ 1. Thus, a safe cut-off should
satisfy the following condition:

1

N
≪ ϵ≪ 1. (8.47)

A convenient choice that satisfies this condition is ϵ= N−p for some choice of p between
0 and 1. For large enough N , the simple choice p = 1/2 should lead to a reasonably small
value for rc and be guaranteed to satisfy the condition (8.47). However, the physical
significance of this choice should be evaluated in the context of a specific model. Since
I am not immediately concerned with questions of empirical adequacy, I will leave this
determination to future considerations.

8.3.4.3. A PARTICULAR MEASURE FOR EARLY SMOOTHNESS

Let me now consider a particular measure arising naturally from this analysis and see how
it compares to the class of measures considered in the previous section. In my analysis,
I have used the condition I = I0 to fix the orbits of dynamical similarity because this
condition led to very manageable contact equations. Interestingly, the natural measure
density ρ for this gauge fixing, when restricted to the space of DPMs on the Janus surface,
satisfies the criteria specified above: that is, it behaves like a uniform distribution for
large N provided a cut-off satisfying the condition (8.47) on inter-particle separations is
imposed.

To see this, note that using the contact form (8.29), the natural measure density for
this theory is

ρ = dS ∧ (dp̂a ∧dq̂ a)3N ∣∣
R , (8.48)

where R is the surface defined by the constraints q̂ =
√

Mab q̂ a q̂b = 1 and D = 2(p̂a q̂ a)/q̂ =
0. To find the restriction of ρ onto R we can use the Fadeev–Popov trick of inserting

35For m = 3, the divergence is ∼ logϵ.
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the magnitude of the Poisson bracket between the constraints and integrating over δ-
functions:

ρ = dS ∧
∫ ∣∣{q,D

}∣∣δ(q)δ(D) (dp̂a ∧dq̂ a)3N . (8.49)

Because these constraints are canonically conjugate, the Poisson bracket is 1 and the
integration gives

ρ =Ω3N dS
3N−1∏
a=1

dθa
q dptf

a , (8.50)

where Ω3N is the determinant of the metric on the unit 3N -sphere, θa
q are coordinates

on that sphere corresponding to directions on configuration space, and ptf
a is a basis

of vectors onR3N−1 whose contraction is zero with a vector pointing in the directions
specified by θi

q .
We can now define a measure on the space of DPMs for this theory by restricting

to the intersection of the Hamiltonian constraint surface H = 0 and the Janus surface
S = 0. In this case, the Poisson bracket in the Fadeev–Popov determinant is replaced by
LX S = p2

tf = 2C . If we choose spherical coordinates (ptf,φ
m
p ), where m ∈ {1, . . . ,3N −2},

on the trace-free momentum space, then we obtain an additional factor of 1/ptf from
integrating the δ-function δ(H)dptf over ptf and a factor ofΩ3N−1 from the momentum-
space spherical coordinates. The final result is then

ρ J =
(p

2CΩ3N (θi
q )

3N−1∏
i=1

dθi
q

)(
p3N−2

tf Ω3N−1(φm
p )

3N−2∏
m=1

dφp
m

)∣∣∣
p2

tf=2C
= (2C )(3N−1)/2ρ0 ,

(8.51)
where ρ0 is the uniform measure on the tensor product of the spheres: S3N ×S3N−1.

The measure µJ (R) = ∫
R ρ J has a number of interesting features. First, like the mea-

sure used by BKM, it is an integral over a compact space so that it is a probability mea-
sure. Second, the remaining momentum-space integral is simply one so that probability
distributions over configuration space functions can be computed with the measure
µ

q
J (R) = ∫

R (2C )(3N−1)/2ρ
q
0 , where ρq

0 is the uniform density on the unit 3N -sphere. Finally,

the measure density differs from the uniform density by the factor (2C )(3N−1)/2, which is
polynomial in C .

Using the definitions established in Section 8.3.4.2, let gC (c) be the PDF of C generated
by a uniform measure ρ0 and g̃C (c) be the PDF of C generated by ρ J . Because the order
of the polynomial of c in g̃C grows with N , the fat-tailed nature of gC implies that g̃C will
diverge for large values of c ∈C in an ever more severe way as N gets large. To cure these
divergences we therefore need to impose a cut-off as predicted in the previous section.
Following the results of that section, the hard cut-off rc = RN−p works very well when
p = 1/2 for medium to large sized N . When implementing such a cut-off, we expect g̃C to
converge to a normal distribution with mean µC and standard deviation σC as given by
Equations 8.43 and 8.44 when N ≫ 1. Moreover, we will now see that these distributions
will also be largely overlapping.

First note that for N ≫ 1, Norm(µ,σ2/N 2) ≈ Gamma
(
µ2N 2

σ2 , σ2

µN 2

)
, where Norm(µ, σ̄)

is the normal distribution with mean µ and variance σ̄2 and Gamma(k,θ) is the gamma
distribution with shape k and scale θ. Let us now take gC (c/µC ) to be the PDF of
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Norm(µ,σ2/N 2) ≈ Gamma(k,θ), where µ = 1, σ = 3
23/2 (to match Equations 8.43 and

8.44) and we make the corresponding identifications for k and θ. Then we can use the
fact that multiplying the PDF of a Gamma function by a polynomial of fixed degree sim-
ply shifts k by a fixed amount. For our choice of parameters, this leads to g̃C (c) being
approximately equal to the PDF of

Gamma

(
k + 3N −1

2
,θ

)
≈ Norm

(
µ+ 3σ2

µN
,
σ2

N 2

)
, (8.52)

where approximations are taken to the lowest order in 1/N . This means that, in units
where µC = 1, the mean is shifted by a constant factor of ∆µσC

= 3σ
µ ≈ 1.591 relative to σC .

In other words, for large N the distributions gC and g̃C are simply normal distributions
with the same standard deviations, σC , and means shifted by a factor of 1.591σC . Such
distributions have significant overlap with each other, which was what we set out to show.

In Figure 8.2, this behaviour is illustrated by plotting the results of a Monte Carlo
simulation for g̃C (in green) compared to gC (in blue) for a cut-off of the form rc = RN−1/2.
To implement the cut-off we have sampled the inter-particle separations used to compute
C directly from the Williamsion distribution modified to exclude tails smaller than rc .36

This methodology is justified by our previous simulations that show a convergence of
directly computed inter-particle separations to the Williamsion distribution for medium
to large N .

Samples for g̃C have been obtained using a rejection method starting from a uniform
distribution so that the statistics on the upper tail require significant computation time
for large N . To get good statistics, we have restricted our plotted simulation to N = 20,
which is shown in Figure 8.2a. The plot shows that the cut-off is successful at restricting
the effects of the tail even for relatively small N . The shifted distribution g̃C already
has a mean that closely matches the prediction made above, which is represented by
the vertical blue line. Figure 8.2b shows the expected PDFs when N = 500 based on the
theoretical considerations above. Both plots show significant overlap of the distributions
even for moderately low N .

36We have also used the approximation I = 〈I 〉, which is justified by our previous simulations.
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(a) Monte Carlo simulation with M = 106 samples and N = 20
particle showing gC in blue and g̃C in green. A cut-off of the
form rc = RN−1/2 was used.

(b) Predicted behaviour of gC in blue and g̃C in green for large
N using the model discussed in the text.

Figure 8.2 | Comparison between gC and g̃C for different values of N . Good statistics for direct estimates are
only computationally feasible for small N , where the effect of the cut-off on the tails is reduced. The results of a
simulation for N = 20 are show in Figure 8.2a. This shows good overlap of gC and g̃C in line with theoretical
considerations. A theoretical estimate of the overlap of the two distributions is given in Figure 8.2b using the
approximations outlined in the text. This illustrates the expected overlap for large N once a cut-off is imposed.

I will conclude this subsection by noting that g̃C will only remain close to gC near the
Janus surface. This is because away from the Janus surface S grows monotonically, and
the Hamiltonian constraint gives p2

tf = 2C −S2/4. The measure µJ (R,S0) projected onto
an S = S0 surface is then

µJ (R,S0) =
∫

R
(2C −S2

0/4)(3N−1)/2ρ0 . (8.53)

The extra factor depending on S0 shifts the PDF of C to be centred on S2
0/8. For large S0,

this will be peaked on a value that is arbitrarily larger than the minimum of C . In other
words, for timescales such that S2/8 ≫ min(C ); i.e., for “late” times when the system is
approaching an attractor; likely states will be highly clustered.

This observation adds an important subtext to the usual arguments used in N -body
systems suggesting that highly clustered states are typical because significant entropy
is stored in the steep well of the Newtonian potential. Crucially, these arguments don’t
consider when such states are likely to occur along solutions. We can see that by treating
dynamical similarity as a gauge symmetry we find that highly clustered states, while
numerous overall in the state space, are overwhelmingly likely to be found near attractors,
and not near Janus points. This insight completely changes our intuitions about the AoT.
For interacting systems, the dynamics can be such that certain kinds of states may be
more or less likely to occur at different times along a family of solutions. We will return to
this point when discussing the potential implications for the Boltzmann Brain problem in
Section 9.2. In the case treated here, this means that smooth states are exceedingly likely
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to be found near Janus points while clustered states are exceedingly likely to be found
near attractors. The AoT defined by the JA-scenario for this model therefore points from
smooth to clustered states. This solves the smoothness problem within this model.

8.3.4.4. THE C -FUNCTION AND UNIFORMITY

The validity of the argument given in the previous section relies on the C -function being
a good proxy for inverse smoothness. In this section, I will try to further demonstrate
that this is the case, first, by showing that small C -values do indeed correlate with more
uniform distributions and, then, by showing that my results are consistent with a more
direct measure of uniformity based on the distribution of 2-point separations of an N -
particle system. I will make use of a well-known statistic, called the Kolmogorov—Smirnov
(KS) statistic denoted by D (Kolmogorov, 1933; Smirnov, 1948), which is used to compare
two different distributions by taking the maximum absolute difference of the CDFs of
two distributions. This method is known to give a robust way to compute the distance
between two probability distributions.

For the first demonstration, let us compare the simulated CDF of the 2-point sepa-
rations of a sample of N particles to the theoretical CDF of the 2 point separations of
an ideal uniform distribution, which is given by the definite integral of the Williamson
distribution (8.40). Using the parameters of the Monte Carlo simulations of the previous
sections, one can plot histograms for C versus

p
N D37 using many simulations of the

N -body system. Such a plot is shown in Figure 8.3(d) for N = 6 and M = 3×106 (the
number of samples in the simulation). In these units, the minimum value of C is chosen
to be one while the maximum of D is

p
N . This plot shows that low values of C typically

have low values of
p

N D , confirming that low values of the C statistic are correlated with
uniformity.

For the second demonstration, let us use the distribution of the KS-statistic, D , of C to
estimate the probability that a particular sample of N -particles has not been drawn from
a uniform distribution. Note that we are dealing with two distinct notions of uniformity:
one is the Williamson distribution, which is the uniform distribution of a continuous
number of samples, and the uniform distribution, ρ0, of a finite number of samples N .

Since the inter-particle separations are not independent, we must estimate the distri-
bution of D using simulations. What I will do is compute the distribution of the value of D
obtained by comparing samples taken from ρ0 with samples taken from the Williamson
distribution. This gives a benchmark for what the D statistic should look like for a finite
sample of 2-point separations taken from a uniform distribution. The PDF obtained from
such a simulation with the parameters used above is shown in blue in Figure 8.3(b).

We can then compute the KS statistic for the 2-point separations of a set of N particles
sampled from the non-uniform distribution ρ and use our benchmark to estimate how
likely such a sample is to have not been sampled from a ρ0 given its D-value. The vertical
green line indicates the value of

p
N D for a random sample taken from the distribution ρ.

The C -value of this sample is shown in green in Figure 8.3(a) along with the simulated
distributions gC (blue). For this sample, p = 0.911 which means that there is only an 8.9%

37This normalised value of D is known to obey a particular distribution when the samples are independent.
While the independence assumption is violated here (see below), I will nevertheless consider this normalised
statistic in my analysis.
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chance that such a sample was not drawn from a uniform distribution. There is, thus, not
sufficiently strong evidence to exclude that the sample belongs to a uniform distribution.
In order words, using the distribution of 2-point separations alone, we conclude that a
typical sample taken from ρ0 could have been sampled from the uniform distribution ρ0.

We can gain more information about this particular sample of N = 6 particles by
comparing its CDF; i.e., the green line of Figure 8.3(c); to the Williamson distribution (in
blue).38 Confidence bands of 80% generated by the Monte Carlo simulation are shown
in red. The green line clearly fits nicely to the uniform blue line within the expected
error bars showing that a typical sample drawn from ρ does not differ in any statically
significant sense to a typical sample drawn from ρ0.

The disadvantage of the direct approach, and the reason to favour the indirect one
based on the C -function, is that the direct approach is much more computationally
intensive39 and lacks analytic control. Nevertheless, the results of this demonstration
confirm, at least for small N , that the smoothness of states drawn from ρ on the Janus
surface can be confirmed directly from the 2-point separations rather than having to infer
smoothness indirectly from the value of the C -function.

38Units are chosen so that R = 1.
39This is the reason for treating relatively low values of N .
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Figure 8.3 | A Monte Carlo simulation of 6-bodies with 3×106 samples for initial conditions on the Janus surface
illustrating the smoothness of likely states. (a) The simulated distribution gC in blue. A random state (green)
sampled from g̃C lies in the thick part of the uniform distribution. (b) The PDF of the Kolmogorov–Smirnov
(KS) statistic

p
N D (blue) generated by comparing the two-point separation distribution of each N = 6 sample

drawn from the uniform measure ρ0 with that of the Williamson distribution. A randomly chosen state (green)
sampled from ρ has small KS-statistic, and is therefore unlikely to have not been sampled from the uniform
distribution ρ0. (c) The simulated CDF of a random state (green) of ρ compared with the theoretical CDF of a
continuous uniform distribution (blue). Confidence intervals (red) of 80% are computed from the Monte Carlo
simulation sampled from ρ0. (d) A 2D histogram plotting the values of C versus the KS statistic (bright colours
mean greater frequency). Low values of C are correlated with small KS statistics indicating that low-C states are
likely to have been sampled from a uniform distribution.

8.4. SOLVING THE RED-SHIFT PROBLEM IN COSMOLOGY

In this section, I will investigate the consequences of treating dynamical similarity as
a gauge symmetry of an FLRW cosmology under the modelling constraints specified
in Section 8.1.2.2. First, in Section 8.4.1, I will give a more complete description of the
FLRW model itself that will compliment the brief remarks given in Section 7.4. Then, in
Section 8.4.2 I will identify the dynamical similarity of this model and apply the Gauge
Principle, reproducing a known representation of the reduced system. In Section 8.4.3,
I will show that this representation admits a JA-scenario that provides a solution to the
red-shift problem in this model. Finally, in Section 8.4.4 I will investigate the nature
of Big Bang singularities in the context of this model using a geometric description of
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configuration space. This will show how solutions can be extended in this framework
by making particular clock choices and corresponding restrictions on the scalar field
potential. These results are important both for illustrating how a JA-scenario can occur
in a model with what is normally interpreted as a Big Bang singularity and for gaining a
better understanding of various extensions of cosmological solutions motivated by the
PESA.

8.4.1. MODEL DEFINITION

The Friedmann—Lemaître-–Robertson-–Walker (FLRW) model of general relativity is a
cosmological model that assumes homogeneity and isotropy of the space-time metric
over a spatial slice Σt . These space-times are globally hyperbolic, and the general space-
time metric can be written in the form

dτ2 =−N 2(t )dt 2 +a2(t )dℓ2 , (8.54)

where dℓ2 is a metric on the homogeneous and isotropic surfaces Σt , N (t) is the lapse
function on Σt , and the speed of light c = 1. When N = 1, the time variable t gives a
proper-time parametrisation along geodesics. The spatial hypersurfaces Σt can have, at
most, constant intrinsic scalar curvature that is normalised to k = {0,±1}. The variable
a(t ), which is only a function of t , is called the scale factor. As discussed in Section 8.1.2.2,
I will take k = 0 — although my results can easily be generalised to other values of k.
When k = 0, the scale factor is best thought of as the relative size of a co-moving patch of
space-time. I will take the matter content of the model to be a collection of n scalar fields
ϕi , with i = {1, . . . ,n} with potential U (ϕi ). Finally, as motivated in Section 8.1.2.2, I will
assume a positive cosmological constantΛ> 0.

Under these assumptions, the ADM-decomposition of the Einstein action leads, after
integrating over a co-moving patch and taking the GN = 8π, to

SFLRW =
∫

dt a3
[
− 3

N

(
ȧ

a

)2

+ 1

2N
ϕ̇2 −N (Λ+U (ϕi ))

]
. (8.55)

These are the conventional variables used in cosmology, where the lapse, N , is usually
taken to be one. For our purposes, it will be convenient to define the new variables

V = 2
3 a3 φi =

√
3
2ϕ

i (8.56)

where V is just a rescaling of the volume of a co-moving patch and φi is just a rescaling of
ϕi . If we define the new potential U (φi ) = 3

2 U (ϕi ) then the action becomes

SFLRW =
∫

dtV

[
− 1

2N

(
V̇

V

)2

+ 1

2N
φ̇2 −N

(
3Λ

2
+U (φi )

)]
. (8.57)

A straightforward Legendre transform leads to the Hamiltonian in the form HFLRW =
NHFLRW, where

HFLRW =V

(
−h2

2
+ π2

2V 2 + 3Λ

2
+U (φi )

)
≈ 0 (8.58)
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is the Hamiltonian constraint of the FRLW theory resulting from reparametrisation in-
variance, h =−3 ȧ

a =−3H is minus three times the Hubble parameter H and πi are the

momenta conjugate to φi . In these variables, the non-zero Poisson brackets of the theory
are

{V ,h} = 1
{
φi ,π j

}
= δi

j . (8.59)

The lapse, N , is treated here as a Lagrange multiplier for the Hamiltonian constraint and
not a canonical variable. Also, I have used a shorthand notation where the square of φi

and πi are taken using some constant matrix Ki j , for φ2 = Ki jφ
iφ j and its inverse K i j for

π2 = K i jπiπ j .
In these variables, Hamilton’s equations can readily be computed:

V̇ = {V , HFLRW} =−NV h φ̇i =
{
φi , HFLRW

}
= N

πi

V
(8.60)

ḣ = {h, HFLRW} = N
π2

V 2 π̇i = {πi , HFLRW} =−NV
∂U

∂φi
, (8.61)

where I have used the shorthand notationπi = K i jπi . Note that these equations of motion
are subject to the constraint (8.58).

8.4.2. REMOVING DYNAMICAL SIMILARITY

This theory has a symmetry under dynamical similarity. According to the general analysis
of Section 4.8.1, we first need to find that there exists a function γ such that (4.159) is
satisfied for the FLRW Hamiltonian (we use γ instead of φ to avoid notational ambiguity
with the scalar fields of this section). This leads to following condition:

φ̇iπi + V̇ h +{
γ, HFLRW

}= aHFLRW , (8.62)

for some constant a. The ansatz

γ= AV h +Bφiπi (8.63)

solves (8.62) for A =−1, B = 0 and a = 1. Using these values, (4.161) tells us that the vector

D =πi
∂

∂πi
+V

∂

∂V
(8.64)

generates a dynamical similarity that takes solutions to solutions.40 We see from D that
the volume, V , and momenta, πi , carry weight +1 under dynamical similarity while h and
φi are invariant. Exponentiating the action of D using a gauge parameter c, we see that
V → cV and πi → cπi so that φ̇ is invariant according to (8.60). This exactly reproduces
the dynamical similarity of (7.4) used in Section 7.4. Note that we have required that
the lapse N be invariant under dynamical similarity. This implies no loss of generality

40Note that our answer is independent of the form of U since D rescales the action in the appropriate way to be
a dynamical similarity without having to transform φi .
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because any possible transformation under dynamical similarity can be absorbed into
the time parameter t .

We can use the conformal weight of V to define a convenient gauge-fixing of D using
the surface defined by a level surface of

w = logV , (8.65)

which satisfies LD w = 1. The contact form on this gauge-fixed surface is

η=−e−w ιDω= dh − πa
V dφa . (8.66)

This suggests that the variable definition

vφi = πi

V
, (8.67)

which satisfies vφi = φ̇i on-shell (where φi = Ki jφ
j ) and can therefore be thought of as

the velocity of φi on velocity phase space, puts η into Darboux form with the invariant

coordinates {φi , vφi ,h}.
In terms of these coordinates and using the value a = 1 computed above, the contact

Hamiltonian is

H FRLW
c = e−aw HFLRW = N

(
−h2

2
+

v2
φ

2
+ 3Λ

2
+U (φi )

)
, (8.68)

which is constrained to be equal to zero. Since the Reeb vector field is R = ∂
∂h in these

coordinates, we find that the drag is

R(Hc ) = ∂Hc

∂h
=−N h . (8.69)

We can use this to compute either the gauge-fixed equations of motion for the original
variables or the contact equations of motion for the contact variables. The gauge-fixed
equations, generated by Xinv = e(1−a)w X −R(Hc )D = X +N hD are:

V̇ = 0 φ̇i = N
πi

V
(8.70)

ḣ = N
π2

V 2 π̇i =−NV
∂U

∂φi
+N hπi . (8.71)

We note that because a = 1, the time parameter, which labels surfaces of constant proper-
time, is already gauge-invariant. We can use the constancy of V in this gauge to re-write
these equations in terms of the invariant Darboux coordinates defined above. A very short
calculation gives

φ̇i = N v i
φ (8.72)

v̇φi =−N

(
∂U

∂φi
−hvφi

)
(8.73)

ḣ = N v2
φ . (8.74)

It is straightforward to verify that these are identical to the contact equations generated
by H FLRW

c in these coordinates.
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8.4.3. A JANUS–ATTRACTOR SCENARIO FOR FLRW

I will now show how a JA-scenario, and therefore an AoT that solves the red-shift problem,
arises in this model. Let us apply the assumptions of Section 8.1.2.2. The condition k = 0
has already been built in to the construction by restriction the form of the action. Given
the energy moment tensor T µν of some matter field, the weak energy condition (WEC)
requires that Tµνxµxν > 0 for all time-like vector fields in space-time. For homogeneous
scalar fields in homogeneous slicing in a proper-time parametrisation (i.e., with N = 1),
this condition is satisfied when

v2
φ

2
+U (φi ) ≥ 0. (8.75)

The WEC combined with the Hamiltonian constraint (8.58) tells us that

h2

2
=

v2
φ

2
+U (φi )+ 3Λ

2
> 0 (8.76)

when Λ > 0. This means that h can not have any zeros along the dynamical solutions.
In the original GR picture where V̇ /V = −h, our assumptions then guarantee that the
model universes do not re-collapse. Instead, they must either grow or shrink indefinitely
depending on the choice of AoT.

To see an AoT arising from a JA-scenario let us note that (8.74) ensures that ḣ > 0 so
that h is monotonic. Since h cannot have a zero, this means that there must be two tem-
poral limits that bound the evolution of the system. The first is the limit where the bound
of the WEC (8.75) is saturated. In this case, h →±p3Λ so that the geometric degrees of
freedom of the system have a fixed point in this limit. Because this limit is reached for any
initial conditions on the scalar field, the basin of attraction of this fixed point has non-zero
measure. Let us consider the branch where h is negative corresponding to a positive a
Hubble parameter, and note that the opposite branch can be obtained by flipping the
sign of the coordinate t . As it is well-known, the spacetime geometry of a system with
constant positive Hubble parameter is de Sitter. Thus, de Sitter spacetime is an attractor
of this theory.

The opposite temporal bound of the solutions occurs when h →±∞. Taking again the
negative branch, we see that this is a singular point in the dynamics since the equations
(8.72) - (8.74) are not Lipschitz continuous at this point when N = 1. This reflects the
non-extendibility of solutions in a proper-time parametrisation. We may thus interpret
this second temporal bound as a Big-Bang.

But because a proper-time parametrisation loses its physical significance in the re-
duced system, we are free to consider alternative time parametrisations of the theory. The
discontinuities of the equations of motion (8.72) - (8.74) occur because of the divergence
of h in this limit. A simple remedy is to use a lapse function N = |h−n | for n ≥ 2. The
equations of motion are then Lipschitz continuous provided |h−n | ∂U

∂φi → 0 when h →±∞.

This puts relatively mild constraints on the potential.
We will investigate these conditions in more detail in the next section. For now, let

us specialise to the case n = 2 and note that the drag (8.69) takes the form R(Hc ) =−1/h.
In the branch we’re interested in, this means that the drag is zero at the Big Bang where
h →−∞ so that it is a Janus point for all solutions in this parametrisation. Moreover,
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because of the dynamical properties of h, the drag will grow monotonically and reach
a maximum at the de Sitter attractor. The drag is thus a natural non-thermodynamic
entropy function for the system.

In the time variable selected by the lapse choice N = h−2, the Janus point occurs at
t = 0 and the attractor at t →∞. The existence of both a Janus point and an attractor for
every solution of our model leads to a JA-scenario and defines an AoT in the direction
of increasing t for all solutions. Along this AoT, the Hubble parameter decreases mono-
tonically from +∞ at the Janus point to

p
3Λ near the attractor. This realisation of the

JA-scenario therefore provides a solution to the red-shift problem: for all solutions of the
model, an observer near an attractor will see an arbitrarily large and monotonic Hubble
parameter in the temporal direction pointing away from the attractor. This solution is
stronger than the solution to the smoothness problem in the N -body model in the sense
that it assumes only k = 0,Λ> 0 and the WEC, and doesn’t require the use of a measure.

8.4.4. EXTENDIBILITY THROUGH THE BIG BANG

In the previous section, I gave a solution to the red-shift problem an FLRW cosmology that
realises a JA-scenario. This solution has the feature that the Janus point is the classical Big
Bang. Since the Big Bang is usually considered to be a singular point of the dynamics, one
might worry about the T -invariance of the theory since solutions on either side of the
Janus point don’t seem to be smoothly connected. In this section, I will address this worry
by showing that there are families of smooth continuations of this model, motivated by the
PESA, that pass through the Janus point in such a way that the T -symmetry of the theory
is manifest. The existence of such solutions shows that the features of the JA-scenario
described in Section 8.2.3 hold for this model, and therefore that my explanation for the
AoT applies.

One might, however, wish to pursue a more radical hypothesis that the smooth contin-
uations below provide more empirically accessible parametrisations of the cosmological
model than the usual proper-time parametrisations, which break down at the Janus point.
This was the point of view advocated in Koslowski et al. (2018). To pursue such a view, it is
necessary to give a set of conceptual and formal tools for understanding the empirical
significance of these parametrisations. The geometric description I give below is an
attempt to achieve that. Thus, the demonstrations below serve a double purpose: first,
they show how T -symmetry is retained in the formalism through continuations of the
solutions that are smooth through the Janus point and, second, they develop a geometric
framework that could be used to try to better understand the empirical significance of
these continuations.

To begin the construction, note that the kinetic term, KFRLW, of SFRLW can be written
as

KFRLW = 1

2N ′ ηµνq̇µq̇ν , (8.77)

where ηµν = (−1,V 2
1) is the Minkowski metric in the Rindler coordinates qµ = (V ,φi ) and

N ′ = NV . Under this representation, the “position” of a Rindler observer is denoted by V
and the Rindler “time” is denoted by φ. The Rindler horizon is located at V = 0, where
the curvature has a δ-function singularity. Because of this, geodesics intersecting this
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horizon are incomplete. We will see in a moment why this fact about Rindler spacetime is
relevant to initial singularities in this model.

Towards this end, let us rewrite the action for FRLW in geometric terms on configura-
tions space so that we may understand its solutions geometrically. We can eliminate the
Lagrange multiplier N ′ from the action by inserting the equations of motion for N ′ back
into the action.41 This brings the action into Jacobi form

SFRLW =
∫

dt
√

gµνq̇µq̇ν , (8.78)

where the Jacobi metric

gµν =
2ηµν

− 3Λ
2 −U (φi )

, (8.79)

is conformal to the Rindler metric and equal to it (up to a constant factor) when U (φi ) = 0.
With the action in this form, solutions can be seen to be geodesics of gµν following the
general analysis of Section 4.6.2. Since conformal transformation preserve null geodesics,
the light-cones associated with gµν are those of Rindler space — including the null
geodesic defined by the V = 0 hyper-surface.

We will now see how the Big Bang singularity arises in this picture. First, we note
that Rindler space is well-known to be geodesically incomplete at V = 0 because of
the δ-function singularity there. However, we are working in configuration space, and
not spacetime, so that geodesic completeness in configuration space is not necessarily
equivalent to geodesic completeness in spacetime. Moreover, for U ̸= 0, the geometry
of configuration space is not purely Rindler. We will see below, however, that relatively
mild conditions on U guarantee that the configuration-space geometry approaches that
of Rindler fast enough near the horizon so that the near-horizon solutions behave like the
geodesics of Rindler.

Using this fact, it follows that because the time coordinate of our model is adapted
to homogeneous temporal slices in a proper-time parametrisation, the vanishing of V
in this time parameter does represent a genuine degeneracy of the spacetime metric.
Thus, the horizon at V = 0 does represent geodesic incompleteness both in configuration
space and in spacetime.42 We can therefore speak interchangeably of the horizon at V = 0
as a singular surface in configuration space and a singular spacelike hyper-surface in
spacetime.

8.4.4.1. EXTENDIBILITY OF THE FREE THEORY

I will soon give a scheme for repairing the incompleteness on configuration space. But to
get inspiration, I will first consider the case where U (φi ) = 0 so that the scalar fields are
free. In this case, the configuration space is truly Rindler, and the solutions will look like
free particles travelling along the straight lines of Minkowski space until they reach the
Rindler horizon.

41It’s not hard to show that such an elimination gives an equivalent theory without N ′.
42For the latter you also need that the V = 0 surface is reached in finite proper time. This is guaranteed because

N = 1 leads to a proper-time parametrisation of solutions in spacetime and the horizon is reached in finite
time in this parametrisation.
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Given this interpretation, an obvious method for extending the solutions presents
itself: extend the solutions through the horizon by passing to Minkowski variables, where
the Rindler horizon appears only as a coordinate singularity. The δ-function singularity
at the Rindler horizon occurs, from this perspective, because the map from Minkowski
to Rindler is non-bijective and, in particular, is degenerate on the horizon. I will show
how this happens below. The completion of solutions then involves continuing geodesics
from one region to another in Minkowski space. Note that while such an extension is
straightforward in the free theory, when U ̸= 0 the smoothness of this extension will
depend on the properties of U on the Rindler horizon in a way we will soon make explicit.

A particularly helpful set of coordinates that will be useful for our purposes because
they are well adapted to describing the dynamics on the horizon are the so-called light-
cone coordinates of Minkowski space. These coordinates will be labelled {u+,u−,αI },
where I = {1, . . . ,n −1}, and take the form

u± =V e±Φ ϕi (αI ) = φi

Φ
, (8.80)

where Φ =
√

Ki jφiφ j and the ϕi (αI ) obey the constraint Ki jϕ
iϕ j = 1 so that αI are a

choice of coordinates on the unit sphere. We will leave the choice of αI unspecified so
that the precise relationship to the constrained quantities ϕi is left implicit.43 Extending
the space-time from Rindler to Minkowski can be done by allowing the u± to lie in the full
range of the real line,R, rather than the positive real line,R+. This map is not bijective
because the Rindler coordinate V is required to be strictly positive. Moreover, the Jacobian
of this transformation in degenerate on the Rindler horizon when u± = 0 and V → 0 and
Φ→±∞ where the level surfaces of V andΦ coincide.

In the light-cone coordinates, the u± label temporal and radial directions along the
light-cones while the αI label the compact directions of the light-cones. In these coordi-
nates, the Minkowski metric becomes

ηµν =
 0 −2 0
−2 0 0
0 0 u+u−Φ2ΩI J (αI )

 , (8.81)

whereΩI J (αI ) is the metric on the unit sphere andΦ= 1
2 log

(
u+/u−)

should be treated
as a function of u±. We will show below how to extend solutions through the horizon at
u± = 0. But before doing this, let us remind the reader that while these extensions are
perfectly natural on configuration space, they are not well-motivated in general relativity
because they pass through a region of configuration space where the geodesics of the
resulting spacetime are incomplete. As we have discussed above, in the homogeneous
slices we have chosen, the condition V = 0 implies that the proper-time along a spacetime
geodesic is not well-defined. On the other hand, because V scales under dynamical
similarity, the value of V is not observable in cosmological models, and therefore geodesic
extendibility in spacetime is no longer a good physical criterion for a singularity.

43As an example, for n = 3 a natural set of coordinates would be the spherical coordinates α = (θ,φ) so that
ϕ= (sinφcosθ, sinφsinθ,cosφ).
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8.4.4.2. INTERACTING SCALAR FIELDS

Let us now consider the extendibility of solution for U ̸= 0. A potential worry arises
because Φ→±∞ at the horizon so that the conformal factor of gµν, which contains U (Φ)
in its denominator, could shrink to zero. This might then result in genuine inextendibility
of the geodesics of gµν on the horizon. It is thus useful to explicitly check the properties
of these solutions and, in particular, how these solutions are modified when we quotient
by dynamical similarity.

To study the general solutions, we note that the momenta pµ = ∂SFRLW
∂qµ can be written

in terms of the inverse of gµν as
pµ = gµνq̇ν . (8.82)

The Hamiltonian constraint H ′ in the Jacobi normalization then tells us that the momenta
are unit vectors

H ′ = gµνpµpν−1 = 0. (8.83)

In terms of the Minkowski metric, this can be re-normalized to give the following repre-
sentation of the Hamiltonian:44

HFRLW = N ′
(

1
2η

µνpµpν+ 3Λ

2
+U (q i )

)
. (8.84)

Recall from the derivations in Section 4.6.2 that Hamilton’s equations for Jacobi theory,
(4.127), are equivalent to the geodesic equations with metric gµν on configurations space
in an arbitrary time parametrisation determined by a choice of lapse. But to study the
properties of the equations of motion near the horizon, it is useful to explicitly introduce
coordinates.

In that vein, since the kinetic term ηµνpµpν is a scalar, we can write it in any coor-
dinates we choose as long as we suitably transform ηµν. In light-cone coordinates, the
metric is given by (8.81) and is diagonal. Inverting it leads to:

HFRLW = N ′
(
−2p+p−+ ΩI J p I p J

2u+u−Φ2 + 3Λ

2
+U (Φ,αI )

)
, (8.85)

where {p±, p I } are the momenta conjugate to {u±,αI }. Hamilton’s equations then give

u̇± =−2N ′p∓ ṗ± =∓ N ′

2u±

[
∂U

∂Φ
+ ΩI J p I p J

u+u−Φ2

(±1−Φ−1)] (8.86)

α̇I = N ′

u+u−Φ2Ω
I J p J ṗ I =−N ′Φ

∂ϕi

∂αI

∂U

∂φi
. (8.87)

The horizon in these coordinates is the joint union of the two surfaces defined by u± = 0.
To get an idea of the significance of the different values of the parameters in this theory,

it is helpful to explicitly solve the solutions when U (φi ) = 0, where all the momenta are
constants of motion. Additionally, setting p I = 0 implies α̇I = 0 for all t . The remaining
equations of motion can be easily integrated, and say that the light-cone coordinates
grow linearly in time when N ′ = 1:

u±(t ) = u±
0 −2P∓t , (8.88)

44Recall that N ′ = N v , where N is the lapse normalization leading to a proper-time foliation in space-time.
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where P± are the constants of motion associated with p± and u±
0 are initial conditions.

The Hamiltonian constraint then reduces to

P+P− = 3Λ

4
, (8.89)

which implies that P+ and P− must have the same sign whenΛ> 0 (and neither can be
equal to zero).

In Rindler space, both light-cone coordinates must be greater than zero: u± > 0. This
means that, forΛ> 0, there are two branches of solution: one that starts at the horizon
u+ = 0 and one that starts at u− = 0. For studying solutions coming out of the horizon
at u± = 0 for t > 0, the minus sign in (8.88) indicates that we should consider parameter
values for the momenta where P± < 0. The two branches of solutions are symmetric under
interchange of + and − so that there is no loss of generality in looking at only one. We can
choose to describe the branch starting at u+ = 0 by fixing u− as a clock. Using the time
translation invariance of the solutions, we can set u−

0 = 0. Then solving for t in terms of
u− gives

u+(u−) = u+
0 + P−

P+
u− . (8.90)

The solutions are therefore straight lines in the u±-plane with slope P−
P+ (or P+

P− for those
intersecting u− = 0). The Hamiltonian constraint then implies that this slope must be
greater than zero. This means that the solutions are time-like in configuration space (for
Λ > 0 they are space-like and for Λ = 0 they are null). This restriction implies that no
geodesic starting on u+ will ever intersect u− (and vice versa).

In the large u− limit, the initial condition u+
0 will eventually become irrelevant as the

term growing linearly in u− dominates. In this case, solutions approach straight lines that
intersect the origin at (u+,u−) = (0,0). These are lines of constantΦ. In other words, all
solutions that differ only by the value of u+

0 will converge to the point Φ =const when
the time variable u− →∞. Since this space of such solutions has non-zero measure, the
level surfaces ofΦ are attractors of this model by our definition. On these attractors, the
momenta, and therefore the velocities, of the scalar fields is zero. According to (8.74), this
means that the Hubble parameter reaches a constant value and the resulting space-time
is approximately de Sitter. Our explicit construction of the solution space for the free
theory in these variables has thus reproduced the general result of Section 8.4.3 that the
theory has a late-time de Sitter attractor.

Let us now analyse the behaviour of the general solutions for U ̸= 0 in light-cone
variables. We will be particularly interested the extendibility of solution at the Janus point,
which is the Rindler horizon in this construction. It is therefore useful to determine the
near-horizon behaviour of the different variables appearing in the equations of motion.
The variable Φ is logarithmic in u± and diverges according to Φ→∓∞ on the horizon;
but the logarithmic nature of this divergence is such that u+u−Φ2 → 0. If we restrict to
potentials that have a finite power series expansion in φi , then the derivatives of U are
polynomials of positive powers of φi . In general, these can thus be assumed to diverge
logarithmically as u± → 0. Finally, the constrained variables ϕi can be represented as
first-order trigonometric functions of the compact variables αI so that their derivatives
can be assumed to remain finite on the horizon.
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Putting together the considerations above, for the lapse function N ′ = 1, the equations
of motion are non-integrable on the horizon. The most problematic terms are in ṗ±,
which have divergences that are linear-times-logarithmic in u± on the horizon. The
α̇I terms also diverge linearly and the ṗ I terms logarithmically. Only the logarithmic
divergences of ṗ I are eliminated by going to a proper-time parametrisation in space-
time, which corresponds to N ′ = p

u+u−. This recovers our earlier results about the
inextendibility of geodesics in spacetime.

We can, however, obtain integrable equations on configuration space by choosing
a lapse that multiplies the time derivatives by an additional factor of V 4 = (u+u−)2. If
we accept the claim that V is not observable, then such a clock redefinition may be
thought to relate physically equivalent descriptions, and the non-integrability of the
equations of motion an artefact of a bad choice of gauge. We can understand this better
by investigating the contact equations obtained by quotienting by dynamical similarity in
light-cone variables.

8.4.4.3. DYNAMICAL SIMILARITY AND EXTENDIBILITY

To find a natural gauge choice for dynamical similarity in light-cone variables, we first
note that the function γ and the parameter a, which were used to compute D in (8.64),
were found assuming that N had no transformation properties under dynamical similarity.
To compute the gauge-fixed equations we should then return to our original choice of
lapse in which N ′ =V N . We then note that the canonical transformation to light-cone
variables gives

h = p+
√

u+

u− +p−
√

u−

u+ (8.91)

so that γ=−∑
± u±p±. This gives

D = p I
∂

∂p I
+∑

±
u± ∂

∂u± . (8.92)

A useful gauge-fixing condition for describing the solutions that intersect u+ takes advan-
tage of the fact that the light-cone coordinates that have weight one under a dynamical
similarity. A simple choice is

w = logu− (8.93)

so that LD w = 1 (with a corresponding choice of w = logu+ for the branch intersecting
u−).

For this choice of gauge, the contact form is

η=−dp−− u+

u− dp++ p I

u− dαI ≡−dp−+σdp++πI dαI , (8.94)

whereσ=−u+/u− and is negative in the Rindler wedge andπI = p I /u− is the momentum
conjugate to αI in the contact space. Recalling our choice of lapse where N ′ =V N , the
contact Hamiltonian is

Hc = N
p−σ

[
−2p+p−+ ΩI JπIπJ

2(−σ)Φ2 + 3Λ

2
+U (σ,αI )

]
= 0. (8.95)



8

236 8. A NEW EXPLANATION FOR THE ARROW OF TIME

Because the contact form is in Darboux form in these variables, the contact equations are

ṗ+ = N

2
p−σ

[
∂U

∂Φ
− ΩI JπIπJ

σΦ2

(
1−Φ−1)] (8.96)

σ̇= 2N
p−σ(

p−+σp+
)

(8.97)

α̇I = Np−σΦ2
ΩI JπJ (8.98)

π̇I =−N
p−σ

(
Φ
∂ϕi

∂αI

∂U

∂φi
−2p+πI

)
(8.99)

ṗ− =−N
p−σ
2

[
∂U

∂Φ
+ ΩI JπIπJ

σΦ2

(
1+Φ−1)] (8.100)

Given the near-horizon behaviour discussed at the end of Section 8.4.4.2, σ → 0
linearly as u+ → 0. Assuming, as we also did in that section, that U has a finite power
series expansion in φi , then the system will be Lipschitz continuous at the horizon if we
take N =σ2 — although any power greater than (−σ)3/2 will do.45 For any clock of this
kind, the drag

R(Hc ) =−2N
p−σp+ =−2(−σ)5/2p+ , (8.101)

will go to zero provided p+ is chosen to be finite on the horizon. Since ṗ+ → 0 at the
horizon, this is a reasonable requirement. With this clock choice, the horizon at u+ = 0 is
a Janus surface. We therefore see that the extension procedure that worked so naturally in
the free theory can be applied to the interacting theory as well — provided one makes
suitable restriction on the clock choice and potential. We leave the task of investigating
the physical significance of such clock choices to future work.

We conclude from this that, given certain reasonable restrictions on the potential,
there are suitable choices of parametrisation such that, after removing V , the dynamics
of the system is Lipschitz continuous through the Janus point. Such solutions start and
end on attractors, illustrating the T -invariance of the theory and realising the picture of
the JA-scenario described in Section 8.2.3. Finally, the geometric picture introduced here
on configuration space gives a simple way to derive the general features of the solutions,
such as the existence of attractors and the continuation of the solution in the U = 0
case. These insights may be useful in understanding the empirical significance of these
continuations in a more ambitious programmed aimed at questioning the empirical
status of proper-time in general relativity.

45Note that, for any specific choice of U , one can find a choice of N that would be fine-tuned to that potential
and lead to the Janus point arriving at finite clock time.
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9.1. PROBLEMS SOLVED

In this thesis, I studied gauge symmetry and the Arrow of Time. I posed three problems:
Belot’s problem, the smoothness problem and the red-shift problem. The first involves
giving a definition of gauge symmetry while the second and third are empirical puzzles
concerning the AoT. I offered solutions to these problems in Chapter 5 and Chapter 8. I
will now summarise my findings and assess the extent to which I have addressed each
problem.

9.1.1. BELOT’S PROBLEM

In this section, I will evaluate my proposed solution to Belot’s Problem and highlight its
unique features. For convenience, let me restate Belot’s Problem as stated in Section 2.2.4:

Belot’s Problem:

To find formal conditions on the symmetries of a theory that are, under
good interpretive practice, necessary and sufficient conditions for a gauge
symmetry.

The proposed solution, developed in Chapter 5, is to identify a gauge symmetry with a
transformation on the DMPs of a theory that preserves the smallest algebraic structure —
what I called the observable algebra — of the DPMs such that the theory is empirically
adequate and the equations of motion are well-posed and autonomous. Here, ‘empirical
adequacy’ was understood in terms of the DPMs being able to provide a faithful represen-
tation of the intended target system in the sense of DEKI (Frigg & Nguyen, 2020), which I
will recap below.

According to the definition above, a solution to Belot’s Problem should inform good
interpretive practice. Let me first focus on this aspect of the proposal before getting to the
formal conditions. In Section 5.4, I illustrated how the PESA could be used to distinguish
good and bad modelling practices using concrete examples. Let me consider how this
was achieved on general grounds.

The representational framework I used was the DEKI account described in Sec-
tion 2.3.1. Two elements of that account play an important role in my definition of
gauge symmetry: the context, C , needed for the representations to exemplify features of
a target system, and the key, K , needed to impute features of a target. Together, these
structures specify what features of the representations are relevant to a theory and what
procedures, idealizations, data manipulations, etc, are required to use a theory’s models
to impute actual features of the target.

What was seen is the examples of Section 5.4 is that the context and key of a theory
have a strong effect on whether a symmetry of the theory is thought of as a gauge symme-
try or not. One insight provided by my analysis is the recognition that the structures C
and K are relevant to the definition of a gauge symmetry not because of some special as-
pects of gauge symmetries but because they are essential for giving good representations.
The interpretative problems that arise in defining gauge symmetries are, therefore, no
different from general problems that arise in building good models.
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With this insight, it is possible to focus on the formal properties of gauge symmetries
that distinguish them from other kinds of symmetries. What was found to be different
about gauge symmetries was the difficulty of determining which constitutive structures
of a model are essential (or not) for giving a faithful representation of the target. This was
found to be particularly problematic given the fact that it is strongly advisable to do so. At
a conceptual level, having a way to identify surplus structure, even implicitly, is necessary
for epistemological clarity. And at a pragmatic level, we have seen that there are excellent
reasons for having such clarity.

First, if the surplus structure of theory is causing mathematical difficulties — such
as divergences or discontinuities — in building the theory’s models, then one should
find a way to remove such structure in order to get a mathematically workable theory.
This is because the surplus structure is, by definition, not essential for describing the
target, and therefore any problems it may cause should not be regarded as empirical.
We saw an example of this in Section 8.4.4, where the discontinuity of the cosmological
equations of motion was found to be removable by applying the Gauge Principle to
the theory’s dynamical similarity. This example shows how identifying the appropriate
surplus structure of a theory can dramatically alter the status of the conceptual problems
of a theory.

Second, explanatory (or other) inferences within a theory may depend strongly on
whether a particular representational structure is interpreted as being surplus or not. For
example, a measure that counts as distinct states that are related by gauge transformations
is giving extra weight to states that have a large gauge orbit under that measure. In
Section 8.3.4, we saw that this extra counting was the difference between expecting
smooth states to be highly atypical (when dynamical similarity was treated as empirically
relevant) and to be generic (when dynamical similarity was treated as a gauge symmetry).

These considerations highlight the formal conditions I used to define a gauge sym-
metry as well as the normative rules I proposed for implementing these conditions in
concrete theories. My approach was inspired by that of Dirac (1964), where predictions
about observable structure are required to be determinable from the laws and, conversely,
predictions about surplus structure are required to be arbitrary. This means that equations
of motion should be well-defined in terms of observable structure but underdetermined
by surplus structure. The latter requirement is not logically necessary for an empirically
adequate theory. Instead, it is a way to avoid the kind of faulty reasoning alluded to in
the two preceding paragraphs. These formal conditions and norms combined with the
interpretive framework used in this thesis thus provide a good solution to Belot’s Problem
and a motivation for the Gauge Principle.

9.1.2. THE GENERALIST–PARTICULARIST IMPASSE

In Section 6.3, I presented a taxonomy due to Price that divided approaches to explaining
the AoT into generalist; i.e., approaches that postulate a general time-asymmetric law;
and particularist; i.e., approaches that postulate a particular fact — normally a Past
Hypothesis. I then proceeded, in Section 6.4, to give a series of worrying objections to
both approaches. This led to a kind of impasse: how can we find an explanation for the
AoT that is free of all such objections?
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Let me now recall these objections and show that the JA-scenario, which I proposed
as a general mechanism for explaining an AoT, can evade the impasse by evading all
objections. Ultimately, the JA-scenario does so because it leads to explanations of the AoT
that are neither generalist nor particularist, laying bare the limits of Price’s taxonomy.

What we have seen is that a theory can have representational structures, such as
measures, that are time-dependent even though the global models of the theory are time-
reversal invariant. These time-dependent structures can introduce an AoT for certain
classes of local observers, leading to a perceived AoT for those observers. In this way, a
theory can have local time-asymmetry but still have global time-reversal invariance. In
particular, for arguments relying on a measure, the possibility of time-dependence means
that one must specify when a state occurs in a history in order to assess its typicality,
changing the overall explanatory structure of the theory. Let us take a moment now to see
how this new insight plays out in each of the objections raised in Section 6.4.

9.1.2.1. OBJECTIONS TO GENERALISM

Objection from redundancy This objection, put forth in Price (2002), argued that par-
ticularist approaches are more economical than generalist approaches because generalist
approaches must explain both a time-asymmetric law and the apparent low-entropy state
of the early Universe. This is particularly difficult given the fact that the time-asymmetric
law must reproduce, to a good approximation, our best microscopic laws of physics,
which are time-symmetric. Here, the relevant notion of time-asymmetry is understood to
be time-reversal invariance.

In the JA-scenario realised in the N -body model presented in Section 8.3.1, a low-
entropy (i.e., smooth) initial state was found to be typical by a large class of natural
measures because of an argument based on the Central Limit Theorem. This style of
argument is available because the class of natural measures invariant under dynamical
similarity is time-dependent. Importantly, we found that conditioning on a Janus point
significantly changes the usual time-independent counting arguments by excluding the
many clumped states found near the theory’s attractors. This means that a JA-scenario
can take advantage of the explanatory power provided by a time-dependent measure to
explain an AoT without having to introduce a time-reversal invariant law. The explanation
for the existence of attractors, Janus points and time-dependent measures is provided by
the symmetry argument based on the PESA. Thus, invariance under dynamical similarity
can provide an economical explanation of the smooth initial state, avoiding the objection
from redundancy.

Objection from lack of independent motivation This objection is that the empirical
success of our best fundamental theories belies any reasons, beyond explaining the AoT,
for introducing a time-asymmetric law. While this objection was raised in response to the
introduction of a non-time-reversal invariant law, and therefore does not strictly apply to
our proposal, it could be restated as an objection to time-dependent measures.

To respond to this reframed objection, the argument presented in Section 7.4 is es-
sential. There, it was shown that the scale factor of the Universe was not necessary for
formulating an empirically adequate cosmological theory and, moreover, that the mea-
sure regarded by cosmologists as physical was both time-dependent and invariant under
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dynamical similarity. Thus, the empirical success of our best theories is not in conflict
with treating dynamical similarity as a gauge symmetry. Furthermore, the PESA has given
us independent motivation for treating dynamical similarity as a gauge symmetry in
cosmology. Doing so led, in Section 8.4, to a theory of cosmology in which an AoT appears
generically in the behaviour of the Hubble parameter. Thus, my explanation for the AoT
evades the objection form lack of independent motivation by introducing a PESA-based
symmetry argument consistent with best practices in cosmology.

Objection from historical progress This objection considers the historical evolution
of our thinking about directions in space and argues for thinking analogously about
directions in time. Our fundamental theories give no a priori privilege to any particular di-
rection in space. Rather, privileged directions emerge approximately from contingencies
such as the presence of a large massive body like the Earth. Similarly, goes the reason-
ing, something analogous should be hold of directions in time, favouring particularist
approaches over generalist ones.

Nothing, however, in this reasoning singles out a PH as the analogous condition
for a time direction: attractors and Janus points can play an equivalent role in such an
argument. Indeed, because the AoT seen by an observer in a JA-scenario is local and
contingent, it is arguably more analogous to the spatial case than a PH, which is a global
condition on all DPMs of the theory. The JA-scenario thus evades the objection from
historical progress by treating time directions analogously to spatial directions.

9.1.2.2. OBJECTIONS TO PARTICULARISM

Objections from mathematical and conceptual ambiguity These objections stem from
difficulties is attributing a meaningful and mathematically precise notion of typicality to
the states of the Universe. Without such a notion, it is impossible to run the Boltzmann-
style reasoning underlying particularist approaches.

In a JA-scenario, the AoT arises from the presence of attractors and Janus surfaces,
and it not fundamentally linked to Boltzmann entropy. Attractors can be given precise
mathematical definitions in terms of the ω-limit sets of the dynamical flow as outlined in
Section 8.2.1. Similarly, Janus surfaces can be defined in terms of the level surfaces of the
drag, which is a smooth function on contact space, in N -body and cosmological systems
as demonstrated in Section 8.3.3 and Section 8.4.3. The notion of entropy we do recover is
a non-equilibrium entropy function that is smooth and well-defined. We thus evade the
mathematical difficulties, discussed in Section 7.3.1, that are normally encountered in
those models. Shifting the focus from entropy to attractors and Janus points thus provides
an improvement in the level of mathematical rigour with which one can define an AoT.
This doesn’t mean, however, that it is not possible to recover the usual notions of entropy
when appropriate, as I explain below.

Further mathematical and conceptual advantages can be gained by removing the
global scale variable by constructing a gauge theory of dynamical similarity. In the N -body
model, for instance, the lack of a strict equilibrium state arises because the overall scale
of the system grows monotonically. Removing this scale and parametrizing the dynamical
flow by its momentum leads to a true equilibrium, in the form of an attractor, as shown in
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Section 8.3.3. This is in part because the scale contains the only non-compact part of the
state space.

I should note, however, that explanations relying on particular choices of measure,
such as those concerning initial smoothness, do involve certain amount of convention.
This will be addressed in Section 9.1.3.

Objections from the breakdown of thermodynamic assumptions These objections
question whether the thermodynamic assumptions underpinning Boltzmannian explana-
tions of time-asymmetry in isolated systems of free-gases apply to self-gravitating systems
in the Universe.

In this regard, it is important to note that the explicit models I used to solve the smooth-
ness and red-shift problems model equilibration towards attractors using monotonic
dynamical quantities within those systems. It is precisely the process of equilibration that
is usually in question when applying Boltzmannian reasoning in the Universe. But unlike
the Boltzmann entropy, the quantities in our models can be proven to be monotonic by
rigorous theorems. As I have emphasised, the resulting functions have the behaviour one
would expect of an entropy in a non-equilibrium thermodynamic system.1 This raises the
question of whether the JA-scenario can be seen as a more general model for equilibration
in thermodynamic systems.

The recovery of local (in space) thermodynamic AoTs from these global features of
the theory is a result, in my approach, of the less controversial application of thermody-
namic concepts to stars and other stellar systems such as galaxies and galaxy clusters.
For example, using my explanation of the smoothness of early states, one can assume
the approximate homogeneity of early matter and justify the use of periodic boundary
conditions when defining the entropy of matter in a large co-moving patch of the early
Universe. Thus, my approach evades the objections from the breakdown of thermody-
namic assumptions by replacing the notion of Boltzmann entropy with more rigorously
defined functions precisely when use of the Boltzmann entropy is questionable.

Objections from lack of explanatory force Objections of this kind question whether
a PH itself can really be explanatory unless it can be given an independent motivation.
Since no PH is given in a JA-scenario, the criticism does not strictly apply. Instead, one
could question the explanatory force of a JA-scenario along a similar vein by demanding
an explanation for the presence of attractors and Janus points. The most important factor
leading to a JA-scenario in our models is the gauge status of dynamical similarity. The
strength of the explanation therefore rests, primarily, on the strength of the argument for
treating dynamical similarity as a gauge symmetry. The justification for this can be found
in the PESA.

Further assumptions, however, are required to obtain a JA-scenario in the two models I
have considered. Consider first the cosmological models. There, attractors are guaranteed
to exist by the various modelling assumptions put forth in Section 8.1.2.2. These include
the presence of a positive cosmological constant and matter obeying the Weak Energy
Condition. As I argued in Section 8.1.2.2, these assumptions are well-motivated physically.
Moreover, they have no obvious dependence the existence of an AoT. The claim:

1See Section 8.2.3 for details.
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dynamical similarity, a positive cosmological constant and the Weak Energy
Condition explain the AoT apparent from the behaviour of the red-shift,

therefore has considerable explanatory force.
For the N -body model, I proved in Section 8.3 that smooth distributions on the Janus

surface and highly clumped attractors are guaranteed to exist for a generic set of solutions
given the energy of the system is non-negative. Since the non-negativity of the energy is
meant to mimic the behaviour of a positive cosmological constant, the claim:

dynamical similarity and a non-negative energy explains the smooth early
state of many self-gravitating particles

also has considerable explanatory force. Thus, unlike a PH, the modelling assumptions
leading to the explanation of the relevant aspects of the AOT in these models can be given
independent motivation.

Finally, the JA-scenario is well-equipped to address Price’s ‘temporal-double-standard’
objection against the PH. In this objection, Price is questioning whether it is legitimate to
hypothesise a special condition in the past when it would be unacceptable to hypothesise
a similar special condition in the future. In the JA-scenario, the T -symmetry of the
solutions about the Janus point ensures that no such double standard applies. DPMs
can be bounded by attractors at both ends and the AoT is relative to a Janus point and a
particular observer near one of the attractor. Thus, for every observer that is some distance
from an attractor and experiencing a particular temporal arrow, there is a corresponding
observer the same distance from the other attractor experiencing the opposite arrow.
‘Past’ and ‘future’ are, therefore, relative concepts in this picture. Ultimately, there is no
temporal double standard because T -symmetry is retained throughout at the level of the
definition of the DPMs.

The dilemma for the Past Hypothesis It should be clear the JA-scenario avoids the
dilemma afflicting particularist explanations of the AoT that was presented in Section 7.5.
The second horn; i.e., introducing a distinction without a difference by using a measure
that is not invariant under dynamical similarity; is explicitly avoided by applying the
Gauge Principle to dynamical similarity. This should not be surprising as it was the second
horn that partly motivated the proposal in the first place. While evasion of the second
horn is sufficient to escape the dilemma, we must also check that a slight reformation of
the first horn; i.e., the worry that the freedom to choose a measure on contact space could
lead to a loss of explanatory power; does not present a problem for the new proposal. I
will address that worry in Section 9.1.3.3.

9.1.3. THE SMOOTHNESS AND RED-SHIFT PROBLEMS

I have already given a justification for the modelling assumptions introduced in Sec-
tion 8.1.2 and shown how these assumptions lead to a powerful explanation of the AoT.
I will now assess the extent to which I have been successful in modelling the particular
empirical phenomena I set out to explain. This means assessing my solutions to the
smoothness and red-shift problems.
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9.1.3.1. SMOOTHNESS PROBLEM

Recall from Section 6.2 that the smoothness problem was the problem of explaining the
relative smoothness of the early state of the Universe. It thus might seem strange to seek a
solution in the form of an N -body model on a fixed Newtonian spacetime. It’s important,
however, to note that the intuitions that lead to the smoothness problem originate from
standard considerations in the thermodynamics of gravitational N -body systems. In
particular, as was described in Section 7.3.2,2 it is well-known that smooth states are very
low entropy in N -body systems because of the negative heat capacity of self-gravitating
Newtonian systems. Moreover, clumped states can have arbitrarily high entropy because
of the divergences in the 1/r potential. These observations are the primary motivation
for the claim that the early smooth state is highly atypical.

It is thus a significant, and rather unexpected, result of Section 8.3.4.3 that smooth
states on the Janus surface were found to be typical when using the natural, time-
dependent measures on the contact space. Note that this result required a short dis-
tance cut-off on the 1/r potentials, which otherwise lead to fat-tailed distributions in
the C -function. Note also that the states on the Janus surface are not perfectly smooth
in the sense that the distribution of the C -function only approaches that of a homoge-
neous distribution as N gets large. However, applying a cut-off on the 1/r potential is
physically well-motivated and common practice in N -body mechanics because realistic
celestial bodies and galaxies are not point particles, and this leads to deviations from
the 1/r potential in practice. Moreover, the distribution of matter in the early Universe
is not completely homogeneous — a fact that forms the basis of modern observational
cosmology. Thus, deviations from homogeneity could be interesting empirically in more
realistic models of the Universe.

I cannot, however, say that I have given a fully satisfactory solution to the smoothness
problem. For that, I would need to show that the smoothness result continues to hold for
early states in more realistic models of the Universe. This will involve placing an N -body
system on an expanding background and, eventually, treating a full general relativistic
system.

Nevertheless, what my model shows is that early smooth states can, indeed, be typical
provided one uses a natural time-dependent measure for assessing typicality rather than
the time-independent Liouville measure used in standard treatments. The move to a
time-dependent measure means that one must condition on the state in order to make
inferences about how typical they are. Thus, it is a valid inference to say that observers
near an attractor will find smooth states to be typical near a Janus point. Conversely, it is
not valid to say that smooth states are typical in general since there are many clumped
states near attractors. The key insight is that, while clumped states still dominate the state
space overall, these are exceeding likely to be found near ‘late’-time attractors and not
‘early’-time Janus points.

9.1.3.2. RED-SHIFT PROBLEM

The red-shift problem, as stated in Section 6.2, is the problem of explaining why the
Hubble parameter, which measures the relative rate of red-shifting, was so large and

2See that section for references.
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monotonically decreasing in the past. The solution presented in Section 8.4.3 shows that,
for homogeneous and isotropic cosmologies with an arbitrary number of scalar fields,
the Hubble parameter is divergently large at the Big Bang and shrinks monotonically to a
de Sitter attractor provided k = 0,Λ> 0 and the Weak Energy Condition is satisfied. Gauge-
fixing dynamical similarity in this system reveals the attractor structure and suggests a
family of time-dependent measures consistent with those used by cosmologists. This
solution therefore explains the behaviour of the red-shift under the given assumptions.

Let us now evaluate the restrictiveness of these assumptions and the prospects of
generalising them to more realistic models. First, it is important to note that we only have
reliable evidence of the behaviour of the Hubble parameter until the average temperature
of the Universe was not much higher than the energy levels probed in particle physics
experiments. Thus, it is not strictly necessary to solve the red-shift problem in all the
epochs leading up to the Big Bang. Perhaps a safe strategy would be to consider only
the epochs up to the onset of inflation.3 Moreover, we must also be able to solve the
smoothness problem up to the appropriate epoch in order to justify the assumption of
homogeneity and isotropy.

I will therefore assume that we have at hand a good solution to the smoothness
problem and lift the requirement of strict monotonicity of the Hubble parameter before
the onset of inflation. In doing this, I can consequently lift the requirement of k = 0 and
the Weak Energy Condition (although the former is perhaps preferable to the latter) at the
cost of introducing mild constraints on the initial momenta of the scalar fields.4 Note,
however, that our knowledge of the empirical behaviour of the Hubble parameter near
inflation is limited such that any such constraints do not pose serious problems for the
empirical problem I have set out to solve.

While I have emphasised the role of removing the scale factor in defining a smooth
evolution through the Big Bang as an independent motivation for treating dynamical
similarity as a gauge symmetry, not much about my solution to the red-shift problem
required identifying the Janus point with the Big Bang itself. As long as my assumptions
guarantee monotonicity of the Hubble parameter up to the empirically accessible epochs,
my solution to the red-shift problem remains essentially intact.

A more important feature that a general model must have for describing empirical
observations is a de Sitter attractor. While there is some freedom in specifying what
one means by the early state of the Universe, the current state is very well-known to be
approaching that of de Sitter. Fortunately, there exists a growing literature on the so-
called Cosmic No-Hair Conjecture suggesting that de Sitter attractors arise generically in
solutions to the Einstein equations with only very mild restrictions on the matter content.5

This suggests that the primary assumption underpinning a more general solution to the
red-shift problem is simply the assumption of a positive cosmological constant. This then
leads to a relatively robust explanation of the cosmological AoT in terms of a JA-scenario.

3Unless we want to consider alternatives to inflation.
4I will leave the explicit computation of these constraints to future work.
5For an early formulation of the conjecture for homogeneous cosmologies, see Wald (1983). For a modern

statement under general conditions, see Andréasson and Ringström (2016). For an introduction aimed at
philosophers of physics, see (Belot, 2023, Chap VII, §7). For a more detailed analysis of the philosophical
points, see Doboszewski (2019).
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9.1.3.3. JUSTIFYING CONVENTION

Any explanation that makes use of a JA-scenario must justify the conventions used to
represent the dynamics on the contact space. This is because, as we saw in Section 4.8.3.2,
the contact flow equations are invariant under a transformation (Equation 4.207) that
simultaneously rescales the contact form and Hamiltonian. Because the contact form fixes
the Reeb vector (by finding the unique solution to Equation 4.181), we can understand
the freedom due to this transformation as the freedom to redefine the drag, which was
defined to be proportional to the Reeb flow of the contact Hamiltonian.

Let us focus now on the behaviour of the drag and see how the choice of contact form
affects this. This will allow us to assess the theoretical virtues of different choices and
compare them with those of the Liouville measure of symplectic theories, where the drag
is zero. Let us recall these virtues from Section 8.1.3:

• simplicity: the Liouville measure takes a dramatically simple translation-invariant
diagonal form when written in Darboux coordinates on phase space,

• universality: it is preserved by any choice of Hamiltonian,

• uniqueness: it is the unique measure that is universal in the sense above,

• utility: it has been hugely successful in the history of physics in terms of empirical
adequacy, novel prediction, and explanatory power.

Let me first rule out a naive choice of contact form, analogous to the Liouville measure
in symplectic systems, for which the drag is zero. To write down such a contact form, one
needs an integral of motion.6 In the cosmological case, however, integrals of motion are
usually complicated non-local functions of the state space that depend explicitly on the
Hamiltonian for the reasons discussed in Section 8.1.3. This is essentially because there
are no interesting isolated degrees of freedom. Thus, in the cosmological case, the contact
form is neither simple — because it is a complicated non-local function on contact space
— universal — because it depends on the Hamiltonian — nor unique — because it is not
clear what (complicated) integral of motion should be used. Moreover, contact forms
of this kind do not appear to be very useful as, to my knowledge, they do not appear in
broader cosmological applications. I thus conclude that contact forms for which the drag
is zero do not have any of the theoretical virtues possessed by their symplectic analogue.

N -body models I now turn my attention to the contact forms used in the models
considered in this thesis. In general, the choice of drag depends on the choice of gauge
fixing for the dynamical similarity as a consequence of Equation 4.210. In the N -body
case, the dynamical similarity was fixed by fixing the value of the dilatational momentum,
I , as in Equation 8.14. This sets the spatial size of the N -body system and is a simple scalar
one can form from the configuration coordinates and metric. This gauge choice leads
to simple equations of motion that can easily reproduce the equations of the reduced
system used in Barbour et al. (2014). Thus, aside from being conceptually simple, in that

6This was proved using Equation 4.210.
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the dynamical similarity is parametrized entirely by the spatial scale, it is also a choice
that leads to a simple mathematical description.

On top of being simple in the senses given above, my chosen gauge-fixing is a member
of a large universality class of gauge-fixings that lead to measures with smooth distribu-
tions of matter at the Janus point. The existence of this universality class is guaranteed by
a general argument, given in Section 8.3.4.2, that is based on the Central Limit Theorem.
The combinatorics of the Central Limit Theorem guarantee that the measure would have
to grow exponentially with the C -function (defined by Equation 8.39) in order to not be
smooth at the Janus point. While this behaviour is not as universal as the conservation of
the Liouville measure, it still ensures a good degree of robustness in the smoothness of
distributions near a Janus point.

One potential drawback of working with reparametrisation invariant contact systems
is that the choice of gauge, and therefore the choice of drag, is not unique. It might be
that some new principle could be found that would lead to a unique choice of drag, but
I have not yet found a principle worthy of investigation here. Note, however, that the
lack of uniqueness does not impact my arguments about the AoT: the features of the
phenomena that I am interested in explaining can be modelled by taking asymptotic
limits in, for example, the number of particles (for smoothness at early states) and time
(for the existence of attractors), and the behaviour of the system in these limits only
depends on the choice of universality class for the drag.

Regarding the utility of the chosen gauge fixing, one simple observation is that my
choice lead to a monotonic drag, and therefore introduces an AoT. Thus, my gauge-fixing
is useful because it provides a resolution of the smoothness problem and an explanation
of the AoT. This is not helpful in justifying the explanation of the AoT itself but can be
used as part of a more general argument for justifying the choice of drag.

I conclude that, in the N -body model, there exists a universality class for the choice of
drag where the drag shares many of the theoretical virtues of the Liouville measure in a
symplectic theory. Most notably, we lose the ability to single out unique, natural choice of
drag, as it was possible in the symplectic theory. Instead, we gain the ability to explain
initial smoothness and the AoT.

Cosmological models As a last consideration, let me assess the theoretical virtues of
the contact form used in the cosmological models. To be precise, consider gauge-fixing
the dynamical similarity by fixing the value of spatial volume in a homogeneous slice as
was done throughout Section 8.4. I showed in Section 8.4.2 that this gauge fixing leads to
a remarkably simple parametrisation of the dynamics that immediately reproduces the
Friedman and Klein–Gordon equations in their standard form. The chosen gauge fixing is
also conceptually simple in that it attributes the action of dynamical similarity directly
with changes of spatial size — as was done in the gauge fixing used for the N -body model.

In addition to being simple, my choice of drag is also universal in the sense that any
smooth monotonic function of the drag will lead to the same attractor structure. Unlike
the smoothness problem, which can only be stated in terms of a measure, the red-shift
problem concerns the monotonicity of the Hubble parameter, and this can be achieved
with an entire functional family of drags. The one aspect of the red-shift problem that
is more quantitative is the largeness of the Hubble parameter in the past. But as was
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discussed in Section 9.1.3.2, the relative insensitivity of my solution to the nature of the
Janus point illustrates the general robustness of the approach. Thus, the lack of empirical
knowledge about early-universe physics leaves considerable freedom in the choice of
drag. I hope that future investigations will enable a fixing of this freedom.

As with the gauge fixings used in the N -body problem, the gauge-fixings used in cos-
mology are not unique. While this does not affect the conclusions about the AoT, it does
leave open whether some new principle should be imposed to guide future investigations.

Finally, the gauge fixing used in cosmology is useful. First, as was shown in Section 7.4,
the measure proposed by Hawking and Page (1988), and the one used extensively by
cosmologists, for counting solutions in cosmology is invariant under dynamical similarity
and was derived under the same gauge fixing condition that I used for the spatial volume.
Second, if we further fix the lapse function to be proportional to an inverse power of the
Hubble parameter, as was done in Section 8.4.3, then the dynamics become Lipschitz
continuous at the Big Bang. This gives a solution to what many consider to be a serious
problem for general relativity as applied to our Universe: the breakdown of the Einstein
equations at the initial singularity.

I conclude from this that, as in the N -body model, the choice of drag shares many of
the theoretical virtues of the Liouville measure. In the cosmological case, the universality
is slightly stronger than in the N -body case owing to the fact that the red-shift problem, in
contrast to the smoothness problem, is not obviously a counting problem. Finally, there
is even the potential to address worries related to the nature of the Big Bang.

9.2. PROSPECTUS

In this section, I will discuss some of the many open questions raised in this thesis that
could be pursued in future work. This list is non-exhaustive and, by its nature, speculative.
I hope, however, that it can give an indication of the generality of my analysis and how it
might be usefully applied.

9.2.1. APPLICATIONS OF THE PESA

In Chapter 5, I defined the PESA and, in Section 5.4, applied it to some simple examples.
The examples were chosen to reflect simple situations that illustrate puzzles associated
with symmetry studied in the literature. Much more work remains, however, to consider
more extensive and elaborate examples. One such example involves applying the PESA to
systems that exhibit the Aharonov–Bohm effect discussed in Section 2.4.2. While we’ve
restricted attention to classical systems in this thesis, the PESA applies to very general
dynamical systems, including those with quantum evolution. The Aharonov–Bohm effect
would therefore consist of a useful quantum mechanical example. In general, it would be
interesting to apply the PESA to cases where the observable algebra might be expected
to include global degrees of freedom associated with the fibre-bundle structure of a
gauge theory. This would allow for a comparison between reduction and retention of
explicit gauge invariance, often called ‘sophistication’ in the recent literature (Dewar,
2019; Martens & Read, n.d.). The PESA could be used to distinguish contexts where either
reduction or sophistication is preferable.
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The PESA could also be applied to gauge theories that impose spatial boundary condi-
tions on the gauge degrees of freedom. This would include, for instance, the examples
involving asymptotically flat general relativity discussed in Section 1.3.1 of the introduc-
tion. In particular, a proposal made by Hawking, Perry, and Strominger (2017) suggests
that classical black holes can be characterised by an infinite head of supertranslation
‘hair,’ which can be distinguished using BMS charges at infinity. These extra charges,
might represent an extension of the observable algebra according to the PESA, which may
be relevant to the black hole information paradox.

9.2.2. EQUILIBRATION IN THERMODYNAMIC SYSTEMS

The process of equilibration in thermodynamic systems is, in general, a difficult problem
to model. Several approaches exist that are successful at describing different kinds
of systems, but there is no universally accepted paradigm for addressing all possible
situations.7 It is interesting to note, however, that thermodynamic systems, as described
by a statistical mechanical partition function, are invariant under dynamical similarity.
This is because the Boltzmann constant, β, sets the units for volume on phase space
and can therefore be used to parametrize the flow of a dynamical similarity. However, as
it is well-known, the Boltzmann constant drops out of any thermodynamic quantities.
It would, thus, be interesting to use the PESA to study the gauge status of dynamical
similarity in thermodynamic systems that are out of equilibrium.

If, indeed, an analysis in terms of the PESA would suggest applying the Gauge Principle
to the dynamical similarity of such systems, then the same general considerations that
led to an AoT in Chapter 8 might be able to be used to model equilibration in general
thermodynamic systems. A symmetry argument of this kind might also be useful in
motivating existing approaches to equilibration such as those developed in Öttinger
(2005) and Bravetti (2019).

9.2.3. RECOVERING OTHER ARROWS OF TIME

As was mentioned in Section 6.1, there have been several attempts to explain many (or
all) relevant arrows of time once one has in hand a particular solution to the smoothness
or red-shift problems (e.g., Penrose (1979, 1989), Albert (2009) or Rovelli (2019)). There
are, however, good reasons to doubt that current proposals are sufficient.8 One remaining
question is to explain the emergence of an epistemic arrow of time; namely, to find an
explanation for why we seem to have more reliable records of the past than of the future.
The JA-scenario provides a potential mechanism for answering this question.

In Section 8.2.3, I suggested a potential way to interpret the time-dependence of the
measure in terms of the dynamical variability of solutions. As solutions converge in time,
the state-space volume of a region transverse to the dynamical flow gets smaller and
smaller, shrinking to zero as the solutions approach an attractor. The dynamical stability

7While the Boltzmannian approach described in Section 7.2.1 works well for ideal gasses, it is limited by many
of the criticisms discussed in Section 7.3. Other approaches to equilibration involve variants of the approach
developed in Öttinger (2005), which are widely used in polymer physics, or the geometric approach using
contact dynamics that was developed in Bravetti (2019).

8See Callender (2024) for a list of reasons.
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of the attractor therefore suggests that the attractor represents a kind of stable record of
the past state. In the N -body model, for instance, there are many attractors on the state
space so that approaching an attractor allows an observer to make inferences about the
initial conditions on the Janus surface corresponding to the trajectory the observer is
on. Unpacking this process might lead to insights about how an epistemic arrow of time
could emerge in a JA-scenario.

9.2.4. INITIAL CONDITIONS AND THE CMB POWER SPECTRUM

In the N -body model considered in Section 8.3, ‘early’ states were found to be nearly, but
not completely, homogeneous in qualitative agreement with cosmological observations.
This surprising fact raises the question of whether a more realistic cosmological model,
combining a dynamical background with local scalar-field perturbations, could come
close to reproducing the more detailed observations of the CMB power spectrum. In
particular, one could develop a way to describe a dynamically similar theory of cosmo-
logical perturbations and identify a natural choice of measure for explaining the density
fluctuations of the CMB. To be clear, this would be a highly speculative project, and one
that may require a quantum theory of fluctuations on a curved background. However,
the payoff is considerable given that the project would be addressing the very nature of
inflation.

9.2.5. BOLTZMANN BRAINS

The problem of Boltzmann Brains has re-emerged as a problem of interest in modern
cosmology.9 The problem arises from a simple combinatorial argument: there are many
more states in the state space of the Universe that contain isolated brains then there are
states containing brains in bodies on a planet like the Earth. Using standard Boltzman-
nian arguments (such as the mixing arguments criticised in Section 7.3.3), the Liouville
measure can be used to estimate the chance that, at any given time, the Universe can be
found in a particular range of states. This suggests that it is exceptionally more likely for
our brains to spontaneously appear out of a fluctuating soup of matter than it is for them
to appear in human bodies as the result of some evolutionary process on the Earth.

If the argument of Section 7.4 is correct, however, and dynamical similarity should be
taken seriously as a gauge symmetry of the Universe, then there is no longer a good reason
to think that a time-independent measure, like the Liouville measure, is the appropriate
measure to use for assessing the typicality of states. As a result, a simple combinatorial
argument, which has no input from the dynamics, can no longer deliver the explanatory
punch needed to motivate the Boltzmann brain problem.

In the dynamically similar case, it is not correct to ask whether brain configurations
are typical at any given time but whether they are typical at particular times. In this regard,
the class of measures considered in Section 8.3.4 for solving the smoothness problem
tells a very different story. What we found was that smooth states were typically found
near Janus points while clumped states were typically found near attractors. This suggests

9For a philosophical introduction to the problem with applications to modern cosmology, see Chapter IX of
Belot (2023).
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that states with brains, which are themselves relatively clumpy, are more likely to be
found near attractors, where gravitational collapse has triggered the formation of star
systems and planets. In order words, the dependence of the measure on the gravitational
Hamiltonian changes the counting argument about the likelihood of states with brains in
a way that suggests that they should be much more likely to be found in star systems than
in a fluctuation about a smooth state in the early Universe.

While this argument seems promising as it stands, a more detailed analysis and a
direct comparison to the problems arising in the recent literature could be revealing.

9.2.6. QUANTUM THEORY

One immediate worry about dynamical similarity is that a quantum version of its Gauge
Principle will lead to a radically different quantum theory. This is becauseħ, the parameter
that sets the scale of quantum effects, carries units of angular momentum and should
rescale under dynamical similarity. In particular, the rescaling of the symplectic 2-form
under dynamical similarity means that the Poisson bracket, which is the classical analogue
of the quantum mechanical commutator, is also not invariant. It seems doubtful that it
could be possible to construct a dynamically similar quantum theory that is empirically
equivalent to standard quantum theory without preserving the standard commutation
relations between position and momentum.

While these considerations present a serious challenge to extending the Gauge Princi-
ple for dynamical similarity developed here beyond the classical limit, they also present an
opportunity to generalise the quantum formalism for cosmology. Because it is possible to
recover a symplectic theory from a dynamically similar one whenever there is an isolated
clock system,10 it should always be possible to recover the standard quantum formalism
for most quantum mechanical applications. But when no obvious dynamically isolated
clock is available, such as in the early Universe, a more general quantum formalism may
be necessary. This could be particularly relevant for constructing a possible alternative to
inflation, where the quantum formalism has been applied in the cosmological setting to
explain empirical phenomena.

Note that there are good epistemic reasons to think that dynamical similarity should
be enforced as gauge theory in cosmology — independently of the PESA. While ħ sets
the scale of quantum effects in the Universe, it does so only through ratios; e.g., the ratio
of the Bohr radius to the radius of the Hubble horizon. Only changes of such ratios are
observable through red-shift. This means that the scale of quantum effects should, in
principle, be invariant under dynamical similarity. Such an argument, when combined
with the PESA, could serve as a valuable foundational principle for the development of
a generalised formalism for quantum gravity that may lead to an empirically adequate
theory of cosmology.

10So that a simple integral of motion can be identified, and the drag can be set to zero using the formalism
developed in Section 4.8.3.2.
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9.3. SUMMARY AND FINAL REMARKS

In this thesis, I accomplished two main goals. The first, which was achieved in Part I, was
to give a universal definition of gauge symmetry containing a minimal set of dynamic
and epistemic ingredients. The second, which was achieved in Part II, was to give a new
explanation of the Arrow of Time (AoT) that evades the standard objections plaguing
existing proposals. Let me now recap how each of these goals was achieved.

9.3.1. PART I: GAUGE SYMMETRY

My proposed definition, articulated by a principle I called the Principle of Essential
and Sufficient Autonomy (PESA), used an existing account of representation (i.e., the
DEKI account of Frigg and Nguyen (2020)) to make a clean separation between puzzles
resulting from standard difficulties in model-building and those resulting directly from
gauge symmetry. The proposal combined the elements of Dirac’s sufficient criteria for
gauge symmetry, according to which gauge structures are those that are underdetermined
by the equations of motion (see Dirac (1964) and Section 3.3), with Caulton’s suggestion
to increase gauge structure until empirical adequacy cannot be maintained (Caulton,
2015).11 I formulated my proposal as an attempt to solve what I called Belot’s Problem,
which I defined in Section 2.2.4.

The output of this analysis, presented in Section 5.2, was a set of definitions and norms
for determining whether and how a gauge symmetry should be implemented for a given
theoretical context. When applied to several well-studied examples, such as Galileo’s Ship
and the Kepler 2-body problem (see Section 5.4), my proposal was able to distinguish
different theoretical contexts and suggest corresponding representations of the relevant
symmetries that matched expectations. When applied to global reparametrisation invari-
ant systems, which are not as well-studied in the philosophical literature, my proposal
led to the conclusion that time evolution should not be treated as a gauge transformation,
undermining the motivations that lead to the frozen formalism problem in quantum grav-
ity. On the way to achieving these results, I developed, throughout Chapter 4, a compact
way of synthesising Noether and Dirac’s treatments of gauge symmetry showing how the
various constraints and theorems obtained in these two formalism result directly from
degeneracies in the variational procedure from which a theory’s equations of motion are
derived.

Finally, as a bridge to the second main goal of the thesis, I combined, in Section 4.8, the
PESA and the general variational formalism that I developed to give an implementation
of the Gauge Principle for dynamical similarities. This showed that the gauge-fixing of
a Hamiltonian theory results in a contact system characterised by a function I called
the drag, which appears in the equations of motion in a form reminiscent of the drag
coefficient of a damped harmonic oscillator. Unlike in standard Hamiltonian systems, the
drag can be non-zero and corresponds to the decay coefficient of the Hamiltonian and
the analogue of the Liouville volume-form, which can both change in time. Thus, when
gauge-fixing dynamical similarity, energy is not necessarily conserved and solutions may

11Strictly speaking, Caulton’s suggestion was to increase what he called analytic symmetries, which I take to
correspond to gauge symmetries in the language I have introduced.
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focus or diverge along the dynamical flow.

9.3.2. PART II: THE ARROW OF TIME

In Part II of the thesis, I proposed a new mechanism for explaining the AoT and illustrated
how this mechanism works in two highly relevant models: a self-gravitating Newtonian
N -body system and a particular FLRW cosmology. I called the new proposal the Janus-
Attractor (JA) scenario, whereby an AoT is seen by an observer near an attractor of a theory
that points from a Janus point, which the observer interprets as the ‘past,’ towards the
nearby attractor, which the observer interprets as the ‘future.’ This scenario is realised in
the models above when dynamical similarity is treated as a gauge symmetry. In the gauge-
fixed models, the drag was shown to grow monotonically from the Janus point, where it is
zero, to the attractor when certain physically motivated assumptions are satisfied.12

I began my analysis in Section 6.2 by describing two empirical problems that, I argued,
are important manifestations of the AoT in our Universe. The first problem, which
I called the smoothness problem, involves explaining the relative smoothness of the
early state of the Universe. The second problem, which I called the red-shift problem,
involved explaining the wildly out-of-equilibrium behaviour of the red-shift, manifest in
the large monotonic values of the Hubble parameter, in the past states of the Universe.
In Section 8.3, I then showed that, in the N -body model, an observer near an attractor
typically sees smooth states on the Janus surface using a natural measure in the gauge-
fixed theory. This solves the smoothness problem in that model.

For the cosmological model, I showed in Section 8.4 that the Hubble parameter was
monotonic and divergent towards the Janus point, which is normally interpreted an initial
singularity, and that simple parametrisations of the gauge-fixed theory extend the cos-
mological solutions smoothly through the Janus point. This solves the red-shift problem
in that model. In Section 9.1.2, I then compared my solutions to existing strategies for
explaining the AoT; namely the generalist and particularist strategies; and found that my
solutions are not vulnerable to their most prominent objections.

9.3.3. FINAL REMARKS

Central to my proposal is the claim that dynamical similarity is a gauge symmetry of
modern cosmology. This claim is justified by the PESA because, as was shown in Sec-
tion 7.4, dynamical similarity transformations relate empirically indistinguishable states
in cosmology. This observation is essential because it is the gauge-fixing of dynamical
similarity that results in the behaviour of the drag, and the drag, in turn, is responsible
for the AoT in the JA-scenario. It also raises serious questions about the validity of a Past
Hypothesis, whose motivations, as we saw in Chapter 7, rely heavily on the assumption of
a time-independent measure.

The drag is the decay coefficient of the natural density on the gauge-fixed state space.
Thus, any empirical or conceptual problems that require a counting procedure that

12In the N -body model, these assumptions were that the system have non-negative energy and did not undergo
super-hyperbolic escape (see Section 8.1.2.1). In the cosmological model, these assumptions were that the
cosmological constant be positive, the spatial curvature vanish, and the Weak Energy Condition be satisfied
(see Section 8.1.2.2).
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makes use of a measure must be reconsidered in light of the time-dependence of that
measure when the drag is non-zero. The difference between the measures that arise in
my proposal and the time independent Liouville measure is that the Liouville measure
counts as distinct any states that are global rescalings of the Universe. But if one only
counts the states that truly matter for representing the phenomena, then one should use
a state-space measure that is time-dependent.

What I have shown is that a shift to a time-dependent measure on state space can have
radical implications for the explanatory structure of a theory. No longer can one simply
count entire solutions by projecting the state space measure onto a surface of constant
time t . Such a procedure will not work with a time-dependent measure because a count
of this kind will depend on a particular value of t , which is not a structure that is naturally
available in the space of solutions. The old luxury of passing from state-space counts to
solution counts, which forms the basis of so much intuition in statistical mechanics,13 is
no longer available in cosmology. Instead, one can only ask questions that condition on
particular moments in time. These are questions like: “given an observer is close to an
attractor, how likely is it that states along the current dynamical history are smooth at the
Janus point.” Fortunately, it is exactly these kinds of questions that happen to be relevant
to the AoT.

My proposed solution to the problem of the AoT therefore suggests a shift in concep-
tualization: to count what counts involves asking the right kinds of questions of the right
kinds of things. And when this is done in the way I have proposed in this thesis, there
is no remaining puzzle about the AoT. An AoT is exactly what observers like us should
expect to see.

13Since a counting of solutions can be obtained from taking a time-average of the states on those solutions, this
luxury is related to the luxury of assuming that the Liouville measure gives you time averages.
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