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Abstract

The Aharonov-Bohm (A-B) effect has been a major focus of the foundations of

physics. And yet, much confusion persists. In particular, the effect purportedly

leads to a dilemma: on one horn, we have a non-local action of a gauge-invariant

quantity on charged particles; on the other, we get a local action on these particles,

but of a non-gauge invariant quantity. This is the folklore, but the folklore is filled

with misconceptions. Here, by deploying a recently defended formulation of gauge

theory that dispenses with principal bundles, gauge potentials, and explicit gauge

symmetries, I argue, with previous authors, that the A-B effect can be understood

gauge-independently. But here my argument will go further: I will show that the

A-B effect, when expressed in terms of the covariant derivative of a vector bundle,

is entirely analogous to the holonomy of spacetime vectors, and can be understood

completely locally. The only surprising idea illustrated by the A-B effect is that, in

some circumstances, there is more to the covariant derivative than can be accounted

for by the curvature and underlying topology of a vector bundle.
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1 Introduction

It is often said that the Aharonov-Bohm effect of electromagnetism—henceforth, the A-B

effect—evinces a form of non-locality, something that is usually thought of as confined to

nonclassical physics (cf e.g. (Belot, 1998; Healey, 2007; Healey & Gomes, 2021; Myrvold,

2011)). Thus the effect is often portrayed both as having a quantum nature and as relying

on the non-trivial topology of space, which is an obvious non-local fact. For instance, Healey

(1997) says it is a kind of non-locality “much more closely analogous to the kind of nonlocality

manifested by a violation of Bell inequalities than has been previously acknowledged”.

But I disagree with all three elements of this portrayal: (i) that the A-B effect has a

quantum nature; (ii) that it relies on the non-trivial topology of space; and (iii) that it evinces

an important form of non-locality. While none of these claims are wholly unchallenged in

the literature, they remain widespread—especially in philosophical discussions—as a kind of

conceptual shorthand. My aim is to dislodge this received picture—the ‘folklore’ if you will—

and to offer in its place a more coherent and conceptually unified account of the A–B effect.

This alternative account is structured around a single unifying claim: the A–B effect is a

special case of parallel transport around a loop, and thus entirely analogous to the holonomy of

spacetime vectors in general relativity. That is, the effect can be understood geometrically as

a feature of the covariant derivative associated with a connection on a vector bundle—without

reference to gauge potentials, quantum entanglement, or exotic topologies.1

1Within the literature, as far as I know, Leeds (1999) is the only author who attempted to use a similar
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This understanding becomes especially sharp when we reformulate gauge theory using vector

bundles and covariant derivatives, dispensing with the apparatus of principal bundles and gauge

potentials. In this alternative formulation, developed in (Gomes, 2024b), all the fundamental

interactions acquire the same geometrical nature: they are all based on covariant derivatives

describing the geometry of vector bundles. The formulation will be introduced in Section 4,

but its conceptual significance informs the argument throughout.

I will argue that the type of non-locality at play in the A-B effect is relatively benign

and pervasive in physics. It arises from the comparison of quantities that depend on their

spacetime history. Although broadly similar arguments to this effect have been made before,

my argument will be grounded on a tight analogy between the A-B effect and the holonomy of

a spacetime vector.2

Beyond correcting what I take to be common misconceptions, I will argue that the A-B

effect and its kin expose physically salient features of the covariant derivative that curvature and

topology alone fail to capture. The effect illustrates something important and often overlooked:

the fundamental significance of the affine structure encoded by the covariant derivative, beyond

what is encoded in the curvature and topology.

Here is how I plan to proceed. In Section 2, I introduce the standard setup of the A–B effect

and recast it in geometric terms, showing that the effect probes a purely classical feature of

electromagnetism. I also exhibit a non-Abelian analogue of the effect in a topologically trivial

setting, undermining the supposed necessity of non-trivial topology. In Section 3 I develop two

gravitational analogies: the first highlights a disanalogy between the A–B effect and proper

time accumulation in the context of the twin paradox (cf. (Jacobs, 2023)), while the second

shows that the A–B effect is structurally identical to the holonomy of parallel-transported

vectors in GR. Section 4 introduces the vector bundle point of view of gauge theory, and shows

how it captures the explanatory core of the A–B effect in a way that is fully local, classical, and

geometrically transparent. In Section 5, I respond to possible criticisms of the claims being

made in favor of the vector bundle point of view. In Section 6 I conclude by summarising.

view of gauge theory to dissolve the puzzle of the A-B effect. Unfortunately, his attempt focused on the

metaphysical implications of the view and lacked mathematical precision. This lack of precision led to an

equivocation between different concepts (ibid, p. 614) which was picked up by (Healey, 2007, Sec. 4.2.2),

shown to lead to inconsistencies, and finally used to dismiss the approach. In the final Section 6, I will briefly

revisit this episode in the debate surrounding the A-B effect.
2This mathematical object will be introduced formally in Section 4 (e.g. Equation (4.16) for the holonomy in

an arbitrary vector bundle). Until then, I will mention terms like ‘holonomy, covariant derivative, and curvature’

in the spacetime context, which I assume to be understood. On a Lorentian spacetime (M, gab) the Levi-Civita

covariant derivative ∇ is an operator ∇ : TM ⊗ Γ(TM) → Γ(TM) (which is R-linear in its first entry and

C∞(M) linear on its second), which defines the infinitesimal parallel transport of vector fields via its kernel (see

Equation A.10). Holonomy is an operator that takes parallel transport along closed curves γ : S1 → M and, for

x ∈ γ, gives an endomorphism End(TxM), i.e. a linear transformation at TxM that preserves whatever structure

∇ does. The curvature associated to ∇ is a C∞(M)-multi-linear operator Ω : TM ⊗TM ⊗TM → TM defined

as Ω = ∇X∇Y − ∇Y ∇X − ∇[X,Y ] that results from taking an infinitesimal holonomy (just like the covariant

derivative results from taking the infinitesimal parallel transport). these mathematical objects exist for any

vector bundle, as we will see.
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2 The A-B effect

In Section 2.1 I will first present the standard setup of the A-B effect and the dillemma

about locality and gauge invariance that it poses. Then in Section 2.2 I will give a geometric

description of the effect and argue that it can be understood as saying something purely about

the classical theory of electromagnetism. In Section 2.3 I will give a closely analogous effect in

the non-Abelian case, which, unlike the Abelian case, works for a trivial topological background.

2.1 Setup

Classically, the magnetic field B is typically associated with the gauge potential A through the

relation

B = ∇×A. (2.1)

From this relation, it is clear that a transformationA → A+∇λ, for λ any real-valued function,

doesn’t change the magnetic field. Indeed, this transformation of the potential is called a

gauge transformation, and it is taken to leave all physical quantities invariant.3 That the

transformation is redundant underscores the idea the gauge potential is merely a computational

tool, with all physical content encoded entirely in the magnetic field.

Historically, Aharonov and Bohm put this interpretation of A under pressure by proposing

an electron interference experiment, in which a beam is split into two branches which go

around a solenoid and are brought back together to form an interference pattern.4 A solenoid

is a conducting wire coiled around a cylinder whose length is long compared to the wavelength

of the particle under consideration. When current runs through the solenoid, a magnetic field

is created inside the device, but the external magnetic field is unaffected. In other words,

this solenoid is perfectly shielded, so that the magnetic field vanishes outside it, and our model

makes the simplifying assumption that no electron can penetrate inside and detect the magnetic

field directly.

The experiment involves two different configurations: solenoid on or off. In both, the field-

strength (i.e. the magnetic field) along the paths accessible to the charged particles is zero (see

figure 1). The surprising—and confirmed!—prediction of electromagnetism, as fleshed out by

Aharonov and Bohm, is that the two configurations produce two different interference patterns.

As the magnetic flux in the solenoid changes, the interference fringes shift.

The key insight of the A-B effect is that charged particles, such as electrons, can be influ-

enced by the vector potential A even in regions where the magnetic field strength vanishes,

3Because in this case the transformations are commutative—we obtain the same result transforming A using

λ1 and then transforming the result using λ2 as if we do it in the opposite order—the gauge theory in question

is Abelian.
4Aharonov & Bohm (1959)’s work was conducted independently of the work by Ehrenberg & Siday (1949)

who proposed the same experiment with a different framing in a work that did not receive much attention

at the time. According to Hiley (2013), the effect was discovered “at least three times before Aharonov and

Bohm’s paper”; with the first being a talk by Walter Franz, which described a similar experiment in 1939.
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Figure 1: The outlines of the experimental setup for detection of the A-B effect.

B = 0. The A-B effect suggests that the vector potential possesses a physical significance that

transcends its role as a mathematical tool for describing the magnetic field.

So far, I agree. But there is a common conception that A-B effect also has profound

implications for our understanding of locality vis-à-vis gauge invariance. With this, I will

disagree.

Those supposedly profound implications can be heuristically gleaned from my general out-

line of the experiment above. To recap:

(a) The observable phenomena change when the current in the solenoid changes; and

(b) The electrons that produce the phenomena are shielded from entering the region of non-

zero magnetic fields; so

(c) If we rule out unmediated action-at-a-distance from the magnetic field, whatever physical

difference accounts for the change must be due to differences in the gauge potential outside the

solenoid.

Thus, in order to explain the different patterns, one must either postulate a non-local

action of the field-strength upon the particles, or endow the gauge potential with its own ontic

significance, as producing a local physical effect on the electrons. Dismissing a non-local action

singles out the second route. But that route has problems.

In order to describe the local effect of the gauge potential on the electron, we must choose

one specific profile for the gauge potential, among infinitely many profiles that are gauge-

related. But different profiles will tell different stories about how the phases of the electrons

were accrued along the trajectories; the accrual of phase has no gauge-invariant account. All

roads seem to point to a gauge-invariant ontology that stubbornly resists a local account. So

how can we resolve the puzzle posed by the A-B effect while preserving two cherished principles

of modern physics: the locality and gauge-invariance of physical processes?
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2.2 The A-B effect probes a classical physical property

Here I will argue that while experiments testing the A-B effect involve quantum mechanics,

one can also witness the effect at a purely classical level. (See Belot (1998) for a more thorough

philosophical analysis of the thesis defended in this section, and (Stachel, 1982) for a technically

precise defense of this thesis via a gravitational analogy.)

Supposing an electron is allowed to take any two paths γ1 and γ−1
2 around the solenoid to

the detector (it is convenient to parametrize the second path as going from the detector to the

source). We can infer from the shift in the interference pattern that there are two contributions

to the relative phase of electron, corresponding to the paths that pass to the left and to the

right of the solenoid. The final result is given by:5

ei∆ = exp

((
i

∫
γ1

A

)
+

(
i

∫
γ−1
2

A

))
= exp

(
−i

∮
γ2◦γ1

A

)
, (2.2)

Now, I will assume the electrostatic situation, and that the bold-face A without indices

denotes a spatial one-form. This one-form satisfies dA = B, where d is the spatial exterior

derivative. A gauge transformation A → A + dλ will not affect (2.2), (for any λ ∈ C∞(Σ)),

since γ2 ◦ γ1 ≃ S1, and so
∮
S1 dλ = 0, by Stokes’ theorem. Thus the phase difference ∆ cares

only about the gauge-equivalence class of A.

The A-B effect shows that the gauge potential cuts finer physical distinctions than the

field-strength tensor—also called the Faraday tensor, or the curvature tensor—can distinguish

(within the regime discussed in this Section, this tensor is the magnetic field). In other words,

the A-B effect is about the physical significance of the gauge potential and the Faraday tensor,

neither of which is being quantised in the above treatment. In the case of electromagnetism,

an Abelian (U(1)) gauge theory, we can find out precisely what is the physical information

in the equivalence classes of the gauge potential that outstrips what can be encoded by the

curvature, all at a classical level.

We proceed as follows. Given spatial gauge potentials A1,A2 on the spatial surface Σ,

define C := A1 − A2 where C is a 1-form on Σ. We want to find out whether non-gauge

related potentials can produce the same curvature tensor. Thus suppose A1,A2 are such that

dA1 =: B1 = B2 := dA2, (2.3)

and so

dC := dA1 − dA2 = 0. (2.4)

Now, if there are C such that C ̸= dλ (for any λ ∈ C∞(Σ)), then A1 −A2 ̸= dλ so A1 and

A2 are not related by a gauge-transformation. That is, in this case, the two gauge potentials

are not in the same gauge-equivalence class, in spite of having the same curvature. Denoting

equivalence classes with square brackets, we have [A1] ̸= [A2], while B1 = B2.

By definition, such a C (with dC = 0 and such that C ̸= dλ) would be a member of

H1(Σ) := Ker d1/Imd0 ⊂ Λ1(Σ), where d1 is the exterior derivative operator acting on the

5In units for which e/ℏc=1.
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space of 1-forms on Σ, Λ1(Σ), and d0 is that same operator acting on smooth functions (or

0-forms). This space is called the first de Rham cohomology of Σ, and it is non-trivial only if

there are loops in Σ that are not contractible to a point: a topological condition. For such Σ,

we can therefore find distinct equivalence classes [A1] ̸= [A2] that can nonetheless correspond

to the same electric and magnetic field. (See (Nounou, 2003) for a defense of the ‘topological’

explanation of the A-B effect). This classical description of the origin of the effect also shows

that the magnetic field does not need to vanish outside the solenoid.

The non-trivial topology encoded in H1(Σ) is what allows more than one gauge equivalence

class [A] on Σ with vanishing magnetic fields. However, the particular class [A] is not itself

encoded in the non-trivial topology. In other words, the non-trivial topology of the region is

an idealisation supposed to capture the presence of the infinite solenoid. The particular shift

of the interference fringes depends specifically on the content of this idealisation, i.e. on the

current going through the solenoid, which corresponds to different equivalence classes of [A].6

Thus suppose that Σ = R3−C, where C is a cylinder corresponding to the region occupied

by the solenoid, where we could have two different field strengths, B and B′. While elements of

different equivalence classes [A] and [A′] could be instantiated on Σ, they can only be extended

to R3 for the matching field-strengths in C. The compatibility condition is given by Stoke’s

theorem: (
i

∮
γ2◦γ1

A

)
=

∫
D

dA =

∫
D

B =

∫
D∩C

B, (2.5)

where D is any two-dimensional disk bounded by γ2 ◦ γ1, and where we assumed the field

strength vanishes only inside C.

A different set of worries concerns the possibility of a faster-than-light causal effect between

the field inside the solenoid and the electrons causing the interference fringes. But one should

be careful in inferring anything about the time-dependent from the time-independent case: the

former necessarily involves the full set of dynamical Maxwell equations. In a tractable domain

of operation of the solenoid, once one takes into account both the electric and the magnetic

A-B effects, it can be shown that there is no faster-than-light effect (Van Kampen, 1984).

Moreover, the time-dependent case admits a treatment similar to the one using homotopies, as

above (see (Gaveau et al., 2011)).

Now we can see that, in the treatment above, no quantisation is ever explicitly invoked.

As we just saw, the A-B phase can be described as a purely classical physical property of

the electromagnetic field. The entire discussion involved only classical electromagnetism and

classical geometry; it just so happens that in order to experimentally probe this property we

need a superposition of an electron state along two different arms of an interferometer.

Here we find a point of disagreement between me and Wallace (2014)’s treatment of the A-B

effect: while he admits that the effect involves only a classical background of electromagnetic

fields, he also takes some quantum properties of matter to be essential to its physical signif-

icance. If one makes this alternative assumption, Wallace argues that, due to the difficulties

6Recently, Shech (2018) and Earman (2019) have challenged the idealisations associated with the Aharonov-

Bohm effect, and Dougherty (2020) has defended them. I stand with Dougherty.
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in neglecting the backreactions of the quantum matter on the classical electromagnetic field,

a consistent description of the effect could only be given within a full quantum-field-theoretic

(QFT) treatment. But that picture also has its complications, for instance: describing the local

interactions between the electrodynamical field and the quantum matter in a gauge-invariant

way; the need to invoke ever more complicated effects, such as vacuum polarization; etc.

Why does Wallace escalate an explanation of the A-B effect all the way up to QFT? He

reasons as follows. After listing the merits of the holonomy formalism of electromagnetism,7

he points out a main flaw that is often left unnoticed: the formalism doesn’t include charged

matter. Upon trying to include matter, it becomes clear that a representation that is separately

gauge-invariant for matter and for the electromagnetic gauge potential is wrongheaded. Indeed,

one of Wallace’s central claims is that one should think instead of the electromagnetic and

the matter fields as one single, indivisible object.8 Accepting this conclusion requires us to

include a nowhere-vanishing matter field. But that is not a high price to pay for what is now

within reach: as Wallace shows, we can give a completely local account of the A-B effect—and

indeed a gauge-invariant local representation of electromagnetism with matter!—via a physical

realization of the unitary gauge (Wallace, 2024). In order for the unitary gauge to be accessible,

the matter field needs to be nowhere vanishing: an assumption that can only be defended at

the quantum level. From here, consistency leads us to treat everything within QFT and we

are off to the explanatory ladder!

Of course, I am not saying that deeper, more fundamental explanations involving QFT are

not welcome. These explanations are welcome, but not necessary.9

What I am saying, then, is that a perfectly satisfactory explanation exists strictly at the

7In electromagnetism, the holonomy formalism takes operators Hγ from closed curves γ to complex numbers

C with prescribed composition rules for segments of curves, Hγ1◦γ2
= Hγ1

Hγ2
. These are related to the standard

variables by Hγ(A) = exp
(
i
∫
γ
A
)
. They are a relatively popular choice for what constitutes the fundamental

ontology of the theory, cf. (Healey, 2007) and (Belot, 1998).
8As Wallace (2014, p. 14) says: “ It is tempting to think that the question can be innocently rephrased as:

what kind of ontologies for the electromagnetic field and for the matter field are compatible with the theory?

Tempting, but mistaken—and this is one of the main points of the paper. Since the gauge transformation

thoroughly mixes the two together, there is simply no justification—as long as we wish our ontology to depend

only on gauge-independent features of the theory—for regarding the two mathematically-defined fields as rep-

resenting two separate but interacting entities, rather than as (somewhat redundantly) representing aspects of

a single entity.”
9That is, as long as such a QFT dissolution of the A-B effect is not be in clear conflict with our preferred

classical treatment in the relevant limits. Otherwise, it would look like a case of being misled by essentially

classical features of the classical problem. In the case of Marletto & Vedral (2020), while they stop short of a full

quantum-field-theoretic treatment, they claim to solve the locality puzzle in the quantum domain by showing

that the A-B phase is locally mediated by the entanglement between the charge and the photons. I can’t hope

to give a comprehensive review of that paper here. Suffice it to say that I am suspicious of their use of Coulomb

gauge: they employ it but go on to dismiss (ibid. p.2-3) its significance by saying that physical effects and

quantities don’t depend on the gauge; that seems to me to be precisely the issue. And while they are right to

say that the “field energy variation due to the charge, point by point along the charge’s path” can be stated

gauge-invariantly, its relationship to the phase is gauge-dependent. A full comparison of the explanations in

the two domains must be left for future work. I thank an anonymous referee for pressing this point.
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level of classical electromagnetism. As Stachel (1982, p. 26) remarks: “it should be noted

that the crucial point—that the phase factor is of physical significance —would be true for any

wave field, whether that field is classical or quantum mechanical.” But I would go beyond:

while, in order to test theories experimentally we must include matter, classical vacuum elec-

tromagnetism is a perfectly cogent theory, with its own observables and physical properties,

irrespective of the inclusion of matter or even quantization. To make a gravitational analogy:

we may well derive approximate Kepler’s laws from an appropriate general relativistic model,

but we can also understand them solely within Newtonian gravitation. Of course, like all other

theories, classical vacuum electromagnetism is false, and is to be supplanted by more accurate

theories (e.g. quantized). Nonetheless, as forcefully argued by Belot (1998), we gain much

understanding of Nature by seeking to interpret each successful theory in its own terms: “Each

of these theories informs us about our world, despite their profound divergence of opinion

concerning ontology” (ibid, 558).10

But at this point I have not yet provided the reader with a sufficient defence of my proposed

dissolution of the puzzles posed by the A–B effect. This is the aim of the present paper. In what

follows, I will show that the effect can be understood as a classical, local, gauge-invariant, and

geometric phenomenon, and that its puzzling features arise only when we insist on describing

gauge theory using apparatus—such as potentials and gauge transformations—that obscure its

underlying structure. The key tool will be a reformulation of gauge theory using vector bundles

and covariant derivatives, introduced later in Section 4.

2.3 The non-Abelian case

In our current best theories of physics, electromagnetism emerges from a more fundamental type

of interaction, known as electroweak, through a process called spontaneous symmetry breaking.

It is besides the point of this paper to explain this process or electroweak theory in any detail.

What is important is that the symmetry group of electroweak theory is non-Abelian, as is that

of the theory of strong interactions. We thus have good reasons to investigate effects similar

to the A-B effect in the non-Abelian case.

In the Abelian case studied in the previous Section we can cleanly describe the many-to-one

relationship between equivalence classes of the gauge potential and the curvature. In the non-

Abelian case, we cannot. On the positive side, we can find an explicit example of a kindred

non-Abelian A-B effect that does not depend on topology or, equivalently, on the idealisations

used in the Abelian case.11

10Earlier on, Belot (1998, p. 551) writes: “To the extent that such interpretative judgments place constraints

on our beliefs about where the actual world might sit in the space of possible worlds, they are indeed judgments

about our world. There is a clear sense, then, in which the interpretation of false theories teaches us about this

world. Our beliefs about our world are reflected in our understanding of our false physical theories; so getting

clear on the content of a false theory is one way to make explicit our beliefs about our world. Admittedly, this

is a strange way to learn about the world. But it is also a fruitful one for us: in the absence of a true theory,

our false theories provide much of our understanding of the structure of the world.”
11For a treatment of the non-Abelian Aharonov-Bohm effect in a non-trivial topology, see (Horváthy, 1986).
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In the non-Abelian case, the gauge potential is a Lie-algebra valued one-form, AI
µ, whose

relationship to the field-strength tensor is:

F = dA− [A,A], in coordinates: F I
µν = ∂[µA

I
ν] − [Aµ, Aν ]

I , (2.6)

with the square bracket in the subscripts denoting anti-symmetrization, where ∇µ is the Levi-

Civita covariant derivative on spacetime. For a Lie-algebra valued function ξ := ξIϵI : U → g,

with coefficients ξI ∈ C∞(U) the potential transforms as:

δξA := dξ + [A, ξ] = Dξ, in coordinates: δξA
I
µ := ∂µξ

I + [Aµ, ξ]
I = Dµξ

I , (2.7)

where Dµ(•) = ∂µ(•) + [Aµ, •], the gauge-covariant derivative. Thus:

δξF
I
µν = [ξ, Fµν ]

I . (2.8)

In this non-Abelian vacuum Yang-Mills case, we can find two non-gauge-equivalent poten-

tials A and A with the same field-strength F ̸= 0 on a simply-connected region. A simple

example is the following: take the gauge group SU(2) and base manifold R2. The Pauli matri-

ces, denoted as σ1, σ2, and σ3, form a basis for the Lie algebra su(2):

σ1 =

[
0 1

1 0

]
, σ2 =

[
0 −i

i 0

]
, σ3 =

[
1 0

0 −1

]
.

The Pauli matrices satisfy the following algebraic relations, known as the Pauli algebra:

σ2
1 = σ2

2 = σ2
3 = Id, (where Id is the identity matrix)

σiσj = −σjσi for i ̸= j, (antisymmetry)

σiσj = δij Id+ iϵijkσk, (where ϵijk is the Levi-Civita symbol)

(2.9)

Now consider

A1 = −iσ3ydx+ iσ3xdy (2.10)

A2 = iσ1dx− iσ2dy (2.11)

We have

dA2 = 0 = A1 ∧A1, dA1 = 2iσ3dx ∧ dy = A2 ∧A2. (2.12)

For F = dA+A ∧A we get:

F1 = F2 = 2iσ3dx ∧ dy. (2.13)

If A1 and A2 were gauge-related, there should exist g ∈ C∞(R2, SU(2)) such that A2 =

gA1g
−1− dg g−1, in which case F2 = gF1g

−1 = F1. That is, F1 should be invariant under such

a g, or, infinitesimally, F1 should commute with the generator of the transformation. Since

F1 ∝ σ3, and, from (2.9), the only transformations that commute with σ3 are generated by σ3,

we would have go = eiθσ3 for some θ(x, y). From (2.10), since A1 only contains σ3, we get that

goA1g
−1
o = A1 and thus

goA1g
−1
o − dgo g

−1
o = A1 − idθσ3. (2.14)
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Clearly, since this expression still only contains σ3, there is no θ that can transform it into A2.

This concludes the example, and shows that in the non-Abelian case, we can have non-

gauge-equivalent gauge potentials with the same field-strength, even in a topologically trivial

background. This further supports the claim that the topological explanations invoked in the

Abelian case are not essential to the phenomenon itself, even if non-trivial topology is necessary

for that case. The deeper point is that the A–B effect arises whenever the equivalence classes

of the gauge potential distinguish physical situations that the field-strength tensor does not.

That feature will find its clearest mathematical expression once we shift to the vector bundle

point of view, introduced in Section 4.

3 Spacetime analogies

The puzzles posed by the A-B effect are not confined to electromagnetism: they reappear in the

treatment of every fundamental interaction. In the previous Section, I described how similar

ideas apply to the strong and weak nuclear forces, and here we will see how they also apply

to gravity. I will look at two gravitational analogies to the A-B effect: one using proper time

(Section 3.1) and one using the parallel transport of vectors (Section 3.2).

3.1 The local accrual of phase: a (dis)analogy with proper time

Thus far our investigation into the A-B effect has left us with only one puzzle: for each choice

of gauge potential the profile of the phase gained along the trajectory will look different, thus

there can be no physically significant local accrual of a phase (Healey, 2004, Section 6), (Healey,

2007, Ch. 2). Indeed, by the remarks of Section 2.2, were we to consider only a sub-region

of Σ that is simply connected, the vanishing of the field-strength on that sub-region implies

the gauge potential could be also set to vanish there. One is led to suspect that the situation

involves some kind of holism or non-locality.

Jacobs (2023) tries to deflate this puzzle with a gravitational analogy that employs proper

times:

The following analogy is helpful. Consider the Twin Paradox [...] Just as we are

interested in where the phase difference occurs in the Aharonov-Bohm effect, we

may wonder when the age difference between the twins comes into existence. This

is easy enough to answer with respect to certain planes of simultaneity. [...] This

result is analogous to the fact that one can choose a gauge such that A is zero over

any open path. [...]

This implies that effects such as the Twin Paradox and the Aharonov-Bohm effect

are holistic in this sense: although the total effect size (the age difference or interfer-

ence shift) is measurable, there is no fact of the matter as to how this effect comes

about as the result of small local differences. The final age difference between the

twins is not the result of many small age differences that accrue locally. Likewise,
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the final phase difference in the Aharonov-Bohm effect is not the sum of the phase

differences over infinitesimal paths.

I am in almost complete agreement. But I must warn against a possible misconstrual of

the analogy between the phase shift in the A-B effect and the lapse between the proper times

of twins. The proper times accumulate continuously, even if the lapse between them (before

reunion) depends on a simultaneity surface. Looking more closely, we see that this lapse does

not actually require closed loops: it only requires the selection of particular points along each

trajectory (cf. (Healey, 2004, Section 6)). Given points along the trajectories, the proper times

come along for the ride; there is no available choice to be made that would make the proper

times vanish along any finite segment of the trajectories. So there is a clear sense in which this

effect, the lapse in proper times, is incrementally accrued. (See (Weatherall, 2016, Section 5)

for a criticism that is similar to mine).

I will argue this is an important difference with the gauge case. In the case of the electron’s

incremental phases, we can’t say where they were picked up at all. As we will now see, a better

analogy between the gravitational and the gauge A-B effects requires the use of spacetime

vectors. I now turn to this.

3.2 The A-B effect for the parallel transport of spacetime vectors

There are by now several treatments of the analogues of the A-B effect within general relativity

(cf. Anandan (1977); Dowker (1967); Ford & Vilenkin (1981); Stachel (1982)). The treatment

here is closest in spirit to (Dowker, 1967; Ford & Vilenkin, 1981; Stachel, 1982). But unlike

those papers, I will not exhibit solutions of the Einstein equations or investigate the most

general family of spacetimes that can incorporate the essential features of the A-B effect; and

unlike (Anandan, 1977) I am also not interested in the experimental setup required to verify

this effect. Thus, first, in Section 3.2.a, I will describe the simple setting that already exhibits

the important elements of the A-B effect; then in Section 3.2.b I will describe and dismiss a

well-known objection to the analogy between the gravitational and the electromagnetic A-B

effects.

3.2.a A simple realisation of the A-B effect via deficit angles

As in the previous Abelian and non-Abelian cases, we would like to show that there is more to

the covariant derivative than the curvature can distinguish. So we take a closed curve γ1 ◦ γ2,
a vector v at the origin of γ1 to be parallel transported, and we fix the Riemann curvature

tensor Rabcd along γ1 ◦ γ2. Can we still find sufficiently different covariant derivatives for which

the total holonomy of v (as it is parallel transported around γ1 ◦ γ2) doesn’t vanish?
Stachel (1982) pursues this question to some degree of generality for stationary metrics,

and shows that the answer is in the affirmative.12 But a simpler and more direct analog of

the standard effect described in Section 2.1 would present physically distinct situations in

12He also shows how to couple a realistic physical system to the geometry in order to exhibit the effect.
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which the curvature Rabcd remains zero in the entire region declared ‘accessible’ to the system

under investigation (a situation also described, even if briefly, in (Stachel, 1982)). To realize

this picture, in a two-dimensional setting, take ∇ as the Levi-Civita covariant derivative of a

metric gab, and γ1 and γ2 to be (non-geodesic, of course) half-circles joining into a circle. Then:

(1) consider the parallel propagation of v ∈ Tγ1(0)M along γ1 and γ2, in Euclidean or Minkowski

space; and

(2) at the point at the center of the circle γ1 ◦ γ2 ‘cut out’ a wedge from the spacetime,

encompassing an angle θ, and then stitch spacetime back together along the edges of the

wedge. This second situation creates a cone, with a singular curvature at its apex, whose value

depends on θ (see figure 3). We now parallel propagate the vectors in the same manner as in

(1).13

Figure 2: Parallel transport of a spacetime vector along a closed curve enclosing a conical

singularity. Although the curvature vanishes everywhere away from the apex, the holonomy

around the loop is non-trivial. This illustrates how global features of parallel transport need

not be reducible to local curvature—even in purely classical and local geometric settings.

In the first, but not the second situation, any vector will come back to itself, unrotated. In

the second situation, there will be a relative rotation, depending on θ.14 Note also, that this

difference cannot be attributed solely to a difference in path length: the same angle arises from

the parallel transport around loops of arbitrary length around the apex of the cone.

Experimentally, the singular curvature between the paths would affect the interference

properties of a coherent beam of particles such as neutrons, or indeed, of any system whose

state has a vector component, e.g. an axis of rotation of a gyroscope.

Once again, when we talk about excising the point corresponding to the conical singularity

from the spacetime, this is to be understood as an idealisation replacing the source of curvature.

So in this simple case, we can also understand this analogue to the A-B effect via cohomology,

for there is a straightforward extension of the usual de Rham cohomology to flat vector bundles

(see e.g. (Voisin, 2002, Ch. 5)). But the underlying point is that the Levi-Civita covariant

13The same type of curvature defect could be obtained more realistically by a ‘cosmic string’, for which

we can then have the paths be geodesics; cf. (Ford & Vilenkin, 1981), and one can similarly obtain negative

curvature by adding an angle to a cut.
14To see this, picture a vector at angle α with respect to the rightmost edge. Upon identification of this edge

to its left counterpart, that vector will still have angle α but now with respect to the left edge. Since the left

edge is at angle θ with respect to the right edge, the overall rotation of the vector as it goes around a loop must

be θ.
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derivative in the two situations—with and without a conical defect—will globally differ, even

if the curvature doesn’t.15

Here is the important point about locality: the vectors are being parallel transported with

respect to the covariant derivative, and that acts locally and smoothly (the discontinuity on

the right-hand-side of the picture is only necessary if we wish to embed the geometry into R2).

The condition for the existence of this different covariant derivative is the non-trivial topology

of space, idealised as a confined source of curvature. But the vectors being parallel transported

don’t need to ‘feel’ the distant properties of the curvature: all they know is the local covariant

derivative.

Lastly, note that there is a fact of the matter about how much rotation v undergoes as it

is parallel transported along each of the paths γ1 and γ2. The answer is ‘no rotation’! That

must be the case since, under the standard interpretation, parallel transport defines a standard

of ‘no rotation’. When the student of differential geometry first encounters the covariant

derivative and parallel transport, what takes some getting used to is precisely this idea: viz.

that even if we take v along γ1 without rotation, and v along γ−1
2 without rotation, the two

resulting vectors at the end of these paths may be rotated with respect to each other. Was this

relative rotation continuously accrued along the paths? No. Where did this relative rotation

take place? Nowhere. The parallel transported vectors simply disagree when they reach their

common destination, but there is no build-up of that disagreement. The only mildly puzzling

property of spacetime geometry that is illustrated by the setup above is the multiplicity of

covariant derivatives that give rise to the same local curvature. Lastly, note that even jointly,

the flat curvature and the non-trivial topology don’t give rise to a unique covariant derivative.

We could, for instance merely cut out the same vertex, but with θ = 0: this would create a

non-trivial topology, but there would be no associated shift in the parallel transport.

3.2.b A disanalogy due to soldering?

A straightforward objection to collapsing the distinction between a gravitational A-B effect and

the gauge A-B effect in the way I’m proposing is found in (Anandan, 1993) (see also Healey

(2004, Secs. 6-7)). The objection focuses on one sense in which the spacetime vector rotation

can be construed as locally accrued, unlike in the gauge case.

Namely, unlike internal vectors, tangent vectors are ‘soldered onto’ spacetime, meaning that

they are the tangents to curves in spacetime. This allows us to represent the angle between

the parallel transported vector and the tangent to the curve as locally accrued.

But this objection cuts ice only in the simplified two-dimensional treatment above; it dis-

solves when more detail is added. That is, to assess the relative rotation of the spin of a particle

such as that of the neutron, i.e. to assess the relative rotation of polarization vectors, we must

15Note also that for simply-connected spacetimes, a vanishing curvature indeed means the metric is (isometric

to) Minkowski spacetime. The question whether, as in the more analogous non-Abelian case surveyed in

Section 2.3, we could get different covariant derivatives for the same non-zero curvature, is partially examined

in (Stachel, 1982).
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use Fermi-Walker transport. In other words, we are calculating a type of Thomas precession,

which is about the rotation of a spatial vector (a 3-vector), which includes the rotation in the

plane orthogonal to the timelike trajectory of the particle. Of course, the angle between a

polarization 3-vector and the tangent to the curve is also constantly zero. To put it differently:

comparing the parallel transported 4-vector to the tangent to the trajectory allows us to lo-

cally determine the evolution of one degree of freedom of the 4-vector; but this still leaves open

how the remaining polarization degrees of freedom—three if the particle is massive, two if it

is massless—evolve along the trajectory. For these, all we can do in a coordinate independent

way is what we had done before: compare a relative rotation upon the reconvergence of the

paths.

In the next section, I will argue that the gauge A–B effect—whether in the non-Abelian

or Abelian case—can be understood precisely as due to the parallel transport of vectors in

a vector bundle. In this setting, the analogy with the gravitational example above is not

merely heuristic but exact. The formalism of vector bundles and covariant derivatives provides

a natural framework for capturing this structural parallel, and it allows us to state the core

claims about locality and classicality without appealing to gauge potentials, holonomies of

internal spaces, or preferred gauges. This geometric framework will now be introduced.

4 The A-B effect without the gauge potential

This is the central section of the paper. We have seen that versions of the Aharonov–Bohm

effect arise across many fundamental interactions, and that the underlying phenomenon resists

explanation in terms of curvature or topology alone. I now argue that this is no accident: the

true core of the effect is simply parallel transport—nothing more.

To show this, I need to have a geometrical interpretation of the particle interactions on

a par with the geometrical interpretation of general relativity. Thus I introduce a geometric

formulation of gauge theory that avoids gauge potentials, principal bundles, and explicit ref-

erence to gauge symmetries. I call that the vector bundle point of view of gauge theory. On

this view, the gauge potential is analogous to a ‘coordinate expression’ of an affine covariant

derivative on a vector bundle, just as Christoffel symbols are the coordinate expression of the

Levi-Civita covariant derivative in differential geometry. The covariant derivative is the in-

finitesimal version of parallel transport on these vector bundles; once we dispense with the

gauge and work directly with covariant derivatives on vector bundles, the A–B effect takes on

a strikingly familiar character: it is an instance of holonomy, precisely analogous to the parallel

transport of spacetime vectors discussed in the previous section. The effect arises naturally

within classical differential geometry—so long as we use the right tools.

In Section 4.1, I introduce the technical machinery of vector and principal fiber bundles,

and describe their relationship and use in gauge theory. In Section 4.2 I will argue that we don’t

need to have this detour through principal connections and principal bundles; we can talk about

all gauge theories using only vector bundles and tensor products thereof. Although this marks a
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departure from the more familiar presentation of gauge theory in terms of gauge potentials and

principal fiber bundles, I will briefly explain the motivation behind that traditional formalism,

and then show why it is dispensable in the applications of interest here. Then, I will describe

the A-B effect in a local, coordinate independent—or gauge-independent—form, using only

parallel transport and covariant derivatives on vector bundles. The vector bundle formulation

not only aligns more closely with the formal treatment of holonomy in general relativity, but

also provides a conceptually cleaner account of the A–B effect itself.

4.1 Covariant derivatives with and without the gauge potential

Gauge potentials are usually introduced as spacetime representations of an object—the prin-

cipal connection form, ω—that lives not in spacetime but on the principal fiber bundle (PFB).

The use of PFBs seems necessary for gauge theory because different particle fields, such as

electrons and quarks, live in different vector bundles, but particles that are charged under the

same force must be parallel transported in step, e.g. they must feel the same field-strength of

the connection. So there must be some enforced relationship between the covariant derivatives

of different vector bundles. PFBs provide a way to coordinate all of these covariant deriva-

tives by defining the vector bundles on which the particles live as associated vector bundles

(cf. (Gomes, 2024a; Weatherall, 2016) for expositions of this idea). Under this definition, a

principal connection ω on the PFB uniquely induces a covariant derivative in each associated

vector bundle, thus ensuring that parallel transport proceeds in step.

Let us now review this argument in more detail. In Section 4.1.a I will first describe the

intrinsic covariant derivative in terms of vector bundles, then its relationship with a connection-

form; then in Section 4.1.b, I will tie these connection forms to a principal connection on a

principal bundle and with the standard gauge potential.

4.1.a Vector bundles

Definition 1 (Vector Bundle) A vector bundle (E,M, V ) consists of: E a smooth manifold

that admits the action of a surjective projection πE : E → M so that any point of the base

space M has a neighborhood, U ⊂ M , such that, for all proper subsets of U , E is locally of the

form π−1(U) ≃ U ×V , where V is a vector space (e.g. Rk, or Ck) which is linearly isomorphic

to π−1(x), for any x ∈ M .

Note that the isomorphism between π−1(U) and U × V is not unique, which is why there is no

canonical identification of elements of fibers over different points of spacetime. Each choice of

isomorphism is called ‘a trivialization’ of the bundle.

Definition 2 (A section of E) A section of E is a map κ : M → E such that πE ◦κ = IdM .

We denote the space of smooth sections by κ ∈ Γ(E).

Given a vector bundle (E,M, V ) a covariant derivative D is an operator:

D : Γ(E) → Γ(T ∗M ⊗ E) (4.1)
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Figure 3: A vector bundle with a two-dimensional fiber over a one-dimensional base space,

with a section here called L. (Figure taken from Wikipedia)

such that the product rule

D(fκ) = df ⊗ κ+ fDκ (4.2)

is satisfied for all smooth, real (or complex)-valued functions f ∈ Γ(M).

Thus we can define parallel transport as follows:

Definition 3 (Parallel transport in a vector bundle) Let D be a covariant derivative on

(E,M, V ), v ∈ Ex and γ(t) a curve in M such that γ(0) = x. Then we define the parallel

transport along γ as the unique section vh(t) of E|γ such that:

Dγ′vh = 0. (4.3)

The existence and uniqueness of this map is guaranteed for γ ⊂ U some open subset of M ,

and it follows from properties of solutions of ordinary differential equations (cf. (Kobayashi &

Nomizu, 1963, Ch. II.2)).

Here D is an operator, not a tensor. But by introducing a coordinate frame or basis, we

can represent it as such. This is the same as for spacetime covariant derivatives, ∇: it is only

upon the introduction of a frame or basis that we find an explicit representation.

Let us see how this goes. Let the space of connections over E be defined as:

∆(E) := Γ(T ∗M ⊗ End(E)), (4.4)

where End(E) are the linear, fiber-preserving endomorphisms of E, isomorphic to Γ(E∗ ⊗ E).

So locally, much like Lie-algebra-valued one forms, these sections will take a vector on M and

spit out a linear transformation (i.e. a representation of GL(V )).

Now we must relate the covariant derivatives with the connections. Call C(E) the space

of covariant derivatives for E. Given any Do,D ∈ C(E), there exists a ωD ∈ ∆(E) such that

Do −D = ωD. Therefore, having fixed a choice of Do the map:

C(E) → ∆(E)

D 7→ D−Do (4.5)
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is a bijection between the space of covariant derivatives and the space of connections. That

is, the space of covariant derivatives is an affine space over the vector space of connections. In

practice, we pick Do via a trivialisation of E, i.e. we pick an isomorphism π−1(U) → U × V ,

so that sections of E|U , i.e. elements of Γ(E|U ), become functions:

κ : U → V. (4.6)

In such a trivialisation, we can take Do → d, which acts only on functions on U , not on their

value on V . Thus, given a trivialisation and the subsequent identification of Do with d, the

connections parametrise the space of covariant derivatives. It is only at this step—after a local

trivialisation—that the covariant derivatives are described as 1-forms valued on End(E).

Now, with a trivialisation in place, for some section of a general real (or complex) vector

bundle κ ∈ Γ(E), we locally write κ = κiei, and the covariant derivative of κ becomes:

Dκ = dκi ⊗ ei + κiDei. (4.7)

Summing up the construction thus far: an east way to relate a covariant derivative given in

(4.2) explicitly to a connection is to pick out a Do. We do that by picking a frame for E (i.e. a

local section σ for the bundle of linear frames over E, L(E)), call it {ei ∈ Γ(E|U), i = 1, ..., k}
and abbreviate it by {ei}. Now we can represent the covariant derivative directly in terms of

this frame.

If E is endowed with further structure, say, an inner product, we usually require the co-

variant derivative to preserve that structure, so that parallel transport is well-defined within

the bundle. Since D preserves the structure of the fiber, it will preserve that structure of the

frame {ei} (e.g. being orthonormal). That means we can write, for X ∈ (TxM),

DXei = ωj
i (X)ej, (4.8)

where ωj
i ∈ Γ(T ∗U) are (matrices of) one-forms. We interpret these matrices of one-forms as

follows: a linear transformation of Ex is an element of End(Ex), and End(Ex) ≃ E∗
x ⊗ Ex, so

we can describe the extent to which the chosen basis is non-parallel along a certain direction

by a 1-form valued on E ⊗ E∗, which we write as:

ω = ωj
i ⊗ ei ⊗ ej. (4.9)

Finally, the covariant derivative of κ becomes:

Dκ = dκj ⊗ ej + κiωj
i ⊗ ej. (4.10)

Note the double role of the frame: we use it to uniquely split D into d + ω, and then we use it

to describe the particular coefficients of the (spin) connection ω.

To define Ω in terms of D, we proceed in the usual way:

Definition 4 (Curvature) Given a covariant derivative D on a vector bundle E, the curva-

ture tensor is the unique multilinear bundle map

Ω : TM ⊗ TM ⊗ E → E : (X, Y, v) 7→ Ω(X, Y )κ
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such that for all X, Y ∈ TM and κ ∈ Γ(E),

Ω(X, Y )κ =
(
DXDY −DYDX −D[X,Y ]

)
κ,

where [·, ·] is the Lie bracket of spacetime vector fields.

We can see the curvature then as an element of Ω : TM ⊗ TM ⊗ End(E), i.e. as a map

valued on the endomorphisms of E (the fiber-linear transformations that are not necessarily

automorphisms). Since End(E) ≃ E∗⊗E, with a frame {ei} for E we could write Ω = Ωi
je

j⊗ei,

where Ωi
j are 2-forms, though we are in no obligation to do that.

4.1.b Principal bundles

In most physical theories, one has many vector bundles: one for each particle type, and thus

many accompanying covariant derivatives. But different particle types are often charged under

the same force, e.g. both electrons and quarks have electric charge. So there must be a sense

in which their covariant derivatives march in step. A natural way to enforce this coincidence

is to have the covariant derivatives of a family of vector bundles all be induced by a single

principal connection. In the words of Jacobs (2023, p. 40):

[I]t is only when we consider more than one field that the principal bundle becomes

relevant. For if distinct matter fields couple to the same Yang-Mills field, it is useful

to represent the latter ‘by itself’ on a principal bundle. The claim that both matter

fields couple to the same Yang-Mills field then translates into the fact that both

vector bundles are associated to the same principal bundle. But it is a problem for

this approach that the two fields survey the same connection as a matter of brute

fact. There really are two connections: one defined over the first associated bundle,

and one defined over the second. These connections are the same only in the sense

that we can represent both with the same connection on a single principal bundle.

Here is how PFBs accomplish this in more detail. Given a PFB (P,M,G), a principal

connection is a Lie-algebra-valued 1-form ϖ : TP → g (see (A.5)).16 Such a connection defines

a horizontal lift of a curve γ ∈ M to a curve γh in P through p ∈ π−1(γ) as the unique curve

going through p such that, along its extension, ϖ(γh) = 0. And given a horizontal lift, it is easy

to define parallel transport in an associated bundle: given v = [p, v] ∈ Ex, where E = P ×ρ V

(see equation A.8), the parallel transport of v over γ is given by [γh, v]. This ensures the

marching in step of all the covariant derivatives that a principal connection on P defines on all

the associated vector bundles.

But we still need to apply this formalism to fields or particle trajectories that traverse

spacetime, and which cannot be embedded in P without some choice or another. The standard

16It is pedagogic to understand the basic ideas for (P,M,G) a bundle of frames (see Appendix), i.e. p ∈ P

is a frame over x = π(p), and the gauge group changes the frame at each point. In this case the horizontal

directions at p can be understood as the infinitesimal parallel transport of that frame to frames over nearby

spacetime points.
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way to obtain a representation of ϖ on a spacetime region is to pick a section of P . I.e. for

U ⊂ M we define:

Definition 5 (Local sections of P ) are maps σ : U → P such that π ◦ σ = id.17

A section functions as a ‘choice of coordinates’ on the principal bundle: a particular coordinate

system that locally trivializes P , i.e. it realises an isomorphisms between π−1(U) and U ×G.

The gauge potential that appears in the A-B effect, A, is a spacetime representation of ϖ

that depends on a choice of σ. I.e.

A = σ∗ϖ. (4.11)

In possession of a section of a principal fiber bundle, we can identify ωi
j appearing in (4.10)

with Ai
j, understood as a connection valued in a representation of the Lie algebra on the vector

space that constitutes the typical fiber of the vector bundle. If the typical fiber is isomorphic

to C (or R), then ωj
i is just a complex (resp. real) number, i.e. it is a complex (or real)-valued

one form, like the vector potential A.

4.2 All we need are vector bundles

After explaining the use of PFBs for coordinating covariant derivatives, Jacobs (ibid. p. 41)

then goes on to discard the approach that he calls ‘deflationary’, in which:

Neither the principal bundle nor the [principal] connection on its own represent

anything physical. Rather, it is the induced connection on the associated bundle

that represents the Yang-Mills field. This approach has difficulties in accounting

for distinct matter fields coupled to the same Yang-Mills field.

The issue, as he sees it, is that

[O]n the deflationary approach there is no independent Yang-Mills field that the

associated bundle connections supervene on. This makes it seem somewhat myste-

rious that these connections are equivalent. The coordination between associated

bundles begs for a ‘common cause’ in the form of an independently existing Yang-

Mills field.18

In Gomes (2024b) I showed that this criticism can be overcome, and the deflationary ap-

proach rehabilitated. The introduction of PFBs is unnecessary if particles that interact are all

sections of the same vector bundles or of tensor products of the same vector bundles. Tensor

products over a vector bundle inherit the same covariant derivatives by construction. In this

case, parallel transport of the vector bundles in question automatically march in step. In this

17In the case of the bundle of frames L(E), a section amounts to a choice of frames {ei}, where ei ∈ E are

linearly independent (and e.g. orthogonal, depending on whether E has further structure).
18Jacobs instead defends the ‘inflationary approach’, which: “reifies not the principal bundle but the so-called

‘bundle of connections’. The inflationary approach is preferable because it can explain the way in which distinct

matter fields couple to the same Yang-Mills field.” As I have argued, it is not preferable in this sense.
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case we have at a hand a natural ‘common cause’ for the coordination of covariant derivatives,

without the introduction of principal bundles. I will here call this the vector bundle point of

view of gauge theory.

In more detail, given two vector bundles, E,E ′, a covariant derivative on E will induce a

covariant derivative on E ′ whenever E ′ is equal to a general tensor product involving E and

its algebraic dual, E∗. In more detail, given E a vector bundle with covariant derivative D,

and E∗ its dual, we define, for sections κ ∈ Γ(E) and ξ ∈ Γ(E∗):

d(⟨ξ, κ⟩)(X) = ⟨∇∗
Xξ, κ⟩+ ⟨ξ,∇Xκ⟩, (4.12)

where here angle brackets represent contraction. The generalisation to arbitrary tensor prod-

ucts is straightforward due to multilinearity.

In this view, there are no ‘gauge groups’; there are only groups of automorphisms of these

vector bundles, Aut(E) ⊂ End(E). The distinction between Abelian and non-Abelian gauge

theories then concerns these automorphisms. In particular, one-dimensional vector bundles—

such as those with typical fiber isomorphic to C—give rise to Abelian groups of automorphisms.

This formulation might seem at first sight insufficient for describing all the myriad gauge

theories used in physics. Indeed some gauge theories, for instance those described by excep-

tional Lie groups, lie outside of the scope of this interpretation. But, as far as the standard

model of particle physics goes, all particles are represented as sections of associated bundles

for principal fiber bundles whose structure groups are SU(n) for some n. But under any given

representation of SU(n), these associated bundles can be alternatively obtained as a tensor

product of a fundamental vector bundle. In cases such as these, a covariant derivative on a

single vector bundle represents one fundamental type of interaction.

This picture omits PFBs as well as spacetime representatives of principal connections.

Gauge bosons, AI
µ, unlike the matter fields represented by fermions, are replaced by objects

that are not sections of vector bundles. Here one should rather think of the physical content

of gauge bosons as structural features representing the geometry that guides the dynamics

of the matter fields. In other words, here it is the geometry of the vector bundle encoded

in the covariant derivative that is primary: (what are usually called) gauge bosons emerge

from particular choices of representation of that covariant derivative, and so involve some

redundancy.

Now we would like to recover the familiar A-B effect from parallel transport around a

loop, and for that we need to make a choice of trivialisation. First, using (4.3) we define an

isomorphism:

PTγ(t) : Ex → Eγ(t)

v 7→ vh(t). (4.13)

Now, in a trivialisation over a subset U ⊂ M , i.e. given a choice of frame {ei}, we use (4.10)

and (4.3) to write for a parallel transported vector:

dvjh ⊗ ej + vihω
j
i ⊗ ej = 0. (4.14)
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We can solve (4.14) to describe the relationship between the initial and final components of

the parallel transported vector by using the path-ordered exponential. That is we obtain vh at

γ(1) = y given its value at γ(0) = x:

vh(y) =

(
P exp

∫ y

x

ω(γ′)

)
vh(x). (4.15)

In the Abelian case, for a closed loop, we get back the total phase shift of the A-B-effect,

given in (2.2). So, in general, we can talk about the total shift in the A-B-effect without the

appearance of gauge dependence; it is nothing but the holonomy operator:

PTγ2◦γ1 ∈ Aut(Ex), (4.16)

(since this map preserves structure, it is an automorphism of Ex).

Of course, in order to extract a scalar value from this operator in the non-Abelian case,

one must apply to it a further scalar-valued operation, such as the trace, which assuming the

typical fiber is endowed with an inner product, ⟨·, ·⟩, can be written explicitly in terms of a

frame as:

Tr(PTγ2◦γ1) =
k∑

i=1

⟨
(
P exp

∫
γ2◦γ1

ω(γ′)

)
ei(x), ei(x)⟩x. (4.17)

This concludes my presentation of the vector bundle point of view as an alternative to the

use of principal and associated bundles.

5 Criticisms

To recap, according to (4.16), we can describe a generalised, classical A-B effect for both

spacetime and internal vectors and tensors. The puzzle posed by the generalised A-B effect

relies on a difference between two situations described by two different covariant derivatives

whose associated curvature is identical (or even identically zero) in the accessible regions.

There are two possible objections to a deflation of the puzzle by the use of the vector

bundle formalism. The first, is that I have not defended the formalism from the same pitfalls

of the holonomy variables; namely, the non-locality and insufficient expressive resources for

formulating the dynamics of the theory. I will discuss this in Section 5.1. The second objection,

dealt with in Section 5.2, is orignal, but one I am preempting. It concerns the redundancy due

to the active interpretation of background automorphisms of the vector bundle.

5.1 Dynamical variables

This paper has focused on kinematics, or the geometry of a family of theories. The core tech-

nical proposal of this paper is that gauge theories should be formulated in terms of families of

four-tuples (Ei,M, Vi,Di), one for each fundamental interaction—e.g., in the Standard Model,

i = 1, 2, 3. Here, M is spacetime, Ei is a vector bundle with typical fibre Vi, and Di is a

covariant derivative acting on sections of Ei. Matter fields charged under the i-th force are
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then represented as sections of Ei or of tensor products thereof. This yields an intrinsically

geometric representation of the matter content of gauge theory. I have avoided important

questions that lie in the transition between kinematics and dynamics, such as that of minimal

coupling, which will not be treated in this paper.

Although the focus was clearly kinematical, unlike more abstract approaches that attempt

to dissolve the A–B puzzle—such as Healey’s holonomy formalism (Healey, 2007)—the vector

bundle formulation still allows us to write down the equations of motion of Yang–Mills theory

in a fully local and geometrically transparent way, using Di. The entire formalism unfolds

within standard differential geometry.

To be precise: in vacuum Yang–Mills theory on a four-dimensional spacetime, the field

equations are usually written as:

∗dD ∗ Ω = 0,

where ∗ is the spacetime Hodge operator Ω is the curvature two-form, and dD is the gauge-

covariant exterior derivative. We need to translate these constructions into ones that make

only reference to the vector bundle.

Here we want a model of the vacuum theory for a single force, to be specified by a four-tuple

(E,M, V,D), with D as the sole dynamical variable. Matter fields, as before, are sections of E

or of tensor products thereof, and thus automatically couple to D in the right way.

With respect to the curvature, Ω, defined in Definition 4, it is an End(E)-valued map,

but this doesn’t present further difficulties. The trace operation is defined as Tr : End(E) →
C∞(M), and so can be included in a Lagrangian definition of the theory. Since End(E) is

closed under composisiton, we can obtain a Lagrangian 4-form for the action:

L = Tr(Ω ∧ ∗Ω). (5.1)

As to the exterior covariant derivative, an E-valued 0-form is just a section of the bundle

E. That is,

Ω0(E) = Γ(E).

Thus the covariant derivative is a linear map D : Ω0(E) → Ω1(E), which can be uniquely

extended to an exterior covariant derivative

dD : Ωr(E) → Ωr+1(E),

defined by the Leibniz rule, which is specified on tensors of the form λ⊗κ and extended linearly:

dD(λ⊗ κ) = dλ⊗ κ+ (−1)rλ ∧Dκ

where λ ∈ Ωr(M).

In any case, we find a formulation of the laws where no gauge potential appears, and no

reference is made to a principal bundle. The structure is local, geometric, and manifestly

coordinate-free.
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5.2 A remaining redundancy?

Let me now pre-empt a worry that makes a fleeting appearance in Healey (2007, Sec. 4.2.2)’s

criticisms of Leeds (1999), concerning the role of active linear automorphisms in the vector

bundle formalism.

As noted earlier, Leeds (1999) articulates a view of gauge theory that shares important

features with the one defended here—what Healey (2007, p. 99) describes as a “hybrid between

a principal fiber bundle and an associated vector bundle”. But Leeds restricts attention to the

Abelian case, and a lack of mathematical precision leads to a fatal equivocation between the

fibres of the principal bundle (isomorphic to U(1)) and those of the associated vector bundle

(isomorphic to C). Healey seizes on this confusion and identifies apparent contradictions, which

he takes as grounds to dismiss Leeds’ approach entirely. Since the publication of (Healey, 2007),

this dismissal has largely gone unchallenged in the literature. For the mathematically rigorous

formulation I have provided here, no such equivocation persists, no contradiction is found, and

so these criticisms lose their bite.

But, more importantly, in the course of formulating his argument, Healey also criticises the

vector bundle formalism for having left the active linear automorphisms as a remaining source

of redundancy. This I must still address. It should be no surprise that I’ll address it by first

noticing that precisely the same worry applies to the case of spacetime tensors.

Recall the familiar distinction in general relativity between passive diffeomorphisms (co-

ordinate changes) and active ones (which relabel points of the manifold). The Levi-Civita

covariant derivative ∇ is not invariant under active diffeomorphisms, but it transforms covari-

antly as an operator—it is a geometric operator. The same holds for the covariant derivative

D in the vector bundle formalism.

In more detail, we can formulate the corresponding active interpretation of gauge trans-

formations by considering two fibre-wise linearly isomorphic vector bundles, E, Ẽ, over M .

Two covariant derivatives in two linearly isomorphic vector bundles are equivalent if they are

related by the conjugation by the linear isomorphism (here a diffeomorphism f : E → Ẽ such

that πE ◦ f = πẼ, where f takes π−1
E (x) → π−1

Ẽ
(x) by a linear isomorphism). This relation

guarantees that the following diagram commutes (for all X ∈ Γ(TM)):

Γ(E)
DX−−→ Γ(E)

f ↓ ↓ f

Γ(Ẽ) −−→
D̃X

Γ(Ẽ)

Thus we can represent the covariant derivative D under a bundle isomorphism obtaining a new

covariant derivative. I.e. for all X ∈ Γ(TM) and κ ∈ Γ(E) :

DX(κ) = f−1D̃X(fκ) ⇒ D̃X = fDXf
−1 (5.2)

The covariant derivative D transforms ‘tensorially’ as a differential operator under automor-

phisms of the bundle (cf. (Palais, n.d., Ch. 2) for a description of local differential operators
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on vector bundles). It is (5.2) that allows us to see the covariant derivative D as geometric.

Nevertheless, we are left with isomorphic representations of a given vector bundle, including

its covariant derivatives. Should these isomorphic representations worry us?

Here, the debate surrounding the “hole argument” in general relativity becomes directly

relevant (see e.g. (Gomes & Butterfield, 2023; Pooley & Read, 2022) for recent reviews). The

issue is whether isomorphic models represent distinct physical possibilities, and the current

framework brings the same philosophical choices into play. One prominent view, often dubbed

“internal sophistication” (see e.g. (Dewar, 2017; Gomes, 2021; Jacobs, 2022, 2023)), holds that

redundancies arising from automorphisms of a fixed background structure do not correspond

to physical differences. This principle applies in the vector bundle formulation of gauge theory

just as it does in the principal bundle formalism or in GR (see Jacobs (2023) for a thorough

defense of sophistication for the principal bundle formulation of gauge theory).

There remains one potential reason to doubt the strength of the analogy between the

Aharonov–Bohm effect in internal vector bundles and in the tangent bundle. In the standard

(classical) A–B setup, the electron’s trajectories are typically treated as fixed. One might then

think that, in the tangent bundle case, the presence of a soldering form fixes the identification

between the fibres and the underlying manifold structure—so that once a curve is specified,

parallel transport and therefore the holonomy are uniquely determined. If so, this would

mark a disanalogy: in the tangent bundle, fixing a curve might eliminate any remaining gauge

redundancy—active or passive—whereas in the internal case, no such identification exists to

play an analogous role.

But this is not so. Even if the curve γ remains fixed, active diffeomorphisms that preserve γ

can act non-trivially on the vectors being transported along it. The holonomy remains sensitive

to such transformations, and the resulting ambiguity mirrors precisely the freedom present in

the internal bundle case.

Formally, consider the parallel transport map (4.13) with E = TM and D → ∇, a space-

time covariant derivative such as the Levi-Civita derivative. Even when d : M → M is a

diffeomorphism that preserves the curve γ, it acts non-trivially on the fibres along γ. For the

covariant derivative still transforms:

∇̃γY = d∗
(
∇γ(d

−1
∗ Y )

)
,

for Y ∈ Γ(TM |γ). This is just the covariance condition (5.2), with diffeomorphisms in place of

bundle automorphisms. Parallel transport also transforms covariantly; for v ∈ TxM :

PTγ(t)(v) = d−1
∗
(
P̃T(d(γ(t))(d∗v)

)
, (5.3)

where P̃T is parallel transport according to ∇̃. Of course, (5.3) can still be non-trivial even

when d(γ(t)) = γ(t).

Thus for both the spacetime tangent and internal bundle cases, parallel transport along a

fixed curve varies under active automorphisms of the fixed background structure. Incidentally,

for one-dimensional vector bundles as in the case of electromagnetism, even though the co-

variant derivative varies as per (5.2), the holonomy itself—whose transformation has the same

25



form as (5.3), but with d(γ(t)) → γ(t),v ∈ Ex and d → f—is already invariant; this is what

we expected from Abelian theories.19

The upshot is this: whatever one’s stance on the hole argument, no one takes it to undermine

the local geometric significance of holonomy in spacetime. Holonomy remains both well-defined

and physically meaningful, despite varying under active diffeomorphisms. Why, then, should

the situation be any different for general internal vector bundles? If there is a principled

disanalogy, it has yet to be demonstrated—and the burden of proof lies squarely with those

who claim it exists.

5.3 The case for the vector bundle point of view

Let me be clear from the start: the vector bundle point of view defended here is not mathemat-

ically superior to any other view of gauge theory, e.g. via principal bundles. At the end of the

day, mathematical equivalence prevails. My clain is that this point of view offers a conceptually

cleaner framework for addressing questions of gauge invariance and locality—not only for the

specific case of the electromagnetic A–B effect, but also for more general Yang-Mills theories.

I judge there to be two core advantages over the familiar principal bundle formulation and

its cousins: (a) covariant derivatives are coordinated across interacting matter fields without

appeal to auxiliary structures other than tensor products; and (b) we obtain an explicitly local,

geometric characterisation of the A–B effect.

5.3.a Coordination

Let us start with (a). Consider the status of D: it is simply a covariant derivative on a vector

bundle—a thoroughly ordinary geometric operator. And yet, in the literature, it is rarely

deployed to clarify conceptual questions about locality and gauge invariance. Why is that?

One main reason is that the PFB approach is considerably more general, i.e. one can

consider associated bundles for a wider variety of Lie groups; there is generally not a one-to-

one correspondence between principal connections and connections on an associated bundle

except in certain special cases which happen to include the standard model. Another likely

reason, as described in Section 4.1.b, is that covariant derivatives on vector bundles are typically

introduced as structures induced by principal connections ϖ on principal fibre bundles. ϖ is

(mistakenly) taken to be more fundamental than any covariant derivative, Di because it appears

necessary to coordinate all the Di across associated bundles. We have already refuted this

reasoning in Section 4.2. But there is another, related reason, that has come up in discussions

of (Gomes, 2024b). It is the assumption that in the absence of matter fields (i.e. sections of

19But one can always extract invariant quantities for the other cases as well: by taking the trace of the

holonomy in both the tangent bundle and the higher dimensional internal vector bundles, as in (4.17). Also

note that we have here considered holonomy around a single closed curve, with PTγ2◦γ1
∈ Aut(Ex). The set

of all such holonomies at a fixed base point x defines a subgroup Hol(x)(D) ⊆ Aut(Ex). On simply connected

regions, Hol(x)(D) is conjugate across base points, so we may refer to the base-point-independent holonomy

group Hol(D). Since isomorphic bundles share holonomy groups, this group is also an invariant.
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Ei), a covariant derivative Di lacks physical meaning, whereas ϖ has no such limitation, since

it lives in a geometric structure that is independent of Ei. Hence, it is thought, any complete

account of the theory—one that includes vacuum configurations—must appeal to the principal

connection ϖ (or its spacetime proxy AI
µ).

But this is no more compelling a reason than claiming that spacetime curvature in general

relativity only acquires significance in the presence of particles. On the contrary, it is standard

practice to describe spacetime geometry using an affine covariant derivative ∇ on TM , irre-

spective of whether matter fields are present to “feel” that affine structure. Likewise, a vector

bundle can be curved even in the absence of any particular sections. As Leeds (1999, p. 612)

puts it:

Notice (here again there is an analogy with the affine connection in spacetime)

the vector potential in any spatial region characterizes the region, and not what

happens to be in the region; [...] So it is thought of as a field, one which, like many

other fields, we describe in terms of what it acts upon. It plays a crucial role in the

dynamics: in the A–B experiment, the phases of the wave at two different points

on either of the paths enclosing the solenoid are related by parallel transport along

that path; it is because of the path dependence of parallel transport that the two

components of the wave acquire a phase difference.

Now, in Section 4.2 I quoted Jacobs (2023) as defending the need for a ‘common cause’

for the parallel transport over different vector bundles. In this regard, his main objection to

the familiar account is that the principal connection inhabits a different space than the vector

bundles: the principal connection is not a ‘matter field’; it is not a section of a vector bundle

like other matter fields. Thus, he introduces into the philosophical literature the bundle of

connections. This is defined in much the same way as the associated bundle is defined from a

vector space and a principal bundle

Here I will proceed for left-invariant vector fields (i.e. those such that Lg∗Z = Z), but the

analogous idea works for pseudo-tensorial forms. Thus

(p, Zp) ∼ (g · p, Lg∗(Zp)), for all g ∈ G. (5.4)

Since locally (i.e. given some trivialization of the tangent bundle) for x = π(p) and ξ ∈ g, we

can represent p = (x, g) := g · σ(x) and Zp = (Xx, ξ) := ξ + σ∗(Xx), where Xx ∈ TxM , we

have, locally, (p, vp) = (x, g,Xx, ξ). If we take the quotient, elements of the new vector bundle

will be locally of the form (x,Xx, ξ), as was to be expected from a Lie-algebra valued 1-form

(or vector field). In other words, if we know what parallel transport is at p, we know what it

is at g · p. By getting rid of this redundancy, we can find a global spacetime representation of

the connection ϖ. This Atyiah-Lie connection is a section on the bundle of connections, i.e.

Υ ∈ Γ(T ∗P/G), where T ∗P/G is a vector bundle over spacetime.20

20See e.g. (Ciambelli & Leigh, 2021, Sec. 3.2); (de León & Zajac, 2020, p.9); (Sardanashvily, 2009, p.60);

27



This construction suffices to have both matter fields and connections defined over the same

space, as vector bundles, and it is an important step forward. However, as argued in (Gomes,

2024b), having a coordinate-independent representation of ϖ on spacetime does not suffice

to give ‘common cause’ for the covariant derivatives Di of the associated vector bundles: one

must still stipulate that Υ induces the connection and curvature on the vector bundles of the

other matter fields. For Υ is still valued on the Lie algebra, and thus requires us to stipulate a

representation so that it can act on matter fields. Of couse, there is no fundamental obstruction

to this stipulation, just as there isn’t one in the textbook account: in the course of writing

the dynamics these representations are posited without second thought. On the other hand,

in the approach defended here, a fundamental vector bundle Ei serves as that common cause,

already at a kinematical or geometrical level, by fixing the relationship between all the induced

covariant derivatives over its tensor products.

5.3.b A local geometric effect

Once one accepts the mistaken view that principal connections ϖ are primary, she risks being

misled about questions of locality—since connections do not transform tensorially.

In more detail, gauge transformations are “vertical” automorphisms acting fibrewise via

group-valued functions g : M → G (see Equation (A.1)). Under such transformations, ϖ

transforms inhomogeneously, as per Equation (A.6). And since horizontal subspaces are defined

by ker(ϖ), these inhomogeneous transformations generally fail to preserve horizontality. This is

what makes a local interpretation of their effects challenging: at a point p ∈ P , any horizontal

subspace can be taken to any other by a suitable gauge transformation; had they been tensorial,

horizontal subspaces would be taken to horizontal subspaces.21

Even sections of the bundle of connections, intended to address the redundancy of the

principal fiber bundle, inherit the same property. Although Υ encodes ϖ without reference to

a local trivialisation, it still transforms inhomogeneously. As Jacobs (2023, p. 40) acknowledges:

Notice that the claim here is not that either a section [of the bundle of connections]

or the connection are invariant under gauge transformations. This is not the case: a

(Kolar et al., 1993, Ch. 17.4) and (Gomes, 2024b; Jacobs, 2023) for conceptual appraisals. The bundle of

connections appeared almost simultaneously in Atiyah (1957) and Kobayaschi (1957). See also (Kolar et al.,

1993, Ch. 17.4). To avoid confusion, it is better to refer to a section of the bundle of connections, which is itself

a generalization of a connection to what are known as Lie algebroids (see Mackenzie (2005)), as an Atiyah-Lie

connection.
21Though this holds for both Equation (A.6) and the version for infinitesimal gauge transformations, ξ :

M → g, given in (A.7), it may be clearest to see in the latter version: take vh ∈ Hp ⊂ TpP such that

π∗(vh) = v ∈ TxM , then we get

(δξ(x)ϖ)(vh) = dξ(v). (5.5)

Or take Equation (A.10): it is still true, and for the same reasons, that, at a point, x ∈ M , any non-vertical

subspace of TE can be horizontal. Of course, the connection represents a ‘correction term’ to the tangent of a

vector field; it is what ensures the covariant derivative and parallel transport regain equivariance; see footnote

25
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gauge transformation changes which direction on the bundle counts as ‘horizontal’.

Similarly, the gauge bosons AI
µ—often taken to be the theory’s dynamical variables—are

not tensorial; they are not like the matter fields. Their transformation properties are also

inhomogeneous, and thus involve derivatives. Extracting what is left invariant under these

transformations requires integrating over extended regions—that is, solving differential equa-

tions. This is what we do in the electromagnetic A-B effect, and it is the source of the concerns

about non-locality.22

So here is the crux of this Section: gauge transformations do not preserve horizontality

because the connection form ϖ—like the gauge potential AI
µ, sections of the bundle of con-

nections Υ, or the Christoffel symbols Γijk—fails to transform tensorially, or more precisely,

equivariantly, under those transformations. This is an obstruction to an interpretation of these

geometrical objects that is local, i.e. infinitesimal, in spacetime. It thus makes sense to take

equivariance under general automorphisms to be the defining property of what I’ll call local

geometric operators ; and ϖ,AI
µ,Υ don’t qualify.23

Alternatively, one might appeal to objects that transform equivariantly but are extended,24

or to objects that are local and geometric but fail to capture the entire gauge-invariant content

of the covariant derivative. These are, respectively, the cases of the holonomy (and, similarly,

of dressed variables), and of the curvature. Yet both come with limitations: the former still

sacrifices (some degree of) locality, while the latter omits global features. Neither fully resolves

the conceptual puzzle posed by the Aharonov–Bohm effect, namely: how can local, i.e. only

infinitesimally extended, interactions produce a globally detectable phase shift in the absence

of local curvature?

By contrast, the covariant derivative D, which can also be defined from a connection on E,

is neither extended in the same sense as the holonomy or dressed variables, nor is it blind to

global structure. It transforms according to the covariant rule given in (5.2), and thus qualifies

as both local and geometric in the relevant sense. For example, given v ∈ TxM , Dvκ = 0 iff,

the transformation under a linear automorphism of the vector bundle, D̃vκ̃ = 0.25

The view defended here is thus that both (a) and (b) are best answered via covariant deriva-

tives on fundamental vector bundles. This dissolves many of the apparent puzzles surrounding

locality and invariance in the generalised, classical Aharonov–Bohm effect.

22And these concerns are borne out also more generally. One way to extract the invariant content from

a given profile of AI
µ over a given region (and not only along a curve) is to construct a ‘dressed observable’

from gauge-fixed variables that depend solely on the gauge potential. And these are invariably non-local. By

contrast, gauge-fixing procedures that rely on tensorial matter fields—such as the unitary gauge described in

Section 2.2—yield observables that are entirely local (see (Gomes, 2025) for a detailed comparison).
23One can, of course, still appeal to metaphysical doctrines—such as sophistication—to dismiss the physical

significance of (the inhomogeneous) redundancy in ϖ (and their descendants). Jacobs (2023) aptly defends

internal sophistication for vertical automorphisms of a principal fiber bundle, but is unclear about whether he

takes parallel transport to encode the dynamical content or Υ (or ϖ).
24See (Butterfield, 2006) for a careful philosophical analysis of different senses of ‘extended’.
25It is, as usual, the presence of the derivative acting on κ, together with the transformation properties of V̂ ,

that ensures the covariant transformation behaviour of D as defined by the connection; see Equation (A.10).
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6 Summary

In light of the classical A-B effect, do we need to revise gauge theory? This is a popular

conclusion.

Let me again be clear that the observable effect as a whole—namely the total phase shift—

causes no trouble for any picture of gauge theory that awards physical significance to those

and only those quantities that are gauge-invariant; the total phase is such a quantity. None

of the revisions aims to challenge the physical significance of the total shift, nor that it is

gauge-invariant. Moreover, all such revisions eschew an action at a distance from the magnetic

fields right from the bat.

The real motivation, the main aim of revision, is to either dismiss or give a plausible account

of the infinitesimal accrual of the total phase shift. Whether an electron gains a phase shift of θ

or θ′ in a proper segment of γ1 or γ2 depends not on the local magnetic field, but on whether we

use A or its gauge-related A′ to describe the effect. How can we understand this indeterminacy

through standard gauge theory, which is usually taken to afford physical significance only to

gauge-invariant quantities?

Some have used the puzzles posed by the effect to defend an alternative set of variables for

the theory (see Healey (2007) and references therein). The ‘holonomy-interpretation’ of gauge

theory, defended most vigorously by Healey (2007), falls under this kind of revision. Here,

there just is no local accrual of the total phase shift; it cannot even be formulated using the

holonomy variables. But this interpretation has many flaws: it is non-local (both synchronically

or diachronically, in the terminology of Belot (1998)), and one cannot write the equations of

motion using the holonomy variables (cf. (Gomes, 2022, Sec. 3.5.2) for a summary of these

and other flaws).

Others have argued that a particular choice of gauge is ontologically preferred, the ‘preferred

gauge’ (cf. (Gao, 2025; Mattingly, 2006; Maudlin, 1998, 2018; Mulder, 2021)). This kind of

revision seeks to maintain locality and give a plausible account of the local accrual of the phase,

in one form or another, arguing that there is a fact of the matter about which member of any

family of gauge-related distributions truly ‘refers’, with others being allowed only by a kind

of empirical underdetermination. Thus Wallace (2014, 2024) defends unitary gauge; Maudlin

(2018) defends Coulomb gauge; Gao (2025); Mattingly (2006); Mulder (2021) defend Lorenz

gauge, etc.26

Here, I align with the first kind of revisionist in rejecting the significance of the local accrual

of the A-B phase and with the second in maintaining locality.27 But I depart from the first

by ensuring my variables can express the dynamics of Yang-Mills theory and the local accrual

of phase—though this accrual vanishes in the A-B effect. And I depart from the second by

foregoing any gauge choice altogether.

To walk that narrow path between the two types of revision, I employed a formalism of

26I count the treatments of Leeds (1999) and Jacobs (2023) to be the closest to my proposal here, though

details differ greatly.
27With the exception of Maudlin (2018).

30



gauge theory that trades the gauge potential (or the principal connection form in a principal

bundle) acting on associated vector bundles for a covariant derivative on a fundamental vector

bundle, with other associated vector bundles built as tensor products. I called this the vector

bundle point of view, and I believe it clarifies certain questions of ontology, such as that of the

‘coordination problem’, as discussed by e.g. Jacobs (2023).

The ontology suggested by this alternative formalism is local, and very similar to that

defended by Leeds (1999). Indeed, it is also similar to the ontology proposed byWallace (2014)’s

intepretation of unitary gauge. Namely, particles have properties represented by vectors in

spaces that are attached to spacetime points, and the gauge potential stands for an infinitesimal

comparison of values of these vectors at neighboring points, a comparison that is geometrically

captured by the covariant derivative D. That is, D determines how elements of Ex are related

to elements of Ex+δx; though D is a legitimate object even in the absence of matter fields

(sections of E), just like the spacetime covariant derivative ∇ is legitimate without there being

matter fields to be acted upon by it.

This is not the only analogy between gauge theory in the vector bundle formalism and

general relativity; they are structurally identical in many respects. In the vector bundle point

of view, it is clear that we should understand the A-B effect precisely as we understand the

disagreement between a spacetime vector at x and its parallel transport around a loop. That

means we cannot infer the total disagreement from the local accrual, or intrinsic local rotation,

for that vanishes under parallel transport. Upon reunion, the two parallel transported vectors

can simply disagree, although neither has locally rotated: this is what happens in the A-B

effect. This conclusion can also be a sticking point for the student of differential geometry, but

it would be a mistake to think it points to a fundamental explanatory gap.

Of course, instead of intrinsic rotation, we can talk about rotation relative to a coordinate

chart, in which case rotation would be encoded by the Christoffel symbols of the covariant

derivative as expressed in that chart. Mutatis mutandis for the gauge case: in our intrinsic

description in terms of a vector bundle and its covariant derivative, D, the dependence on a

choice of gauge only appears if we use A or ω, representatives of D relative to a flat connection

or a local trivialisation of E, respectively. And using A without keeping track of its origin puts

us back under the by now familiar misconceptions surrounding the A-B effect.

The last criticism I fended off in this paper regarded the active automorphisms of the

structures of the theory, as opposed to its passive coordinate changes.28 My defense was

that D is a local geometric operator, i.e. one that transforms equivariantly under the linear

automorphisms of the vector bundle. If a vector field has vanishing covariant derivative at

a point, it will transform to one with the same property under an automorphism. Thus, I

again see no difference between the redundancy due to the automorphisms of a vector bundle

and the one familiar from differential geometry, where the diffeomorphisms of the background

smooth spacetime manifold act non-trivially but equivariantly on tensors. The go-to difference

28This is a criticism that Leeds (1999) leaves unanswered, when he says that his picture (ibid. 613) “traffics

heavily in non-measurable properties and quantities”.
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between the two cases—the ‘soldering’ of spacetime tensors—is not sufficient to eliminate the

‘active’ redundancy in the holonomy of spacetime vectors either. And yet this lack of invariance

doesn’t cast doubt on the idea and significance of non-trivial holonomies for spacetime vectors;

the same goes here.

Lastly, let me be clear: I am saying that the major puzzle at the center of most discussions

of the A-B effect dissolves into familiar concepts from differential geometry, and that this is

most clearly seen in the vector bundle formalism. But I am not saying that the A-B effect has

nothing to teach us beyond the familiar lore of differential geometry. No, the effect still packs

a striking lesson: that, even jointly, the local curvature and topology may fail to determine

the physical content of the local covariant derivative. This idea is encountered in differential

geometry and we should adopt it equally in gauge theory.29 In Abelian gauge theories, this

underdetermination occurs only in non-simply connected regions; in non-Abelian theories, it

occurs without any topological constraints. Thus, rather than dissolving into the familiar lore

of differential geometry, the A-B effect may offer it new insights.
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APPENDIX

A Vector, principal, and associated fiber bundles

Definition 6 (Principal Fiber Bundle) (P,M,G) consists of a smooth manifold P that ad-

mits a smooth free action of a (path-connected, semi-simple) Lie group, G: i.e. there is a map

G × P → P with (g, p) 7→ g · p for some left action · and such that for each p ∈ P , the

isotropy group is the identity (i.e. Gp := {g ∈ G | g · p = p} = {e}). P has a canonical,

differentiable, surjective map, called a projection, under the equivalence relation p ∼ g · p, such
that π : P → P/G ≃ M , where here ≃ stands for a diffeomorphism.

It follows from the definition that π−1(x) = {G · p} for π(p) = x. And so there is a diffeomor-

phism between G and π−1(x), fixed by a choice of p ∈ π−1(x). It also follows (more subtly)

from the definition, that local sections of P exist. Similarly to a section of E, a local section of

P over U ⊂ M is a map, σ : U → P such that π ◦ σ = IdU . Unlike sections of vector bundles,

sections of principal bundles are generally only local.

29Although it is often said that general relativity is a theory about the curvature of spacetime, by which

one means a theory of the Riemann curvature tensor, and this description is mostly accompanied by a pro-

viso regarding different topologies, more careful treatment acknowledge that even that may be insufficient to

determine the full physical content of the theory: this is given by the metric, which recovers the Levi-Civita

covariant derivative.
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The automorphism group of a principal bundle P consists of fibre-preserving diffeomor-

phisms:

τ : P → P such that τ(g · p) = g · τ(p). (A.1)

Gauge transformations are a distinguished subclass: those for which π ◦ τ = π, i.e., “vertical”

automorphisms acting fibrewise via group-valued functions g : M → G.

Given an element ξ of the Lie-algebra g, and the action of G on P , we use the exponential

to find an action of g on P . This defines an embedding of the Lie algebra into the tangent

space at each point, given by the hash operator: ♯p : g → TpP . The image of this embedding

we call the vertical space Vp at a point p ∈ P : it is tangent to the orbits of the group, and is

linearly spanned by vectors of the form

for ξ ∈ g : ξ♯(p) :=
d

dt
|t=0(exp(tξ) · p) ∈ Vp ⊂ TpP. (A.2)

Vector fields of the form ξ♯ for ξ ∈ g are called fundamental vector fields.30

The vertical spaces are defined canonically from the group action, as in (A.2). But we can

define an ‘orthogonal’ projection operator, V̂ such that:

V̂ |V = Id|V , V̂ ◦ V̂ = V̂ , (A.3)

and defining H ⊂ TP as H := ker(V̂ ). It follows that Ĥ = Id− V̂ and so V̂ ◦ Ĥ = Ĥ ◦ V̂ = 0.

Moreover, since π∗ ◦ V̂ = 0 it follows that:

π∗ ◦ Ĥ = π∗. (A.4)

The connection-form should be visualized essentially as the projection onto the vertical

spaces: given some infinitesimal direction, or change of frames, the vertical projection picks

out the part of that change that was due solely to a translation across the group orbit. The only

difference between V̂ and ϖ is that the latter is g-valued, Thus we get it via the isomorphism

between Vp and g (ϖ’s inverse is ♯ : g 7→ V ⊂ TP ). We can define it directly as:

Definition 7 (An principal connection-form) ϖ is defined as a Lie-algebra valued one

form on P , satisfying the following properties:

ϖ(ξ♯) = ξ and Lg
∗ϖ = Adgϖ, (A.5)

where the adjoint representation of G on g is defined as Adgξ = gξg−1, for ξ ∈ g; Lg
∗ is the

pull-back of TP induced by the diffeomorphism g : P → P .

Under the vertical automorphisms, (A.1), ϖ transforms inhomogeneously :

ϖ̃ = (dg)g−1 + gϖg−1, (A.6)

30It is important to note that there are vector fields that are vertical and yet are not fundamental, since they

may depend on x ∈ M (or on the orbit).
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Infinitesimally, i.e. for Lie-algebra-valued spacetime-dependent transformations ξ : M → g,

δξ(x)ϖ = [ϖ, ξ(x)] + dξ(x), (A.7)

where, reinstating the π(p) in place of x, we read the action of the second term on Z ∈ Γ(TP )

as dξ(π(p))(Z) = π∗(Z)[ξ(π(p))], which, in a local trivialisation takes the derivative of the

spacetime function and leaves the Lie-algebra values intact (see (Kobayashi & Nomizu, 1963,

Ch. II) or (Gomes, 2024a, Eq. 3.2.11)).

Now, in possession of an principal connection, we can induce a notion of covariant derivative

on associated vector bundles :

Definition 8 (Associated Vector Bundle) A vector bundle over M with typical fiber V , is

associated to P with structure group G, is defined as:

E = P ×ρ V := P × V/ ∼ where (p, v) ∼ (gp, ρ(g−1)v), (A.8)

where ρ : G → GL(V ) is a representation of G on V .

Given any vector bundle (E,M, V ), the bundle of frames for E, called L(E), is itself a

principal fiber bundle (L(E),M,GL(V )): here elements of π−1(x) are linear frames of Ex, and

G ≃ GL(F ) acts via ρ on the typical fibers. By construction, E ≃ L(E)×ρ V . If V has more

than just the structure of a linear vector space, e.g. if it is endowed with an inner product,

then we have bundle of admissible frames, e.g. orthonormal frames. This is also a principal

fiber bundle, (L′(E),M,G), whose structure group is a proper subgroup of the general linear

group, G ⊂ GL(V ), taken to be the group that preserves the structure of V .

One can get a covariant derivative on an associated vector bundle E from ϖ as follows:

let γ : I → M be a curve tangent to v ∈ TxM , and consider its horizontal lift, γh. Suppose

κ(x) = [p, v]. Then

∇vκ =
d

dt
[γh, v]. (A.9)

Conversely, we can define a horizontal subspace from the covariant derivatives as follows.

For p = e1, ...en ∈ L(E), and for all curves γ ∈ M such that v = γ̇(0) ∈ TxM , with π(p) = x,

let {e1(t), ..., en(t)} be curves in E such that ∇v(ei(t)) = 0. Doing this for each v defines a

horizontal subspace.

Covariant derivative as an operator on TE

Indeed, given any vector bundle, we have a similar definition of covariant derivative that

bypasses the principal bundle formalism, as in (4.2). In other words, following the idea that a

connection should relate elements of neighboring fibers, we label as ‘vertical’ the tangent space

to π−1
E (x), i.e. the tangent space to Ep, seen as a subspace of TE (generated by curves in Ep),

which is also canonical. So here too, a connection is given by a projection operator as in (A.3):

V̂ : TE → TE, onto the vertical subspace, V ⊂ TE. We can then define a covariant derivative
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straightforwardly as follows. Take κ ∈ Γ(E) and a curve γ : I → M tangent to v ∈ TxM .

Then κ|γ is a curve in E, with tangent κ̇. We then define

∇vκ := V̂ (κ̇). (A.10)

It is the extra derivative on κ, jointly with the transformation property of V̂ , that ensures the

transformation property of ∇ is covariant, i.e. given by (5.2).
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