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Abstract

String field theory is supposed to stand to perturbative string theory as
quantum field theory stands to single-particle quantum theory; as such,
it purports to offer a substantially more general and powerful perspec-
tive on string theory than the perturbative approach. In addition, string
field theory has been claimed for several decades to liberate string the-
ory from any fixed, background spatiotemporal commitments—thereby (if
true) rendering it ‘background independent’. But is this really so? In this
article, we undertake a detailed interrogation of this claim, finding that
the verdict is sensitive both to one’s understanding of the notion of back-
ground independence, and also to how one understands string field theory
itself. Although in the end our verdicts on the question of the background
independence are therefore somewhat mixed, we hope that our study will
elevate the levels of systematicity and rigour in these discussions, as well
as equip philosophers of physics with a helpful introduction to string field
theory and the variety of interesting conceptual questions which it raises.
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1 Introduction

Background independence is a (supposed) theoretical virtue that, as the name
suggests, aims to capture whether a given physical theory depends on or involves
the choice of any fixed background structure. However, despite there being clear
paradigmatic cases of both background independent and background dependent
theories, stating the precise definition of background independence has proved
rather challenging. One (if not the) paradigmatic case of a background in-
dependent theory is general relativity, which can be formulated on arbitrary
Lorentzian manifolds dynamically coupled to stress-energy content via the Ein-
stein equations and which hence, intuitively, does not involve a choice of fixed
background structure. On the other hand, special relativity, at least in its
geometrical formulation, requires Minkowski spacetime—clearly a fixed back-
ground structure—and hence is considered background dependentEl Clarifying
the definition of background independence is particularly urgent in light of the
authority it has acquired in quantum gravity circlesEl

In this article, we consider the background independence of string field the-
ory (SFT), one such candidate for a theory of quantum gravity. In the first
approximation, one can think of the relationship between SFT and perturba-
tive string theory as being analogous to the relationship between relativistic
QFT and single-particle quantum mechanicsEl While perturbative string the-
ory describes vibrational excitations of a single relativistic string, SFT aims to
describe excitations of a string field. In assessing the background independence

IThere are subtleties here regarding different ways of formulating special relativity, but
we’ll elide them. For further discussion, see Pooley (2017) and Read (2023)).
2Fortunately, there is by now a lot of philosophical work that aims to fill this gap (see, e.g.,

Read (2023)).

3Sometimes physicists call SFT the second-quantized version of perturbative string theory.



of SFT, we draw heavily on the physics literature. In particular, we discuss
(a) the series of mathematical results by Sen and Zwiebach (1994alb) and Sen
(2018) that allegedly demonstrate the background independence of SFT, (b) the
‘manifestly background independent’ formulation of SFT due to Witten (1992),
and (c) a contemporary extension by Ahmadain et al. (2024). We highlight
some limitations of these mathematical results, and evaluate the background
independence of SFT with respect to the various definitions of background in-
dependence given by Read (2023). In the end—as one might expect!—we find
that the question of whether SF'T is background independent depends both on
how one understands ‘background independence’ and on how one formulates
SFT.

Here’s our plan for the article. In we provide the necessary technical
background on worldsheet (perturbative) string theory; in we do the same
for (super)string field theory. In §4l we review arguments for SFT’s background
independence, and in §] we present the structures which are invariant between
SEFTs. Doing the latter will be crucial for a full assessment of the background
independence of SF'T—a task we take up in

2 Worldsheet string theory

In this section, we introduce worldsheet string theory as a stepping stone to
our subsequent discussion of SFT. We follow the conformal field theory (CFT)
approach to worldsheet string theory (see Polchinski (1998])) that is best suited
to understanding the formulation of covariant SFT. In §2.1] we provide the
relevant background on the physics of classical strings situated in some ambient
‘target space’ with background fields. In §2.2] we review relevant details of

thinking about string theory as a 2D CFT on the worldsheet.

2.1 Classical relativistic strings in background fields

The starting point for worldsheet string theory is the study of classical relativis-
tic string propagating in Minkowski spacetime. Let (R”,7) be a D-dimensional
Minkowski spacetime which we call target space and let ¥, be a Riemann
surface of genus g which we call the worldsheet. Suppose there is an embed-
ding X : ¥, — R? which may also be specified by D independent functions
XH*: ¥, — R where p runs from 0 to D and labels global coordinates in target
space. Any such embedding describes a kinematically possible evolution of the
vibrating classical string in target space. The dynamically possible embeddings
are then picked out by equations of motion which follow from the Polyakov
action,

1
SelX" husl = == [ o VIRK0, X400 (1)
Zg

where hyp is a Lorentzian metric on the worldsheet metric and h := det (hqp)
(ha® is its inverse). The Polyakov action is highly symmetric: it is invariant
under both worldsheet reparametrizations and Weyl rescalings of the worldsheet



metric. More explicitly, if f : £, — X, is a diffeomorphism and if w € C>(%,)
is a smooth function, then

Splf* X", f*hap) = Sp[ X", hap) and  Sp[X*,e**hap) = Sp[ X" hap)  (2)

express invariance under worldsheet reparametrization and Weyl rescalings, re-
spectively.

Note that Sp already involves a choice of background (RP, 7). However,
different background choices are possible. For instance, one can ask how classi-
cal relativistic strings propagate on general Lorentzian manifolds (M, g). Once
again, suppose that we have an embedding X : ¥, — M. The natural general-
ization of Sp is

1
S1[XH hay] = I / d?0 N —hh™9, X" 0, X" g, (X), (3)
29

where g,,,, are the metric componentsﬁ

Following the lead of classic texts such as Green et al. (2012)), we also consider
further generalizations of Sp which couple the string to the remaining massless
fields of the closed string spectrum: the two-form gauge field known as the Kalb—
Ramond field and the scalar dilaton field. The action terms corresponding to
these couplings are respectively

1
So[XH, hap] = ~ / d*o €9, X" 9, X" B, (X), (4)
25

S3[XH, hap] = i/ d?c V/—h®(X)R, (5)
i Js,
where € is the antisymmetric tensor density, R is the worldsheet Ricci scalar,
and ® and B, are some fixed background choices for the dilaton and Kalb—
Ramond field respectively. Since the combination d?c+/—h is diffeomorphism
invariant, the diffeomorphism invariance of S, S, and S3 is manifest. Weyl
invariance is manifest for S; and S5 but S3 in general will not be Weyl invariant.
More precisely, S3 is classically invariant only under global Weyl transforma-
tions. However, quantum mechanically we can force it to be locally Weyl in-
variant by forcing the beta function of the theory to vanish, making the theory
a CFT, as discussed below. Local Weyl invariance is critical for the theory to

4There also exists a coordinate-free definition of the Polyakov action; however, its explana-
tion involves some technicalities. Let [34, M| be the space of smooth maps from 3, to M and
let Met(3g4) be the space of metrics on X4. Associated to the embedding X : ¥4 — M is the
tangent map Tp X : TpXg — T'x(,)M at every p € Xy and also the map of tangent bundles
TX :TXy — TM. Because both ¥4 and M come equipped with Lorentzian metrics, we may
define the adjoint of T, X as the map T X™ : T'x ()M — TpX4 such that for any two vectors
v € ['(TpEg) and w € I'(T'x () M) the relation hp (v, T'x () X (w)) = gx (p) (TpX (v), w) holds.
One may then define the norm |7, X|? = Tr(7pX* 0 TpX) at p and the global function on X4
given by |[TX|?(p) = |TpX|?. Moreover, the metric h also induces a unique volume-form vol(h)
on X4 so that the Polyakov action may be defined as a functional Sp : [Zq, M| x Met(Xy) — R
given by Sp[X,h] = fEQ |T X |?vol(h). For more details, see Dolgachev (1999, Lecture 4).
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be consistent, and so we find that classical string backgrounds correspond to
solutions of the beta function equations, which in particular contain the Ein-
stein field equationsﬂ We'll discuss the more general situation for perturbative
string theory in §2:2.3] and we’ll discuss the situation for SFT in §3.5]

2.2 Some details about the worldsheet

We now review some details about worldsheet string theory—i.e., string the-
ory understood as a 2D CFT—which will be relevant for the construction of
covariant string field theories in the next section.

2.2.1 The Hilbert space

Our starting point will again be the Polyakov action in flat spacetime, . When
viewed as a two dimensional theory on X, the symmetries are treated as
gauge symmetries, and a gauge fixing procedure must be implementedﬁ An
important consequence of the gauge fixing is the introduction of anticommuting
Faddeev-Popov ghost fields b®® and ¢,, with action

1
Segn = — / d2o/=hb*V 4 c. (6)
27T Eg

In the quantization, one finds that the symmetries ([2)) will be anomalous unless
D = 26. Since these are local symmetries, the theory is consistent only if
D = 26. Furthermore, the gauge fixing leaves behind a residual symmetry group
called the conformal group, which is an extension of the Poincaré group that
includes dilatations (scale transformations). This makes the theory a conformal
field theory or CEF'T.

The gauge fixing reduces the naive Hilbert space of the theory (which is a
product of the Polyakov and ghost Hilbert spaces) down to the gauge invariant
states:

Ho = HP ® th — thys~ (7)

This reduction is implemented by introducing an operator @ g, called the BRST
operator, which acts on Hg. The BRST operator is nilpotent (Q% = 0), and
the cohomology classes of this operator give the states in Hpnys. These are the
states in H that satisfy

QplY) =0, (8)

with the equivalence

) ~ ) + @B A}, |A) € Ho. 9)

It will be easier to work with the larger Hilbert space Hy while keeping in mind
the equivalence @D

5This reasoning has been discussed by philosophers in Huggett and Vistarini (2015),
Huggett and Wiithrich (2025), and Read (2019)).

6See Polchinski (1998) for a detailed overview of the Faddeev-Popov gauge fixing for this
theory.



The states of the string are related to excitations of certain fields in space-
time. In particular, the Hilbert space Hy has a basis called the Fock space basis
which makes clear the relation between worldsheet states and spacetime fields.
The basis is formed by acting on the vacuum state |0) with worldsheet creation
operators o, b_,, and c_,,, which are the modes of the fields X*, 5% and cq;
the subscript —n denotes the eigenvalue under the (holomorphic) worldsheet
dilatation operator Ly and is called the (left) level. For the remainder of this
section, we’ll ignore the ghost part of the Hilbert space for simplicity. Note that
there are two sets of each of the oscillators: o, and &",. This is because the
closed string theory decouples into left-moving (holomorphic) and right-moving
(antiholomorphic) sectors. The sectors are related by the level-matching condi-
tion, which says that the left and right levels of states must be the same[’f] The
vacuum state is degenerate due to the spacetime translation invariance, and the
other vacua are ‘spacetime boosts’ of |0):

k) = e X" |0). (10)
The Fock space basis is an infinite-dimensional basis given by states of the form

R VA A o Al | ) (11)
where > n; = > 7; due to the level-matching condition.

The basis state o/}, ...a"Y |k) (note the slightly different notation from
above) looks like a rank N spacetime tensor, since it has N Lorentz indices. It
will typically decompose into different irreducible representations of the space-

time Lorentz group SO(25, 1), which act as a global symmetry on the worldsheet

CFT:
att oty k) = @D (At e [E) - (12)

irreps

For instance, the two-index state o/ ;@”, |0) decomposes into a traceless sym-
metric, antisymmetric, and singlet representation. The component of a general
state [) along the basis vector (o}, ...a"% )inep |0) is interpreted as an ex-
citation of a spacetime field which transforms in that representationﬂ For the
previous example, the traceless symmetric component of ) = (.0 a”, |0)
is 1(Cuw + Cup) — (INuw = G (the graviton), the antisymmetric component
is 5(Cuv — Cup) = By (the Kalb-Ramond field), and the singlet component is
¢IMuy = Py (the dilaton). A general state can then be written in the Fock

"In terms of operators, (Lo — Lo)|)) = Ly |¢) = 0. There is also a ghost constraint

(Bo — bo) [9) = by [¢) =0.

Open strings are given by Riemann surfaces with boundary, and the boundary conditions
couple the two sectors completely, meaning there is only one sector. Thus, there is no level-
matching condition, and one can have states like Au(k)eik"xua’il |0), which give gauge fields
in spacetime.

9In the more general case where some other symmetry group G acts on the Hilbert space,
we would also distinguish Fock space states based on their representations under that group.



space basis as

26
Y = / (;lw)k%' [T(k) + (G (k) + B (k) + @ (k) ) 0%y + ... ] [K)
(13)

The components in this basis T'(k), G, (k),... are interpreted as fields in
momentum space. In position space, the graviton, for example, is given by

_ d26k ikx
G () = / s G ) (14)
Guv = M + G;w(l')- (15)

The last line is meant to illustrate that the spacetime metric in this state is
not 7, but rather n + G. This is analogous to spin-2 theories of gravity, as will
be discussed in Thus, the states of the worldsheet theory are related to
excitations of fields in spacetime.

In this basis, it is easier to see what the gauge equivalence (@ means. The
operator (Jp gives rise to factors of k, when acting on states, and in position
space this turns into a derivative d,,. Then, for example, the graviton component
G, inherits a spacetime gauge invarianc

G;u/ ~ G;,w + 8H§y =+ allg,ua (16)

which is an infinitesimal spacetime diffeomorphism generated by the vector field
&,. Thus, the gauge invariance @ gives rise to all gauge invariances of all
spacetime fields. The condition @Qp |1V} = 0 gives the mass-shell condition in
spacetime, k? = —M? for the various fields. The mass M is related to the level
by M2 = l%(n— 1), where [, is the string length; thus, states of higher level have
higher mass. Since the graviton has n = 1, it is massless. Unfortunately, in the
bosonic theory, the n = 0 state given by the field T is tachyonic: M? = —l%.
This suggests that the theory is non-perturbatively unstable. Some implicatioﬁs
of tachyons in the spectrum will be discussed in though this will be for open
string tachyons, which are much better understood.

2.2.2 Interactions

The operator-state correspondence is a special relation in 2D CFT between the
Hilbert space of the theory and the set of operators acting on that Hilbert
space. In effect, for every state, we have a local operator called the wertex
operator, and vice versa. If we wish to calculate a scattering amplitude between
two asymptotic states [¢)) and |¢), we can instead find the associated vertex
operators Oy and Oy and compute the correlation function (O;Og4). When the
state is a Fock space basis vector (o), ...a&" Yirepe®# X" |0), the associated
vertex operator will be denoted V;(k, o), where k is the momentum of the state, j

100ne-index spacetime states in the closed string theory arise from ghost factors in the
gauge parameter state |\), which we suppressed in the above Fock space expansion.



is a general index specifying the irrep, and o is the point on the worldsheet where
the operator is inserted. This vertex operator can be thought of as producing a
momentum k ‘1-particle’ excitation of the field associated to that representation.

The S-matrix between asymptotic states is therefore related to some corre-
lation function of vertex operators. The correlation function is computed using
the gauge-fixed Polyakov path integral with local vertex operator insertions,
which can be viewed as summing over all intermediate worldsheet geometries
with fixed asymptotic states. This is akin to summing over Feynman diagrams
with fixed external states. Crucially, in string theory there is no freedom in
choosing the interactions, unlike in QFT; the Polyakov action already fixes all
string interactions.

One must be careful to preserve the gauge symmetry of the path integral.
In particular, to preserve 2D diffeomorphism invariance, the vertex operators
must be integrated over the entire worldsheet. Furthermore, to preserve Weyl
invariance, the states associated to the vertex operators must be in the BRST
cohomology. Hence, in the worldsheet formulation of string theory, one can only
compute interactions between on-shell states with k2 = —M?, which means that
it is difficult to compute off-shell quantities such as potentials for fields. This
situation will change once we move to SFT.

There is one further technical interjection that will later prove important in
the formulation of SF'T. The Polyakov path integral requires an integration over
the worldsheet metric i, on the Riemann surface ¥4. Due to the symmetries
and properties of 2D metrics, this infinite-dimensional integral is almost
trivial. That said, there are some global technicalities due to ‘modular param-
eters’, which are deformations of the metric that are neither diffeomorphisms
nor Weyl transformations. These parameters can be thought of as a ‘change
of shape’ of the Riemann surface; for example, on the torus 72 = S' x S*,
these transformations roughly change the relative size/rotation of the two cir-
cles. The number of modular parameters is 0 for the sphere, 2 for the torus,
and 6g — 6 for a Riemann surface of genus g > 2. We can introduce a 0, 2,
or 6g — 6 dimensional space M, called the moduli space of Riemann surfaces
of genus g. This space is a manifold with singularities (i.e., an orbifold), and
points in this space represent Riemann surfaces with particular values for the
modular parameters. The path integral over metrics then reduces to an inte-
gral over modular parameters, which is an integral over this finite dimensional
space. There is a measure over this space defined in terms of the b-ghost, and
the path integral naturally accounts for thisE There is also a subtlety due to
Diff x Weyl transformations that leave the metric invariant. These are called
conformal Killing vectors (CKVs); the sphere has 6, the torus has 2, and higher
genus Riemann surfaces have 0. CKVs can be accounted for by inserting factors
of ¢ into correlation functions.

In its full glory, the bosonic string S-matrix for external states (i.e. vertex
operators) V; with momenta k; with the subtleties of the modular parameters

11See e.g. Nakahara (2003)).



(and CKVs) accounted for, is

ddim(Mg)t ,SP,S hi)\X
Sjl...jn(kla“-akn) :Z T DXDbDce g

d1m
< 11 /da ;(b,akﬁ(t)) T <) [ i)V, (ko).

(a0)Ef (a)ef i=1
(17)

The details needn’t detain us. The rough form is just a correlation function of
the vertex operators with various ghost insertions

S~y e /M ddi’“(Mg)t/E o {(b,0th)...c.. . Vi...Vo)y . (18)
g g g

The vertex operators are integrated over the Riemann surface, the correlation
function is integrated over all the moduli, and there is a sum over the genus,
which can be interpreted as a loop expansion as in QFT. The different genus
contributions are weighted by the Euler characteristic x = 2 — 2g; thus, the
quantity e* acts like a coupling constant, and will be denoted g. This term
arises because in 2D, the worldsheet Einstein—Hilbert action S = ﬁ f d2zv/hR
is also Diff x Weyl invariant, so we should also include it in our theory in
addition to the Polyakov action. This term is topological due to the Gauss—
Bonnet theorem, and it is proportional to the Euler characteristic x. It has no
effect other than weighting the different genus terms with different powers of
gs. As we can see from , this corresponds to a constant background dilaton
field &y = A — g, = e®°. Thus, in string theory, the coupling is determined
dynamically by the value of the dilaton. It is not a free parameter.

2.2.3 Backgrounds in worldsheet string theory

Much of the above discussion was in the context of the Polyakov action
formulated around flat, 26D Minkowski space. Suppose we instead want to
study bosonic string theory in a spacetime with many background fields of all
spins, including a background metric field. In other words, suppose that We
want to consider dynamical possibilities with objects (M, T s Guws Buw P, . )
This can be done in two different ways:

1. We can write down a new worldsheet action as in §2.1

S X" hao|T, 4, B, ®,...] := 47T/ d%f[ (X) +RO(X)

T (gw(X)hab + BW(X)e“b)c‘)aX“(‘)bX” T
(19)

12From this point onwards, we’ll denote background fields with hats; to be clear, this should
not be taken to imply that there is anything quantum mechanical about these objects.



This theory can be quantized via a path integral. There will be a Weyl
anomaly unless the couplings 1', §,., B, ®, ... satisfy certain field equa-
tions, including, most notably, the Einstein field equationsE

2. Instead, we might notice that inserting an operator
1
exp (—4 / dgo\/ﬁGW(X)h“baaX“abX”) (20)
77

into the flat space Polyakov path integral has the effect of shifting the met-

ric Ny — Muw+G . Note that this operator is exp(—ﬁ f d?o\/he~ kX Vira),
i.e. it is the exponential of the graviton vertex operator) *| More generally,

if we want a background value for a field corresponding to the vertex oper-
ator V;, we simply insert the operator exp(—ﬁ i dga\/ﬁVj) into the path
integral; this is a so-called coherent stateE Again, this can only be done

for BRST invariant operators V;, which means this is a ‘marginal defor-
mation’, i.e. preserves conformal invariance. Thus, backgrounds obtained

in this way also satisfy the field equations from above.

2.2.4 Superstring theory

In superstring theory, in addition to worldsheet conformal symmetry, we require
worldsheet supersymmetry, which is a symmetry that takes bosons into fermions
and vice versa. Such theories are called superconformal field theories or SCFTs.
We can impliment this symmetry by introducing worldsheet fermions into the
action (written in complex worldsheet coordinates z = o + i7):

1 _ _ ~ -
S=1 / 22 (6)(#3)(“ +prDY, + wuawu) + Sghost. (21)

Fermions can be either periodic or antiperiodic when going around the string.
Periodic fermions are said to be in the R (Ramond) sector, while antiperiodic
fermions are in the NS (Neveu-Schwarz) sector. For the anomaly to vanish in
this theory, we find D = 10.

The action is for the ‘type I’ closed string theory, which has a holo-
morphic SCFT and an antiholomorphic SCFTE It has four sectors depending
on the periodicities of ¢ and ¥: NSNS, RNS, NSR, and RR. The NSNS states
are familiar from bosonic string theory and include the graviton, Kalb—-Ramond
B-field, and dilaton. The RNS and NSR sectors are fermions in spacetime and
in fact give rise to an N/ = 2 supersymmetry in spacetimem The RR sector

13See Huggett and Vistarini (2015) and Read (2019) for philosophical discussion.

14Sometimes, the integral over the worldsheet fdzo h is incorporated into the definition
of the vertex operator.

15For philosophical discussion, see Huggett and Wiithrich (2025) and Read (2023).

16 The distinction between ITA and IIB superstring theories arises from a difference in GSO
projection between the two sectors, which truncates the spectrum and is needed to have a
consistent theory.

17 A priori supersymmetry on the worldsheet and supersymmetry in spacetime have nothing
to do with each other, so this is a surprising fact from the worldsheet point of view.

10



has new bosonic higher-form field strengths, and these pose certain difficulties
which will be discussed later.

The heterotic strings are formed by combining a holomorphic SCFT with
an antiholomorphic bosonic CFTE Thus we just have an R sector and an NS
sector depending on the periodicity of ¢, which are fermions and bosons in
spacetime respectively. There is an N' = 1 supersymmetry in spacetime, as well
as a spacetime gauge group SO(32) or Eg X FEg.

In addition to the diffeomorphisms and Weyl transformations, we need to
gauge fix the local supersymmetry. This is done by introducing additional ghost
fields, which again have opposite statistics to the fields to which they are as-
sociated. Since supersymmetries are generated by anti-commuting spinors, the
ghosts will be commuting fields. They are denoted as the ‘8y’ CFT; the holo-
morphic part of the ghost action is

1 _ _
So= 5 / d?z(bdc + BDY). (22)

Recall that if we wish to compute scattering amplitudes between states, we
must find the appropriate vertex operators corresponding to those states. In
the superstring case, there turn out to be difficulties in this process due to the
definition of the vacuum. Essentially, one finds that the operator corresponding
to the vacuum must satisfy very strange relations from the perspective of the
By CFT. For instance, the NS vacuum |0)yg maps to the delta function §(v)!

Thus, instead of using the 5+ ghosts, it is useful to introduce an equivalent
CFT formulated in terms of an anticommuting ghost system ‘€n’ (which are like
the bc ghosts) and a free boson ¢:

Blz) 2 e ?PE(2), v =2 e?Fn(2). (23)

In terms of these variables, the vacua are easily expressed as |0)yg = e~ and
0)r = e~?/2. Under the current j = 0¢, these operators have charge —1
and —1/2 respectively; this charge is called the picture number. Since general
physical states are constructed by acting on the vacuum with matter creation
operators, general vertex operators in the NS and R sectors will also have picture
number —1 and —1/2 respectively, i.e., they will contain factors of e =% and e /2
respectively.

One must also worry about the fermionic analogues of the moduli and CKVs
when computing superstring scattering amplitudes. Recall that in the bosonic
case, we needed to insert factors of b and ¢ to compensate for these subtelties. In
the fermionic case, we must instead insert picture changing operators (PCOs):

X(z) = {Qp. &} (24)

18There is a mismatch in central charge (c = 15 for the holomorphic part and ¢ = 26 for
the antiholomorphic part) between the two sectors; on the bosonic side, the interpretation of
a particular boson as a coordinate only holds for 10 bosons, so D = 10 in spacetime. The
remaining 16 bosons are interpreted as giving rise to the gauge group. For philosophical
discussion of this, see Kratky and Read (2024).

11



The explicit form of the PCO is quite messy, but it is crucial in superstring scat-
tering amplitudes and shows up in the formulation of superstring field theory.
We will just use the zero mode of this operator

1 1
Xy = 57 zX(z) (25)
As the name suggests, Xy adds 1 to the picture number of the amplitude.

The superstring S-matrix has a very similar form to the bosonic case but with
additional 8y and Xj insertions. Background fields are much more subtle in the
superstring case, however (see e.g. Cho et al. (2020)). Background RR sector
fields in particular cannot be incorporated using a straightforward worldsheet
action or the coherent state method; roughly, the reason is because R sector
vertex operators are worldsheet spinors, and they cannot be exponentiated in
the right way. String field theory will provide a workaround for this difficulty.

3 String field theory

Perturbative string theory based upon the Polyakov action has its shortcomings.
In particular, there are issues with IR divergences and renormalization@ as well
as the aforementioned problem with background RR fields. For these reasons
and others, it is therefore useful to consider a second-quantized version of the
string, i.e. a ‘string field theory’ (SFT)E Roughly, the SFT is a special QFT
whose scattering amplitudes reproduce all Polyakov scattering amplitudes .
This might seem contradictory: the Polyakov scattering amplitudes include UV
finite graviton scattering amplitudes, and a standard QFT would not be able to
accommodate this due to the nonrenormalizability of gravity in higher dimen-
sions. Indeed, SF'T gets around this issue with various subtleties: it has infinite
fields of higher mass and spin which ‘tame’ the UV behaviour, the action is in
general nonlocal in the position space representation, and it has an intricate
gauge structure.

SFTs are based on the string field |¥) € #H, which is an arbitrary (Grassman
even) member of the Hilbert space of the worldsheet theory satisfying the level
matching condition L, |¥) = O It might look odd having the field written as
a ket instead of an operator, but it can be translated into a more conventional
field by using the Schrodinger representation, which is a functional in spacetime
(X*,c|U) = U[XH(0),c]. The string field depends on the shape of the string in
spacetime (and also the ¢ ghost), not just a point like a conventional quantum
field; this is the source of nonlocality in the interactions. We will also use the
symbol ¥ to represent the vertex operator associated to |¥).

Although the string field can be represented as a functional on loop space
U[XH(0), ], if we use the Fock space basis of the Hilbert space, we can expand it

Y There are no UV divergences due to the properties of moduli spaces of Riemann surfaces
that control loop integrals.

20For recent reviews of SFT, see Erbin (2021) and Sen and Zwiebach (2024]).

21This is needed for consistent interactions. Henceforth, H C Ho will denote the subspace
of the Hilbert space which meets these conditions.
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as a collection of infinite point-valued fields, which represent the various modes
of the string. One defines the quantum theory by doing a path integral over ¥,
which amounts to doing infinite path integrals over each of the components of
U, i.e., infinite path integrals over these classical fields.

3.1 Bosonic closed string field theory
The kinetic part of the action for the bosonic closed string field theory has the

form2?]

1 _
5 (Ve Qs W), (26)
which tells us that on-shell states are in the BRST cohomology,
Q@p|¥) =0. (27)

This is analogous to the Klein-Gordon part of scalar field theory: (O—m?)¢ = 0,
which tells us that on-shell states satisfy —k? = m?, exactly like the BRST
condition. The free theory only has this kinetic term in its action, and so it has
a gauge symmetry given by |¥) — |U) + Qp |A), since Q% = 0.

To get a better picture of what this means, we can write down a spacetime
action by expanding the string field in the Fock space basis of the Hilbert space
(where we ignore ghost factors for simplicity):

d26k .
v) = / (o 1)+ (G )+ B () + @(k)m)o 6%+ ] k) (29)
The coefficients T'(k), G(k),... are interpreted as Fourier transforms of the
spacetime fields T'(z), G(x),.... In position space, the action gives kinetic
terms for all of the fields:

S = /d%x (;n“”ﬁuT(x)ayT(x) +.. > , (29)

where we have assumed our worldsheet theory is 26D flat Minkowski space. The
free SF'T is therefore a quantum field theory with infinite fields which represent
the various vibrational modes of the strings. This move to position space will
not work for the action of the interacting theory.

To write down the interacting SF'T action, we need to go beyond the Polyakov
S-matrix from above. We need amplitudes of off-shell vertex operators (Qp |V) #
0), which the Polyakov formalism cannot deal with (see Polchinski (1998, p.
103)). Once these amplitudes are known, we can reverse-engineer an action
whose ‘Feynman diagram’ vertices give rise to them.

It is therefore necessary to consider off-shell string states which are not neces-
sarily conformally invariant, which means they will be coordinate—dependent@

22The ¢, = co — Co ghost is part of the definition of the inner product.

23This is because we need to insert factors of S d?2zV into amplitudes, and such factors will be
coordinate dependent unless V' is a (1,1) primary (i.e. @p |V) = 0), since the transformation
of d?z will not cancel that of V.
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This can be done by introducing local coordinates around each puncture on the
Riemann surfaces where the vertex operators are inserted. We can systemat-
ically account for this using a fiber bundle with base space M, ,, the moduli
space of Riemann surfaces of genus g with n puncturesﬁ and with the fiber
being a choice of local coordinates around each puncture (up to a phase). This
bundle is denoted ’ﬁg,n

We now want to look for an amplitude constructed with this space which
reproduces Polyakov amplitudes when the vertex operators are on-shell but
which still works off-shell. We begin by simply picking specific local coordinates
for each Riemann surface with fixed moduli and vertex operator positions, i.e.
we pick a specific section Fy.,, of Py .. If we integrate over F, ,,, then we will also
be integrating over all of the moduli and all of the vertex operator positions,
since both are already accounted for in the base space M, ,. Thus, to get
the genus g contribution to the n-point amplitude, we need to integrate some
p = dim(M, ,,) form over this section:

.Ag(Vl, ey Vn) - (Qs)_xg‘" /}_ Ql()g’n)(vl, ey Vn) (30)

The factor of g5 plays the role of the coupling constant and appears for the
same reason as in (17]). The specific p-form can be determined by the condition
that it reproduces ((17) when the V; are all on-shell:

o o 1 39g—3+n ) P

(g,n) = _
Q]) |:6uj17---,aujp:| ( 271_1) <B|:8u]1:|3|:au]p:|‘/1..vn>.
31

B [%] is an operator constructed from the b-ghosts and is a one-form on the

tangent space of 759’”. The total amplitude is then

AVi, .. V) = iAg(vl,...,vn). (32)

9=0

Essentially, the amplitude has the form of a normal Polyakov string ampli-
tude with vertex operators and ghost insertions, just with the new detail
of local coordinates, which modify the ghost insertions slightly and require the
integration over the section Fj , instead of just M, ,. The integration over
Fg.n contains the integration over moduli and vertex operator positions, so it
combines the two types of integrals we saw in the S-matrix. Note that all phys-
ical quantities are independent of the choice of section, which means they are
independent of the local coordinates.

24This space is dim(Mg) + 2n dimensional, where the dimension of M is discussed above.
This is because this space includes both the geometric moduli as well as the 2 coordinates of
each of the n punctures.

25A point in this bundle will be a Riemann surface of genus g with n punctures with a
choice of local coordinates around each of these punctures. The projection 7 : Py pn — Mg n
simply ‘forgets’ the local coordinates. Note that the fiber itself is infinite dimensional.
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We now want to reverse-engineer an action by using the amplitudes. How-
ever, we need to be careful. The difficulties are illustrated in a simple example
from QFT (drawn from Erbin (2021, p. 295)). Suppose we have a ¢ + ¢*
scalar field theory. Now consider a 2 — 2 scattering. There are tree-level con-
tributions from the ¢® term, with two interactions connected by an internal
propagator. However, since there is also a ¢ interaction, there will also be a
tree-level interaction with all particles connecting at one point. If we are trying
to reverse-engineer the action by just looking at amplitudes, we need to properly
account for both of these effects. For example, if we know all of the lower-order
interactions up to the n-point scattering (here the ¢* term), and we know the
propagator, then we can deduce the existence of a ¢* term in the action, since
the ¢3 diagrams alone do not give the full amplitude.

Similarly, in SFT, the n-point amplitude at genus g will have many
contributions coming from other-order interactions with propagators. However,
some parts of the amplitude will not be accounted for if we just use these inter-
actions, and so we must add a new n-point interaction term in the action. This
will continue for all n, so there will be infinite interaction termsm To describe
these terms explicitly, we need to understand how the other-order interactions
contribute to the n-point amplitudes.

There are two important gluing operations on the moduli spaces of Riemann
surfaces that allow one to construct higher genus Riemann surfaces from lower
genus Riemann surfaces. In particular, starting with two punctured Riemann
surfaces Z;l’nl and Zgz,M, we can construct a new Riemann surface ¥, of
genus g = g1 + g2 with n = ny + ny — 2 punctures by gluing a puncture of !
with a puncture of ¥2. This can be denoted by {¥!, ¥2} = ¥. The other gluing
operation just glues two punctures of the same Riemann surface Eg s.ms Which
gives a new Riemann surface X ,, of genus g = g3 +1 and n = n3 —2 punctures.
This operation can be denoted A¥? = %[7]

These two operations can be interpreted as follows. The operation of gluing
two distinct Riemann surfaces should be understood as two separate Feynman
diagrams with a propagator running between them. In other words, this is
a 1PR (one particle reducible) graph with all interactions coming from lower-
order vertices. Similarly, the operation of gluing a surface to itself gives the
contribution coming from higher point vertices with internal loops. This latter
effect did not show up in the tree-level ¢* 4+ ¢* example from above, since it
arises from loops.

Now, by the logic above, in order to find the n-point interaction term in the
action, we need to look at the part of that is not accounted for by other-
order interactions that are glued together. If we glue all possible Riemann
surfaces of appropriate g; and n; in all possible ways, we will cover a region of
Mg,n@ However, there will be some subset of M, ,, that is not covered. This

26 An important exception is Witten’s cubic open string field theory, which can reproduce
all interactions with just a cubic term in the action. This will be discussed in

27In both of these operations, there is an arbitrary complex parameter which determines
exactly how the gluing is performed. This is discussed in more detail in the next footnote.

28We might worry about covering the same region twice, which would over-count certain

15



in turn will correspond to some subset of the section Fy ,; it is denoted V, ,, and
is called a string vertex. In the language of the QFT analogy, this string vertex
is akin to the ¢* interaction. It must appear in the action because the other
interaction terms are not able to reproduce the full amplitude by themselves. As
one might expect, these vertices must satisfy complicated and strict geometric
relations so as to perfectly cover all moduli spaces of Riemann surfaces. This
will give rise to a geometric BV master equation, which is discussed in

Using the string vertices V, ,,, we can define a multilinear bracket {A4,,..., A,} :
HO — C,
th&w=2@ﬁwﬁ QM (A A (39
9= g:n

The action of the interacting quantum bosonic closed string field theory is then

5= 5 (WG Qs 9 + 30 {7, (31)
where
{U"}:={T,...,U}. (35)
—_———

n

Due to the geometric properties of the vertices, this action will be able to re-
produce all bosonic closed string Polyakov amplitudes.
This action has a complicated gauge invariance:

oo

1
v L4 A) + — |[AT"])
)= 19+ Qs+ 3 (36)
where
(Aol ey A1, .- Anl) == {Ao, ..., Ay} (37)
defines the string bracket: |[A1,...,A,]) : H®" — H. A common choice to

gauge fix this symmetry is by |¥) = 0, which is called Siegel gauge. The classical
equation of motion is

Qi+ 34197 - -

Quantum observables will be discussed in since the gauge invariance (36)
will restrict the space of physical operators.

contributions. This can be avoided by adjusting a parameter in the gluing operation called
the stub parameter. Although the stub parameter can change the form of the string vertices
defined below, it can be shown that SFTs with different stub parameters are related by field
redefinitions and are hence equivalent.
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3.2 Closed superstring field theory

Superstring field theory is structurally very similar to bosonic string field theory.
One again has a physical string field ¥, now defined to have picture number —1
in the NS sector and —1/2 in the R sector. The reason for these assignments is
the same as discussed in

A major difference in the superstring case, however, is the introduction of
an auxiliary, unphysical string field ¥, which is defined to have picture number
—1 in the NS sector and —3/2 in the R sector. This field is needed to write
down a kinetic term for the R sector. As a motivation for its introduction,
one might recall the presence of the self-dual RR 5-form in type IIB supergrav-
ity /string theory. The difficulties in writing an action for this field are well
known. Since this field should arise within the type II superstring field theory,
similar issues arise here. The auxiliary field, however, provides a workaround
for this difficulty[”]

Define G to be 1 in the NS sector and Xj, the zero mode of the picture
changing operator , in the R sector. Then the closed superstring field theory
action is

5= 5 (¥ 6Qp ) + (Wl Qs W) + 3 (0"}, (39)
n=1 "

1
2

and the equations of motion become

Qs |¥) —GQE|¥) =0 (40)
Q1) + 3 e =0, (a1)
n=1 "
which simplify to
Qulw)+ > —gI[w) =0, (42
Qp|¥) =GQp V). (43)

One can solve these equations by finding ¥ using the first equation and U with
the second. We will not write U explicitly when describing solutions of the
superstring field theory, since it is completely determined by W. This action

29 Another difference from the bosonic case is that the section F has to be replaced with
a more general object called a chain, which must appropriately project down onto M. The
reason is that picture changing operators can collide with each other and with vertex operators,
which lead to spurious divergences. A technique called vertical integration is needed to avoid
these collisions, and it requires vertical segments on F, which means it is no longer a section.
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also has a gauge invariance:

W) = [9) + Q) + 3 G [IAv") (14)
) = ) + Q) + 3 [[Aw"). (45)

3.3 BV quantization and L., algebras

The construction of the SF'T action might well have seemed rather ad hoc until
this point. There were many free choices in the procedure, including the precise
choice of vertices and the choice of section over the bundle. There is a much
more abstract perspective on the action which makes it clear that these choices
are irrelevant, and one can explicitly prove that the various SFTs one obtains
from these constructions are equivalent.

When we decomposed the moduli spaces of Riemann surfaces into various
vertices, we needed to ensure that these vertices perfectly covered the mod-
uli spaces without any gaps or overlaps. This consistency condition can be
expressed as a geometric BV master equation:

_avgﬂ = AVQ*L”+2 + % Z {Vgl,nl ) ng,nz}‘ (46)
el
To explain the notation, recall that V, ,, is a section over a subspace of My .
0V n is defined as the boundary of the projection of this subspace down to M, ,,
i.e. the boundary of 7(Vy ). The operations AV and {V1,V,} are defined as the
spaces formed by performing the operations AY and {31, 35} for all ¥ € n(V)
and X1 € 71(Vy), X2 € w(Vs) respectively. In other words, similarly to above, we
glue all Riemann surfaces in the vertices of appropriate g, n using the operations
AA and {A, B}. Addition means union, and the negative indicates that the
orientations are opposite.
The above equation is so-named because of its algebraic relation to another
equation called the BV master equation:

AS + %{S, S}=0. (47)

This equation has its origins in the BV quantization of gauge theories, which is
the most powerful technique for quantizing theories with intricate gauge sym-
metriesm BV quantization is extremely powerful for understanding string field
theory and its gauge-invariant observables, so let us quickly review how it works.

Suppose we want to quantize a classical action Sy which has some gauge
symmetry G, and perhaps even gauge symmetries of gauge symmetries G’, and

30See e.g. Cattaneo et al. (2025)).
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SO onﬂ One introduces ghosts for each generator of the gauge group (and ghost
of ghosts, and so on). Then, the set of physical fields and ghosts is collectively
called the set of fields, denoted ®. For every field, we now introduce an antifield
77/;“. Suppose we have N fields, i.e. a:1,..., N. We can then combine the fields
and antifields into a 2N dimensional (super)manifold M whose coordinates are
given by (@[J“,@ZNJ“). We will use a combined index I : 1,...,2N such that for
I:1,...,N, ¢! = ¢ and for I : N +1,...,2N, ¢! = ¢ Introduce a
sympectic form on this space called w!” E Using this form, we can define the
BV antibracket between functions on M:

O F ;;0G
{F’G}_aﬂjlw (91/)‘]7 (48)
and we can define the BV Laplacian,
1 r 0 o F
_ 1\ [ 1JYr
AF 2( 1) ol (w an). (49)

The subscripts r and [ and the exponent (—1)‘/’1 have to do with the Grassman-
ality of the (anti)fields, which we will not discuss for simplicity. To quantize
the theory Sy, we first extend it to a function S on M that reduces back to Sy
when the antifields are set to zero:

So(¥™) — S, P") : S(1h*,0) = So(h*). (50)

If this extended action S, called the quantum master action, satisfies the above
BV master equation , then it will define an anomaly-free, gauge-invariant
quantum theory. Gauge fixing involves choosing an arbitrary (odd) function

F on M and imposing the condition 7,/;‘1 = gif;. Then, the quantum theory is

based on the gauge fixed path integra]@

/Hadqp“es. (51)

The gauge-invariant observables A of this quantum theory are functions on M
that satisfy
AA+{S A} =0, (52)

and their expectation values are determined by

(A) = / Dy AY")eS, (53)

31This happens in higher-form theories. Suppose we have a theory based on an abelian two
form potential B whose field strength is H = dB. The potential B has a gauge transformation
under B — B+ dA, where A is a one form. However, A also has a gauge transformation under
A — A + d\, where )\ is a zero form.

I32This is the inverse matrix of the components of the symplectic form wy; in the coordinates

33Note the unusual sign in the exponent.
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where L is a Lagrangian submanifold of the full supermanifold M @

Indeed, the SFT action satisfies the master equation : the space
of field configurations M is just the Hilbert space H of the worldsheet theory,
the antibracket is determined in terms of the CFT inner product, and the split
into fields and antifields is based on the worldsheet ghost number of the state
of the CFT. Notice that this is a somewhat backwards story to the one which
we told above: there we had a classical action we were trying to quantize, and
we had to introduce ghosts, antifields, and other objects. In SFT, the entire
BV structure is already there, and we already have a gauge-fixed master action
(when we impose Siegel gauge). It follows that SFT is a consistent, anomaly-
free, gauge-invariant quantum theory. The quantum observables of string field
theory are functions F(¥) satisfying

AF +{S,F} =0, (54)

and their expectation values are given by
(F) = /LD\IJF(\II)eS(‘I’). (55)

The algebra satisfied by {, } and A (potentially including more operations
given by brackets [-]) is called a (generalized) BV algebra. Then, in more abstract
terms, the SF'T is determined by a morphism from the BV algebra of the vertices,
which is defined by the decomposition of the moduli spaces of Riemann surfaces,
into the BV algebra of multilinear functions on the Hilbert space of the CFT,
which is defined by the string brackets. Due to the properties of the BRST
charge and its action on vertex operators, these brackets satisfy the axioms of
a quantum L algebmﬁ

One can show that different SF'Ts based on the same background, i.e. dif-
ferent SFTs based on the same worldsheet theory with Hilbert space H, are
related by L isomorphisms (Kajiura 2002; Muenster and Sachs 2012). More-
over, such isomorphisms preserve the action of the theory. Thus, there is a good
case that L., isomorphism is the correct standard for the equivalence of SFTs.
Since all string field theories formulated using the above construction will end
up with the same L., structure, but merely with different definitions for the
string vertices and sections, we see that there is a unique SF'T corresponding to
every worldsheet background, and the various choices made in formulating the
theory are irrelevant.

Concretely, the different L, isomorphisms are field redefinitions of the string
field that preserve the BV structure and action. In we will focus on back-
ground independence proofs that use this latter (more familiar) notion of equiv-
alence, though the L., approach has also produced results pointing in similar
directions (Muenster and Sachs [2012)).

34 A Lagrangian submanifold is a submanifold where the symplectic form vanishes, w = 0.
35See Sen and Zwiebach (2024)) for a detailed introduction to Lo (and A) structures.
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3.4 The 1PI action

Similar to standard QFT, we can write down a 1PI (one particle irreducible)
effective action for SFT. Recall that such an action is defined as the Legendre
transformation of the log of the partition function:

oelé] = W] — / B ()6 (@), (56)

and W[J] = —iln Z[J]. Often, classical backgrounds of a QFT (meaning so-
lutions to the classical equations of motion) get corrected by loops and can
drastically change behaviour. However, the 1PI action takes all of these cor-
rections into account, and solutions to the equations of motion of the effective
action tell us the good quantum vacua. Note that the 1PI action is treated as a
classical action, meaning it satisfies the classical BV master equation {S, S} =0
rather than the quantum master equation .

The 1PI action generates, as its name suggests, all 1PI Feynman diagrams.
It can be constructed in SFT by simply changing our definition of the string
vertices: instead of letting V, ,, be a section over the region of M, ,, not covered
by {¥1,X2} and AX3, we will let it be a section over the region not covered
by {¥1,%2} only. In other words, the loop contributions from AXj are be-
ing absorbed into the string vertices, just leaving separating Riemann surfaces
connected by propagators, i.e. the 1PR graphs. Since the only change is the
definition of V,,, the form of the action is exactly the same, just replacing
{Ay,..., Ay} with {A;,..., A, }1p1, which uses the new vertices. Since we will
mainly use the 1PI action, we will drop the 1PI subscript. As we will see later in
the difficulties introduced by ¥ in the superstring field theory mean that
it is much easier to prove background independence using this effective action
and its equation of motion.

3.5 Backgrounds in string field theory

The 1PI equation of motion for the closed superstring field theory takes the
same form as the classical equation of motion, but it uses the 1PI vertex in
defining the string bracket [[Aq,..., A]):

Qulw)+ > 6w =0. (57)
n=1"

As mentioned above, solutions to this equation are the backgrounds of the full
quantum SFT. The simplest solution is ¥ = 0; this is the solution representing
the CFT which we used in constructing the SFT.

Hence, there are two different ways of understanding the backgrounds of
string theory:

1. A background is given by the worldsheet CFT, which in turn corresponds
to some set of background fields in the spacetime, as in . Since SFTs
are defined using a background CF'T, there will be a distinct SFT for every
possible set of background fields.

21



2. Within the models of a particular SFT, the different backgrounds are given
by solutions to .

The relation between these two notions will be critical in interpreting back-
ground independence proofs, and we will discuss this relation in more detail in
and

However, to get a simple intuitive picture, we can imagine the spacetime as
consisting of a manifold M and some background field configuration B. SFT
has fields of all spins, so there are background tensor and spinor fields of all
ranks. We will denote such a configuration with the following:

(M, B) := (M, T, A, g, ... ). (58)

The kinematical possibilities of a string field theory are (M, B, U). The string
field ¥ represents fluctuations around B:

(M, B, W) := (M, T + [9], A, + [¥] 1, G + [y - - ), (59)

where [U],, . represent the rank n tensor component of the Fock space ex-
pansion of the string field @

It is then clear that the solution ¥ = 0 of the SFT represents B, i.e. our
initial background, in spacetime. Other dynamical possibilities are given by
other solutions of the 1PI equation of motion . Consider a specific solution
U’. The model representing this solution is

<M7 B? \II/> = <M7T + [\Ij/]v A# + [\I],]#’g#l’ + [\I}I]#V’ s >
L 2/ VAP
=M T AL Gy - - - )-
However, we could have taken this configuration as our initial background con-
figuration; let us denote it as B’. We could have formulated a different string

field theory around B’, say with dynamical variable IT'. Then the kinematical
possibilities of this new theory are

<M7 Blv H/> = <M7 T, + [HI]7 A;L + [H/]H? g;u/ + [H/]HlM e > (61)

(60)

The background B’ is represented byAH’ = 0 in this new string field theory. It
therefore seems that the model (M, B, ¥’) in the first SFT is the same as the
model (M, B’,0) in the second; both represent the configuration

(M, T, A, G ) (62)

in spacetime. The background independence proofs we will consider in §4] essen-
tially extend this correspondence to all kinematical possibilities of both theories
by constructing an isomorphism between them; moreover, dynamical possibili-
ties will always be taken to dynamical possibilities under such maps. However,
these proofs are done at the level of the worldsheet Hilbert space, and the naive
spacetime interpretation presented here likely must be modified, as will be dis-
cussed in

36This is true at linear order, which is sufficient for the sketch we’re presenting here, but in
general [¥],,; .., will contain non-linear contributions from other components of the string

field, and in fact the precise identification depends on the definition of the string vertices V
discussed above; see Mazel et al. (2025)) for more details.
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3.6 Witten’s cubic theory

The above closed SFTs are extraordinarily complicated, and in particular, only
perturbative solutions to the equations of motion are currently known. Fortu-
nately, for open bosonic strings, there is a much simpler theory given by Witten’s
cubic string field theory (CSFT) (Witten [1986]). The relative simplicity of the
theory means that certain non-perturbative results are known, which will play
some role in questioning the naive spacetime interpretation above.

Open strings end on objects called Dp-branes (henceforth just called D-
branes), which live on p + 1 dimensional submanifolds of the spacetime. The
excitations of the open string are then interpreted as fields living on the brane
and represent deformations of the brane. From the worldsheet point of view,
open strings are Riemann surfaces with boundary. D-branes are then interpreted
as different boundary conditions of the worldsheet theory.

To formulate CSFT, we need an open and closed string background, meaning
we need a spacetime with a set of background fields and a configuration of D-
branes on this spacetime with background fields localized on the D-branes. On
the worldsheet, this means we need to choose a boundary action in addition to
our CFT, which makes it a boundary conformal field theory (BCFT). Note that
the boundary action is constructed using operators from the CFT.

Quantum mechanically, open strings can combine into closed strings, mean-
ing a truncation of string theory to only open strings would be inconsistent
in the full quantum string theory. For this reason, we will only work at the
classical level (in the sense that we only work at tree level), and there will be
no closed string fluctuations at all. In particular, the spacetime itself cannot
change in this theory (there is no gravity), and it should instead be seen as a
theory describing the worldvolume excitations of D-branes. It is more like a
stringy generalization of Yang—Mills theory than general relativity.

The cubic theory is typically written using an associative x-product and
takes the formP/]

Szﬂ%(W*QBW+§W*W*W), (63)

which looks like a Chern—Simons action. It can be rewritten in the language
of conformal field theory correlation functions@ where it takes a form more
similar to the closed string field theory:

S:%(\II|Q3|\I/>+§<\I/,\I!,\IJ>. (64)

This cubic vertex is very special, as it can cover the entire moduli space of all
Riemann surfaces (with boundary) by itself! Thus, this theory can reproduce
all open string amplitudes, and we do not need any additional vertices. The
equations of motion are

QpU + W W =0, (65)

37For the definition of this associative *-product, see Witten (1986)).
38Gee Erler (2022} eq. 3.169) for the explicit form of this vertex.
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and the gauge symmetry is
UV—sVU+QpV+UxA—-AxV. (66)

Solutions to the equations of motion correspond to different backgrounds and
are interpreted as different D-brane configurations on the spacetime. The simple
solution ¥ = 0 is just our starting configuration. As discussed above, we can
construct a different CSF'T for every background configuration of D—branesﬁ

4 Background independence

With this basic background regarding SFT in hand, we turn now to the claims
which are made in the literature regarding its background independence. But
we do so obliquely, by first considering a simpler, motivating example, to do
with the spin-2 reformulation of general relativity. After considering this case
in we present a schema for the equivalence of SFTs and their background
independence in before turning in and to two different ways of
filling out this schema.

4.1 Motivating example: spin-2 gravity

Before we tackle claims regarding the background independence of SF'T, it will
be instructive to review how such ideas play out in a simpler and more familiar
setting: that of a spin-2 reformulation of general relativitym For simplicitly,
we’ll consider the case of vacuum general relativity. Kinematically possible
models of vacuum general relativity are given by tuples (M, g,..,), where M is a
four-dimensional smooth manifold and g,, a Lorentzian metric. The dynami-
cally possible models are then picked out by the vacuum Einstein field equations
G =Ry — %Rg,“, = 0, which can be obtained by varying the Einstein—Hilbert
action

SEH[QH«V} = /M d4£L' ['EH [g,uz/] = /M d4$ \/ng[g;w]v (67)

where R[g,,,] is the Ricci scalar associated to g,, and g = det (g,.).

Pick now an arbitrary dynamically possible model (M, §,,) where g, is a
solution of the Einstein field equations (meaning that G,,[j,0] = 0) and split
the metric g,, in as guv = Guv + huw, where hy,, is now an arbitrary two-
index tensor and is not in general a metric. Remember that §,, is a fixed,
particular solution to the Einstein field equations meaning that we treat it as a
non-dynamical variable and don’t (at least initially) subject it to variation via

39The presentation here is somewhat anachronistic, since the D-brane interpretation of the
solutions of the equations of motion was available only after the discovery of D-branes,
with Dai et al. (1989) and Hofava (1989)).

40The example considered in this section is sketched in Erbin’s handwritten notes on BI
of SFT (Erbin [2022). In this philosophical literature, spin-2 gravity has also been discussed
recently by Linnemann et al. (2023) and Salimkhani (2020); the verions there are not the
same as the spin-2 approach considered here.
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Hamilton’s principle. Consequently, h,, subsumes all the interesting dynamics
and is the new dynamical variable of Sgu[gu, + hy] effectively replacing g,
in this role. Expanding Sgn as a power series around g, in terms of h,, we
obtain

SEH [g,uy] = SEH[Q[LI/ + h,uu] = SO [guw h;w] + Sl [g,uua h,uu] +...

= / d*z Lrnlguw] +/ d'z 78521{ [9,0] R+
M M guu g//.u:g;u/ (68)

B /M d'z v —ﬁR[QW} + /M d'z v _gGW[Qw]hW +.

= Sspin—2 [gmjv h;w] .

Note that if g,,,, is a solution to the Einstein field equations as we assumed, then
S1[guvs hyw] vanishes and we are left only with higher-order terms and Sp.

Imagine now an alternative course of history in which the discoveries of
early-twentieth century physics unfolded in quite a different fashion@ In this
alternative course of events, general relativity wasn’t conceived of by Albert Ein-
stein and David Hilbert around 1915, but rather by two very different scientists:
Albert Beinstein and David Dilbert. Moreover, the formulation of the theory it-
self happened to be somewhat different from the Einstein—Hilbert formulation.
While the actual formulation of general relativity—the one described by the
Einstein—Hilbert action Sgg—is very elegant in the sense that Sgy doesn’t re-
quire a choice of a fixed background field to be written down, this is not so in the
Beinstein—Dilbert formulation (spin-2 theory for short). In this spin-2 theory,
the action is given by Sgpin-2 and as such requires a choice of a fixed, privileged
background g, in order to be written down. In other words, the Beinstein—
Dilbert formulation given by Sgnin-2 appears to be background dependent in a
loose, to-be-made-precise sensef*?| That said, we note one last interesting prop-
erty of the relationship between this spin-2 theory and general relativity: the
two theories are in an important sense equivalent, because one seems to be just
a reformulation of the other since the Einstein—Hilbert action is related to the
Beinstein—Dilbert action by a simple change of variables as demonstrated in
[63).

With some ingenuity, Beinstein and Dilbert could have noticed that their

action is invariant under a special kind of transformation which maps
G = Gy

1214 ;/U/ A , (69)

h;w = h;w = h,uv + Guv — Guv-

Here g;w is another fixed solution to the Einstein field equations. To Beinstein
and Dilbert, this invariance would have presumably seemed like a miraculous

411n this passage we of course pay homage to our heroes, Brown (2005)) and Stachel (2007).

42We set aside the interesting albeit tangential question of why and how Beinstein and
Dilbert arrived at the spin-2 theory action given its reliance on a suspect background field,
infinitely many terms and overall cumbersome form; after all, questions of this kind are more
properly suited for the historians!
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conspiracy. Each of the infinitely many terms in Sgpin-2 has very non-trivial
dependence on g, which hides inside the power series coeflicients and each
successive term in the power series contains increasingly higher powers of h,,
rendering the symmetry transformations hidden on first blush@ However,
to we followers of Einstein and Hilbert, this invariance of Sgpin-2 is revealed to be
nothing but a manifestation of a trivial property of the Einstein—Hilbert action.
For from , it follows immediately that

Sspin—Q[g:“” hluu] = SEH[Q:U/ + h’HV + gﬁ“/ - g:,w]
= SEH [gp,t/ + huu] = SEH [guu] = Sspin—Z[gp,V> h;u/]a

which is the statement of invariance of Sspin_2 under . Invariance under
is thus hidden deep down in the intricate structure of Sgpin-2 and but becomes
manifest in SEH@ Moreover, the fact that such invariance exists allows us to
conclude that the choice of g, in Sepin-2 is in some sense irrelevant provided
that it is compensated for by appropriate change of the dynamical variables
Py

We can more formally express this ‘change of variables’ between two different
spin-2 theories as follows. Suppose we have two different theories of spin-2
gravity with two different ‘background metrics’ §,, and Q;W. The dynamical
variable in the first theory will be denoted h,,,, whereas the dynamical variable
in the second theory will be hj,,. Let us define (suppressing indices)

Sl [h] = spin—Q[Qah]v

SZ[h/] = Sspin—Z[gla h/]
Both S; and S; are defined on the space of sections of symmetric two-index
tensors on the manifold: S; : I'(Sym(T*M ® T*M)) — R. Now, let a bijection
F :T(Sym(T*M @ T*M)) — I'(Sym(T*M ® T*M)) (the ‘change of variables
map’) be defined by F(h) =h — §+ §, i.e. (69); then, by the above argument,
the pullback of Sy under this bijection is Sy:

F*Sy[h] := Sy[F(R)] = Si[h]. (72)

(70)

(71)

Again, this is simply a formal way to say that the two actions are related by a
change of variables.

The kinematically possible models of the first theory with action S; are
(M, g, hpuv), while those of the latter theory with action Sy are (M, g, h),,).
These are related to the corresponding model (M, g) in general relativity by

uv = ?];w + h,ul/ = g;w + h:“, (73)

We then have the following action-preserving isomorphism of models between
the two spin-2 theories:

(M, g, h) ~ (M3, h+g—7). (74)

43For recent philosophical work on hidden symmetries, see Bieliriska and Jacobs (2024) and
Read (2025).

44This is somewhat akin to Trautman gauge symmetry being a ‘hidden’ symmetry of New-
tonian gravitation theory, made manifest in Newton—Cartan theory. See Read (2025)).

26



Since the action is preserved under this map, the dynamically possible mod-
els are taken to dynamically possible models in this isomorphism. If this iso-
morphism really represents a physical equivalence between models of different
theories, then presumably only some invariant structure between these models
should be taken to be physical. In the case of spin-2 gravity, this is of course
given by the metric of general relativity (modulo diffeomorphisms).

We'll soon see that there are many analogies between the situation in SFT
and our spin-2 theory toy example. In fact, Sen and Zwiebach’s proofs of back-
ground independence of SFT—which we take up and analyze in §4.4}—can be
seen as analogous to the ingenious step of seeing the non-trivial invariance of
Sspin-2 under without the prior knowledge of Sgy and its relationship to

Sspin-2 encapsulated by .

4.2 Schema for equivalence of SFTs and BI proofs

Background independence proofs in SFT turn out to have many parallels to
the spin-2 case presented above. In particular, the overarching goal is to show
that two different SFTs formulated around different backgrounds are actually
equivalent. In this section, we will describe a schema for showing when two
string field theories are equivalent. This schema will hold for all string field
theories, closed or open.

In parallel with the spin-2 case, for two SFTs to be equivalent, we require
some kind of isomorphism of models between the two theories,

<M13B17\IJ1> ~ <M27327\I/2>' (75)

Here, M; is the spacetime manifold, B, is the background structure of the SFT,
and ¥, is the dynamical string field.

We don’t just want an arbitrary isomorphism of models, however; this of
course can be achieved for any two theories whose solution spaces are of the same
dimension/cardinality. Some salient dynamical structure must be preserved
under the mapping. In the classical case, by analogy with spin-2 gravity, we
require that the actions be equivalent under a pullback, i.e. that the different
actions be related by a change of variables. In addition, due to the gauge
symmetry of SFT, we also need it to be the case that the BV structures of
the two theories match. In the quantum case, we want the map to preserve all
correlation functions, the path integral, and the BV structure of the quantum
master action. Equivalently, we can preserve the 1PI equations of motion. This
will ensure that dynamical possibilities are taken to dynamical possibilities and
that the models are empirically equivalent.

One of the key conceptual ideas of the background independence proofs
of Sen and Zwiebach (1994alb) is that, since the two models (M, B, Uy) and
(Ms, B, Uy) will be empirically equivalent (since the actions or correlation func-
tions will be the same), they should eo ipso be regarded as being physically
equivalent Then, the backgrounds B; and B, have no physical significance;

45Readers familiar with the literature on the philosophy of symmetries will recognise this as
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presumably, only some invariant structure between these models will be phys-
ical, just as with the dynamical metric g,, in the case of spin-2 gravity and
general relativity. We will discuss what this invariant structure could be in
below. Note that this is a sort of generalization of the debates about symmetry:
there, symmetry-related models within some theory are identified, whereas in
the SFT case, we wish to identify models between two (or more) theories@ In
this sense, SF'T equivalences are something like ‘inter-theoretic’ gauge equiva-
lences; the different backgrounds and corresponding actions are different ‘gauge
choices’ which are gauge equivalent, albeit not manifestly so.

With all of this in mind, let’s now give the general schema for the equivalence
of SFTs. Recall that a given SFT, call it SF'T;, is specified by the following data:

1. The worldsheet CFT, which comes equipped with a Hilbert space H; and
Fock space basis |¢¢>@

2. A dynamical string field ¥; € H,;.
3. The SFT action S; : H; — R.

Let us now have two string field theories SFT; and SFTs with an isomor-
phism (up to gauge transformatior@ between their Hilbert spaces:

f:H1—>H2
f_1:H2—>H1.

As already mentioned above, the kinematically possible models of a string field
theory are determined by (the gauge equivalence classes of) ¥;, which is an
arbitrary member of #,. More precisely, the models are given by (M;, B;, U,),
where B; is the background structure determined by the underlying worldsheet
CF'T; since this is fixed, every distinct model is in one-to-one correspondence
with the (gauge equivalence classes of the) members of the Hilbert space. Thus,
if we have such an isomorphism of Hilbert spaces, then we already have an
isomorphism of models. In order for the theories to be equivalent, however,
this isomorphism must preserve the action under a pullback, meaning the two
theories are related by a change of variables:

7S Wy] = So[f(V1)] = S1[¥4]. (76)

something like ‘interpretationalism’ about symmetries, according to which one can regard em-
pirically equivalent, symmetry-related models of physical theories ab initio as being physically
equivalent. See Mgller-Nielsen (2017) and Read and Mgller-Nielsen (2020) for details.

46This is the kind of case considered by Read and Mpgller-Nielsen (2020) in the case of
dualities in physics.

4TWe assume H; is the part of the more general CFT Hilbert space which satisfies the level
matching conditions.

48The isomorphism takes gauge equivalence classes to gauge equivalence classes—recall .
Actually, in general, we only need an isomorphism between cohomologies (gauge equivalence
classes) of the theories, and it might not be possible to have a direct isomorphism of Hilbert
spaces. This is the case for the Erler-Maccaferri solutions discussed in the next subsection.
One can also phrase this requirement as saying that the BV form is preserved, wj = f*wa.
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For two SFTs to be equivalent, we just need there to be an isomorphism up to
gauge transformations f : Hy — Ho that satisfies (76). This will ensure that
every model in SFT; has an empirically(/physically) equivalent counterpart in
SFT5 and vice versa.

This map f will typically consist of three parts (all isomorphisms up to gauge
transformations):

1. A translation T : H1 — H1.
2. A field redefinition G : H1 — Hi.
3. An abstract Hilbert space isomorphism F' : H; — Hs.

Then, f = FoGoT : Hi — Hy will be the action-preserving isomorphism in
(76).

The translation 7" can be thought of as shifting to the solution in SF'T; that
represents the background configuration By of SFT,. To find it, one must solve
the 1PI equation of motion . Let \ilg € H1 be this solution; then we expand
around it (just as in the spin-2 case, where we expand around a particular
background metric): ¥; = \ilg—i—q)l. This @, will be our new dynamical variable,
and T implements this shift:

T(0)) =0, — Uy =Py, (77)

The field redefinition G ensures that the form of the actions is the same for both
theories, and the map F' will be a general isomorphism between the two Hilbert
spaces of the CFTs. In some cases, it can be interpreted as a ‘connection on
the space of CFTs’ (see Sen and Zwiebach (1994b)).

In the quantum case, instead of equating the actions, we equate the whole
path integral with measure (Sen and Zwiebach |1994b]):

DUl = 5 (DWye2P2l), (78)

This will ensure the equivalence of all correlation functions as long as the gauge
equivalence classes are preserved, i.e. if the BV form is preserved. To see this, let
As be an operator in Ho which satisfies the BV condition. Then A; := f* A, will
also satisfy the BV condition in H; and will therefore be a physical observable.
Moreover,

(1) = | DEA(F)e™
:/ f* (DU A5 (V3)e?) (79)
frL2
= : D\IJQAQ(\I’Q)BS2 = <A2>

To go from the second to the third line, we note that the pullback simply
expresses a change of variables in the path integral. Thus, we find that the
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correlation functions of the two theories are equivalent. Note that equating the
path integral is identical to equating the 1PI action under a pullback. This
can be seen from the definition of the 1PI action , which involves performing
the full path integral over the classical fields through the dependence on Z[J].
Thus, the quantum case works identically to the classical case with the simple
replacement of the action with the 1PI action.

Instead of requiring (78), we can follow Sen (2018) in equating the 1PI
equations of motion under the following:

Qp V1) + Z %gl [w7]) =71 (QB,2 |f(P1)) + Z %QZ |[f(‘1’1)n]>> :
n=1 n=1 (80)

This will also lead to an empirical equivalence of the two theories, and dynam-
ical possibilities will be taken to dynamical possibilities, since the equations
of motion are preserved (which are what classify the dynamical possibilities).
Sen’s original proof of background independence of closed superstring field the-
ory needed to follow this strategy of equating the equations of motion rather
than the actions. The reason is due essentially to the doubled string field @;
indeed, one can prove that Sen’s action cannot be background independent
in the sense of equivalence of (1PI) actions, see Sen (2018). However, recently,
a new action for superstring field theory has been found by Hull (2025). With
this new formulation, it is possible to directly equate the 1PI actions, and it is
no longer necessary to invoke the equations of motion.

Of course, the above is but a sketch, and in practice the challenge lies in
identifying/constructing the isomorphism f = FoGoT : H; — Ha. Over the
next two subsections, we’ll look at implementations of this schema to the open
string (§4.3) and closed string (§4.4). In each case, to repeat, what’s involved is
explicitly constructing this f.

4.3 The Erler—Maccaferri solutions

Let us now implement this schema for the open string. Recall from §3.6| Witten’s
(classical) cubic action for a CSFT,

2
Sl = TI'1 (\111 * Qqujl + gl:[ll * \I/l * \I/1> . (81)

This action requires background closed and open string fields; we will denote
them as C; and Oy respectively. Consider another CSFT, say with action Sy and
dynamical variable Wy, formulated around a different open string background,
but with the same closed string background: C, = C’2, o #+ Os. In other
words, consider a CSFT formulated around a different D-brane configuration in
the same spacetime.

The condition for background independence requires that there exist
a map f between the Hilbert spaces of the two CSFTs which preserves the
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action. As we have seen, a typical map f will involve a translation (finding the
solution) T', a field redefinition G, and a map F between the Hilbert spaces. For
the case of CSFT, the difficult part of proving the existence of f is in finding the
solutions corresponding to different backgrounds, i.e. finding 7. However, Erler
and Maccaferri (2014} |2020) explicitly constructed all non-perturbative solutions
to the CSFT equations of motion which represent other CSFT backgrounds.
There is also a natural map F' between the Hilbert spaces of all pairs of CSFTs
with the same C, which is given by open strings connecting the D-branes. The
field redefinition G is simply the identity in this case.

If one expands in some CSFT; around the Erler-Maccaferri solution \iﬂ;M
representing the other CSFTy background O,, then uses the map F' (denoted
F(®) = X®Y in this case), one can show that the actions S; and Sy are equiv-
alent under the pullback of f = FoT: f*S3[¥;] = S1[¥;]; moreover, this
map preserves gauge equivalence classes under . Thus, we have an action-
preserving isomorphism between the models of any two CSFTs formulated with
the same closed string background:

(M,C;01,91) ~ (M, C; Oq,0s). (82)

If we accept this criterion as amounting to physical equivalence, then it seems
that the choice of open string background O, is irrelevant to the physics of CSFT
and hence should be given no ontological significance. The theory is still clearly
background dependent because of C, but this argument suggests that some of
the other structure needed in formulating the theory is superfluous. In the open
string case, it is possible to give a formulation which is manifestly independent
of O, as will be discussed in

4.4 The quantum closed string

We will now use the schema for both the bosonic and supersymmetric closed
string field theories. These are arguably most interesting from the perspective
of background independence, since they are quantum theories where spacetime
will also fluctuate. However, due to the complexity of the theories, we lack many
of the results present for the open string. In particular, there is no known ana-
logue of the Erler—-Maccaferri solutions, as it is simply not known how to solve
analytically the closed string field theory equations of motion for backgrounds
‘far away’ from our starting configuration. However, there is still an isomor-
phism of models for ‘infinitesimally close’ backgrounds. From the CFT point
of view, these backgrounds are related by small marginal deformations. From
the spacetime point of view, the backgrounds B and B’ differ by infinitesimally
small field values.

Sen and Zwiebach (1994allb) and Sen (2018) prove the background indepen-
dence of bosonic closed string field theory and closed superstring field theory
respectively for such ‘infinitesimal’ shifts in backgrounds. The map T can be
found by recursively solving the equations of motion order-by-order in some
small parameter e. Then, the map F' is given by a connection on the space of
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CFTs: one can view CFTs related by small marginal deformations as living on
a manifold with the coordinates representing coupling constants in front of the
various possible marginal deformations. The CFT Hilbert spaces form a bundle
over this space, and the connection F' is an isomorphism between the Hilbert
spaces at different points. The most technically challenging part of the proof is
the existence of a G that transforms the 1PI action (or equations of motion) into
each other[®] This is done with an explicit construction that is also a recursive
series in orders of e. One must show that there are no topological obstructions
to this procedure. Once this is established, the existence of a map f between
the Hilbert spaces that preserves the action is shown, and hence there is an
action-preserving isomorphism of models

(M, B1,91) ~ (M, B, ¥5) (83)

for infinitesimally close backgrounds B; and Bo.

Sen and Zwiebach (1994a/b|) also give an argument that one can ‘integrate’
such infinitesimal shifts to get finite shifts, and hence that the above isomor-
phism should extend to closed SFTs formulated around backgrounds B and B’
that are a finite distance apart. This amounts to solving a certain differen-
tial equation in the deformation parameter, and Sen and Zweibach prove that
there is no topological obstruction in solving this equation. However, there may
potentially be divergences in this process which are interpreted as indicating
the breakdown of the variables of SFT; in describing the background SFT5, as
discussed by Sen (2018).

5 Invariant structure

The background independence proofs from the previous section suggest that
some of the structure used in formulating the various string field theories is su-
perfluous. Explicitly, we find that some models are isomorphic: (M, By, Uy) ~
(Ms, Bg, Uy). There is therefore a case to be made—or at least explored—that
the physical content of the string field theory is whatever is invariant under
these isomorphisms. In this section, we will explore various candidates for what
amounts to such ‘background independent’ structure of SFT.

5.1 Invariant (super)gravity structure

Let us focus on the closed string for now. As discussed in §4.4] we have an
isomorphism of models between SFTs formulated around different backgrounds
Bl and BQ, ~ R

(M, By,%1) ~ (M, By, U5). (84)

To understand what this means in more detail, let us consider the spacetime
interpretation of a general state in the Hilbert space of one of the string field

49 As mentioned above, Sen originally needed to_equate equations of motion rather than
actions due to the auxilliary field ¥. Due to Hull (2025) this is no longer necessary, and one
can simply equate the 1PI actions.
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theories, W1 € H;. As discussed in this will correspond to some set of fields
in spacetime, which we can view as a perturbation around the initial background
Bj; in the notation of the spacetime model is

(M, B1,W1) = (M, By + W) := (M, Ty (2) + [¥1(2)], g1 (2) + [¥1(2)] s - ).

(85)
The isomorphism of models between the string field theories tells us that
for every spacetime configuration of fields in SFTy, there is a corresponding
empirically equivalent model in SFTy. This empirically equivalent model will
have a similar spacetime representation as

(M, By + W5) = (M, Ty (x) + [Wa()], foun (z) + [T2(2)] - ..).  (86)

For these models to be equivalent, it is natural to equate the fields of each rank
up to gauge transformations (which we denote by ‘~’):

Ty (x) + [0 (2)] = To(x) + [¥a ()] (87)

10 (@) + [01(2)] s = Gy (@) + (Vo ()] (88)

[0

The latter equation bears a striking resemblance to for spin-2 gravity.
This similarity suggests that the background independent structure of a model
of SFT will be a combination of the background field with the fluctuation, which
will simply be the value of the spacetime field g, (z) := g1, (x) + [¥1(2)] 0 =
G2 (x) + [¥2(2)] - This will also be the case for the other fields with different
ranks, i.e., the background independent model will consist of the sum of the
background with the appropriate component of the string field, which will give
us the value of the spacetime field. Thus, the background independence proofs
suggest that the models of string field theory should be taken to be of the form

(M, B+ W) = (M, + (W], G + W) = (M, T(@), gu(@),... ). (89)

However, note that the latter models are precisely the same as those of a gravita-
tional theory with a matter sector which comes from the various string modes.
In the case of the bosonic string, these will be a 26D dilaton gravity theory
with massive fields of higher spins (plus the tachyon), and in the case of the
superstring, these will be the models of the appropriate supergravity extended
by similar stringy massive fields.

It therefore seems that the invariant content of the models of SFT is really
that of (super)gravity with the matter content being given by the various other
string excitations. That said, these models are slightly different from classi-
cal, minimally coupled (super)gravity due to quantum corrections coming from
stringy interactions. In this sense, SFT is ‘just’ an extended, UV complete
version of spin-2 gravity.

There are, however, some reasons to call into question this natural, invari-
ant (super)gravity structure. In particular, the background independence proofs
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relied heavily on the Hilbert spaces of the worldsheet CFTs. Although these
Hilbert spaces have Fock space bases which allow straightforward spacetime
interpretations of models within a specific theory, they can lead to some puz-
zling results for spacetime interpretations when comparing Fock space bases
between theories, particularly when comparing backgrounds that are ‘far away’.
However, this is precisely what we are interested in when assessing background
independent structure. To illustrate this point, we will construct the analogous
‘natural structure’ for Witten’s cubic string field theory and discuss some issues
that occur when considering the Erler—Maccaferri solutions.

5.2 Invariant Yang—Mills structure

Let us try to apply analogous reasoning from above to the open string field
theory. Open string fields living on D-branes are localized to the submanifold
of the D-brane. Thus, for example, if we have a D24-brane on a submanifold
C R?%1 of 26D Minkowski space, the fields of the brane will be localized to
The CSFT formulated on this brane describes open string fluctuations of
the brane. We will use = as a coordinate on all of Minkowski space and £ as a
coordinate on Z. The background of our CSFT will be some collection of closed
and open fields; we will separate them with a semicolon for clarity, with closed
background fields on the left and open background fields on the right:

(M, C;0) = (M, T(2), g (), ... T(), Au(€), ). (90)

=)
—
—_

=)
—.

The open string field ¥ will leave the closed string background unchanged, but
will describe fluctuations of the fields living on the brane. Thus, a general model
of this CSFT will be

(M,C;0,) = (M, T(2), g (), .. T() + [W(E)], Au(€) + [¥(E)]ps- ) (91)

Using the same reasoning as above, the natural background independent struc-
ture, or rather, the structure independent of the open string background, should
be the sum of the open string background and the fluctuation:

(M,C;0 +9) == (M, T(X), g (X), .. .;T(€) + [¥], Au(&) + [¥]y, . ..)
= (M, T(X), g (X),.. s T(€), A(), - ..). (92)

In other words, the ‘open string background independent structure’ should be
the values of the fields living on the brane, T'(§), A,,(§), . ... This is also the field
content of a 24D Yang—Mills theory, again with the appropriate matter sector
coming from higher string modes.

The problem arises when we compare this model to a different CSF'T which is
formulated around some other D-brane configuration with the same closed string
background. Let us consider the analogous ‘background independent structure’
for a CSFT formulated around some D23-brane which lives on a submanifold
3 C E. The fields of the D23-brane will be localized to X, which has coordinates
0. Thus, the models are

(M,C;0" + V') = (M, T(2), g (), ...;T'(0), A}, (0),...). (93)
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These are the models of a 23D Yang—Mills theory with massive stringy fields.

This is perhaps not surprising: the effective theory on the worldvolume of
a Dp-brane is simply p-dimensional Yang—Mills theory. CSFT is, in a sense,
a ‘UV completion’ of this Yang—Mills theory. However, the Erler—-Maccaferri
solutions make the rather astonishing suggestion that all CSFTs with the same
closed string background are equivalent, and hence, all of these various Yang—
Mills theories can arise as effective theories from a CSFT of naively different
dimension, and even different gauge group. For instance, the simplest configu-
ration of the D23-brane with no excitations (representing a vacuum of the 23D
Yang—Mills theory /CSFT) arises as a ‘lump’ solution within the 24D Yang—Mills
theory/CSFT. Moreover, multi D-brane solutions (which can represent U(N)
gauge theories) can arise as solutions of the CSFT of a single brane, which only
has U(1) gauge symmetry. Thus, the Erler—Maccaferri solutions seem to sug-
gest that even the spacetime fields are not the correct background independent
variables for string field theory.

In the closed string case, analogous solutions that are ‘far away’ are not
known, so the spacetime field approach seems more plausible as an account of
background independent structure. However, the above argument from the open
string suggests that the supergravity models are not sufficient for the full closed
SFT, especially when identifying models which may have different matter fields
or spacetime topologies. It is therefore important to look at other candidates
for background independent structure.

5.3 A theory on the space of theories: Witten’s BSFT

In this section, we will look at a formulation of open string field theory which
seems to be manifestly independent of the superfluous background structure
from earlier; this formulation is called the boundary string field theory (BSFT)
(Witten (1992)).

String fields take values in the Hilbert space of the worldsheet theory H.
Moreover, the background independence proofs from above also rely on iso-
morphisms between these worldsheet Hilbert spaces. Thus, it is plausible that
the background independent structure of SFT could be formulated in terms of
worldsheet data rather than spacetime data. Indeed, there is a formulation of
open string field theory, which in a precise sense is a ‘theory on the space of
worldsheet theories’. Unfortunately, it is not clear how well-defined this space
is due to worries about UV divergences and non-renormalizable boundary in-
teractions. Nonetheless, as we will see, it is possible to write down an action
on this space which is manifestly independent of the open string background O,
though it still depends on a fixed closed string background.

Recall that open string field theory is a classical theory, which means we ig-
nore string loops. The worldsheet of an open string without loops is conformally
equivalent to a disk D. Consider a worldsheet theory with an action

S = / o (0, X0, X0 +...) + / doV. (94)
D oD
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This is specified by some closed string background (g,.,...) and a boundary
Lagrangian V, which is a local, ghost number zero operator constructed from
the ‘bulk’ CFTE As with the CSFT, we will work with a fixed closed string
background, meaning we will fix the first term of the above action.

Note that in general, the boundary term V can break conformal invariance.
Imposing conformal invariance of the boundary action gives us classical equa-
tions for open string background fields, just like how imposing conformal invari-
ance of the ‘bulk’ CFT gives us equations for closed string background fields,
as discussed in §2.2.3] In particular, instead of the Einstein field equations, we
get Maxwell’s equations (Abouelsaood et al. [1987)).

Now, notice that the space of possible boundary Lagrangians V is just the
space of ghost number zero operators of the bulk CFT. Thus, in this sense,
the ghost number zero operators of the bulk CFT parameterize the space of
possible boundary theories for a given closed string background. To see this
more explicitly, one can find a basis of this space V; and expand the general
Lagrangian as V = ) . \;V;; the coefficients \; are coupling constants, and they
are the variables of the BSFT. The goal would be to write down an action on
this space so that the ‘on-shell’ V are the classical open string backgrounds. For
technical reasons, however, it is not possible to write an action directly on the
space of ghost number zero operators. One must move to the space of ghost
number 1 operators O such that V = b_10, where b_; is defined in terms of the
bulk b ghost. This will still give us all possible (matter) boundary actions if we
choose O = ¢V, but there is some redundancy, as multiple O can represent the
same V]

On the space of ghost number 1 operators, Witten’s action is implicitly
defined by

dSBSFT = %f]{dald02<d0(01){QB,0(02)}>, (95)

where @p is the bulk BRST charge, and d is an exterior derivative on the
space of couplings in the boundary Lagrangian. The extremal configurations
(dS = 0) are those that satisfy {Qp,O} = 0. These in turn are precisely
the conformally invariant boundary actions (at least in cases where ghosts and
matter decouple). Thus, Witten’s action tells us that the classical backgrounds
of open string theory are given by conformally invariant boundary theories! It
is exactly this requirement of worldsheet conformal invariance which gives us
the spacetime equations of motion. Also, notice that this action manifestly does
not refer to any open string background O, unlike the cubic string field theory
from earlier.

Ultimately then, there’s a case to be made that what we have here is a
manifestly background independent formulation of open SE'T; the analogue of

50By the bulk CFT, we mean the 2D CFT on the disk specified by the first term in the
worldsheet action, i.e., the closed string background. We are not talking about holographic
bulk/boundary theories.

51For example, this can be done by shifting © — O + A, where b_1A = 0.
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the Einstein—Hilbert action for general relativity in the spin-2 gravity case@
This, of course, goes beyond the invariant structures offered in the previous two
subsections.

5.3.1 Models of BSFT

The kinematic possibilities of the BSFT are spanned by the ghost number 1
operators of the bulk CFT. However, we will represent the models in terms
of the boundary Lagrangian V directly, since the interpretation of the ghost
number 1 operators O remains somewhat obscure, and we can always go from
the ghost number operator to a boundary Lagrangian using V = b_,0.

In the case where the bulk CFT is a non-linear sigma model (‘NLSM’), V
will represent some D-brane configuration within the spacetime, perhaps with
some non-zero value for worldvolume fields within the brane. We will simply
denote the models in this case as (M, C’, V), where the operator V is taken to
represent some D-brane configuration within M.

5.4 The ¢Z action

BSFT liberates open string field theory from the requirement of an initial D-
brane configuration by living on the space of worldsheet theories; the equation
of motion of the BSFT action tells us that on-shell actions are conformally
invariant. It is natural to ask whether the same move can be made for the
closed string. That is, can we write down an action on the space of closed
string worldsheet theories such that the equations of motion demand conformal
invariance?

This problem is technically more challenging than the open string case. In
the latter, the bulk closed string CF'T provided an ‘anchor’ so that the space of
boundary Lagrangians had a somewhat concrete description in terms of oper-
ators in the bulk CFT. On the other hand, the space of possible closed world-
sheet theories is the space of all 2D quantum field theories! There are similar
worries about the well-definedness of this space due to UV divergences and
non-renormalizable field theories.

Despite these difficulties, precisely such an action has been found by Ah-
madain et al. (2024) for the classical bosonic closed string It has a rather
unusual form: it is the product of the Zamolodchikov C-function (on a disk of
radius 7*) and the partition function of the QFT on the sphereﬂ

ScZ = Cpl(T*)Zsz. (96)

The partition function enforces the conformal invariance condition, and the C-
function ensures that the total central charge of the worldsheet theory is ¢ = 0

52The explicit relation between BSFT and CSFT is explained in Chiaffrino and Sachs (2019))
and Totsuka-Yoshinaka (2025]).

531t is classical for similar reasons to the BSFT: It only contains the sphere partition function
of the string, and so it does not account for string loops.

54The Zamolodchikov C-function is a function which is minimised on CFTs and which
returns there the central charge. For further details, see Ahmadain et al. (2024)).
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so that there is no conformal anomaly["] Both of these functions are defined for
all QFTs.

5.4.1 Models of the ¢Z action

The space of 2D QFTs is difficult to characterize, and the interpretation of a
string with an arbitrary QFT as a worldsheet theory is even more poorly under-
stood. For this reason, we will simply restrict our attention to NLSM worldsheet
theories such as those in . Just like the BSFT above, the variables of the ¢Z
action are the worldsheet couplings themselves. Thus, the models of the ¢Z ac-
tion, when restricted to this class of QF Ts, can be characterized by the values of
the spacetime fields which appear as couplings, (M, T, g, By, ®,...). These
are exactly the same models that were inferred in from the background
independence proofs; as mentioned there, they are the models of 26D dilaton
gravity with a stringy matter sector.

5.5 Models of string field theory

As we have seen in this section, there are many ways in which one can char-
acterize the models of SF'T; these we have summarized in table [} All of these
representations have benefits and drawbacks.

The naively background dependent models are what are most straightfor-
wardly read from the actions of the theories. However, as we know from for-
mulations of gauge theories in which the symmetries are not apparent, it is not
always the case that the obvious models are the physically appropriate ones. In
particular, the background independence proofs from §4| seem to suggest that
certain combinations of the background fields and the string field are the true
physical variables; we have called this the ‘inferred BI’ structure. In some cases,
further evidence for these models is provided by the theories in the next column,
which give the same dynamics in a way that uses only these BI variables. No-
tably, however, such a theory is not yet available for the quantum closed string,
which is ultimately the most interesting, as it is the only theory of quantum
gravity in this table.

6 Assessing the background independence of string
field theory

Having now presented and unpacked the relevant details regarding both SFT
and the core ‘proofs’ of the background independence of SFTs, we turn now to a
conceptual appraisal of the background independence of SF'Ts. To do so, we first
review some key definitions of background independence from the philosophical
literature (drawing upon a more exhaustive survey by Read (2023)) (§6.1); next,
we apply these definitions to our toy case study of spin-2 gravity (ﬁnally,

551t is assumed that the ghost sector is not deformed, so the matter CF'T must have c = 26.

38



Theory | Naively BD form | Inferred BI form | Manifestly BI theory | Manifestly BI form

Spin-2 gravity (M, Gpuv s hpv) (M, G + hpv) EH (M, guv)
Open SFT (M,C,0, ) (M,C,0 + W) BSFT (M, C,V)
Classical bosonic closed ST (M,C, ) (M, C + W) c¢Z (NLSM only) (M, T, guv, Buv, @, ...)
Quantum closed SFT (M, C, W) (M, C + W) 777 77

Table 1: For each of (i) the spin-2 theory (our running toy example), (ii) the
open SFT, (iii) the classical bosonic closed SFT, and (iv) the quantum closed
SFT, (a) the naive background dependent (‘BD’) structure; (b) the inferred
background independent (‘BI’) structure; (c) the manifestly BI theory; and
(d) the manifestly BI structure. By ‘manifestly’, we here mean that dynamics
(typically, an action) for the theory is provided which makes no reference to
background variables or fields.

we apply the definitions to the full case of SFT, drawing upon all of the results
which we have presented above (§6.3)).

6.1 Accounts of background independence

In assessing the background independence of SFT, we draw from the extensive
literature which deals with the desideratum of background independence itself.
One obvious and urgent question is this: what is background independence? The
criterion certainly captures a kind of shared intuition in the physics community,
but attempts at making this intuition precise have been met with difficulties. A
thorough investigation of possible answers to the question of what background
independence amounts to has recently been carried out by Read (2023), and
in the following we’ll draw heavily on the survey of the different accounts of
background independence offered in that work.

Focusing initially on the realm of classical theories, Read (2023} ch. 3) identi-
fies a large number of different proposals for analysing the notion of background
independence which have been floated in the literature. In the interests of
constraining the narrative in this article while still being able to make some
interesting points, we’ll focus here on the following approaches to background
independence:

1. Absolute objects (AO)
2. Variational principles (VP)
3. Belot’s proposal (BP)

We now briefly introduce each of these in turn; however, we make no claim to
cover these accounts in any degree of completeness. The reader interested in
details of the presented accounts (such as ramifications and potential problem
cases) should consult Read (2023, ch. 3).
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6.1.1 Absolute objects

Read (2023 ch. 3), following Anderson (1967 and later Friedman (1983]), defines
an absolute object (AO) as “[a] geometric object which is the same (up to
isomorphism) in all [dynamically possible models] of a theory.” (It’s important
to be clear here that Read has in mind the ‘local’ version of an AO proposed by
Friedman (1983), rather than the earlier ‘global’ version proposed by Anderson
(1967).) The AO criterion of background independence is then captured by the
following definition (Read 2023| p. 15):

Definition 1 (Background independence, absolute objects). A theory is
background independent iff it has no absolute objects in its formulation.

One of the main problems facing the AO account is that general relativity it-
self turns out to have an absolute object according to Anderson’s definition—the
metric determinant—and consequently does not qualify as background indepen-
dent according to the above definition (see Read (2023, pp. 16-19) for more on
this point; cf. Pitts (2006)).

Given these problems with the AO proposal, there are a couple of modi-
fications which are worth mentioning. The first has to do with the notion of
a ‘fixed field’ (terminology introduced by Pooley (2017))). According to Read
(2023, p. 12), “for a fixed field [...] the field values at each manifold point are
identically the same in every [kinematically possible model].” This is in contrast
with absolute objects introduced above which are identical only up to isomor-
phism and only across dynamically possible models. The fixed field criterion
of background independence is then captured by the following definition (Read
2023, p. 20):

Definition 2 (Background independence, fixed fields). A theory is back-
ground independent iff it has no formulation which features fixed fields.

Note the crucial reliance of the fixed field criterion on the notion of theory
formulation. In order for the criterion to be applicable to concrete cases, one
needs to supplement it with an understanding of what it means for two theories
to be equivalent. Read (2023, ch. 3) considers such criteria; however, for now
we only note that some such criteria are required in order to reach definite
conclusions using the fixed field definition.

A third related notion is that of an ‘absolute field’. Read (2023], p. 22) defines
an absolute field as “[a] geometric object specified in the [kinematically possible
models] of a theory, which is fixed (up to isomorphism) in all [dynamically
possible models] of that theory.” This is in contrast with absolute objects (e.g.
the metric determinant) which don’t have to be specified explicitly in the models
of the theory. The absolute field criterion of background independence is then
captured by the following definition (Read [2023] p. 22):

Definition 3 (Background independence, absolute fields). A theory is
background independent iff it has no absolute fields.
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As discussed by Read (2023| ch. 3), the above qualification regarding the metric
determinant in general relativity allows the absolute fields criterion to escape the
problem case facing the absolute objects criterion; as such, it fares better than
the latter in this respect, albeit at the cost of privileging specific formulations
of a theory in a way which might seem ad hoc.

6.1.2 Variational Principles

The account of background independence in terms of variational principles due
to Pooley (2017)) differs from the ones covered so far in that it places central
emphasis on the action of the theory under consideration. The proposal can be
stated as follows (Read [2023} p. 24):

Definition 4 (Background independence, variational). A theory is back-
ground independent iff its solution space is determined by a generally covariant
action, (i) all of whose dependent variables are subject to Hamilton’s principle,
and (ii) all of whose dependent variables represent physical fields.

Clause (ii) here plays a crucial role since, in principle, any equation of mo-
tion can be introduced to a theory’s action using Lagrange multipliers. If this
proposal is to fare any better than the accounts previously canvassed, it at least
needs to be able to tell apart theories which contain genuine background fields
from the ones which ‘hide’ these background fields by defining them at the level
of kinematical possibilities, but subjecting them to artificial constraint equa-
tions which universally kill their variation across dynamical possibilities. Such
artificial constraint equations would usually enter the action principle via un-
physical Lagrange multipliers and for this reason (ii) is required. (For further
discussion, see Read (2023, ch. 3).)

6.1.3 Belot’s proposal

Belot’s proposal belongs among the more involved accounts of background in-
dependence and it comes with several conceptual novelties compared to the
approaches considered so far. In particular, Belot (2011) notes that on his
account:

1. Background-dependence and independence come in degrees: some
theories are fully background-(in)dependent, others nearly so—
and others fall somewhere in between.

2. A theory can fail to be fully background-independent in virtue
of asymptotic boundary conditions.

3. The extent of the background-(in)dependence of a theory is
not a strictly formal one: in particular, it depends on how one
thinks of the geometric structure of each solution and on what
sorts of differences between solutions one takes to be unphysi-
cal.

(Belot [2011}, pp. 2872-3)
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The account itself proceeds by first drawing the distinction between geometrical
and physical degrees of freedom. In alignment with the third moral on the above
list, Belot avers that whether a particular piece of structure in a physical theory
qualifies as geometrical or physical is not strictly a formal matter and our inter-
pretive convictions factor strongly into such judgements. In principle, one can
take this to be an advantage of Belot’s proposal; however, one should also bear
in mind that definitive judgements about the background independence of a
particular theory can only be drawn in conjunction with these additional inter-
pretive judgements. Without further ado, let us now introduce the distinction
between geometrical and physical degrees of freedom, following the exposition
by Read (2023} pp. 28-30).

Consider a theory T whose kinematically possible models are tuples of the
form (M,0% O,...,0,), where M is a smooth manifold, and O is a piece
of structure identified antecedently as being ‘geometrical’. Such O¢ may in
principle vary across kinematically and dynamically possible models of T, so let
us call G the set of all O¢ across all dynamically possible models of 7. Addi-
tionally, one may wish to regard certain elements of G as equivalent geometrical
structures and equip G with an equivalence relation ~¢ relating equivalent geo-
metrical structures. Taking the quotient G/ ~¢ then defines the reduced set of
geometrical objects in T called G. Read then notes that “[t]he degrees of free-
dom needed to parametrize this latter set G are what Belot calls the geometrical
degrees of freedom of T.” (Read [2023| p. 29)

Turning now to physical degrees of freedom, we note that it is often the
case that a given physical theory commits to excess mathematical structure in
the sense that two mathematically distinct models may be regarded as having
exactly the same representational capacities@ Such models are called gauge-
equivalent and physical theories which contain such models are called gauge
theoriesﬂ We denote the relation of gauge equivalence by ~p, where P in
the subscript stands for physical equivalence. Belot’s procedure for identifying
physical degrees of freedom runs as follows. Take the set D consisting of all
the dynamically possible models of 7" and take the quotient D = D/ ~p. Then
“the degrees of freedom needed to parametrize D—the gauge-quotiented class of
dynamically possible models is T—are the theory’s physical degrees of freedom.”
(Read 2023, p. 29).

Having armed ourselves with the distinction between geometrical and phys-
ical degrees of freedom, we can now formulate Belot’s four definitions which
characterise the background independence of a given theory:

Definition 5 (Full background dependence, Belot). A field theory is fully
background dependent if it has no geometrical degrees of freedom: every solution
is assigned the same spacetime geometry as every other solution.

56There are subtleties here regarding the relations between mathematical equivalence and
representational equivalence—see Fletcher (2020). We elide them.

570f course, this is just one sense in which the term ‘gauge theory’ might be used. See
Weatherall (2016)) for disambiguation.
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Definition 6 (Full background independence, Belot). A field theory is
fully background independent if all of its physical degrees of freedom correspond
to geometrical degrees of freedom: two solutions correspond to the same physical
geometry iff they are gauge equivalent.

Definition 7 (Near background dependence, Belot). A field theory is
nearly background dependent if it has only finitely many geometrical degrees of
freedom: quotienting the space of geometries that arise in solutions of the theory
by the relation of geometrical equivalence yields a finite-dimensional space.

Definition 8 (Near background independence, Belot). A field theory
is nearly background independent if it has a finite number of non-geometrical
degrees of freedom: there is some N such that for any geometry arising in a
solution of the theory, the space of gauge equivalence classes of solutions with
that geometry is no more than N-dimensional.

Again, this presentation will suffice for our purposes; see Read (2023} ch. 3)
for a detailed assessment and exploration of Belot’s proposal. We'll see in the
remainder of this section that Belot’s proposal can be put to very interesting
interpretive work when we asses the background independence both of the spin-2
theory and of SFT.

6.2 Background independence of spin-2 gravity

With the above definitions in hand, we’ll consider now the background indepen-
dence of spin-2 gravity, as a warm-up to assessing in the next subsection the
background independence of SFT itself.

6.2.1 Models of the spin-2 theory

Having now reviewed some mainstream proposals for what background inde-
pendence might consist in (as already discussed, this list is non-exhaustive; see
Read (2023, ch. 3) for further proposals), we can lay these proposals against our
first case of interest: the spin-2 theory. Following up on we define the spin-
2 theory as follows. Its kinematical possibilities consist of tuples (M, §uv, hyw),
where M is a smooth manifold, g, is a Lorentzian metric and a fixed solution
to the Einstein field equations on M, and h,, is a rank-2 tensor field on M. The
dynamically possible models are then picked out by the dynamical equations fol-
lowing from Hamiltonian variation with respect to h,, of the action functional
Sspin-2 Which we defined in . Explicitly, from this variational procedure we
obtain the equations of motion

6Sspin—2

0= Sh

= Gulgu] + O(hyw) = 0. (97)
Since §,. is chosen such that it solves the Einstein field equations on M, we
see that the zeroth order term in @ vanishes. The remaining terms are then

proportional to ever-increasing powers of h,,,, meaning that h,, = 0 will always
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be a solution of spin-2 theory, albeit a trivial one. Formulated in this way,
the spin-2 theory by construction includes the entire solution space of general
relativity. Note that, on this way of thinking (which we’ll adopt in the remainder
of this subsection), each choice of background §,,, yields a distinct spin-2 theory.

6.2.2 Background independence of the spin-2 theory

What should we make of the background independence of the spin-2 theory?
On definition [1] (in terms of absolute objects), the theory comes out background
dependent, since it has an absolute object: the metric determinant det (g, )
is identical across all dynamically possible models of the theory, which means
that it is an absolute object in Friedman’s sense. (As Read (2023) notes, this
is a ubiquitous and problematic feature of the definition in terms of absolute
objects: the metric determinant is an absolute object also in general relativity
itself, as well as in many other spacetime theories.) Indeed, on our above way
of understanding the spin-2 theory (on which each spin-2 theory has its own
background g, ), the fixed metric §,, in toto is also an absolute object (as
well as an absolute field, since §,,,, is specified explicitly in the models of the
theory—meaning that definition |3[is also Violated)mﬂ

Let us therefore see how the remaining definitions deal with this theory.
Turning to definition @ we note that whether or not §,, is a fixed field will
depend upon whether or not it is taken to be fixed identically in all kinematical
possibilities. If it is not, then this definition does not vindicate any intuitions
which one might have regarding the fixed nature of g, .

Definition [d]in terms of variational principles captures a clear sense in which
Juv is a fixed background. Recall that the spin-2 action is given by and
in deriving the equations of motion only h,, is subject to Hamiltonian
variation. Therefore, spin-2 theory comes out as background dependent on
definition [

Belot’s proposal captured in definitions deserves some unpacking in the
context of the spin-2 theory. Recall that in order to put the proposal to work,
one needs to identify the geometrical and physical degrees of freedom of the
theory. Even at this stage, there are decisions to be made when it comes to
assessing the background independence of the spin-2 theory with respect to
Belot’s definitions. For are the fields §,, to be counted as geometrical, and are

58]f we were to have a more expansive view of the spin-2 theory according to which different,
non-isomorphic backgrounds §,, were permitted, then this object would not count as an
absolute object—but det (g, ) would still so count. Arguably, this would not be a satisfactory
result, for there is a clear sense in which g, is a fixed background—namely, in the sense that
it does not vary within any model, and is not coupled to any other fields. This type of case is
discussed by Read (2023} ch. 3) in the context of e.g. a cosmological constant which can vary
from model to model, but which is fixed within any particular model.

59 Are things like the Euler characteristic absolute objects? This would give the spin-2 theory
an absolute object. However, this deepens the tension between including other topologies and
trivializing background dependence: if there are only models of one topology, we will always
have topological invariants. If not, then the fields live in completely different spaces, and
it seems impossible for models of manifolds with different topologies to have an isomorphic
object, thus eliminating all possibility for an absolute object.
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the spin-2 fields k., also to be so regarded? While it seems fairly straightforward
to regard g, as being ‘geometrical’, there’s surely a case to be made on either
side when it comes to the spin-2 field h,,,, for on the one hand (with the origins
of the spin-2 theory in general relativity in mind) the object is geometrical,
but on other it (of course) looks akin to a spin-2 material ﬁeld@ And even
if one does regard h,, as being geometrical, there are questions to be asked
about whether one should be assessing the background independence of the
spin-2 theory with §,, and h,, in mind individually, or whether should assess
the background independence of the spin-2 theory with respect to the composite
object G, +hyy, 1.e. the metric g, of general relativity (recall @ Bringing
all this together, we have the following three cases

1. guv is regarded as geometrical; h,, is not regarded as geometrical. In
this case, for each g, there are various distinct configurations of the A,
field, associated with the various solutions of the spin-2 theory for this
background §,,,,. As such, geometrical and physical degrees of freedom do
not coincide, and the theory counts as (fully) background dependent, for
Belot.

2. gy is regarded as geometrical, as is h,,, and background independence
of the theory is assessed with respect to these objects, treated as funda-
mental. In this case, all the physical degrees of freedom are geometrical
degrees of freedom, so the theory qualifies as background independent.

3. v is regarded as geometrical, as is hy,, and background independence
of the theory is assessed with respect to the composite object g,., i.e.
the metric of the associated model of general relativity. In this case, we
again have it that all geometrical degrees of freedom are physical degrees
of freedom, and so the theory comes out as fully background independent.

What we find here, then, is that only on option does the spin-2 theory come
out as background dependent, on Belot’s account. In the next subsection, we’ll

see these verdicts mirrored when we turn to the background independence of
SFT.

6.3 Background independence of SFT

So much for the warm-up; let’s turn now to a systematic assessment of the back-
ground independence of SFTs. Our strategy for doing this will be as follows.

60Tt would be interesting to assess the status of hy as spatiotemporal with respect to the
criteria presented by Martens and Lehmkuhl (2020alb); for our purposes here, though, we
don’t need to engage in that detailed study.

61These issues are discussed in the context of Belot’s approach to background independence
by Read (2023, ch. 3).

62In all of these cases, we're setting aside diffeomorphisms: we assume that diffeomorphisms
always relate geometrically/physically equivalent models. Of course, this is somewhat contro-
versial, in light of the points raised by Belot (2018)), and further discussed by Read (2023).
But we’ll set aside the issues here.
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First, in we’ll assess the background independence of each individual
SFT (which, as we’ll see, is akin to assessing the background independence of
individual spin-2 theories as discussed in the previous subsection). Then, in
§6.3:2] we'll assess the background independence of SFTs with respect to their
invariant structure (which is akin to assessing the background independence of
spin-2 theories with respect to their invariant general relativistic structure, as
was also discussed in the previous subsection). And finally, in §6.3.3] we’ll assess
the background independence of what we were calling above (prior to philosoph-
ical analysis, of course) the ‘manifestly background independent’ formulations
of these theories.

6.3.1 Individual theories

Our first task is to assess the background independence of an individual SF'T,
with models (M ,3,@) where B is the fixed background and U is the string
field (recall . As we’ll see, the verdicts here mirror those which we gave
for the understanding of the spin-2 theory which we presented in the previous
subsection—i.e., on the understanding of spin-2 gravity according to which each
background g, yields a distinct spin-2 theory.

All of this is quite straightforward to see. Since B is fixed (up to isomor-
phism) across models, it at least counts as an absolute object and absolute
field—although perhaps not a fixed field, since it needn’t be fixed identically in
all kinematical possibilities. Still, in general one sees that an individual SFT
violates ‘absolute object-like’ definitions of background independence, as one
would expect.

Consider now the definition of background independence in terms of varia-
tional principles. The first issue to settle here is the action principle which one
should be considering; this is the action given in . Recall that in that ex-
pression, we ignored ghost fields for simplicity, but following Erbin (2021}, §10.4)
they could be restored, and indeed for our purposes now it will be important
that we consider them.

If one considers this action, then one sees that the background independence
of an individual SFT appears to be violated, for our fixed, non-variational fields
appear at low orders, and these fields are not subject to Hamilton’s principle,
from the spacetime perspective. In addition, one might think that this definition
of background independence is violated doubly by virtue of the presence of the
ghost fields; however, one has to be careful, because these fields are in fact var-
ied (see Erbin (2021, §10.4)). Moreover, while presumably one wouldn’t want
to regard these as being ‘physical’ fields, even here there are delicate issues,
as discussed by Dougherty (2021)@ And as a final point on this variational
approach to background independence, note that if one considers the SF'T from
the worldsheet point of view, then the fixed background fields are re-interpreted
as coupling constants, and as such do not so obviously violate this definition of
background independence (this point is discussed in the context of perturbative

631t would be nice to have some principled distinction between ghosts and Lagrange multi-
plier fields vis-d-vis their ‘physicality’. But we won’t pursue this here.
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string theory by Read (2023} ch. 4)). All-in-all, then, while there are interesting
subtleties here regarding ghosts, what ultimately one finds is that whether an
individual SFT satisfies or violates the variational definition of background inde-
pendence hinges crucially on whether one adopts (respectively) the worldsheet
or spacetime point of view.

Finally, we have Belot’s definition of background independence. Here, prima
facie the case might seem relatively clear cut: since the background field B—
plausibly understood as the background spacetime geometry in the theory—is
fixed from model to model (up to isomorphism), there are no geometrical degrees
of freedom; in which case, an individual SFT is fully background dependent on
Belot’s account. This verdict would track case in the previous subsection.
That said, there are subtleties here again: if we take the background metric
together with the metric fluctuation of the string field as being the geometrical
degrees of freedom, then in fact geometrical degrees of freedom do vary from
model to model. And—assuming that these co-vary with the non-geometrical
degrees of freedom (encoded in the other excitations of the string field)—one
will thereby arrive at the verdict that an individual SFT is fully background
independent, in Belot’s sense. This latter way of understanding the background
independence of SFT in Belot’s analysis is akin to case in the previous
subsection, save for the fact that we now also have material fields, encoded (as
mentioned) in the other non-metrical excitations of the string field. (In addition,
one might wish to regard the Kalb—-Ramond field as being geometrical in string
theory, since it mixes with the metric under T-duality: see Blumenhagen et al.
(2013} §14.2).)

6.3.2 Invariant structure

So much for assessments of the background independence of individual SFTs,
interpreted ‘literally’, where there is a majority (but hardly unanimous) verdict
that such theories are background dependent. The next issue to consider is
whether adjudications on the background independence of SFTs change when
one interprets SFTs via their invariant (supergravity) structure, as discussed in
and Here, we'll first consider open SFT, before turning to closed SFT.

Consider first our ‘absolute object’-style definitions, with the invariant dy-
namical (super)gravity fields in mind. Here, we see (again) that definition
(‘no absolute objects’) is violated, for the usual reason that (e.g.) the determi-
nant of G, will count as an absolute object. On the other hand, both definition
and definition [3| will be satisfied, since the spacetime fields can vary (be-
yond isomorphism) from model to model; they are neither absolute fields nor
fixed fields.

On the other hand, it is a little difficult to assess whether definition [4—in
terms of variational principles—is satisfied when one is focusing on these invari-
ant structures, the reason being that (unlike in the case of the spacetime fields
in perturbative string theory as considered by Read (2023, ch. 5)) the action for
these background (super)gravity fields is not known. Given this, it is difficult—
absent further technical work—to ascertain the background independence of this
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‘invariant’ structure according to the variational principles conception of back-
ground independence. Failing this, it seems that one might have to fall back
on the action for individual SFTs, which (as we’ve already seen) violates
definition [

Finally, consider Belot’s approach to background independence. With sen-
sible choices of ‘geometrical’ and ‘physical’ fields (plausibly, G, versus B, @,
etc.—though recall our above parenthetical remark on the Kalb-Ramond field),
one sees that geometrical degrees of freedom do indeed match physical degrees
of freedom, making the theory background independent. (This mirrors the ver-
dicts on the spacetime formulation of perturbative string theory considered by
Read (2023, ch. 5)).

When we turn now from the closed SFT to the open SFT, we of course
still have a fixed closed string background; this background will end up vio-
lating definition [I] (absolute objects) and (plausibly) definition [4] (variational
principles—to the extent that one can think about variational principles at all
in the absence of a specific action). (At least on the assumption that there can’t
be non-isomorphic versions of this background in different models; if there in
fact can be non-isomorphic versions of this background in different models, then
definition [1] is in fact satisfied.) Assuming that one adopts the minor amend-
ment to Belot’s proposal for background independence made by Read (2023,
ch. 3)—mnamely, that every object designated as ‘geometrical’ co-vary with the
‘physical’ degrees of freedom in one’s models—these background closed string
fields will also end up violating Belot’s definition of background independence.

6.3.3 Manifestly background independent formulations

Finally, let’s turn to what we called in table [I] the ‘manifestly’ background
independent formulations of open and closed SFTs—that is, the formulations
of open and closed SFTs described by the third and fourth column of that
table. (Of course, the term ‘manifestly’ here should be taken with a pinch of
salt, if one doesn’t wish to cook the books in favour of a verdict of background
independence—cf. Read (2023| ch. 5).)

Begin with Witten’s BSF'T for the open SFT. As before, by dint of being an
open SFT, this theory has a closed SFT background in all models! (This is C in
table ) Typically, such a background is not understood to be fixed identically
in all models, and as such it does not lead to a violation of definition [3| of
background independence (in terms of fixed fields). Whether or not it violates
deﬁnition (absolute objects), on the other hand, will depend upon whether one
countenances models of BSFT with non-isomorphic versions of C—if one does
this, then (mirroring our above discussion of the spin-2 theory) this field will
not violate this definition of background independence; otherwise, it will lead
to such a violation (in our view, mirroring the case of individual spin-2 theories,
there is a case to be made that it is sensible to regard each BSFT as being
associated with a specific C') In any case, since this background is not subject to
Hamilton’s principle in BSFT actions such as , it seems that Witten’s BSFT
does violate definition [4] of background independence (variational principles).
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Finally, as before, whether or not Belot’s definition of background independence
is satisfied is again going to be a function of (a) whether different models of
the BSFT can include non-isomorphic versions of C, (b) whether other fields
in BSFT are regarded as being ‘geometrical’ (although the grounds on which
one would regard the V in BSFT as being ‘geometrical’ are not clear), and (c)
whether one again adopts the above-mentioned proposed amendment to Belot’s
proposal made by Read (2019, ch. 3) (on which even if one were to identify other
fields in BSF'T as being ‘geometrical’, the theory would still not be background
independent).

Turn now to the ¢Z action of the classical bosonic closed SFT presented by
Ahmadain et al. (2024). In this case, one has an action on the space of 2D
CFTs which makes no reference to any fixed background whatsoever! As such,
concerns regarding an outstanding fixed background which we saw for Witten’s
BSFT do not carry over to this case, and—prima facie (one has to keep in mind
the limitations of the approach given that the construction works for tree-level
only)—one appears to have secured an approach to SFT which on almost all
philosophical accounts of the notion qualifies as background independent@
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