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Abstract

The standard model of particle physics relies heavily on the idea of symmetry.

But recently, a new geometry-first picture has been proposed in which the relevant

symmetries do not appear explicitly (Gomes, 2024). Here, I extend the initial corre-

spondence to include alternative—and more transparent—accounts of spontaneous

symmetry breaking and of the Yukawa coupling. These reformulations allow us

to replace explanations that employ typical particle physics ideas and terminology

with ones that are phrased geometrically, e.g. in terms of vector fields and their

angles.

1 Introduction

Should we value mathematically equivalent formulations of a theory? Feynman (1994, p. 127)

gives the gist of my preferred answer to this question:

Every theoretical physicist who is any good knows six or seven different theoretical

representations for exactly the same physics. He knows that they are all equivalent,

and that nobody is ever going to be able to decide which one is right at that level,

but he keeps them in his head, hoping that they will give him different ideas for

guessing.

And he further reflected on the value of alternative ways of thinking about a theory in his

Nobel Prize Lecture (“The Development of the Space-Time View of QED”, 1965), in which

he discussed his path integral formalism, which was mathematically equivalent to Schwinger’s

earlier approach to quantum field theory:

Theories of the known, which are described by different physical ideas may be equiv-

alent in all their predictions and are hence scientifically indistinguishable. However,

they are not psychologically identical when trying to move from that base into the
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unknown. [. . . ] If every individual student follows the same current fashion in ex-

pressing and thinking about electrodynamics [. . . ], then the variety of hypotheses

being generated . . . is limited.

The subsequent career of Feynman’s path integrals is a testament to the validity of his argu-

ments.

Another classic case further illustrates the point: Minkowski’s 1908 recasting of Einstein’s

special relativity into the language of four-dimensional spacetime geometry. Again, the under-

lying physics was unchanged, but the shift in formulation was decisive for future developments.

Einstein initially dismissed Minkowski’s treatment as “überflüssige Gelehrsamkeit” (superflu-

ous erudition), yet by 1912 he had conceded that only the spacetime formulation revealed the

true essence of the theory.1 What Minkowski introduced was not new predictions but a new

ontology: space and time no longer standing apart, but merged into a single structure. And

it was precisely this geometrical vantage point that enabled the later generalisation to general

relativity (cf. (Stachel, 2002, p. 226)).

In the current paper, I want to provide such an alternative description, though here of

gauge theory, not quantum electrodynamics or special relativity, and of a much more humble

and less radical nature than either Feynman’s or Minkowski’s reformulations. Namely, I want

to provide an alternative formulation of particle theory without the use of symmetry. I will

call this formulation geometry-first.

The knowledgeable reader will be quick to point out that gauge theory is already highly

geometrical: principal fiber bundles and connections are, after all, the stock-in-trade of the

geometer. But the standard formulation also builds symmetry into the foundations, and with

it an ontology that extends beyond the spaces where matter fields actually live, the so-called

principal fiber bundles. By geometry-first I mean a formulation that works directly with those

spaces—the vector bundles of matter fields—and does not rely on principal fiber bundles and

symmetry to get off the ground. I do not claim that this picture is superior in every respect,

or practically advantageous. The aim is more modest: to offer an alternative perspective that

clarifies some features of particle theory while omitting symmetry at the base of the explanatory

chain.

Needless to say, symmetry is the cornerstone of particle physics. Representations of Lie

groups, Casimir invariants, spontaneous symmetry breaking, gauge-fixing: these are the daily

bread of the standard model. (This much will be obvious to anyone familiar with the field,

so I need not belabor the point.) That the associated principal bundles—and with them the

explicit appeal to symmetry at the base of the explanatory chain—might be dispensed with is

therefore anything but trivial.

But recently, a new geometry-first formulation has been proposed in which the symmetries

1In 1912 Einstein wrote to Sommerfeld: “I have come to value greatly the four-dimensional formalism of

Minkowski, which I had previously considered unnecessary erudition. In the meantime, I have also become

convinced that only this formalism brings out the true essence of the theory.” (quoted in (Holton, 1974, p.

263))
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are not postulated and principal fiber bundles are unnecessary (Gomes, 2024, 2025a). In the

alternative formulation, which I called ‘geometry-first’ above, the symmetry groups are only

implicit: they arise as the automorphism groups of vector bundles. The geometry-first formula-

tion is available as an alternative only for gauge groups that are linear, and for representations

that are obtained from the fundamental representation (when it is unique) via tensor and direct

products, symmetrisation, etc. Thus theories whose symmetry groups have no linear represen-

tation (such as infinite simple or torsion groups), or groups that have no unique fundamental

linear representation, such as some exceptional groups, are outside the scope of an equivalent

geometry-first formulation. But even in the cases that admit the two mathematically equiv-

alent formulations, the geometry-first one comes with a significantly different ontology: for

the standard model of particle physics, it consists of three fundamental vector bundles over

spacetime where the various matter fields reside (as sections of tensor products). There is no

need for a separate space to encode the principal connections.

Change the formulation, and the explanations change with it. Three examples illustrate

how features of particle physics acquire alternative interpretations. First, in a non-Abelian

vacuum Yang–Mills theory with Lie group G, the fundamental dynamical object is no longer a

connection ω on a G-principal fiber bundle (or its spacetime representative AI
µ), but rather the

covariant derivative Dµ on a vector bundle whose automorphism group corresponds to G—and

this remains true even if no vector fields on that bundle are present to be covariantly differen-

tiated. Second, once symmetry groups drop out of the base level of the explanatory chain, the

very notion of ‘symmetry-breaking’ must be reinterpreted. Third, in this formulation, vector

bosons AI
µ appear only as coordinate-dependent representations of the covariant derivatives of

the fundamental bundles. They are not on the same footing as other particle fields, and it

becomes unclear how they could ‘acquire mass’ through symmetry-breaking. The alternative

explanation of the first feature was developed in Gomes (2024); here I will concentrate on the

latter two.

A further case in point concerns the Yukawa couplings. In the standard formulation, Yukawa

terms are scalars formed from sections of different associated bundles, which requires the intro-

duction of explicit maps or ‘bridges’ between those bundles. By contrast, in the geometry-first

formulation, the fundamental objects are vector bundles themselves, with different particles

emerging from the corresponding tensor bundles. Scalars then arise naturally by combining

inner products and contractions between vectors and their duals.

Here is how I will proceed: in Section 2 I will introduce both the familiar picture of principal

and associated bundles and the alternative, vector bundle point of view, which I referred to as

‘the geometry-first formulation’ above. In section 3 I will provide the alternative explanations

for the Higgs mechanism, and in Section 4, I will not attempt a full reformulation of the

Yukawa mechanism, but will argue that its interpretation is more transparent in the geometry-

first formulation. Finally, in Section 5 I will conclude with some methodological morals.
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2 Symmetry-first and geometry-first formulations of gauge theory

Here I will give brief overviews of both the familiar, symmetry-first, and of the less familiar,

geometry-first formulations of gauge theory. I will start with the more familiar and then

introduce the novel.

2.1 Gauge theory and principal fiber bundles: the symmetry-first formulation

In short, the symmetry-first formulation of gauge theory is the familiar one, in which the

symmetry group in question—one per fundamental interaction—is fixed as the structure group

of a principal fiber bundle. Connections of this principal fiber bundle then play the role of

vector bosons of the theory: they are the ‘force-carriers’. Each classical configuration for each

type of matter particle that interacts with each force is given as a section of an associated

vector bundles, i.e. associated with the principal bundle whose group encodes that force.

The connection of the principal fiber bundle determines parallel transport in each of the

associated vector bundles. The fact that it is the very same connection responsible for parallel

transport on all the vector bundles (associated to the corresponding principal bundle) ensures

that different matter fields that are charged under the same fundamental force march in step

under parallel transport. In other words, this fact ensures such charged matter fields probe the

same distributions of electroweak and strong forces. In this view, associated vector bundles

are separate entities, but they are connected by the principal fiber bundle, which ‘coordinates’

them (see (Weatherall, 2016) and Figure 1). The fact that the structure group is postulated

first, and that it plays such a pivotal role, is what makes this a ‘symmetry-first’ formulation.

I call this the principal bundle point of view on gauge theory (PFB-POV). (To make this a

relatively self-contained paper, I provide more mathematical details in Appendix A.)

It will prove useful to know that, given any vector bundle (E,M, V ) (see Definition 4

in Appendix A), the bundle of frames for E, called L(E), is itself a principal fiber bundle

(L(E),M,GL(V )): here elements of π−1(x) are linear frames of Ex, and G ≃ GL(F ) acts via

ρ on the typical fibers. By construction, E ≃ L(E) ×ρ V . Now, for G′ ⊂ G ≃ GL(V ) we can

partition the points of each orbit in P , Op := Gp, into orbits of G′. Each such choice gives

a principal bundle with group G′ and it induces further structure on the associated vector

bundle, e.g. an inner product, by selecting which frames are considered orthonormal. This is

also a principal fiber bundle, (L′(E),M,G′), whose structure group is a proper subgroup of

the general linear group, G′ ⊂ GL(V ), taken to be the group that preserves the structure of

V . This is called the bundle of admissible frames, e.g. of orthonormal frames. Conversely, if

V has more than just the structure of a linear vector space, e.g. if it is endowed with an inner

product, it will induce a subgroup G′ ⊂ GL(V ) on P that respects that structure.

An important question is whether different vector bundles with the same typical fiber and

associated to the same principal bundle P are canonically related. Thus suppose we are given:

E1 = P ×ρ1 V, E2 = P ×ρ2 V (2.1)
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Ei := P ×ρi Vi, ,∇i

P (M,G, ω)
...

Ej := P ×ρj Vj, ,∇j

ρi

ρj

Figure 1: The principal G-bundle , with structure group G, over the manifold M , with a prin-

cipal connection ω (a g-valued one-form on P ), abbreviated by P (M,G, ω), and its associated

vector bundles Ei := P ×ρi Vi, where ρi : G → Vi is a representation of the Lie group onto

the vector space representing the typical fiber, Vi which is linearly isomorphic to π−1
i (x), for

x ∈ M and πi : E → M the projection of the vector bundle onto its base space (spacetime).

The covariant derivatives ∇i are the ones induced by ω, as per Equation (A.6). See Appendix

A for more details.

Given a local section of P , i.e. for U ⊂ M a map σU : U → P such that π(σ(x)) = x, for all

x ∈ U (see Appendix A), we can write, for ξ1 a local section of E1:

ξ1(x) = [σ(x), v(x)]1, v : U → V. (2.2)

Then the obvious map to consider is:2

T : E1 → E2

[σ(x), v(x)]1 7→ [σ(x), v(x)]2. (2.3)

So the map acts as the identity on both entries.

But on the right-hand side the representation under which we take equivalence classes, ∼2

and not ∼1, is different. So is this map well-defined for arbitrary representations ρ1, ρ2? The

map should be invariant under gauge transformations (cf. Eq (A.5)) on both the domain and

image. So consider a different representative of the equivalence class on the domain; according

to (2.3) we must have:

[g(x) · σ(x), ρ1(g−1(x))v(x)]1 7→ [g(x) · σ(x), ρ1(g−1(x))v(x)]2 (2.4)

for any g : U → G. But on E2, we have the representation ρ2, and so we must have (omitting

dependence on x ∈M for clarity):

(σ, v) ∼1 (g · σ, ρ−1
1 (g)v) ∼2 (σ, ρ2(g)ρ

−1
1 (g)v) ̸∼2 (σ, v). (2.5)

Where the last inequivalence holds iff ρ1 ̸= ρ2. Thus we find that for the map (2.3) to be

well-defined, we must have ρ1 = ρ2.

2I thank Jim Weatherall for suggesting this.
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Indeed, in physics, we are often faced with situations in which E1 and E2 have the same

typical fiber, are associated to the same group, and yet have different representations. A simple

example is when one of the representations is the trivial, or singleton, one, and the other is

the fundamental (or any other).3 This occurs many times in the standard model: for fermions

to acquire mass, one must relate sections of bundles that have different representations, since

they represent different particles (see Section 4).

We will see how this issue can arise in practice, and how both the symmetry-first and the

geometry-first formulations deal with it in Section 4.

2.2 Gauge theory and vector bundles: the geometry-first formulation

The geometric perspective I want to develop aims to dispense with the principal fiber bundle

altogether. In this Section I set out a formulation of gauge theory that proceeds without gauge

potentials, principal bundles, or explicit appeal to gauge symmetries. On this approach, the

gauge potential is nothing but a coordinate expression of an affine covariant derivative on a

vector bundle—just as Christoffel symbols are the coordinate expressions of the Levi-Civita

connection in differential geometry.

The analogy with spacetime clarifies what is at stake. Consider (M, g,Oi), where (M, g)

is a smooth Lorentzian manifold and the Oi are various tensor fields on M , i.e. objects living

in spaces constructed from the tangent bundle TM . The automorphism group of a typical

fiber TxM is O(3, 1) (or SO(3, 1) if orientation is treated as background structure). This group

becomes explicit once we introduce orthonormal frames. Yet much can be said about the Oi in

a purely geometric, frame-independent manner, without any reference to SO(3, 1). If instead

we were to posit a different group acting on TM—say O(2)—a geometrical rationale would

be required to justify that choice. In gauge theory, by contrast, an analogous “frame-free”

formulation for the behavior of matter remains largely undeveloped (cf. (Weatherall, 2016)),

and the very idea of a geometric interpretation of the groups and their representations—for

example, the adjoint action of SU(2) on C3—is seldom raised.4

Now, to connect the vector bundle point of view (which is a geometry-first formulation) to

the symmetry-first formulation provided by the principal bundle, let me recall that (P,M,G, ω)

are used for coordinating covariant derivatives. But what is the physical status of these objects?

3A slightly more sophisticated example is as follows. Let G = U(1), V = Ck, and ρi = ni, which acts as

eini1 on Ck. Then for ni ̸= nj for i ̸= j the map (2.3) is not well-defined, as can easily be verified.
4Here is a more complete example: given Cn and U(m), we can examine two cases. If m ≥ n, there

exists a faithful representation, given by the block-diagonal inclusion. If m < n, there still exist non-trivial

(though not faithful) representations. For m = 1, the determinant map det : U(n) → U(1) yields a non-trivial

one-dimensional representation. For general m, one may take symmetric or exterior powers of the defining

representation of U(n) on Cn, or tensor products of these, and then project onto an m-dimensional invariant

subspace. The point here is that these representations would require, from the geometry-first perspective, a

geometric justification: e.g. how do we geometrically interpret the subspace corresponding to the block-diagonal

inclusion, or even the determinant map; how do we choose the m-dimensional invariant subspace onto which

to project; etc.
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Jacobs (2023, p. 41) convincingly argues they don’t have one; he concludes:

Neither the principal bundle nor the [principal] connection on its own represent any-

thing physical. Rather, it is the induced connection on the associated bundle that

represents the Yang-Mills field. [But] This approach has difficulties in accounting

for distinct matter fields coupled to the same Yang-Mills field.

The issue, as he sees it, is that

there is no independent Yang-Mills field that the associated bundle connections

supervene on. This makes it seem somewhat mysterious that these connections

are equivalent. The coordination between associated bundles begs for a ‘common

cause’ in the form of an independently existing Yang-Mills field.

I agree with Jacobs that this is an issue and in (Gomes, 2024) I showed that it can be

overcome. The introduction of PFBs is unnecessary if particles that interact are all sections of

the same vector bundles or of tensor products of the same vector bundles. Tensor products over

a vector bundle inherit the same covariant derivatives by construction. In this case, parallel

transport of the vector bundles in question automatically march in step. In this case we have

at a hand a natural ‘common cause’ for the coordination of covariant derivatives, without the

introduction of principal bundles. I will here call this the vector bundle point of view of gauge

theory (VB-POV).

In more detail, given two vector bundles, E,E ′, a covariant derivative on E will induce a

covariant derivative on E ′ whenever E ′ is equal to a general tensor product involving E and

its algebraic dual, E∗. In more detail, given E a vector bundle with covariant derivative D,

and E∗ its dual, we define, for sections κ ∈ Γ(E) and ξ ∈ Γ(E∗):

d(⟨ξ, κ⟩)(X) = ⟨∇∗
Xξ, κ⟩+ ⟨ξ,∇Xκ⟩, (2.6)

where here angle brackets represent contraction. The generalisation to arbitrary tensor prod-

ucts is straightforward due to multilinearity.

On this view, there are no “gauge groups” at all—only groups of automorphisms of vector

bundles, Aut(E) ⊂ End(E). The familiar distinction between Abelian and non-Abelian theories

is then simply a distinction between different kinds of automorphism groups. In particular,

one-dimensional vector bundles, whose typical fiber is isomorphic to C, generate Abelian au-

tomorphism groups.

This vantage point also reframes the earlier question of whether there exist canonical maps

between distinct vector bundles. In the PFB-POV, the natural candidate (equation (2.3)) is

well-defined only within the same representation. Matters look different here. We assume that

all vector bundles charged under a given force descend from a single “fundamental” bundle,

En, whose typical fiber is Cn equipped with inner product and orientation. Different associated

bundles then appear not as unrelated objects in need of ad hoc identifications, but as system-

atic constructions from En. Their relations are fully accounted for by the usual functorial
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machinery: tensor products, (anti)symmetrization, dualization, projections into tensor factors,

contractions, interior products, inner products, and so on. There is thus no mystery about how

these bundles fit together—the geometry itself provides the correspondences. For instance, to

contract an element of En with one of En∗ ∧En∗ ⊗En, we can use the interior product, which

generally is a map:

ι : En ⊗ Λm(En∗) → Λm−1(En∗)

(ξ,Ω) 7→ ιξΩ, (2.7)

where Λ is the anti-symmetric product, with Ω ∈ Λm(En∗), and, for anym−1-tuple (ξ1, · · · , ξm−1)

gives

ιξΩ(ξ1, · · · , ξm−1) = Ω(ξ, ξ1, · · · , ξm), (2.8)

etc. Similarly, we could use the inner product to map between En and En∗, and so on.

One might object that a parallel, representation-theoretic argument for associated vector

bundles could be mounted, mirroring the geometric one I have just given. That may well be

true—but it is beside the point. Even if such arguments exist (and I have not found or worked

one out), the virtue of the geometric route is that it speaks directly to a community trained in

geometry rather than in group and representation theory. The mere availability of a geometric

formulation that sidesteps representation theory is already a win. My aim, after all, is to

broaden the borders of the subject, making it accessible to different habits of thought.

Still, at first pass the VB-POV may seem too narrow to capture the full menagerie of gauge

theories employed in physics. Some theories—those built from the exceptional Lie groups,

for example—fall outside its reach. And even when a gauge group G is given, it is often a

nontrivial matter to “reverse-engineer” a vector space structure for which Aut(Ex) ≃ G. How,

for instance, does one coax U(1) out of a space whose typical fiber is Cn with n ̸= 1?5

For all that, the standard model of particle physics fits neatly within this framework.

Every particle field is a section of an associated bundle for some principal fiber bundle whose

structure group is SU(n) or U(n) for appropriate n. Moreover, under any representation of

U(n), the corresponding associated bundles can just as well be constructed by geometric means

from the fundamental vector bundle—via tensor and exterior products, (anti)symmetrization,

determinants, and the like. In such cases, a covariant derivative on a single vector bundle

suffices to encode one fundamental interaction, while the various particle fields appear as

sections of the appropriate derived bundles (e.g. tensor products).

Having surveyed both approaches to gauge theory—the symmetry-first PFB-POV and the

geometry-first VB-POV—I now turn to the Higgs mechanism. My aim is to present it from

within the VB-POV, while relegating to Appendix B a sketch of the more familiar PFB-POV

treatment, which can be found in any standard textbook.

5The Peter–Weyl theorem guarantees that U(n) admits nontrivial representations on Cm, but extracting from

this a natural structure on Cm that renders the action geometrically meaningful is anything but straightforward.
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3 The Higgs mechanism in the geometry-first formulation

The proof, they say, is in the eating of the pudding. So here, to prove that the geometry-

first perspective embodied by the VB-POV is sufficiently different to the PFB-POV to merit

attention, I will provide a stand-alone derivation of the Higgs mechanism.

In the standard presentation, the Higgs mechanism is often described in terms of sponta-

neous symmetry breaking, and one must employ Goldstone’s theorem, gauge fixing (e.g. unitary

gauge), etc. I give a brief overview of that presentation in Appendix B. Here I will outline an

alternative approach, phrased purely in the geometric language of vector bundles, which makes

the essential structure transparent without appeal to symmetry-breaking jargon.

3.1 The non-linearised Higgs field

Let (En,M,Cn, ⟨·, ·⟩n,∇n) be a Hermitian vector bundle over a manifold M , with fibers En
x ≃

C
n and ⟨·, ·⟩n an inner product on En, which is compatible with ∇n, the covariant derivative on

En. We will omit the subscript when it is understood from context, as it will be in this Section,

so for now we take φ ∈ Γ(E) (the generalisation to φ ∈ Γ(Ei ⊗ · · ·Ej) is straightforward, as

we will see). So φ is a vector-valued spacetime scalar field, satisfying

min
x∈M

∥φ(x)∥ = v′, (3.1)

for some constant v′ > 0. We write ∥φ(x)∥ = (∆+v′), for ∆ ∈ C∞
+ (M) (the positive real-valued

smooth scalar functions on M), and get

φ(x) = ∥φ(x)∥e0 = (∆(x) + v′)e0, (3.2)

where e0 =
φ

∥φ∥ is a unit section, well-defined since ∥φ∥ > v′ > 0, and ⟨e0, e0⟩ = 1.

The potential term in the Lagrangian—the Higgs potential, V (φ)—is assumed to enforce

such a nonzero minimum, but it need not coincide with v′: we call v the minimum of the

potential. Our focus will be on the kinetic term. Note that:

∇⟨e0, e0⟩ = 2Re ⟨e0,∇e0⟩ = 0, and ∇v′ = 0, (3.3)

where Re takes the real component. Using (3.2) and (3.3) the kinetic term reads

⟨∇φ,∇φ⟩ = ∥∇φ∥2 = (∂∆)2 + (∆ + v′)2⟨∇e0,∇e0⟩, (3.4)

where ∂ is the exterior derivative acting on scalars; i.e. it is the gradient.

When we introduce a connection, it will clearly appear quadratically in the term v′2⟨∇e0,∇e0⟩
(see Equation 3.6 below). But of course, ∇e0 won’t contain all the information in ∇. The part

of ∇ that doesn’t appear in the kinetic term will thus remain ‘massless’. This geometric pre-

sentation of the Higgs mechanism makes the key features clear: the scalar vev picks out a

direction in the bundle, and vector bosons associated with directions orthogonal to it acquire

mass. Since we have expressed everything in terms of abstract index notation, with vector and
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tensor fields, it is hard to see how one could ‘break the symmetry’. Indeed, the mass terms for

the gauge potentials will arise out of a combination of ve0 and the gauge potentials, and these

are perfectly gauge-covariant.

Moreover, it is important to note that this is a geometric characterization that can be stated

outside of the linearised regime. In this remarkably simple derivation, we are already able to

glimpse all the general features of the mechanism. Again, no mention of stabilisers, gauge

orbits, gauge-fixing, etc, was made, as they would have in order to reach a similar point in the

standard or familiar derivation (see (Hamilton, 2017, Ch. 8.1) for a comparison). For instance,

the fact that perturbations of the Higgs field are orthogonal to the orbits of the vacuum is

replaced by the orthogonality relation, (3.3), and so on. This concludes the non-perturbative

account of the ‘mass acquisition’ mechanism.6

3.2 Mass Generation in the Linearised Theory

Introduce a connection ∇ = d+ω such that de0 = 0 and ω ∈ Γ(T ∗M⊗End(E)), where End(E)

are the linear endomorphisms of E; so for ξ ∈ Γ(E), we have ω · ξ ∈ Γ(T ∗M ⊗ E). Defining

v′ − v =: c, for v a spacetime-independent (i.e. ‘translation-invariant’) minimum of the Higgs

potential, we rewrite (3.2) as

φ(x) = (H(x) + v)e0, (3.5)

where H(x) = ∆(x)+c. If we assume that c and ∆ are of the same order, since c = (v′−v) < 0

and ∆(x) > 0, H(x) can be both positive or negative, i.e. H ∈ C∞(M).7 Then from (3.4)

∥∇φ∥2 = (∂H)2 + (H2 + 2Hv + v2) ∥ω · e0∥2, (3.6)

where, as usual, the norm of a tensor product factorises linearly, i.e. for each basis element

λ⊗ ξ ∈ Γ(T ∗M ⊗ E), we have:

∥λ⊗ ξ∥ := ∥λ∥M∥ξ∥E. (3.7)

But to unclutter notation I will omit the subscripts when understood from context.

6This entire paper concerns the classical domain, and so one may reasonably argue that these symmetry

concepts—such as gauge-fixing—may be required when we introduce quantum mechanics. Here is how far my

concession would go: in a sum over configurations, we use e0 as the anchor, or ‘representational scheme’ across

physical possibilities; cf; (Gomes, 2025b; Kabel et al., 2025). And indeed, representational schemes can be

compared to gauge-fixings (cf. (Gomes, 2025b, Sec. 3.3)). A translation of this idea to the guage terminology

would go as follows: consider Γ(E2), and its sector of nowhere vanishing elements, Γ0(E
2). Let φ,φ′ ∈ Γ0(E

2).

The group Aut(E2) acts transitively on the unit normal sections: it can take any internal direction into any

other. Therefore, we could, by a suitable gauge transformation on φ, make it collinear with φ′. Once they are

collinear, it is a trivial matter to separate out the part that has a given norm from the rest.
7We could of course have started directly from (3.5), by again assuming that: (i) the potential depended only

on the norm of the Higgs field; (ii) that the minimum of the potential was non-zero and spacetime independent;

and (iii) that the norm of the Higgs field did not deviate too much from this minimum, in particular, that it

was also non-zero everywhere. I find the order of assumptions made in my presentation clearer, because they

can be easily stated outside the linearised regime.

10



Further assuming that O(H) = O(ω) = ε,8 yields

∥∇φ∥2 = (∂H)2 + v2∥ω · e0∥2 +O(ε3). (3.8)

Here we see clearly how the quadratic terms in the connection ω would correspond to vector

bosons ‘acquiring masses’; again, without invoking unitary gauge or Goldstone’s theorem.

But as I said, not all components of ω contribute to ∥ω · e0∥2 in (3.8). In a basis {eI}
adapted to e0, we have

∇eI = ωJ
I eJ , and so ∇e0 = ωi

0ei, with i ̸= 0, (3.9)

from the anti-symmetry of the connection. Then

∥∇φ∥2 = (∂H)2 + v2
∑
i ̸=0

(ωi
0)

2 +O(ε3). (3.10)

Hence, only those components of ω that move e0 (onto the orthogonal directions) ‘acquire

mass’. The components that preserve e0, e.g. ωi
j, i ̸= j, remain massless. In the group-

theoretic language, these would correspond precisely to the stabiliser subgroup of e0.

This concludes the geometric derivation of the Higgs mechanism. Let us now see how it re-

produces standard results from the familiar or standard approach to gauge theory. The missing

ingredient for the comparison is to write the connection ω in terms of preferred representations

of the Lie algebras in question. I will start by providing an example (that is indeed isomorphic

to su(2)) before showing how the usual endpoint of the Higgs mechanism for gauge bosons is

entirely recovered.

3.2.a Example: so(3) ≃ su(2)

A general so(3) connection has the form

ω =


0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0

 . (3.11)

If the Higgs unit vector is e0 = (1, 0, 0)T (where T here is the transpose, and it allows us to

write column-vectors in-line!), then

ω · e0 =


0

ωz

−ωy

 . (3.12)

Thus, we would get:

∥∇φ∥2 = v2(ω2
y + ω2

z). (3.13)

So ωy and ωz would ‘acquire mass’, while ωx would remain ‘massless’.

8In the comparative sense: that |H|
v ∼ ε << 1, and mutatis mutandis for the appropriate norm on ω.
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3.2.b Electroweak Example: SU(2)× U(1)

The covariant derivative on an element v ⊗w ∈ V ⊗W is given by

∇(v ⊗w) = (∇V v)⊗w + v ⊗∇Ww, (3.14)

where ∇V ,∇W are covariant derivatives on V,W , respectively.

For the electroweak theory, let e0 = e20 ⊗ e10 ∈ Γ(E2 ⊗ E1) with e20 = (0, 1), e10 = 1. And so

we get:

∇e0 = ω · e20 + e20Z = (ω + iZ1)e20, (3.15)

where ω is the connection for the covariant derivative on C2 and Z is the connection on C. To

complete the comparison with the standard formalism, we choose the weak-isospin eigenbasis,

on which the third generator of the su(2) algebra, T3, is diagonal. Omitting the coupling

constants for brevity, we can write ω as:9

ω =

 iW3 iW1 −W2

iW1 +W2 −iW3

 , and iZ1 =

iZ 0

0 iZ

 . (3.16)

Applying this to e20 in (3.15) gives

∇e0 =

 iW1 −W2

−iW3 + iZ

 . (3.17)

Hence the corresponding quadratic term appearing in (3.8) is

∥∇e0∥2 = W 2
1 +W 2

2 + (Z −W3)
2. (3.18)

Thus W1,W2 and the combination Z − W3 acquire mass, while Z + W3 remains massless.

The latter is identified with the photon. Of course, had we chosen a different form for e20, we

would have obtained different combination of massive and massless bosons. For instance, for

e20 = (1, 0) it is easy to see that it would have been Z +W3 that would acquire mass, while

Z −W3 would remain massless.

4 The Yukawa mechanism

Whereas the Higgs mechanism is used to ‘endow mass’ to the gauge potentials, the Yukawa

form is used to endow mass to the matter fields—here we needn’t use scare-quotes!

In the Standard Model fermion masses cannot be introduced as they can for real or complex-

valued scalar fields. First of all, a Dirac mass term must couple left- and right-handed chiral

9Note that this is not the ω written in terms of the spin coefficients, i.e. in terms of an orthonormal frame

that includes e0. That could also be done, and indeed it was done in the previous example so(3) ≃ su(2), with

an orthonormal frame (0, 1), (0, i), (1, 0), (i, 0), for the inner product Re⟨·, ·⟩, which is effectively what appears

in Lagrangians, due to the use of the complex conjugate terms, cf. (Hamilton, 2017, Ch. 8). Here we are

attempting to make contact with the standard notation and formalism and so are using its conventions.
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fermions; moreover, the two chiralities are mapped into internal spaces that transform differ-

ently under the gauge group G = SU(3) × SU(2) × U(1), so coupling them would violate

gauge invariance: this is related to the issue we saw in Section 2 about canonical isomorphisms

between associated vector bundles with different representations. The solution is to introduce

the Higgs field ϕ, in such a way that gauge invariance is preserved, while the fermions acquire

effective masses. This is the Yukawa mechanism.

Here I will essentially follow the treatment given in (Hamilton, 2017, Ch. 8), whose notation

and general approach is already much closer to the geometric approach that I’m pursuing here

(as compared to the treatment of more familiar textbooks, for instance, the one given in

(Weinberg, 2005, Ch. 21), which uses representation theory more heavily). So I will call

the treatment to be followed here ‘the standard’ treatment of the Yukawa mechanism. In

Section 4.1 I will describe the obstruction to the formulation of mass terms for fermions, and

its resolution in this, geometric-friendly but still ‘standard’, exposition. Then in Section 4.2 I

will discuss what I think is explanatorily unsatisfactory about this resolution, and say why I

take the VB-POV to provide a more transparent explanation.

4.1 The ‘standard’ presentation of the Yukawa mechanism

In more detail, here is the obstruction to the formulation of mass terms for fermions. Fermions

are spinors, but for Weyl spinors, the inner product is anti-diagonal in the left and right basis:

ψRψR = 0, and so, in order to extract mass terms we must couple left to right-handed spinors:

ψRψL. Thus, if both ψL and ψR are valued in the same internal space, i.e. in the same vector

bundle, and are in the same representation, one may add mass terms of the form:

Lmass = −mψψ = −mRe(ψLψR) (4.1)

and this will be gauge invariant since ψL and ψR transform in the same representation of the

gauge group. I.e. locally, ψL ∈ Γ(SL ⊗ E), where (E,M, V ) is the vector bundle with the

representation space V of the gauge group in question, and SL is the bundle of left-handed

spinors over spacetime, whose typical fiber space is called ∆L (mutatis mutandis for right-

handed spinors).

In the Standard Model, however, fermions are both twisted and chiral: left- and right-

handed components transform in inequivalent representations of the gauge group. For instance,

eL ∈ (1,2,−1), eR ∈ (1,1,−2).

These internal vector bundles are representationally inequivalent; e.g. ψL ∈ Γ(SL ⊗ EL) and

ψR ∈ Γ(SR ⊗ER), with different representation spaces, VL ̸≃ VR. Thus a bilinear such as eLeR

is not gauge-invariant, and a bare mass term as in (4.1) is forbidden. (Table 1, reproduced from

(Hamilton, 2017, Table 8.2), shows the representations of SU(2)L×U(1)Y for the fermions and

the Higgs in the standard model.)

Moreover, for VR, VL irreducible, unitary, non-isomorphic representations of G, mass pair-

ings, defined as G-invariant maps, κ : VL × VR → C, complex antilinear in the first variable

13



Sector SU(2)L × U(1)Y

rep.

Basis

vectors

Particle T3 Y Q

QL C
2⊗C1/3

( 1
0 ) uL +1

2
+1

3
+2

3

( 0
1 ) dL −1

2
+1

3
−1

3

QR

C⊗C4/3 1 uR 0 +4
3

+2
3

C⊗C−2/3 1 dR 0 −2
3

−1
3

LL C
2⊗C−1

( 1
0 ) νeL +1

2
−1 0

( 0
1 ) eL −1

2
−1 −1

LR C⊗C−2 1 eR 0 −2 −1

Higgs φ C
2⊗C1

( 1
0 ) φ+ +1

2
+1 +1

( 0
1 ) φ0 −1

2
+1 0

Higgs⊥ φc C
2⊗C−1

( 1
0 ) φ 0 +1

2
−1 0

( 0
1 ) -φ+ −1

2
−1 −1

Table 1: First-generation fermion representations under SU(2)L × U(1)Y , together with the

Higgs doublet and its conjugate. Here boldface on the quarks means each such term is a vector

in C
3. (φ0, φ+) as well as the left-handed particles are doublets: they can be rotated into

each other by an SU(2) transformation. Y is the hypercharge, and T3 is weak isospin. Here

Q = T3 +
1
2
Y .

and complex linear in the second (so that they form mass terms), are necessarily trivial (see

(Hamilton, 2017, Theorem 7.6.11)).

The remedy is a Yukawa form, defined as follows. Let VL, VR,W be representation spaces

for G = SU(3)× SU(2)× U(1)Y . A Yukawa form is a G-invariant trilinear map

τ : VL ⊗W ⊗ VR −→ C,

antilinear in VL, real linear in W , linear in VR. What to these maps look like, more precisely?

Let us look at an example. Consider the SU(2)× U(1) representations for the leptons (taken

from Table 1):

VL = C
2 ρL= 2−1, (4.2)

VR = C
ρR= 1−2, (4.3)

W = C
2 ρW= 21. (4.4)

Then, for lL : U → VL, ϕ : U → W, lR : U → VR, it is standard to define the Yukawa form as:

τ : VL ×W × VR −→ C, (4.5)

(lL, ϕ, lR) 7−→ l†Lϕ lR, (4.6)
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which is SU(2)× U(1) invariant by construction.

This is still a map on vector spaces and we must invariantly extend it to sections of associ-

ated vector bundles, but this is easy to do. Given a section σ(x) of an SU(2)×U(1) principal

bundle, we can use the local maps lL : U → VL, φ : U → W, lR : U → VR above to form

sections of the corresponding vector bundles, eL ∈ Γ(SL⊗EL), φ ∈ Γ(F ), eR ∈ Γ(SR⊗ER). For

instance, a left-handed quark (I will have more to say about the ‘up’ and ‘down’ components

of this particle in a second) would be given by:

eL = ψL ⊗ [σ, lL], (4.7)

where ψL is a left-handed Weyl spinor, ψL ∈ Γ(SL), and λL := [σ, lL] ∈ Γ(EL), where EL is the

vector bundle with typical fiber VL in (4.2), mutatis mutandis for the right-handed electron,

and φ := [σ, ϕ]. So we can define:

T (eL, φ, eR) := l†Lϕ lR, (4.8)

which is gauge-invariant. But why this map? Now I will provide more details, and include a

Yukawa term for quarks. But first, to answer this question, I will first translate it into the

VB-POV.

4.2 The VB-POV presentation of the Yukawa mechanism

In Section 2 I argued that there was no canonical map between associated vector bundles cor-

responding to different representations of the principal bundle, and yet I have just presented a

map from different vector bundles into a gauge-invariant scalar. But there is no real mystery

here: we don’t need a canonical map between associated vector bundles. All we need is that

T , given in (4.8), is a map between associated vector bundles, with τ a map between the

representation spaces; and presenting one such map is sufficient for comparison with exper-

iments. Nonetheless, I find this answer unsatisfactory, because opaque: why this particular

map? Couldn’t we have found others? What are the possible maps, and how should we

interpret them?

I take the geometric, VB-POV, to provide a more transparent interpretation of what the

map T represents, and what other choices would represent. Again, in the geometry-first formu-

lation, all we have are structures in the fundamental vector bundle spaces. The fundamental

vector spaces are given by (En,M,Cn, ⟨·, ·⟩n), for n = 1, 2, 3 (we will include orientation as

further structure below, when we look at the Yukawa form for quarks). Different particles

are merely different sections of different tensor products for these fundamental vector spaces.

Thus, for instance, a down-right-handed quark (of any of the three generations, but here we

assume the first) is given by:

dR ∈ Γ(E3 ⊗ (E1∗ ⊗ E1∗)), (4.9)

whereas vector bosons are replaced by the corresponding affine covariant derivatives, e.g.

∇1,∇2,∇3 (see (Gomes, 2024, 2025a) for more details).
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In this formulation, it is clear that weak isospin T3 has no independent geometrical meaning

(see 3.2.b and footnote 9), and so left-handed fermions (as well as φ+, φ0, which are also SU(2)-

doublets), are better understood merely as components of the vector fields QL, LL. Thus,

though left-handed leptons and up and down quarks are usually seen as different particles—with

different masses and electric charges—the (intra-lepton and intra-quark) distinction occurs only

via their couplings with the Higgs. According to (4.10) and (4.11), we should instead see both

left-handed leptons and quarks as single particles, LL, Q
I
L, respectively, whose decomposition

relative to the Higgs field becomes physically important. The point is that φ gives a frame

within C2 which imparts meaning to T3 and so to left-handed up and down quarks and electrons

and electron-neutrinos. As to the charges exhibited in a frame for C2 on Table 1, they are

already adapted to the Higgs in the form φ = φ0 = (0, 1)T (i.e. when φ+ = 0); e.g. only then

do the up-left handed quark components become (uIL, 0)
T .10

Indeed, geometrically, it makes more sense to define the left-handed components of both

leptons and quarks as parallel and orthogonal to the Higgs according to the inner product on

E2, i.e.:

eL := ⟨LL, e0⟩2 e0, with eL = ⟨LL, e0⟩2 ; νeL := LL − eL, (4.10)

uI
L := ⟨QI

L, e0⟩2 e0 with uIL = ⟨QI
L, e0⟩2 ; dL := QL − uL, (4.11)

where capital I indicates color components (i.e. red, green and blue) in an orthonormal frame

of C3 and I used the notation e0 for the unit-direction of the Higgs, introduced in Section 3.1

(not to be confused with the left-handed electron, eL).

Before we give the geometric interpretation of (4.8), and of the corresponding form for

quarks, note that, given an orthonormal basis for E2, we can form duals: for ξ = ξ⊥e⊥+ξ
∥e0 =

(ξ⊥, ξ∥)T (e.g. eL = L
∥
L, νeL = L⊥

L) the dual takes the conjugate of the transpose, so:

((ξ⊥, ξ∥)T )∗ = (ξ
⊥
, ξ

∥
). (4.12)

Using (4.12) and an orthonormal frame aligned with the Higgs (3.5), the Yukawa term for the

leptons in Equation (4.8) reads (including a coupling constant, ge):

T (LL, φ, eR) := geL
∗
LϕeR = ge⟨⟨LL, φ⟩2, eR⟩1 = ge(v +H)eLeR, (4.13)

where the first equality gives the ‘standard’ definition; eL is a Weyl left-handed spinor and

internal scalar (i.e. the magnitude of the vector field along the Higgs); ⟨. , .⟩2 is complex anti-

linear in the first entry and maps elements of E2 ⊗ E1 × E2 into E1 in the obvious way (by

taking inner products among the E2 components); and ⟨. , .⟩1 is just the scalar inner product

in C.11 From (4.13) we can see how mass terms, proportional to gev (as well as interactions

with the Higgs field) emerge for the electron.

10Therefore the table, reproduced from (Hamilton, 2017, Table 8.2), is slightly misleading: if one includes

both components for the Higgs, the up and down components for the left-handed quarks and leptons would not

have any physical meaning.
11This is slightly misleading: what we have here is that φ ∈ Γ(E2⊗3E1), i.e. the third tensor product of E1,

which is still one-dimensional, e∗L ∈ Γ(E2∗ ⊗3 E1∗), and eR ∈ Γ(⊗6E1). This is why they match to a scalar.
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Geometrically, the inner products in (4.13) are a very natural way to obtain scalars: we

are measuring ‘internal angles’ between the different particles seen as vector fields on the

same spaces. I take this form of (4.13), namely ⟨⟨LL, φ⟩2, eR⟩1, to be a more transparent

interpretation of the Yukawa term for leptons.

Note that, here, chirality—the fact that right-handed particles don’t couple to the Higgs—is

explained by the fact that only left-handed particles have components in E2. Note, moreover,

that in this convention the neutrinos don’t acquire mass. First, because they are orthogonal

to the Higgs, but more fundamentally, because we have not included right-handed neutrinos

in our particle content. Because of this feature, the Yukawa terms for leptons are diagonal in

generations: these mass terms don’t mix, say electrons with muons and taus.

In the case of quarks (or also for the leptons if we include right-handed neutrinos), things

are different: we add another field, which is orthogonal to, but not independent from, the

Higgs, and generations mix. This new field, called φc on Table 1, is obtained by recruiting

another geometric structure that we can equip C2 with (besides the Hermitean inner product):

an orientation. This implies we can use the totally anti-symmetric form, or the volume form,

ϵab, as part of the geometrical structure. In other words, whereas the Higgs mechanism, de-

scribed in Section 3, used the structure (E2,M,C2, ⟨·, ·⟩2), here we extend that to the structure

(E2,M,C2, ⟨·, ·⟩2, ϵ).12

Now, besides the metric, we can use ϵab and its inverse ϵab to raise or lower indices.13 Thus

if we call the isomorphism J : E2 → E2∗ which acts as ξ 7→ ⟨ξ, ·⟩ we have:

C := ϵ♯ ◦ J :E2 7→ E2 (4.14)

ξa 7→ ϵachcbξ
b (4.15)

where we used, in abstract index notation, hab as the inner product on E2. Thus we call

φc := C(φ); (4.16)

it can be seen as a measure on the ‘areas’ orthogonal to φ. (see Appendix C for more details

on how this definition relates to the standard one).

Denoting the generation by an index i = 1, 2, 3, we then have, for the total Yukawa coupling

term for quarks:14

T (QL, φ, dR) := Y d
ijQ

i

Lφd
j
R + Y u

ijQ
i

Lφcu
j
R = Y d

ij⟨⟨⟨Qi
L,d

j
R⟩3, φ⟩2⟩1 + Y u

ij ⟨⟨⟨Qi
L,u

j
R⟩3, φc⟩2⟩1.

(4.17)

12Under A ∈ U(2), ϵab is taken to transform as ϵab 7→ det (A)ϵab. So SU(2) preserves it. Moreover, since

AA† = 1 for any A ∈ U(n), we know that det (A) det (A†) = |det (A)| = 1, so det (A) = eiθ denotes an

orientation change the Cn. Using ϵab as a geometric datum then implies we have a fixed orientation, as well as

an inner product, on C2.
13Indeed, in standard differential geometry, we can find a similar sort of operator acting on two dimensions:

the Hodge star: which would take a basis e0, e1 7→ −e1, e0, respectively, so its action on vectors can be written

in this frame as a matrix operator: ∗ =
(

0 1
−1 0

)
, which is of the same form as ϵab.

14Note that here, unlike for the leptons and the left-handed quarks, the up and down right-handed quarks

are genuinely different particles, since they have different components in E1.
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The boldface on lowercase letters is used to indicate that these are vector fields (and so are the

capital Q and L, and so is the Higgs φ, but omitting boldface here doesn’t conflict with our

notation in what follows). Again, the first equality in (4.17) gives the ‘standard’ definition (cf.

(Hamilton, 2017, Lemma 8.8.4)); the second gives the geometric form of that definition: it is,

in the VB-POV, what really counts.15

Nonetheless, as often is the case in physics, we can glean more by introducing a frame:

here, once more it is convenient, in order to compare with standard presentations, to choose

the orthonormal frame (3.5) for the Higgs, which gives the components for the quarks along

and orthogonal to the Higgs (given in Equation (4.10)) as in Table 1, as well as φ+ = 0. Then:

Y d
ij⟨⟨⟨Qi

L,d
j
R⟩3, φ⟩2⟩1 + Y u

ij ⟨⟨⟨Qi
L,u

j
R⟩3, φc⟩2⟩1 = (H + v)

(
Y d
ijd

Ii
L d

Ij
R + Y u

iju
Ii
Lu

Ij
R

)
, (4.19)

where now all variables are scalar (and we are summing over the color indices, I, as well as

over the generations i, j).

Lastly, the Yukawa matrices Y are generically non-diagonal, i.e. they mix generations of

quarks. One can always find linear combinations of quarks such that, say, Y u is diagonal; this

defines what is called the mass basis. But Y u and Y d cannot be diagonalised simultaneously,

and the residual mixing is encoded in the Cabibbo–Kobayashi–Maskawa (CKM) matrix. Most

textbooks (cf. (Hamilton, 2017, p. 515)) then explain that the CKM matrix describes the

physical effects of left-handed quark mixing across generations, from the ‘mass eigenstate basis’

to the ‘weak eigenstate basis’ (the latter being the one we have used here). It then “follows

that the interactions with the W-bosons can connect quarks from different generations if the

CKM matrix is not diagonal” (ibid).

From the geometric perspective, however, the situation is more transparent. If the up

and down left-handed quarks were truly independent particles—i.e. distinct fields rather than

components of the same field (usually called a doublet) in E2—we could diagonalise Yu and Yd

separately. But because they are components of the same E2-field, we cannot. Correspondingly,

the W bosons represent ∇2, the covariant derivative on E2, and so they, too, naturally mix

generations when they couple to the relevant currents.

5 Conclusions

Feynman’s Nobel prize lecture, with which I began, reflected on his alternative formulation of

quantum electrodynamics via path integrals. That formulation, like Minkowski’s introduction

of spacetime—and indeed many other mathematically equivalent yet conceptually transforma-

tive innovations scattered through the history of physics—proved invaluable. I make no claim

15It is a little disappointing that, unlike their left-handed counterparts, up and down right-handed quarks

can’t be straightforwardly understood as components of a single vector field, due to their different components

in C1. If they could be so understood, in place of (4.17), we would have ther simpler:

T (QL, φ,QR) = Y d
ij⟨⟨⟨Qi

L, Q
j
R⟩3, φ⟩2⟩1 + Y u

ij ⟨⟨⟨Qi
L, Q

j
R⟩3, φc⟩2⟩1, (4.18)

which only takes the components of the same inner product along and orthogonal to the Higgs.
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that the geometry-first formulation of gauge theory developed here will ascend to comparable

heights, nor do I expect it to become orthodoxy, as Feynman’s and Minkowski’s did.

But I don’t want to understate what has been gained: alternative, ‘symmetry-free’ expla-

nations of familiar mechanisms and features of gauge theory. In brief: in this new formulation,

as in the familiar one, the Higgs field is a nowhere-vanishing section of a vector bundle with ap-

proximately constant norm. The component of the Higgs field carrying this constant nonzero

norm plays the role of the Higgs vacuum. And although symmetries and vector bosons no

longer appear at the fundamental level, the existence of such a section is enough: the geometry

alone performs the explanatory work that symmetry was thought indispensable for.

Goldstone modes never appear here, and so never require elimination. The reason is simple:

the constant magnitude of the Higgs vacuum section ensures that it is orthogonal to its covariant

derivative. What in the symmetry-first formulation is described as the ‘acquisition of mass’ by

vector bosons is, in this geometry-first account, nothing more than the non-vanishing of the

(covariant) kinetic energy of the Higgs vacuum. In other words, the kinetic term of the Higgs

depends on the affine structure of the vector bundle.

Moreover, the covariant derivative along a single section of a vector bundle does not depend

on all the affine degrees of freedom of the bundle (for dim(Ex) ≥ 2). The absent degrees of

freedom correspond, in the symmetry-first idiom, to the unbroken gauge group, giving rise

at the perturbative level to the massless photons. In this formulation, then, talk of ‘mass

acquisition’ may strike a geometry-first militant—say, a relativist—as misplaced.16

Turning to the Yukawa mechanism: I argued that standard presentations are explanatorily

‘opaque,’ and offered instead a more transparent geometric version of the Yukawa form itself.

I readily admit that my sense of opacity may stem from a general preference for geometric

explanations, simpliciter. But the point remains: as emphasised in Section 2.2, the mere

availability of a geometric argument that bypasses representation theory is grist to my mill. The

aim, after all, is to open the subject to a different community, with different, more geometric

ways of thinking.

In this spirit, the geometric formalism already reveals distinctions between the Higgs and

Yukawa mechanisms that, to my knowledge, have not been emphasised in the literature. (That

does not mean they are controversial; perhaps they are simply too minor to warrant mention

in standard presentations.)

First, the acquisition of mass by fermions through the Yukawa mechanism does not require

any linearised expansion of the fields; nor does it require any choice of local frames or bundle

trivialisation. By contrast, the ‘acquisition of mass’ by vector bosons, to the extent that

vector bosons are expressed tensorially, relies on expanding the covariant derivative into a flat

background plus a gauge potential; it requires the choice of a frame or trivialisation of the

bundle.

16To be sure, some would hesitate to say that gravitons acquire mass merely because a spacetime, or a

collection thereof, admits a kinetic term for a vector field of constant norm; yet that is precisely the consensus

for such theories (Jacobson, 2008).
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Second, from the geometric perspective, the left-handed up and down quarks, and the

electron and electron-neutrino, are not separate particles at all, but components of the (first-

generation) left-handed quark fields and leptons, respectively, resolved parallel and orthogonal

to the Higgs.

Third, the Higgs mechanism is blind to the orientation of C2: nowhere does one need to

invoke the volume form ϵab. In group-theoretic terms, under U(1) rotations, the Higgs carries

precisely the hypercharge required to combine with the SU(2) action into the standard two-

component complex representation of U(2). Similarly, the Yukawa term for leptons does not

invoke ϵab explicitly. However, the Yukawa term for (up-)quarks, does. The reason is that,

unlike leptons, the quark Yukawa coupling is sensitive to the components orthogonal to the

Higgs—namely, the up-type quarks. This sensitivity requires the introduction of the field φc,

which encodes the ‘oriented area’ orthogonal to the Higgs. Put differently: up-quarks interact

with, or ‘measure,’ the areas orthogonal to the Higgs.

I am not aware of any similar mechanism involving the orientation of C3, and so here is

an interesting question, that crops up from the VB-POV: where is the orientation of C3, that

forces the standard model to employ SU(3) as opposed to U(3), geometrically important?17

This puzzle points to a broader methodological issue, best framed by returning to the

spacetime analogy. The automorphism group of a tangent space is SO(3, 1) (or O(3, 1)), and

this becomes explicit once we introduce orthonormal frames. Yet a vast amount of spacetime

geometry can be developed without ever invoking SO(3, 1) directly. By the same token, if one

were to posit a different group acting on TM—say O(2)—a clear geometrical rationale would

be required, perhaps the presence of a plane of symmetry. In the symmetry-first formulation of

gauge theory, by contrast, it is common to posit group actions that do not transparently reflect

the geometry of the underlying vector bundles—for example, the action of U(1) on C2 equipped

with an inner product. In such cases we rarely ask what additional structure, if any, constrains

or justifies these actions. A geometry-first formulation makes that question unavoidable: as in

the spacetime analogy, any admissible group action must be grounded in geometry. Of course,

much can be achieved without mentioning symmetry groups at all. But when it is convenient

to invoke a representation of a linear group, this too can be accommodated—so long as the

representation is first anchored in geometric structure.18

Lastly, as a possible new use of the VB-POV, I want to point out that the geometry-

first mechanisms I described here make sense already at a non-linearised—though here strictly

17Indeed, there is a canonical isomorphism between U(3) and SU(3) × U(1)/Z3, but the representations of

U(1) don’t seem to realise this isomorphism in the standard model. Benjamin Muntz has suggested to me that

the place to look for the involvement of the volume-form of E3, and therefore the reduction of the structure

group from U(3) to SU(3), may be the triality constraints on baryon coupling: colourless states built out of

three quarks which would not be invariant under the full U(3).
18In many respects, the contrast between this geometry-first alternative and the familiar, symmetry-first

formulation is analogous to the contrast between what is often called the Riemannian (geometry-first) and the

Kleinian (symmetry-first) formulations of geometrical objects (cf. e.g. Barrett & Manchak (2024) for a recent

discussion).
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classical—level, and so may help clarify which properties or mechanisms rely on the validity of

quantum field-theoretic perturbation theory. This broader use remains for further exploration.
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APPENDIX

A Principal and associated fiber bundles

I will start with the definition of a principal bundle:

Definition 1 (Principal Fiber Bundle) (P,M,G) consists of a smooth manifold P that

admits a smooth free action of a (path-connected, semi-simple) Lie group, G: i.e. there is

a map G × P → P with (g, p) 7→ g · p for some right (or left, with appropriate changes

throughout) action · and such that for each p ∈ P , the isotropy group is the identity (i.e.

Gp := {g ∈ G | g · p = p} = {e}). P has a canonical, differentiable, surjective map, called a

projection, under the equivalence relation p ∼ g · p, such that π : P → P/G ≃ M , where here

≃ stands for a diffeomorphism.

It follows from the definition that π−1(x) = {G · p} for π(p) = x. And so there is a diffeomor-

phism between G and π−1(x), fixed by a choice of p ∈ π−1(x). It also follows (more subtly)

from the definition, that local sections of P exist. A local section of P over U ⊂ M is a map,

σ : U → P such that π ◦ σ = IdU .

Given an element ξ of the Lie-algebra g, and the action of G on P , we use the exponential

to find an action of g on P . This defines an embedding of the Lie algebra into the tangent

space at each point, given by the hash operator: ♯p : g → TpP . The image of this embedding

we call the vertical space Vp at a point p ∈ P : it is tangent to the orbits of the group, and is

linearly spanned by vectors of the form

for ξ ∈ g : ξ♯(p) :=
d

dt
|t=0(exp(tξ) · p) ∈ Vp ⊂ TpP. (A.1)

Vector fields of the form ξ♯ for ξ ∈ g are called fundamental vector fields.19

The vertical spaces are defined canonically from the group action, as in (A.1). But we can

define an ‘orthogonal’ projection operator, V̂ such that:

V̂ |V = Id|V , V̂ ◦ V̂ = V̂ , (A.2)

19It is important to note that there are vector fields that are vertical and yet are not fundamental, since they

may depend on x ∈ M (or on the orbit).
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and defining H ⊂ TP as H := ker(V̂ ). It follows that Ĥ = Id− V̂ and so V̂ ◦ Ĥ = Ĥ ◦ V̂ = 0.

Moreover, since π∗ ◦ V̂ = 0 it follows that:

π∗ ◦ Ĥ = π∗. (A.3)

The connection-form should be visualized essentially as the projection onto the vertical

spaces: given some infinitesimal direction, or change of frames, the vertical projection picks

out the part of that change that was due solely to a translation across the group orbit. The only

difference between V̂ and ϖ is that the latter is g-valued, Thus we get it via the isomorphism

between Vp and g (ϖ’s inverse is ♯ : g 7→ V ⊂ TP ). We can define it directly as:

Definition 2 (An principal connection-form) ϖ is defined as a Lie-algebra valued one

form on P , satisfying the following properties:

ϖ(ξ♯) = ξ and Lg
∗ϖ = Adgϖ, (A.4)

where the adjoint representation of G on g is defined as Adgξ = gξg−1, for ξ ∈ g; Lg
∗ is the

pull-back of TP induced by the diffeomorphism g : P → P .

Now, in possession of an principal connection, we can induce a notion of covariant derivative

on associated vector bundles :

Definition 3 (Associated Vector Bundle) A vector bundle over M with typical fiber V , is

associated to P with structure group G, is defined as:

E = P ×ρ V := P × V/ ∼ where (p, v) ∼ (g · p, ρ(g−1)v), (A.5)

where ρ : G→ GL(V ) is a representation of G on V .

One can get a covariant derivative on an associated vector bundle E from ϖ as follows:

let γ : I → M be a curve tangent to v ∈ TxM , and consider its horizontal lift, γh. Suppose

κ(x) = [p, v]. Then

∇vκ =
d

dt
[γh, v]. (A.6)

Conversely, we can define a horizontal subspace from the covariant derivatives as follows.

For p = e1, ...en ∈ L(E), and for all curves γ ∈ M such that v = γ̇(0) ∈ TxM , with π(p) = x,

let {e1(t), ..., en(t)} be curves in E such that ∇v(ei(t)) = 0. Doing this for each v defines a

horizontal subspace.

But we can also obtain the vector bundles more directly as follows:

Definition 4 (Vector Bundle) A vector bundle (E,M, V ) consists of: E a smooth manifold

that admits the action of a surjective projection πE : E → M so that any point of the base

space M has a neighborhood, U ⊂M , such that, for all proper subsets of U , E is locally of the

form π−1(U) ≃ U ×V , where V is a vector space (e.g. Rk, or Ck) which is linearly isomorphic

to π−1(x), for any x ∈M .

22



Note that the isomorphism between π−1(U) and U × V is not unique, which is why there is no

canonical identification of elements of fibers over different points of spacetime. Each choice of

isomorphism is called ‘a trivialization’ of the bundle.

Definition 5 (A section of E) A section of E is a map κ :M → E such that πE ◦κ = IdM .

We denote the space of smooth sections by κ ∈ Γ(E) (see Figure 2 for a formulation of such a

section).

Figure 2: A vector bundle with a two-dimensional fiber over a one-dimensional base space,

with a section here called L. (Figure taken from Wikipedia)

Given a vector bundle (E,M, V ) a covariant derivative D is an operator:

D : Γ(E) → Γ(T ∗M ⊗ E) (A.7)

such that the product rule

D(fκ) = df ⊗ κ+ fDκ (A.8)

is satisfied for all smooth, real (or complex)-valued functions f ∈ Γ(M).

Thus we can define parallel transport as follows:

Definition 6 (Parallel transport in a vector bundle) Let D be a covariant derivative on

(E,M, V ), v ∈ Ex and γ(t) a curve in M such that γ(0) = x. Then we define the parallel

transport along γ as the unique section vh(t) of E|γ such that:

Dγ′vh = 0. (A.9)

The existence and uniqueness of this map is guaranteed for γ ⊂ U some open subset of M ,

and it follows from properties of solutions of ordinary differential equations (cf. (Kobayashi &

Nomizu, 1963, Ch. II.2)).

Here D is an operator, not a tensor. But by introducing a coordinate frame or basis, we

can represent it as such. This is the same as for spacetime covariant derivatives, ∇: it is only

upon the introduction of a frame or basis that we find an explicit representation.
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B The Standard Group-Theoretic Exposition of the Higgs Mechanism

Before turning to our geometric reformulation, we briefly review the conventional mathematical

account of the Higgs mechanism, as in Hamilton (Hamilton, 2017, Ch. 8). This will allow us to

highlight the points at which symmetry groups, stabilisers, and coset spaces enter essentially.

We begin with a compact Lie group G acting unitarily on a complex vector space W (the

Higgs vector space). A Higgs potential of the form

V (w) = −µ∥w∥2 + λ∥w∥4, µ, λ > 0,

is G-invariant, and has minima along a sphere

Mvac = {w ∈ W : ∥w∥ = v}, v =
√
µ/2λ.

Thus the set of vacua is itself a homogeneous G-space:

Mvac
∼= G/H,

where H = Gw0 is the stabiliser (isotropy subgroup) of a chosen vacuum vector w0 ∈ W .

Already here the reasoning is group-theoretic: the possible vacua are classified by subgroup

data (G,H).

A vacuum configuration is given by a constant section Φ0 of the Higgs bundle, with Φ0(x) =

w0 for all x ∈M . The unbroken subgroup H is compact (as a closed subgroup of G). If H ⊊ G,

the gauge theory is said to be spontaneously broken (Hamilton, 2017, Def. 8.1.6). The Higgs

condensate Φ0 is the non-zero background field in which other particles propagate, and is

invariant only under H ⊂ G. Again, the classification of broken versus unbroken symmetries

is a stabiliser argument.

Perturbations of the Higgs field Φ = Φ0 + ϕ̃ decompose relative to the tangent space at w0:

Tw0W
∼= Tw0(G · w0)⊕ (Tw0(G · w0))

⊥.

Group theory guarantees this orthogonal splitting (Hamilton, 2017, Lem. 8.1.12). One then

expands ϕ̃ in an eigenbasis of the Hessian:

ϕ̃ =
1√
2

d∑
i=1

πiei +
1√
2

2n−d∑
j=1

σjfj,

with {ei} tangent to the orbit G · w0 and {fj} orthogonal. The πi are massless scalar fields:

the Nambu–Goldstone bosons. The σj are massive scalars: the Higgs bosons (Hamilton, 2017,

Def. 8.1.14). This is precisely Goldstone’s theorem: dim(G/H) massless scalars, deduced from

the group structure of the vacuum manifold.

Physically the Goldstone bosons are unobservable, since they can be gauged away. Math-

ematically this is formalised by the unitary gauge (Hamilton, 2017, Def. 8.1.18, Thm. 8.1.20).

One uses a physical gauge transformation γ : M → G to rotate the Higgs field entirely into

the fixed direction w0:

Φ(x) 7→ γ(x) · Φ(x) = (0, . . . , 0, v + h(x)).
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By definition, in unitary gauge the shifted Higgs field is orthogonal to the orbit G ·w0, and the

Nambu–Goldstone bosons vanish. This step is again an essentially group-theoretic argument,

exploiting the transitivity of the G-action on the vacuum manifold.

Let g = g be the Lie algebra of G, with h = Lie(H) the subalgebra of unbroken generators.

With respect to an invariant scalar product, decompose

g = h⊕ h⊥.

The h⊥ directions correspond to broken generators. It is exactly these components of the gauge

field Aµ that acquire mass terms from the kinetic energy of the Higgs:

∥DΦ∥2 ⊃ v2
∑
X∈h⊥

∥AX
µ ∥2.

Conversely, the h-components remain massless. This is the algebraic re-expression of the

stabiliser picture.

In the electroweak theory G = SU(2)L × U(1)Y acts on W = C
2. Choosing a vacuum

vector w0 = (0, v), the stabiliser is a diagonal U(1) subgroup, which is identified with electro-

magnetism. The Lie algebra su(2)⊕ u(1) decomposes accordingly, and a change of basis (the

Weinberg angle) diagonalises the mass form, producing massive W±, Z0 and a massless pho-

ton. Each of these identifications rests on the subgroup structure of G and the group-theoretic

decomposition of its representation on W (Hamilton, 2017, Ch. 8.3).

Summary

The group-theoretic presentation of the Higgs mechanism thus depends essentially on:

1. Identifying the vacuum manifold as G/H, a homogeneous space.

2. Invoking Goldstone’s theorem: dim(G/H) massless modes.

3. Using unitary gauge to remove Goldstone bosons by G-action.

4. Decomposing g into h⊕ h⊥ to classify massive and massless gauge bosons.

5. In the electroweak case, applying these steps to SU(2)L×U(1)Y , producing W±, Z0, and

the photon.

These symmetry-based arguments provide the conventional foundation. In the next section we

shall see how the same results can be obtained directly from the geometry of vector bundles,

without recourse to stabilisers, cosets, or gauge fixing.

C Connecting the geometric and the standard interpretations of φc

Let V ∼= C
2 be the fundamental SU(2) doublet space. We use only:
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� the SU(2)-invariant Hermitian form h : V × V → C,

� the SU(2)-invariant complex symplectic form ε : V × V → C (bilinear, antisymmetric),

� and the natural dual V ∗ = Hom(V,C).

Write the “Hermitian dual” (transpose+conjugate) map

J : V −→ V ∗, J(v) := h(v, ·).

This map is antilinear and SU(2)–equivariant into the contragredient representation:

J(Uv) = J(v) ◦ U−1 (U ∈ SU(2)).

Next, use ε to identify V with its dual linearly :

ε♭ : V → V ∗, ε♭(w) := ε(w, ·), with inverse ε♯ := (ε♭)−1 : V ∗ → V.

Equivariance of ε is the identity UT εU = ε, which is equivalent to

ε♯ ◦ α∗ = α ◦ ε♯ for all α ∈ End(V ).

Definition. Define the antilinear, SU(2)–equivariant map

C := ε♯ ◦ J : V −→ V, ṽ := C(v).

Equivariance follows immediately:

C(Uv) = ε♯
(
J(v) ◦ U−1

)
=

(
ε♯ ◦ J(v)

)
U−1 = U

(
ε♯ ◦ J(v)

)
= U C(v).

If v has hypercharge Y , then J (being the Hermitian dual) implements the phase eiY θ 7→ e−iY θ,

so C flips Y 7→ −Y . Hence, for the Higgs doublet ϕ ∈ (2,+1) we set

ϕ̃ := C(ϕ) = ε♯
(
h(ϕ, ·)

)
∈ (2,−1).

Component check. Choose an orthonormal basis so that h is the identity and ε = ( 0 1
−1 0 ). Then

J(ϕ) is the Hermitian row vector ϕ†, and

ϕ̃ = ε♯(J(ϕ)) = ε−1 ϕ† = ε ϕ∗ = iσ2 ϕ
∗,

i.e. the usual ϕ̃.

References

Barrett, T. W., & Manchak, J. B. (2024, December). On Privileged Coordinates and Kleinian

Methods. Erkenntnis . doi: 10.1007/s10670-024-00914-4

26



Feynman, R. P. (1994). The character of physical law (Modern Library ed ed.). New York:

Modern Library. (Originally published in hardcover by the British Broadcasting Corporation

in 1965 and in paperback by M.I.T. Press in 1967”–T.p. verso)

Gomes, H. (2024, October). Gauge Theory Without Principal Fiber Bundles. Philosophy of

Science, 1–17. doi: 10.1017/psa.2024.49

Gomes, H. (2025a). The Aharonov-Bohm effect: fact and reality.

Gomes, H. (2025b). Representational Schemes for theories with symmetries. Synthese.

Hamilton, M. (2017). Mathematical Gauge Theory. Springer International Publishing. doi:

10.1007/978-3-319-68439-0

Holton, G. (1974). Thematic origins of scientific thought: Kepler to Einstein. Philosophy of

Science, 41 (4), 415–418. doi: 10.1086/288604

Jacobs, C. (2023). The metaphysics of fibre bundles. Studies in History and Philosophy of

Science, 97 , 34-43. Retrieved from https://www.sciencedirect.com/science/article/

pii/S0039368122001777 doi: https://doi.org/10.1016/j.shpsa.2022.11.010

Jacobson, T. (2008, October). Einstein-æther gravity: a status report. In Proceedings of from

quantum to emergent gravity: Theory and phenomenology — pos(qg-ph). Sissa Medialab.

doi: 10.22323/1.043.0020

Kabel, V., de la Hamette, A.-C., Apadula, L., Cepollaro, C., Gomes, H., Butterfield, J., &

Brukner, C. (2025, April). Quantum coordinates, localisation of events, and the quantum

hole argument. Communications Physics , 8 (1). doi: 10.1038/s42005-025-02084-3

Kobayashi, S., & Nomizu, K. (1963). Foundations of differential geometry. Vol I. Interscience

Publishers, a division of John Wiley & Sons, New York-Lond on.

Stachel, J. J. (2002). Einstein from ’B’ to ’Z’ (No. 9). Boston: Birkhäuser. (Includes
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