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It was recently shown that the Born rule for transition probabilities of a microscopic particle
can be derived from the linear Schrödinger equation with a Hamiltonian represented by random
matrices from the Gaussian Unitary Ensemble, taken to be independent at different time points.
Under such an evolution, the particle’s state undergoes an isotropic random walk on the projective
state space, and the relative frequencies of reaching different regions obey the Born rule. In this
work, we extend these results to demonstrate how the same framework accounts for the emergence
of Newtonian dynamics for macroscopic bodies on a submanifold of state space, thereby providing
a unified geometric account of the quantum-classical transition.

I. OVERVIEW

At the heart of the divide between quantum and clas-
sical physics lies the superposition principle. Microscopic
systems may exist in a superposition of states, such as
being in two places at once or being both decayed and
undecayed, until measured. In classical physics, by con-
trast, a particle cannot simultaneously occupy two loca-
tions, and a cat cannot be both alive and dead. Bridging
this conceptual gap, reconciling the linear framework of
quantum mechanics with the inherently nonlinear char-
acter of classical physics, has been a challenge for over a
century, and the debate continues to this day.

Measurement lies on the other side of this tension.
In the quantum domain, measurements are intrinsically
probabilistic, with outcomes determined by the Born
rule, a result that does not follow from Schrödinger dy-
namics. In the macroscopic world, measurements, such
as those of position, are usually treated as deterministic,
yielding a single, definite result. Yet this determinism is
only an approximation, valid within certain limits. Ex-
perimentalists measuring a macroscopic particle are well
aware of unavoidable errors and the need to estimate and
account for them to ensure reliable results.

Despite the probabilistic nature of measurement errors
in a macroscopic system, the distribution of outcomes
can, in principle, be predicted from Newtonian equations
of motion. For example, interactions between the parti-
cle, the measuring apparatus, and the surrounding envi-
ronment can cause the particle’s position to undergo a
random walk during the measurement interval, typically
yielding a normal distribution of outcomes. Determin-
ing whether an analogous dynamical mechanism under-
lies measurement in the microworld, and clarifying the
relationship between the Born rule and the classical nor-
mal distribution of measurement outcomes, is essential to
resolving the question of how the quantum world gives
rise to the classical one.

There exist two submanifolds of the projective state
space of a microscopic particle, equipped with the Fubini-
Study metric, that are directly related to the interplay
between dynamics and measurement in the microscopic
and macroscopic realms [1–3]. One can be identified with

the six-dimensional classical phase space and the other
with the three-dimensional classical configuration space
of the particle, both endowed with the induced Euclidean
metric. Specifically, the Schrödinger evolution of a state
constrained to the six-dimensional submanifold is identi-
cal to the Newtonian evolution of the particle in classical
phase space. Likewise, the Born rule for a state con-
strained to the three-dimensional submanifold is equiva-
lent to the normal probability distribution for the parti-
cle’s position in classical space. Conversely, under suit-
able conditions, the Schrödinger evolution and the Born
rule are the unique extensions of Newtonian motion and
the normal probability distribution, respectively, to the
particles full state space. Analogous results hold for sys-
tems containing any number of particles.

The existence of these submanifolds allows the tran-
sition between the microscopic and macroscopic realms
to be reformulated as two distinct tasks: (1) identifying
the source of the constraint on the states of macroscopic
bodies, and (2) explaining, via this constraint, the dy-
namical origin of the relationship between the Born rule
in state space and the normal distribution of position in
classical space.

The second task was addressed in [1]. It was shown
that, under suitable conditions, the random walk of po-
sition used to model macroscopic measurements extends
uniquely to a unitary process on the full state space. This
extended walk is governed by the Schrödinger equation
with a Hamiltonian represented, at each time point, by
an independent random matrix from the Gaussian Uni-
tary Ensemble. Under such evolution, the state performs
a random walk with the same statistical properties as in
Einstein’s theory of Brownian motion [4], but now on the
state space.

When constrained to the classical-space submanifold,
the walk satisfies the diffusion equation in the appro-
priate limit; unconstrained, it yields the Born rule for
transition probabilities. The transition from the normal
probability distribution on the submanifold to the Born
rule on state space arises from the highly nontrivial em-
bedding of the Euclidean classical-space submanifold, as
a complete set, into the state space. The linearity of
Schrödinger evolution with a random Hamiltonian does
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not preclude Born-rule statistics, since in this setting out-
come probabilities depend only on the distance between
the initial and final states, not on the form of the initial
state.

The appearance of random matrices in the description
of measurement on a microsystem within this framework
can be regarded as an instance of the Bohigas-Giannoni-
Schmit (BGS) conjecture [5] in a new time-dependent
setting. This conjecture originates from Wigner’s work
on the spectra of heavy nuclei [6] and, in general terms,
asserts universal applicability of random matrix theory
to fluctuations in quantum systems.

Beyond providing a unified framework for measure-
ment in microscopic and macroscopic systems, and a
clear, geometry-based link between Schrödinger and
Newtonian dynamics, the approach also offers a natural
explanation of how a particle can exhibit both corpus-
cular and wave-like behavior. When the state lies close
to the classical-space or classical-phase-space submani-
folds, it follows Newtonian dynamics and behaves like a
classical particle, with well-defined position and momen-
tum. When the state moves away from these submani-
folds, the particle has no definite position in the classical
sense, while still having a well-defined position in the
state space, and exhibits wave-like properties.

Here, we complete the partial answers to the first task
given in [1], clarifying why, and in what precise sense,
the state of a macroscopic particle under these conditions
must be constrained to the classical-space submanifold.
We explain how locality in the state space manifests as
nonlocality on the classical-space submanifold, further
connect measurements in microscopic and macroscopic
systems, and illustrate these results with the example of
the double-slit experiment.

II. REVIEW OF THE FORMALISM

Consider the action functional

S[ϕ] =

∫
ϕ(x, t)

[
i~
∂

∂t
− ĥ
]
ϕ(x, t) d3x dt, (1)

where the Hamiltonian ĥ is given by

ĥ = − ~2

2m
∆ + V̂ (x, t). (2)

Variation of the action functional with respect to ϕ,
yields the Schrödinger equation for a particle.

Let Mσ
3,3 denote the submanifold of the projective state

space CPL2 consisting of states of the form

ϕ(x) = ra,σ(x) eip·x/~, (3)

where

ra,σ(x) = σ−
3
2 r

(
x− a

σ

)
, (4)

and r ∈ L2(R3) is any real-valued, twice-differentiable,
unit-normalized function with finite variance (taken to be
1). It is further assumed that σ is sufficiently small and
that p ∈ R3. As σ → 0, the sequence r2

a,σ(x) converges
to the delta function [7]. A typical example of ra,σ(x) is
the Gaussian function

ga,σ(x) =

(
1

2πσ2

)3/4

exp

[
− (x− a)2

4σ2

]
, (5)

centered at a ∈ R3.
By constraining ϕ in (1) to lie on the manifold Mσ

3,3

with a sufficiently small σ, the action functional takes
the classical form

S =

∫ [
p · da

dt
− h(p,a, t)

]
dt, (6)

where

h(p,a, t) =
p2

2m
+ V (a, t) (7)

is the Hamiltonian function of the system. Variation of
(1) under the constraint that ϕ ∈ Mσ

3,3 then yields the
Newtonian equations of motion.

The parameter σ is taken to be set by the resolution of
the position-measuring instruments relevant to the par-
ticle. Since the function r can be chosen freely, the man-
ifold Mσ

3,3 may be defined through equivalence classes
of functions with spread bounded by σ. The transition
to Newtonian dynamics for such states aligns with the
predictions of the Ehrenfest theorem for sufficiently nar-
row wave packets, provided this narrow form is preserved
throughout the evolution. For simplicity, we will repre-
sent the equivalence classes by Gaussian states ga,σ.

Writing an arbitrary wave packet in the form

ϕ(x) = ra,σ(x) eiΘ(x), (8)

and expanding Θ(x) in a power series around a, we may
neglect quadratic and higher-order terms when σ is small,
since ra,σ(x) vanishes rapidly away from x = a. This
shows that, under these conditions, (3) gives the gen-
eral form of the wave packet. The packets with spread
bounded by σ and with a given expectation value of the
position form equivalence classes of states corresponding
to points of Mσ

3,3. A precise definition of these equiva-
lence classes will be given in Section IV.

The Fubini-Study metric on CPL2 induces a Rieman-
nian metric on Mσ

3,3. With an appropriate choice of units,
the map

Ω : (a,p) 7−→ ga,σ e
ip·x/~

is an isometry between the Euclidean space R3×R3 and
the Riemannian manifold Mσ

3,3. Moreover, a linear struc-
ture on Mσ

3,3 can be induced via Ω from the linear struc-

ture on R3 × R3. The restricted map

ω : a 7−→ ga,σ
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is an isometry between the Euclidean space R3 and the
Riemannian submanifold Mσ

3 ⊂ CPL2 consisting of the
states ga,σ [8–10]. This property remains valid if ga,σ is
replaced by any other representative ra,σ of the class.

The relationship between the action functionals (1)
and (6) allows us to identify classical particles, i.e., sys-
tems satisfying Newtonian dynamics, with quantum sys-
tems whose states are constrained to the manifold Mσ

3,3

for an appropriate value of σ. The map Ω thus pro-
vides a direct identification of the Euclidean phase space
R3 × R3 of positions and momenta (a,p) for a classical
particle with the manifold Mσ

3,3 of quantum states ϕ in
(3).

As shown in [3], the velocity of a state ϕ ∈ Mσ
3,3 ⊂

CPL2 under Schrödinger evolution with Hamiltonian (2)
can be decomposed into three mutually orthogonal com-
ponents. The first two coincide with the classical velocity
and acceleration of the particle and remain tangent to the
classical-phase-space manifold Mσ

3,3. The third, orthogo-
nal to the manifold, represents the spreading velocity of
the particles state function.

In the Fubini-Study metric, the squared norm of the
state velocity is the sum of the squares of these compo-
nents and is given by∥∥∥∥dϕdt

∥∥∥∥2

FS

=
v2

4σ2
+
m2w2σ2

~2
+

~2

32σ4m2
, (9)

where v is the classical velocity and

w = −∇V
m

is the classical acceleration of the particle. The three
terms in (9) have clear physical interpretations: the first
term corresponds to translational motion of the wave
packets center, the second to acceleration induced by the
potential, and the third to intrinsic quantum spreading
of the wave packet.

Imposing the classical constraint amounts to requiring
that the orthogonal (spreading) component of the state
velocity

dϕ

dt
= − i

~
ĥϕ

vanish. In this setting, commutators of observables
reduce to Poisson brackets, thereby transforming the
Schrödinger dynamics of the constrained state into the
Newtonian dynamics of the particle [3]. Physically,
removing the orthogonal component eliminates purely
quantum effects, isolating the classical trajectory in
phase space while preserving the geometric structure of
the underlying state space.

The embedding of classical configuration space and
classical phase space into the quantum state space estab-
lishes a direct relationship between Schrödinger and New-
tonian dynamics. This correspondence allows us to iden-
tify classical particles with quantum systems whose states
are constrained to the manifold Mσ

3,3. It also underlies

the connection between the normal probability distribu-
tion, typical for position measurements of a particle in
R3, and the Born rule governing transition probabilities
between quantum states.

In particular, applying the Born rule to the state ga,σ
yields the normal distribution for the position of a classi-
cal particle in R3. Conversely, assuming a normal prob-
ability distribution for the particles position in R3 and
considering the probability of finding the particle in a re-
gion recovers the Born rule for transitions between the
associated quantum states. If the transition probabili-
ties depend only on the Fubini-Study distance between
states, this equivalence extends to all transitions within
the state space [1].

The derivation of this result relies on the following re-
lationship between the distance between the states ga,σ
and gb,σ in the Fubini-Study metric on CPL2 and the
Euclidean distance between the corresponding points a
and b in R3:

e−
(a−b)2

4σ2 = cos2 ρ
(
ga,σ, gb,σ

)
. (10)

In (10), the quantity ρ(ga,σ, gb,σ) denotes the geodesic
distance between the two states in the full projective
state space, whereas |a−b| is the Euclidean distance be-
tween the same states measured along a geodesic within
the submanifold Mσ

3 .
The distance between the states ϕ(x) = ga(x)eipx/~

and ψ(x) = gb(x)eiqx/~, measured using the Fubini-

Study metric on CPL2 , is related to the Euclidean dis-
tance between the corresponding points in the classical
phase space R3 × R3 by a similar formula:

e
− (a−b)2

4σ2
− (p−q)2

~2/σ2 = cos2 ρ(ϕ,ψ). (11)

The correspondence established between classical and
quantum systems, and between the normal probability
distribution and the Born rule, was used in [3] to place
measurements performed on classical and quantum sys-
tems on an equal footing. In particular, the following
proposition, based on Wigner’s work [6], the Bohigas-
Giannoni-Schmit conjecture [5], and further developed
in [3], was introduced:

(RM) The dynamics of a particle’s state un-
der position measurement can be modeled as
a random walk in the space of states. In the
absence of drift, the steps of this random walk
satisfy the Schrödinger equation, where the
Hamiltonian at each instant is represented by
a random matrix from the Gaussian Unitary
Ensemble (GUE). The Hamiltonians at dif-
ferent times are statistically independent.

Here, the abbreviation (RM) stands for “random matri-
ces.” Physically, the Hamiltonian in (RM) may result
from a highly complex interaction between the measured
particle and the measuring device or its environment,



4

modeled as a complicated sum of one-particle Hamil-
tonians with interaction terms. This is reminiscent of
Wigner’s model for the Hamiltonian of a heavy nucleus
[6].

A small step in the states random walk, driven by the
Hamiltonian in (RM), is represented by a random vec-

tor in the tangent space to CPL2 . As shown in [3], the
distribution of such steps is normal, homogeneous, and
isotropic. In particular, the orthogonal components of a
step at any point are independent, identically distributed
normal random variables. These properties imply that
the transition probability between two states connected
by the walk depends only on their Fubini-Study distance.

When the steps of the walk are constrained to Mσ
3 ,

the transition probability is given by the normal proba-
bility density function. In this case, the random walk of
the state approximates Brownian motion on R3, making
it an appropriate model for classical measurement. Since
the transition probability P (ϕ,ψ) between two states de-
pends only on the distance between them, and the prob-
ability density function for ϕ and ψ ∈ Mσ

3 is normal, it
follows that P (ϕ,ψ) is governed by the Born rule [3].

Thus, both the normal probability distribution charac-
teristic of classical measurements and the Born rule for
transition probabilities between general quantum states
emerge from Schrödinger evolution with a Hamiltonian
satisfying (RM). Because Brownian motion is governed
by the diffusion equation, the dynamical basis of the Born
rule and the normal probability distribution in this model
can be stated as follows: the Schrödinger equation with
a Hamiltonian satisfying (RM) reduces to the diffusion
equation on R3 [3]. This reduction provides the dynam-
ical link between classical and quantum measurements,
placing them on equal footing.

Consider now a system of n particles and the tensor-
product manifold ⊗nMσ

3 , whose elements have the form
g1⊗· · ·⊗ gn, where each gk ∈Mσ

3 represents the state of
the kth particle. Similarly, define the manifold⊗nMσ

3,3 as
the set of tensor products of particle states in Mσ

3,3. The
correspondence between Schrödinger and Newtonian dy-
namics established for a single particle extends naturally
to systems of multiple interacting particles. In particu-
lar, a two-particle system whose state is constrained to
the manifold Mσ

3,3⊗Mσ
3,3 evolves according to Newtonian

dynamics.

The Euclidean metric on Mσ
3 extends naturally to the

Euclidean metric on the configuration space ⊗nMσ
3
∼=

R3n of an n-particle system. This metric is induced
from the metric on the tensor product of the Hilbert
spaces describing the particle states. When an additional
particle, described by a state ϕ, is considered along-
side the n-particle system in ⊗nMσ

3 , the product state
ϕ ⊗ g1 ⊗ · · · ⊗ gn of the full system is close to a state
ga ⊗ g1 ⊗ · · · ⊗ gn ∈ ⊗n+1M

σ
3 in this metric precisely

when ϕ is close to ga in the Fubini-Study metric on the
state space of a single particle. This observation allows
us to focus on the state of the particle rather than the
state of the entire system when analyzing a system com-

posed of a microscopic particle and a measuring device.
This is because the state of a macroscopic object, such
as a typical measuring instrument, in this framework will
be shown to lie in a submanifold of the form ⊗nMσ

3 . An
analogous statement holds for the classical-phase-space
submanifold of an n-particle system.

For a classical particle, Brownian motion associ-
ated with position measurement takes place in three-
dimensional space R3, where the particle’s position can,
in principle, be recorded at any point. This is possible
because position-measuring devices may be distributed
throughout space. The situation is different for micro-
scopic particles whose state under measurement evolves
according to (RM). In this case, the state of the par-
ticle propagates through the entire state space, while a
measuring device can only occupy a submanifold such as
Mσ

3 , or products of n copies thereof. Consequently, for
the position of a microscopic particle to be defined and
measurable, its state must first cross the classical-space
submanifold Mσ

3 within the state space.
In classical terms, the situation is analogous to mea-

suring the position of a Brownian particle in R3 using
detectors arranged only along a line that does not inter-
sect the particle’s initial position. The particle’s position
can be determined only when its trajectory crosses the
line, and the probability of it reaching a given segment of
the line corresponds to the information encoded by the
Born rule.

Our goal in this paper is to demonstrate that, if
accepted, the conjecture (RM) provides the origin
of the constraint of a macroscopic system’s state to
the classical-space submanifold, offers a criterion for
macroscopicity, and accounts for the transition from
Schrödinger to Newtonian dynamics.

III. DERIVATION OF NEWTONIAN
DYNAMICS FOR MACROSCOPIC BODIES

Newtonian motion of macroscopic bodies presupposes
experimentally verifiable knowledge of their position and
velocity at any given moment. Physically, this condi-
tion can be met through direct observation, for exam-
ple, by illuminating the body with light at selected times
and detecting the scattered radiation. Yet even in the
absence of deliberate measurement, the body’s position
is continually recorded through its unavoidable interac-
tions with the environment and can be inferred from the
scattering of environmental particles and radiation. For
Newtonian motion to hold without explicitly accounting
for the environment, these interactions must remain suf-
ficiently weak. At the same time, they cannot be absent
altogether: without them, neither the position nor the
momentum of the body could be determined, and the
very notion of Newtonian motion would lose its physical
meaning.

The body’s motion under these conditions may be
viewed as free Newtonian motion, punctuated by regular,
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typically weak encounters with particles of the environ-
ment. Collectively, and neglecting damping corrections,
encounters on timescales shorter than the relaxation time
induce a ballistic thermal spread around the Newtonian
mean trajectory. At longer times, damping effects be-
come significant, and the motion crosses over to ordinary
diffusion with drift. The body’s position is identified
with the center of the resulting probability distribution,
as revealed by the scattering of environmental particles
and radiation. The probability density for the position
spreads during the encounters but contracts again when-
ever they provide positional information. This cycle of
spreading and contraction repeats, keeping the variance
bounded. This effective “continuous” measurement al-
lows us to meaningfully describe the body’s Newtonian
path over long times without its positional uncertainty
growing unbounded.

We propose that the behavior of a macroscopic
body interacting with its environment can be derived
from Schrödinger evolution together with the conjecture
(RM). The conjecture applies in this context because,
as discussed above, the environment continually moni-
tors the body, effectively performing a measurement on
it. Before turning to the details of this derivation, we
outline its main steps, beginning with an analysis of the
motion of a microscopic particle in its natural environ-
ment.

For microscopic point particles, occasional interactions
with the surroundings can often be neglected, so the par-
ticle evolves according to the Schrödinger equation with

Hamiltonian ĥ = − ~2

2m∆ + V̂ (x, t). As the particle’s size
and its capacity to interact with the surroundings in-
crease, for instance, progressing from beta to alpha par-
ticles or even to the nucleus of a heavier atom, interac-
tions with the environment become unavoidable. These
interactions allow the surroundings to acquire informa-
tion about the particle’s position. Evidence that such
information is indeed recorded by the environment can
be seen, for example, in the localized scintillation pro-
duced by a collision with an atom in a scintillating mate-
rial, or in the vertices of scattering events with surround-
ing particles or radiation. According to (RM), in this
regime the particle’s interaction with the environment is
effectively governed by a random Hamiltonian with the
specified properties.

Assume the particle’s initial state lies in Mσ
3 , repre-

senting, according to (9), a particle at rest in the absence
of an external potential gradient. We now consider the
action of the Hamiltonian in (RM) on this state. By
selecting from the walk in (RM) only those steps that
are tangent to Mσ

3 , we obtain a random walk of the state
confined to this submanifold. Each step corresponds to a
translation of states and, under the isomorphism ω, the
resulting process approximates Brownian motion on R3,
governed by the diffusion equation. In this identification,
translation of the state manifests as the displacement of
the particle in physical space R3, as expected. In particu-
lar, the Brownian motion induced by (RM) corresponds

to the ordinary Brownian motion of the particle in a suit-
able medium.

Assuming the validity of the conjecture (RM), the pa-
rameters of the Hamiltonian, specifically, the variance of
the random matrix entries and the time step, can be se-
lected so as to reproduce existing observations and antici-
pate possible future ones. These parameters may vary de-
pending on the particle, the measuring device, the envi-
ronment, and their mutual interactions (see Section IV).
Consequently, these factors also determine the charac-
teristics of the induced random walk of the state on R3.
This induced random walk on R3 approximates Brown-
ian motion and determines the corresponding diffusion
coefficient, thereby specifying the effective properties of
the medium associated with the particle’s induced Brow-
nian motion. Conversely, under the embedding ω, the
isotropy and homogeneity of the step distribution ensure
that the walk on R3 originates from a unique random
walk in (RM).

When interactions between the particle, the measuring
device, and the environment hinder the particles propa-
gation in the associated medium, the diffusion coefficient
D of the induced Brownian motion decreases, approach-
ing zero. The point at which D becomes negligible within
the medium marks the transition from microscopic to
macroscopic behavior in this framework. The isotropy of
the step distribution in (RM) implies that, at this stage,
not only is the particle at rest in R3, but its state is ef-
fectively stationary in the state space. In this regime,
sufficiently large particles and their states may remain
at rest, even under interactions limited to cosmic radia-
tion. An account of this behavior is possible within the
conjecture (RM), provided the diffusion coefficient D is
properly linked to the physical properties of the particle,
the measuring device, and the environment. In any case,
the value of D alone determines the parameters of the en-
semble and can ensure the stationarity of the particle’s
state under (RM).

Having established the conditions under which (RM)
accounts for the state of macroscopic bodies at rest, the
subsequent task is to derive their Newtonian dynamics.
This requires defining the classical space and classical
phase space in terms of equivalence classes of states.
Recall that position-measuring devices have limited res-
olution and cannot distinguish between states of suffi-
ciently small support or states localized near the same
point in R3. Consequently, any sufficiently narrow po-
sition state function centered at a ∈ R3 may be re-
garded as representing a particle located at a. Thus, in a
position-measurement experiment, one effectively deals
with equivalence classes of sufficiently narrow states,
rather than with isolated eigenstates.

As shown in Section IV, the classical-space submani-
fold Mσ

3 can be defined in terms of equivalence classes on
the set Uσ of real-valued state functions whose standard
deviation δ does not exceed the resolution parameter σ of
the measuring device. The class associated with a point
a ∈ R3 consists of all such functions with expectation
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value of the position is a. Equipped with a suitable met-

ric, the set of such classes forms the manifold M̃σ
3 , which

is isometric to Mσ
3 and thus to the Euclidean space R3.

This approach naturally extends to the classical phase-
space submanifold Mσ

3,3. Its points can be defined as

equivalence classes in M̃σ
3 augmented by a phase factor.

As discussed in Section II, the phase factor of any suffi-
ciently narrow state function ϕ can be written as eip·x/~.
When σ in (4) is small, the parameter p is approximately
equal to the expectation value of the momentum opera-
tor, which in this case coincides with the mass times the
group velocity of the packet. As shown in Section IV,

the manifold M̃σ
3,3, consisting of such equivalence classes

and equipped with an appropriate metric, is isometric to
Mσ

3,3. As before, as long as the particle’s state remains

constrained to M̃σ
3,3, Schrödinger evolution is equivalent

to Newtonian motion.

Importantly, each equivalence class of states in M̃σ
3,3

contains infinitely many mutually orthogonal members,
thereby absorbing most of the dimensions of the state

space. For a state initially on M̃σ
3,3, the only aspect of its

Schrödinger evolution that drives it away from the classi-
cal phase-space submanifold, and thereby yields quantum
effects observable in position measurements, is the vari-
ation of the standard deviation parameter σ. A glimpse
of this is already evident in (9). A suitable coordinate
s, introduced in Section IV to parametrize changes in σ,
is defined as the logarithm of the scaling parameter. In
this case, the metric induced on the s-axis through any
state is Euclidean [1].

With (RM) accepted, the most general evolution of
a particle’s state during measurement is governed by

the total Hamiltonian ĥtot, defined as the sum of the

free Hamiltonian ĥ and the random Hamiltonian ĥRM of
(RM). The free Hamiltonian generates the deterministic
drift of the state, while the random Hamiltonian induces
the random walk and ensures consistency with the Born
rule. As the next step in deriving the Newtonian dynam-
ics of macroscopic bodies, we examine the evolution of
a state initially located on the submanifold Mσ

3,3 under
this total Hamiltonian.

Over a short time interval, the Hamiltonian ĥ gener-
ates a Newtonian displacement of ϕ along the manifold
Mσ

3,3, together with a step along the s-axis. Over a step-

time interval, the random Hamiltonian ĥRM generates
one step of an isotropic random walk of the state in the
full state space. The component of this step that leaves s
unchanged induces either a random displacement within

M̃σ
3,3, a trivial transformation confined to the equivalence

class of ϕ, or a combination of the two. Since M̃σ
3,3 is

isometric to Mσ
3,3 = R6, a random displacement within

M̃σ
3,3, is equivalent to the displacement experienced by a

macroscopic body in the classical phase space under en-
vironmental interactions. Thus, a state initially located

in M̃σ
3,3 and evolving under the total Hamiltonian ĥtot

can depart from M̃σ
3,3 and acquire non-classical features

detectable by a device with position resolution σ, solely
through the combined effect of Schrödinger spreading and
the random walk along the s-axis.

Owing to the isotropy of the random walk along the
s-axis, a state drawn from an appropriate ensemble will,
after a few steps, spend approximately half the time sat-
isfying the condition δ ≤ σ. By selecting the time step
of the walk in (RM) for a macroscopic body to be suf-
ficiently shorter than the characteristic time required for
Schrödinger spreading of its state to become apprecia-
ble, for example, to exceed a multiple of the resolution
parameter σ, the evolution under the total Hamiltonian

ĥtot ensures that the probability of finding the state in

M̃σ
3,3 at any given time is approximately 1/2. At these

instants, the particle’s position can, in principle, be con-
firmed by direct observation and, as discussed earlier, is
simultaneously registered by the environment.

The acquisition of positional information resets the
random walk in (RM), which then proceeds from the
newly registered position of the body’s state. Under these
conditions, and in terms of representatives of equivalence
classes, the state undergoes spreading into a small neigh-
borhood of Mσ

3,3, punctuated by random returns to Mσ
3,3

and successive confirmations of its arrival there, either
through environmental monitoring or direct observation.
This is fully analogous to the classical motion of a body
in a natural environment. The difference is that the ran-
dom walk now takes place in a neighborhood of Mσ

3,3

within the full state space, rather than being confined to
the classical space Mσ

3 = R3 or the classical phase space
Mσ

3,3 = R6.
Note again that the properties of the body, the en-

vironment, and their interactions are assumed to deter-
mine the time-step and variance parameters of the walk.
Conversely, by adjusting these parameters, one may also
describe the motion of microscopic particles in various
media within the same dynamical framework. In par-
ticular, the observed similarity between the motion of
microscopic particles in a bubble chamber and that of
macroscopic bodies in natural surroundings may be ex-
plained by assigning similar values of these parameters in
the two cases. It may be possible to design experiments
to test the viability of (RM) for different particles in var-
ious media. Potential experiments to test the conjecture
are outlined in Section IV.

Note that, since a point in M̃σ
3,3 fully determines the

particles position, it may be useful to define the classical

space submanifold M̃σ
3 alternatively in terms of equiva-

lence classes of states with a fixed position expectation
value, irrespective of the momentum parameter p. This
choice is more convenient when discussing measurements
of position and can also be used equivalently to define
the metric, as shown in Section IV. As before, we can
use the states with p = 0, that is, the states in Mσ

3 , to
represent the classes.

Once the state reaches M̃σ
3 , it is identified with a posi-

tion eigenstate. In this framework, “collapse” is nothing
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more than the random walk of the state in the s-variable
toward such an eigenstate. The act of recording that

the state has reached M̃σ
3 is not the collapse itself; by

the time it is registered, the state already lies on the
submanifold. As experience confirms, an immediate sub-
sequent observation of position does not alter the state
but merely verifies it, no additional collapse occurs.

Finally, the cumulative effect of the random walk in
the s-variable, together with the confirmation of position

whenever the state reaches M̃σ
3 , amounts to the projec-

tion of the state onto M̃σ
3 , thereby linking the projec-

tion postulate of quantum mechanics to the dynamics
specified by (RM). By connecting the successive points

on M̃σ
3 , we obtain a trajectory whose image under the

isomorphism ω coincides with the Newtonian path of
the particle. This completes the derivation of Newto-
nian dynamics from Schrödinger dynamics supplemented
by (RM). The next section provides the details of this
derivation.

The following experiment in Newtonian mechanics
serves as a classical analogue of the process just de-
scribed. Consider a plane R2 in space, densely populated
with position-measuring devices that record the particle’s
location whenever it crosses the plane. Suppose the par-
ticle starts on the plane with an initial velocity consisting
of a tangent component and a small orthogonal compo-
nent. Assume further that environmental interactions
induce Brownian motion relative to its free-particle tra-
jectory, and that the effect of the measuring devices on
the particle can be neglected. The goal is to reconstruct
the trajectory of the particle, undergoing such Brown-
ian motion with linear drift, at the times when it in-
tersects the plane. The outcome of such an experiment
is consistent with Newtonian motion on R2, where the
particle’s position at each instant is normally distributed
with bounded variance. Neglecting this uncertainty and
the discreteness of the sampling times, the observed tra-
jectory coincides with the orthogonal projection of the
particle’s full linear trajectory in R3 onto the plane.

IV. DETAILS OF THE DERIVATION

A. Equivalence classes of states

For simplicity, let us restrict attention to measure-
ments in one dimension, with the Hilbert space L2(R)
of state functions on R and the corresponding projective
state space. Analogous to the case of Gaussian functions
on R3, the Gaussian functions

ga,σ =

(
1

2πσ2

)1/4

e−
(x−a)2

4σ2 (12)

form a one-dimensional submanifold Mσ
1 of the state

space, equipped with the induced Euclidean metric.
The set of linear combinations of translations of a given

Gaussian function is dense in L2(R) [7]. We will therefore

restrict our attention to superpositions of Gaussian func-
tions of the form (12) and assume finite expected value
µz

µz =

∫
z|ϕ(z)|2dz, (13)

and the standard deviation δz

δ2
z =

∫
(z − µz)2|ϕ(z)|2dz (14)

of the z-coordinate.
Equivalence classes of states were introduced in [1] us-

ing the example of a small scintillation screen placed near
a point on the z-axis. The state function was taken as a
superposition of two narrow Gaussian functions, ga and
gb in (12), centered at points a and b on the z-axis and
assumed to be nearly orthogonal. This construction is
directly relevant to the analysis of the double-slit exper-
iment in [1] , but it can be readily generalized.

A flash of light at a point c on the screen defines the
particle’s position only approximately, within a cell Dc

of diameter σ, at least as large as an atom in the scintil-
lation material. The screen therefore cannot distinguish
between state functions localized near the same point.
The expected value µz and standard deviation δz pro-
vide a natural description of such equivalence classes.

Consider the set of all functions ϕ in L2(R) with finite
values of µz and δz, subject to the condition δz ≤ σ. For-
mally, the equivalence class {gc}, referred to as a physical
eigenstate of position, consists of all functions in this set
with µz = c. The conditions

µz = c, δz ≤ σ,

ensure that the probability of detecting the particle in
Dc is close to one, with only small weight in the tails
outside the cell. If necessary, the condition δz ≤ σ can be
strengthened to δz ≤ kσ, where k < 1 is an appropriate
parameter.

We define the Fubini-Study distance between a state
ϕ and an equivalence class {gc} as

ρ(ϕ, {gc}) = inf
ψ∈{gc}

ρ(ϕ,ψ), (15)

where ρ(ϕ,ψ) is the Fubini-Study distance between
states. For example, if ϕ = αga + βgb, then under the
accepted conditions the distance to {gb} satisfies

cos ρ(ϕ, {gb}) = |β|. (16)

A state ϕ reaches the physical eigenstate {gc} precisely
when ρ(ϕ, {gc}) = 0. Note that the equivalence class {gc}
is quite “large”: it contains many mutually orthogonal
states, that is, states separated by the maximal Fubini-
Study distance in state space.

The distance between equivalence classes {gc} and {gd}
is defined by

ρ({gc}, {gd}) = inf
ϕ∈{gc}

ρ(ϕ, {gd}). (17)
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This distance coincides with the Fubini-Study distance
between the states gc and gd in (12). This allows us to

identify the set M̃σ
1 of all equivalence classes {gc}, with

c ∈ R, with the previously defined Riemannian manifold
Mσ

1 , which is simply the Euclidean space R.

The two-dimensional manifolds Mσ
1,1 and M̃σ

1,1 are de-

fined analogously to the manifolds Mσ
3,3 and M̃σ

3,3. Dis-

tances between a state and an equivalence class of M̃σ
1,1,

as well as those between two equivalence classes, are de-
fined in the same way as in (15) and (17). The isometry

between Mσ
1,1, M̃σ

1,1, and R2 is established using (11).
As in the Overview section, Schrödinger evolution con-

strained to M̃σ
1,1 reproduces the Newtonian dynamics of

the particle.
Collapse of the state under a position measurement, as

described by Schrödinger evolution with the Hamiltonian
in (RM), is the approach of the state to the manifold

M̃σ
1 in the metric (15). This process does not require the

tails of the state-function to vanish. The notion of dis-
tance between points in the support of state functions,
including those in the “tails,” is replaced by the distance
between the state functions themselves. State functions
with infinite tails may still lie at a small distance from

the classical one-dimensional space M̃σ
1 = R, allowing

them to approach it within a few steps of the random
walk in (RM). The tails of the state function do not im-
ply that, under measurement, the particle makes large
jumps along R. Thus, the so-called problem of tails is re-
solved by recognizing collapse as a motion in state space,
whereby the initial state itself approaches an equivalence

class {gc} in M̃σ
1 .

B. Foliation of state space

Given the infinite number of linearly independent di-
rections for propagation in state space, it might seem
that the probability of reaching a position eigenstate un-
der the random walk in (RM) is zero. It is important to
recognize, however, that the only parameters relevant for
determining whether the state has collapsed, i.e., belongs
to an equivalence class {gc}, are the expectation value µz
and the standard deviation δz of the z coordinate. This
suggests that the effective random walk of interest may
take place on a two-dimensional submanifold of the state
space, whose points are identified by specific values of µz
and δz.

As already noted, the set of finite linear combinations
of translations of a single Gaussian function is dense in
L2(R). Moreover, any function in L2(R) can be approxi-
mated by a finite linear combination of nearly orthogonal
Gaussian states, with the degree of orthogonality con-
trolled by the standard deviation parameter σ. In light
of the finite resolution of measuring devices and the re-
sulting equivalence classes of states, such approximations
remain appropriate even for a fixed σ.

Consider, therefore, the space V of finite linear com-
binations of Gaussian functions gc ∈ Mσ

1 , where c = zk
corresponds to a partition {zk}, k = 1, 2, . . . , N of the
z-axis. Assume further that the Gaussians gc are suffi-
ciently narrow so that approximate orthogonality holds
for distinct zk and zm in the partition. In this way, V pro-
vides a finite-dimensional approximation to the Hilbert
space, reflecting the finite resolution of physical detec-
tors.

Given an initial state ϕ ∈ V of the particle whose posi-
tion is measured, consider the two-dimensional manifold
Mϕ parametrically defined by

ϕτ,λ(z) =
√
λϕ(λ(z − µz − τ) + µz). (18)

The parameters τ and λ serve as coordinates on this man-
ifold. Along the path ϕτ = ϕτ,λ|λ=λ0

with fixed λ, the
expectation value of z shifts from µz to µz + τ , while the
standard deviation remains constant. Conversely, along
the path ϕλ = ϕτ,λ|τ=τ0

with fixed τ , the standard devia-

tion changes from δz to δz/λ, while the expectation value
remains unchanged. Introducing s = lnλ, one finds that
the coordinates (τ, s) are orthogonal in the Fubini-Study
metric, thereby identifying Mϕ with the Euclidean plane
R2 [1].

For each point (τ, λ) ∈ Mϕ, consider the set of all
functions in V with µz = τ and δz = λ. This defines a
foliation of V of codimension two. Each leaf ϕτ,λ consists
of all functions in V sharing the same values of µz and
δz. Because (τ, s) are orthogonal coordinates on Mϕ, the
corresponding components of a step of the random walk
in (RM) from any ϕ are independent random variables.
Since the step distribution in (RM) is homogeneous, the
probability laws for the τ - and s-components are the same
at all points ϕ. By definition, µz and δz remain constant
along the leaves of Mϕ. Consequently, step components
tangent to the leaf through ϕ do not change µz or δz,
and hence do not contribute to collapse into a physical
eigenstate of position. It follows that the random walk
on Mϕ, identified with the (τ, s) plane R2, suffices to
describe collapse in this setting.

To belong to an equivalence class {gc}, the state must
satisfy the condition δz ≤ σ. On the s-axis, the set of
points with δz ≤ σ corresponds to a half-line. Because
the random walk in (RM) along the s-axis is symmetric,
the state spends equal amounts of time, in the long run,
on either side of this boundary. Consequently, the prob-
ability of finding the state at a random time with δz ≤ σ
approaches 1/2 as the number of steps increases. Mean-
while, the random walk in τ determines the relative prob-
abilities of reaching different eigenstates, in accordance
with the Born rule [1].

C. Parameters of the random walk in (RM)

Known models of spontaneous collapse, such as CSL
and DP, introduce parameters including the collapse rate
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λ, localization length rC , mass coupling, and the spec-
tral properties of the collapse noise, all of which must
remain consistent with experiment. Laboratory tests im-
pose strong bounds. Collapse models predict sponta-
neous energy injection, such as X-ray or atomic radiation,
which rules out large collapse rates [11, 12]. The per-
sistence of quantum interference in large molecules and
cold-atom ensembles excludes values of λ high enough
to suppress interference [13]. Further constraints arise
from collapse-induced heating and decoherence in op-
tomechanical systems and from precision noise measure-
ments in gravitational-wave detectors [14–16]. While lab-
oratory bounds are already stringent, cosmological ones
are even stronger. Collapse noise would otherwise over-
heat the intergalactic medium, contrary to astrophysical
observations, requiring the collapse rate to be extremely
small [17–20].

Unlike standard collapse models such as GRW or CSL,
where collapse is a spontaneous and ever-present process
that injects energy into the system, these issues do not
arise in the proposed collapse by random walk in (RM).
Here, “collapse” is not spontaneous but is triggered by
interaction with a measuring device or the environment,
as specified by the conjecture (RM). Consequently, in-
terference experiments remain unaffected. Although the
energy of the measured particle may fluctuate, either in-
creasing or decreasing, after a step in the random walk of
(RM), the evolution is unitary, and any excess or deficit
can be balanced by the measuring device or the environ-
ment, ensuring conservation of the total energy of the
combined system, in agreement with classical measure-
ment.

In (RM), the Gaussian Unitary Ensemble is specified
by the matrix dimension and the variance of the distri-
bution of its entries. Since the random walk in (RM)
evolves in time, it also requires a time-step parameter.
These parameters determine the diffusion coefficient D
of the induced Brownian motion. Conversely, the diffu-
sion coefficient D and the time step of the random walk
on R3 fully define the walk in (RM).

In the standard theory of Brownian motion, the dif-
fusion coefficient is typically expressed in terms of the
particle’s radius, the viscosity of the medium, and the
temperature. When modeling measurement with (RM),
the induced random walk on R3 can be associated with
Brownian motion in a suitable medium, thereby relating
the diffusion coefficient D to analogous physical proper-
ties of the particle, the environment, and their mutual
interactions. At the same time, the variance and time
step alone fully determine the collapse process, directly
analogous to how a single variance parameter at the time
of observation summarizes the uncertainties arising from
measurement of a classical particle.

Given the validity of the Born rule in this model,
the collapse time interval remains the key experimen-
tal parameter, which must agree with the parameters of
the walk in (RM). At present, only an upper bound is
known, set by decoherence, while the process otherwise

appears instantaneous. In any case, any value of this pa-
rameter, no matter how small, can be obtained by suit-
ably adjusting the variance parameter that defines the
Gaussian Unitary Ensemble, and the time-step.

Experiments observing the trajectories of microscopic
particles in different media may provide insight into the
dependence of the random walk parameters in (RM) on
the characteristics of both the medium and the parti-
cle. The question of the time distribution for forming
interference dots on the screen in the double-slit experi-
ment (i.e., the arrival times) may also be experimentally
testable. Current observations indicate that this distri-
bution is governed by the emission rate of particles and
standard propagation in physics, once again pointing to
an extremely fast process of state reduction.

A related experimental direction concerns the fraction
of particles that actually undergo collapse, for example,
those that contribute to the interference pattern in a
double-slit experiment. It is well established that only
a small fraction of emitted particles ever reach the de-
tection screen. Disregarding the many losses that occur
before the screen, the (RM) model is potentially capable
of predicting the fraction of particles whose states reach
the manifold Mσ

3 and, with a high-quality detector, are
successfully registered on the screen.

V. ONTOLOGY OF M̃σ
3 AND (RM)

The conjecture (RM) provides a unified model of mea-
surement applicable to both macroscopic and microscopic
particles. Its central idea is the identification of the
classical space R3 of particle positions with the three-

dimensional submanifold M̃σ
3 of the particle’s state space.

When the random walk in (RM) is constrained to M̃σ
3 ,

it reproduces the walk that models a classical measure-
ment and yields the normal probability distribution for
the position of a classical particle. In contrast, the un-
constrained walk in (RM) produces the Born rule for
transition probabilities between states.

A related correspondence holds for dynamics: just as
measurement reduces to the classical case under con-
straint to M̃σ

3 , Newtonian dynamics of a classical par-
ticle emerges from Schrödinger dynamics when the state

is constrained to the six-dimensional submanifold M̃σ
3,3 of

state space. Moreover, we saw that the constraint to M̃σ
3,3

for a macroscopic particle can be naturally explained by
the way the environment records the moments when the
particle’s state, undergoing the walk in (RM), crosses

M̃σ
3,3. This continual recording neutralizes the spreading

of the probability distribution and effectively projects the

state onto the classical phase-space manifold M̃σ
3,3. This

mechanism provides the basis for the emergence of New-
tonian dynamics in macroscopic systems.

The scheme readily extends to N -particle systems. In
this case, the classical configuration space R3N is iden-

tified with the 3N -dimensional submanifold ⊗NM̃σ
3 , the
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tensor product of N copies of the manifold M̃σ
3 , one for

each particle. Likewise, the classical phase space R6N

corresponds to the tensor product of N copies of M̃σ
3,3.

Naturally, it is equivalent to regard the system as N point
particles in a single copy of R3, or as a single point in the
3N -dimensional Euclidean space R3N . In the same way,
one may view a system of N particles as described by a

single state in ⊗NM̃σ
3 , or as a collection of N particles

whose states each belong to a single copy of M̃σ
3 .

Under the identification of R3 with M̃σ
3 , a random walk

with Gaussian steps on R3 admits a unique extension to
the full state space as a homogeneous and isotropic pro-
cess, precisely the walk defined in (RM). Just as classical
Brownian motion emerges from Newtonian dynamics of
a particle in a thermal bath, the random walk in (RM)
can be viewed as its quantum analogue, with the step
distribution on Mσ

3 giving rise to the Gaussian Unitary
Ensemble. This analogy suggests that (RM) may be
supported by the same kind of underlying dynamical con-
siderations that justify Brownian motion in the classical
domain.

The identification of classical space and classical phase
space with submanifolds of state space, together with
the established correspondence between measurement in
macroscopic and microscopic systems and between New-
tonian and Schrödinger dynamics, all suggest that the
walk in (RM) should be regarded as a genuine physical
process, and that state space itself should be accepted as
the physically and ontologically appropriate extension of
classical space. On this view, a point particle is not a
point object in classical space, but rather a point object
in state space. Its position is represented not by numer-
ical coordinates in R3, but by a function in a Hilbert
space and the corresponding element of the projective
state space.

When the particle’s state function broadens so that it
becomes a superposition of functions in Mσ

3 , the point
in state space representing the particle moves away from

the submanifold M̃σ
3 into the larger state space. This

becomes evident when one computes the distance be-
tween such a state and the submanifold using the dis-
tance formula (15). That distance provides a measure of
the spread of the state function, and hence a quantita-
tive measure of its “non-classicality” or “waveness”: the

farther the state lies from M̃σ
3 , the more wave-like the

particle behaves, while in the limit where this distance
tends to zero the particle exhibits classical, corpuscular
behavior.

The “reality” of the state space and of the walk in
(RM) is not required for the validity of the results ob-
tained in this paper. Nevertheless, adopting this perspec-
tive greatly simplifies the problem of classical-quantum
correspondence and transition. On this view, the uni-
verse, with its macroscopic bodies, microscopic particles,
and the dynamical processes between them, should be
understood in terms of the state space of these systems.
Dynamical processes involving macroscopic bodies take

place on classical submanifolds of state space and can be
equivalently described as processes in ordinary classical
space. By contrast, dynamical processes involving mi-
croscopic bodies unfold in the full state space, but their
states occasionally intersect the classical submanifolds,
giving rise to classical features while also producing the
paradoxes that puzzle our three-dimension-trained intu-
ition.

An example of this is the double-slit experiment with
particles. At the moment of emission, the particle’s state
is well localized and lies on the classical-space subman-

ifold M̃σ
3 . In this regime, the particle behaves classi-

cally: its wave packet has a well-defined position, and
the packet’s group velocity corresponds to the particle’s
velocity. As the particle interacts with the screen con-
taining the slits, however, its state becomes a superposi-
tion of states localized at the individual slits. This means
that the point representing the state moves away from the

submanifold M̃σ
3 into the larger state space.

By carefully identifying both the screen and the par-

ticle within the tensor-product space ⊗NM̃σ
3 of all their

constituent parts, one concludes that the particle does
not pass through either slit. Instead, the point repre-

senting its state leaves M̃σ
3 and moves through the larger

state space, effectively passing “over” the screen. If the
particle’s position is measured just beyond the screen,
the random walk in (RM) brings the state (and thus

the particle) back to M̃σ
3 . This process ensures that the

particle is detected at one of the slits, with probabili-
ties given by the Born rule. In particular, it can only be
found in the vicinity of the slits.

A particle detected at a slit becomes classical again: it
acquires a well-defined position and group velocity and
may continue propagating toward the backstop screen. In
this case, it arrives at the screen as a point particle, and
no interference pattern is observed. By contrast, if the
particle’s position is not measured at the slits, it prop-
agates as a superposition of two spreading wave packets
and reaches the backstop screen in the form of overlap-
ping superposed packets. The backstop screen then acts
by generating a random walk in (RM) from this super-

position (still a point in state space!) back to M̃σ
3 . The

Born rule derived from (RM) is in this case consistent
with the appearance of an interference pattern on the
screen.

Note again that the physics is now expressed in terms
of point objects in state space and the distances between
them. It is misleading to imagine a “wave” corresponding
to the particle itself in classical space. There is no wave in
classical space, only a point in state space. What appears
as spreading of the state function in classical space is, in
fact, the motion of the point representing the state away

from the classical-space submanifold M̃σ
3 .

Likewise, there are no “tails” of a collapsed state func-
tion, but rather a point that may lie slightly off the
classical-space submanifold. What we call collapse is not
a sudden localization of a cloud in classical space, but
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the motion of a point in state space, from an initial po-

sition away from M̃σ
3 to a final position on M̃σ

3 . When
this motion takes the form of a random walk in (RM),
the probability of a specific outcome is given by the Born
rule.

This reframing dispels the paradoxical imagery of
waves spreading or collapsing in space, replacing it with a
precise geometric motion in state space. The conjecture
(RM) thus offers a concrete framework for understand-
ing the quantum-classical transition, whose validity will
ultimately be decided by experiment.
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