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How to Explain Degenerate Mechanisms 

Abstract 

Degeneracy, the ability of structurally different elements to perform the same 

function and give rise to the same phenomenon, is believed to be ubiquitous at all levels 

of mechanisms in neurobiology. Given its biological salience, degeneracy has become 

an emerging topic in recent scientific literature. In this paper, I will present a new 

strategy for researchers to offer mechanistic explanations for degenerate mechanisms 

in the nervous system as complementary to the received new mechanist account. 

Specifically, I argue that, due to degeneracy, exemplar mechanistic models built using 

averaging techniques are sometimes beset by the ‘failure of averaging’ problem. To 

avoid this problem, many researchers opt for an alternative strategy – which is to offer 

what I call the population-based mechanistic explanations. According to this strategy, 

a large population of models instead of single exemplar models are generated to capture 

the real-life variability of biological mechanisms. By examining an example from 

cellular neuroscience, I offer an account of population-based mechanistic explanations 

and show that they differ from the ‘ordinary,’ exemplar-based mechanistic explanations 

by providing different explanatory information. Finally, I argue that the use of 

population-based mechanistic explanations has implications for the new mechanist 

philosophy. Specifically, I suggest that the notion ‘how-actually mechanistic models’ 

needs to be reassessed when degeneracy is taken into account. 
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1. Introduction  

No two leaves are alike – the spirit of this saying is exemplified all around the 

biological world. The nervous system, in particular, exhibits enormous variability. From 

molecule structures to system-wide properties, structural differences are found at all 

levels of the nervous system among animals with the same functional behaviours. The 

property of structurally different elements performing the same function and giving rise 

to the same phenomenon is termed degeneracy (Edelman&Gally, 2001). Given its 

biological significance, degeneracy has become a heated topic in fields including 

genetics, evolutionary biology, molecular and cellular neuroscience, and cognitive 

neuroscience.1 In recent philosophical literature, degeneracy has been mentioned for its 

implications for the modularity of causal explanations (Mitchell, 2008; Boone, 2024) 

as well as its role in distributed cognition (Gillet, 2022). However, attention to 

degeneracy is lacking from the new mechanist literature. This paper will place 

degeneracy in the framework of new mechanist philosophy, present a new strategy to 

explain degenerate mechanisms in the nervous system, and address its implications for 

our understanding of mechanistic explanations in neuroscience. Note that the following 

proposal is complementary to the received account of mechanistic explanations – it 

aims to offer a strategy, as observed from scientific practice, for investigators to develop 

mechanistic explanatory insight when the default method is impeded by the prevalence 

of degeneracy.  

 
1 For genetics, see Gonzalez et al.(2019); for evolutionary biology, see Whitacre (2010); for 
cellular and systems neuroscience, see Calabrese&Marder (2024); for cognitive neuroscience, 
see Sajid et al. (2020). 
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Specifically, in section 2, I will clarify the notion of degeneracy in more detail 

and argue for its significant role in many explanatory projects in neuroscience. In 

section 3, I will show how degeneracy poses a problem for the generalisability of 

mechanistic explanations, and how the problem is usually glossed over by the default 

strategy, namely building exemplar-based mechanistic models using the mean values 

of experimental data. However, I suggest that this default strategy stumbles when the 

so-called ‘failure of averaging’ problem occurs, i.e. when the averaged techniques 

overlook hidden correlations among the recorded parameters (cf. Golowasch et al., 

2002; Marder&Taylor, 2011). In section 4, I introduce what I call the population-based 

mechanistic explanation as an alternative solution that avoids this difficulty. 

Specifically, many researchers are now using a large population of models to capture 

the real-life variability of biological mechanisms. By examining a case study from 

cellular neuroscience (i.e. Lamb&Calabrese, 2013), I will suggest that population-

based mechanistic explanations differ from the exemplar-based ones by providing 

information about all the ‘mechanism variants’ for the phenomenon and answering 

different kinds of what-if-things-had-been-different questions. However, in section 5, I 

argue that this alternative strategy has implications for the new mechanist philosophy. 

In particular, I argue that the notion ‘how-actually models’ needs to be re-examined in 

light of degeneracy. 

 

2. The case for degeneracy 

Degeneracy, the one-to-many mapping between structures and functions, is 

recognised as ubiquitous in the nervous system. Just to name a few examples, different 

ion channel combinations can give rise to the same neurophysiological properties, 
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different presynaptic and postsynaptic signalling cascades can result in the same 

synaptic plasticity, and different neuronal populations can produce the same cognitive 

phenomena (Rathour&Narayanan, 2019). Mechanisms that exhibit degeneracy also 

have many adaptive advantages. On the top of the list is its contribution to the 

robustness of biological functions – having a number of different structures capable of 

producing the same function means that minor perturbations are not likely to have lethal 

consequences for the organism or the population (Edelman&Gally, 2001). Moreover, 

degeneracy is argued to be a driving force for biological complexity and adaptive 

innovation (Whitacre, 2010). Therefore, more and more researchers believe that we 

cannot fully understand neural mechanisms without taking into account the notion of 

degeneracy. 

How should we understand degeneracy in the context of new mechanist 

philosophy? Familiarly, Bechtel and Abrahamsen in their seminal work propose that ‘[a] 

mechanism is a structure performing a function in virtue of its component parts, 

component operations, and their organization. The orchestrated functioning of the 

mechanism is responsible for one or more phenomena” (Bechtel&Abrahamsen, 2005, 

p.423; see also, Machamer et al., 2000; Glennan, 2002). The organised components of 

the mechanism are regarded as at a lower (mechanistic) level than the overall 

phenomenon (cf. Craver, 2007, chap.5). Given that degeneracy is defined as a one-

many mapping between function and structure, I believe that under the new mechanist 

framework, naturally, degeneracy should be understood as a one-many mapping 

between the higher-level phenomenon and lower-level mechanistic details. I will use 

‘degenerate mechanisms’ to refer to the mechanisms responsible for the same 

phenomenon in virtue of different component parts, component operations, or 
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organisations.2  Degenerate mechanisms can be found across different individuals or 

within one individual across time (e.g. in the case of neural plasticity). Note that this 

paper will only focus on the former cases, i.e. degeneracy that occurs among a 

population of systems (e.g. organisms, cells).3 

Degeneracy is conceptually closely related to the notion of multiple realisation 

(MR), which deserves some clarification. Specifically, MR gained attention among 

philosophers along with the debate on the relationship between mental properties and 

neural properties, and it is usually associated with philosophical issues such as the 

autonomy of psychology, anti-reductionism, etc. On the other hand, degeneracy is a 

notion favoured by biologists and neuroscientists and has a root in quantum physics.4 

Regardless of the different intellectual backgrounds, both terms refer to lower-level 

variabilities underlying the same higher-level function, hence one might wonder if they 

are essentially the same concept. However, Figdor (2010) suggests that ‘there are cases 

of degeneracy that do not or may not count as MRs,’ and that ‘MRs are special, perhaps 

paradigmatic, cases of degeneracy’ (Figdor, 2010, p.428). Specifically, after closely 

examining the notion of degeneracy in the context of cognitive neuroscience, Figdor 

points out that degeneracy is broader than MR for it includes cases such as coactivated 

redundant systems, dual-route cognitive functions, and a more inclusive list of 

 
2 Note that ‘degenerate mechanism’ in scientific literature sometimes refers to the mechanism of 
how a system recovers its function from structural change (i.e. the mechanism of degeneracy). 
However, here I use this term to solely refer to mechanisms underlying the same function despite 
structural heterogeneity (or change) in relevant aspects. 
3 This restriction is made because most of the current scientific works that apply the 
methodology discussed in this paper deal with cases of degeneracy across individuals. In my 
view, the same or similar methodologies have potential application for the intra-individual cases 
(that is, it is possible generate a population of models to represent the mechanistic 
configurations of the same individual at different time points). However, I believe that such 
modelling strategies might be less suitable for representing the physiological changes that are 
crucial for maintaining the functional robustness within individuals, hence crucial for intra-
individual degeneracy. Future work is needed to address the difference in the mechanistic 
explanations of inter- and intra-individual degeneracy. 
4 See Mason et al. (2015) for a historical review of the use of the term ‘degeneracy.’ 



6 
 

structural variations which are not usually considered as cases of MR. 5  Thus, 

degeneracy and MR seem to be distinct concepts, with the latter being a subset of the 

former.6 Nevertheless, although a detailed conceptual comparison is out of the scope of 

this paper, I believe that discussions on degeneracy could be of interest to the MR 

debate – specifically, since MR can be understood at least as a special case of 

degeneracy, my account of how to explain degenerate mechanisms might point to a 

novel take on how to acknowledge MR while preserving a causal/mechanistic approach 

to explanation.7  

Another thing to be clear up front: degeneracy is relative to the grain of 

description. According to cognitive scientist Uta Noppeney and collaborators, 

‘[s]tructure-function relationships depend implicitly on the descriptive level at which 

the structural and functional elements are specified’ (Noppeney et al., 2004, p.434). To 

borrow their example, suppose that the cognitive function of wording reading can be 

performed by multiple degenerate neuronal populations. The attribution of degeneracy 

 
5 More specifically, according to Figdor (2010), when two degenerate systems are coactivated to 
realise a single instance of the function, it is still degeneracy but might not count as MR; 
regarding dual-route cognitive functions (e.g. reading by the semantic route vs. reading by the 
phonological route), it is not MR at least if cognitive functions are individuated by routes; finally, 
some variations in neuroanatomical details may appear in the degenerate mapping, but do not 
constitute MR.  
6 However, note that different philosophical accounts of MR can have more or less overlap with 
scientists’ use of degeneracy. For example, Polger and Shapiro (2016) require that the lower-level 
variations qualified for MR should be relevant to the higher-level function and involve 
taxonomical difference, which could exclude many cases of degeneracy. They also endorse 
Figdor’s (2010) conceptual distinction and conclude that ‘some neuroscientists who hypothesize 
widespread degeneracy do not distinguish relevant from irrelevant differences’ (Polger&Shapiro, 
2016, p.134). 
On the other hand, Aizawa’s and Gillett’s account of MR (Gillett, 2003; Aizawa&Gillett, 2009a; 
2009b) allows a wider range of lower-level variations to be qualified as cases of MR, which seems 
to align more closely at least with the cases of degeneracy introduced in this paper. Similarly, 
Boone offers an analysis of MR in light of causal explanatory frameworks, and argues that ‘[i]n 
systems neuroscience, the study of robustness very much is a science of multiple realization’ 
(Boone, 2018, pp.82). The relationship between degeneracy and MR hence in a sense depends on 
one's favoured characterisation of MR. 
7 I thank an anonymous reviewer for bringing up this connection. See also Boone (2018) for a 
discussion on MR and causal explanations with cases studies similar to the ones cited in the 
present paper. 
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will not hold either if the structure is specified in a more coarse-grained way (e.g. in 

terms of cortical regions), or if the function specified in a more fine-grained way (e.g. 

reading via spelling-sound relationships). Hence, we need to talk about degeneracy in 

a specific and contrastive manner (i.e. whether function P is degenerately sustained by 

structure X1-Xn).8  However, this description-dependency does not make degeneracy 

trivial. Although the full criteria for the attribution of degeneracy would be out of the 

scope of this paper, I argue that not any structural variation can make a case of 

degeneracy – for one thing, the difference in the color of the neurons does not make the 

activity of neurons degenerate.  

However, given this description-dependency, it seems that researchers can 

always avoid talking about degeneracy by shifting the granularity of descriptions and 

splitting the function into fine-grained variants. To be sure, such practice is 

commonplace in science. To borrow Kaplan’s (2017) example, the research project on 

the phenomenon of animal sound localisation was split into one for sound localisation 

in birds and one for sound localisation in mammals when structural difference in the 

neural circuits of birds and mammals was discovered. Craver (2004) points out that 

some researchers in cognitive neuroscience even take a step further and assume that it 

is not only commonplace but also necessary to split the description of the function into 

more fine-grained ones when structural variations are observed. Nevertheless, as a 

matter of fact, researchers do not always dismiss degeneracy by shifting descriptions.9 

I believe that there are many reasons for researchers to adopt descriptions that support 

the attribution of degeneracy and refrain from splitting higher-level phenomena 

 
8 Polger and Shapiro (2016, Chapter 4) make similar remarks for the attribution of MR. 
9 Examples of researchers embracing degeneracy in cognitive neuroscience include Noppeney et 
al. (2004); Sajid et al., (2020). 
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according to lower-level variations. Aizawa and Gillett (2011) argue that whether or not 

researchers choose to split the higher-level property is determined by both higher- and 

lower-level theories – considerations from higher-level theories can prevent the 

splitting in the face of lower-level variability. Moreover, I believe that in many cases, 

explanatory interest also plays a role in choosing whether to dismiss or embrace 

degeneracy.10 Given these considerations, this paper goes under the assumption that 

phenomena produced by degenerate mechanisms are genuine explanatory targets for 

scientific endeavours, and I will focus on the cases where researchers do not dismiss 

degeneracy by shifting descriptive granularity. I believe that such a premise can lead to 

descriptively adequate philosophical accounts of many explanatory projects in 

neuroscience. 

 

3. How to explain degenerate mechanisms? The default strategy and its limitations 

3.1 Degeneracy and the generalisability of mechanistic explanations 

In a sense, degeneracy poses a problem for the generalisability of our 

mechanistic explanations. According to the mainstream new mechanist accounts, a 

mechanistic explanation (in the epistemic sense) for an explanandum phenomenon 

explains by representing the mechanistic details (i.e. component parts, component 

operations, and organisations) of the mechanism underlying the phenomenon (see 

Bechtel&Abrahamsen, 2005, p.425; Craver, 2007, Chap.4). Such an explanation 

usually takes the form of a mechanistic model. Importantly, explanandum phenomena 

 
10 Such explanatory interest can be affected by many factors – for example, when structural 
variability is discovered across groups with no clear taxonomical distinctions, researchers can be 
reluctant to describe their function as different ones. 
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in neuroscience are usually regularities observed in a population of organisms (e.g. a 

species or a class of animals). It follows that mechanistic explanations should offer 

generalisable claims that apply to all the individuals in the population in question. 

Degeneracy, on the other hand, threatens the ability of mechanistic explanations to meet 

this criterion. This is because, due to degeneracy, individuals in a population are 

heterogeneous in terms of their mechanistic details despite exhibiting the same 

phenomenon. If a mechanistic model is faithful to one individual, it will diverge from 

other individuals in the population, hence the challenges the applicability of the model 

to all instances of the explanandum phenomenon. 

Relatedly, degeneracy threatens the generalisability of the explanatory 

information provided by the mechanistic models. As many new mechanists would agree, 

explanations provide explanatory information by offering answers to the interventionist 

what-if-things-had-been-different questions (the ‘w-questions’ for short). According to 

Woodward (2003), w-questions are counterfactual questions about how the explananda 

would change given interventions on the conditions cited in the explanans. The more 

systematic w-questions it answers, the deeper the explanation. Many new mechanists 

believe that mechanistic explanations explain by answering w-questions regarding how 

the phenomenon will change if interventions are conducted on the components of the 

mechanism (e.g. Craver, 2007, chap.4). Consider the example of explaining how 

neurons can achieve a low firing rate. It is believed that a low firing frequency is a result 

of a higher density of ion channels with an inactivating (A-type) potassium conductance, 

IA. In other words, a mechanistic model of a neuron with low firing rate is supposed to 

answer the question ‘what would happen to the firing rate of the neuron if IA was 

changed?’ However, Drion and colleagues showed that the same effect could also be 

produced by unrelated ion channels with a non-inactivating (L-type-like) calcium 
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conductance, ICa (Drion et al. 2015). That is, the mechanism for achieving a low firing 

rate is degenerate, where two different kinds on components can give rise to the same 

neuronal activity. This means that the effect of intervention on IA in the membrane will 

differ from neuron to neuron depending on its specific composition of IA and ICa – if a 

neuron maintains its low firing rate mainly in virtue of ICa, intervention on IA would 

have little effect on the neuronal activity. Thus, no general, systematic answer can be 

provided to the question ‘what would happen to the firing rate if IA was changed?’; the 

generality of the explanatory information offered by a single mechanistic model is 

compromised.  

In sum, degeneracy challenges the generalisability of our mechanistic 

explanations. Indeed, one can argue that, if a mechanistic account fails to apply to 

different instances of the explanandum, it is always an option to propose multiple 

mechanistic explanations for one phenomenon. However, it can be impractical to offer 

a tailored mechanistic explanation for each degenerate individual in the population – 

some degree of generalisability is needed for most, if not all, scientific explanations. 

Thus, more effective methods are required for explaining degenerate mechanisms. 

 

3.2 The default strategy: Exemplar-based mechanistic explanations  

As a common strategy practiced by many investigators and endorsed by most 

new mechanist philosophers, exemplar mechanistic models are constructed to account 

for the general explanandum phenomena. According to Bechtel and Abrahamsen (2005), 

mechanistic models can offer generalised explanations by serving as exemplars or 

prototypes. Craver and Kaiser echo this account by arguing that ‘mechanists deny that 

an explanatory model must be formulated in terms of generalizations,’ and that 
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‘exemplar models … by their very nature describe representative instances rather than 

general types’ (Craver&Kaiser, 2013, p.140-141). In other words, an exemplar model 

can offer a general mechanistic explanation by representing the mechanistic details of 

a single prototypical individual (or an idealised individual with prototypical features) 

that can be extrapolated to similar but non-identical individuals in the population. This 

is what I call the exemplar-based mechanistic explanations.  

Such a default treatment can sometimes be applied to degenerate cases. By using 

exemplar models, the lower-level variability among the population does not prevent 

(approximate) generalisation as long as the extrapolation is justified. 11  For example, 

much early research on neural transmission use the squid giant axons to build exemplar 

models for all neurons, assuming that the mechanisms for neural transmission across 

different neurons are similar enough. However, rather than embracing degeneracy, this 

default strategy avoids the talk of degeneracy by focusing on a single exemplary case 

and downplaying the non-exemplary ones. Thus, exemplar-based mechanistic 

explanations can at best serve as an expedient method for dealing with degenerate 

mechanisms. 

 More importantly for my purpose, there are practical problems when building 

the exemplar models for degenerate mechanisms. Specifically, what features should be 

regarded as exemplary? Such a choice can be hard when it comes to quantitative models, 

where the quantitative values of mechanistic details are relevant to the phenomenon of 

interest. For example, the quantitative features of neuronal activities (e.g. spike rates) 

are determined by the maximal conductances of ion channels on the membrane. An 

 
11 As for the justification of such extrapolation, Craver and Kaiser suggest that the comparative 
studies described by Steel (2008) and phylogenetic proximity between organisms can serve as 
potential grounds for the generalisation. 
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exemplar model for spiking neurons should hence specify the values of parameters 

representing the maximal conductances. But what parameter values are exemplary for 

a degenerate population? According to Marder and Taylor (2011), in the past, some 

researchers chose their ‘best’ recording – that is, the fastest and largest currents – to fit 

the exemplar model. However, due to the unreliability of using single measurement, 

more researchers prefer to record from multiple preparations, average the measurement 

results, and calculate the mean value to fit the models. As we all know, averaging is 

perhaps one of the most commonplace and standard practices for model building in 

neuroscience. 12  However, the use of averaging techniques conceals the underlying 

variability of the individuals. As Prinz and colleagues argues, ‘successful as these 

strategies [i.e. averaging] may be, they implicitly assume that variability between 

preparations or animals is “experimental noise” rather than an essential characteristic 

of the nervous system’ (Prinz et al., 2004, p.1345). 

In short, exemplar-based mechanistic explanations usually employ averaging 

techniques to idealise away degeneracy by blotting out the variability across individuals. 

However, as we know, models are bound to have idealisations. How much of a problem 

can the method of averaging bring about?  

 

3.3 Failure of averaging: the limitations of exemplar-based mechanistic explanations 

I suggest that the use of averaging for exemplar-based mechanistic explanations 

is bugged by what is called the ‘failure of averaging’ problem. Specifically, as more 

and more researchers in cellular and systems neuroscience recognise, averaging is blind 

 
12 For example, Hodgkin and Huxley derived their classic model of action potential by averaging 
over the measurement results from multiple axon preparations (Hodgkin&Huxley, 1952, p.435). 
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to hidden correlations between measured quantities, which could result in 

misrepresentation of the mechanism that produces the phenomenon.  

In particular, Golowasch, Goldman, and Marder (2002) conducted a modelling 

study to illustrate this possibility. These researchers constructed a conductance-based 

model neuron with five voltage-dependent conductance parameters. To mimic the 

biological variability, they randomly varied the maximal conductances and generated a 

number of bursting neurons with the same behaviour: firing a single action potential at 

the peak of a slow membrane potential depolarization (i.e. one-spike bursters). As a 

surprising result, the model constructed using the mean of the parameter values of this 

population of neurons is not itself a one-spike burster – that is, the ‘typical’ exemplar 

model constructed using the mean values does not itself produce the target phenomenon. 

Golowasch and collaborators suggest that this result is due to a hidden correlation 

between two maximal conductances, which is not reflected by the averaged model. In 

a multi-dimensional parameter space, this correlation gives rise to a L-shaped 

distribution of this population of neurons, and the mean value of the parameters hence 

does not fall within the region that generates the target phenomenon (see Fig. 2 for 

illustration).  

                
Fig.2  Schematic illustration of the failure of averaging. Dots represent individual neurons that exhibit 
the target behaviour. The cross represents the mean of the distribution. The neurons lie in an L-shaped 
region that does not include the model constructed with the mean values. After Fig.3a from Golowasch 

et al., (2002, p.1130) and Fig.2b from Marder&Taylor (2011, p,135). 
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The researchers hence conclude that ‘[a]veraging will fail whenever the mean 

of the distribution of relevant data points lies outside the region they occupy. Standard 

statistical measures do not indicate when this occurs because they do a poor job of 

characterizing the boundary of a region. However, scatter plots of the relevant 

parameters, as used here, should be sufficient to reveal a failure of averaging by 

showing regional boundaries’ (Golowasch et al., 2002, p.1131). In other words, 

averaging techniques sometimes overlook important correlations among parameters 

and hence misrepresent salient features of mechanisms. On the other hand, drawing a 

scatter plot representing all individuals in the population can reveal hidden correlations, 

but it is at odds with the idea of exemplar-based mechanistic explanations, which by 

definition only represents single individuals. Of course, to avoid the failure of averaging, 

an exemplar model can always abstract away from the precise quantitative properties 

that are specific to individuals and only represent general qualitative feature (e.g. to 

model the neuron as having some sodium conductance). However, this abstraction 

would prohibit the model from offering further mechanistic details and answering more 

w-questions, which can lead to a loss in explanatory power of the model (see Section 

5).  

Therefore, my contention is that, in some cases – specifically, in cases where 

quantitative parameters are crucial to the mechanism in question, the mean value of the 

parameters are regarded as the exemplary features, and certain correlations exist among 

these parameters across individuals – building exemplar models cannot offer 

mechanistic explanations for degenerate mechanisms. How pervasive are these cases? 

In current scientific practice, the majority of models are featured with quantitative 

parameters; there is usually no obvious choice for the exemplary parameter values other 
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than the mean values. However, indeed, those problematic correlations are only found 

in some systems. Therefore, not all cases of averaging will fail, and exemplar-based 

mechanistic explanations still work for many research projects. However, importantly, 

without checking this possibility – without drawing a scatter plot showing all 

individuals in the population – it is unknown whether the system in question hold such 

correlations among the parameters or not. Hence, the failure of averaging impairs the 

reliability of all unchecked exemplar models. Therefore, successful as they are, the 

exemplar-based strategies leave room for alternatives. In fact, many researchers are 

aware of this limitation and now opt for an alternative solution to deal with degeneracy 

– that is, to offer what I call population-based mechanistic explanations. 

 

4. Population-based mechanistic explanations 

Recently, many researchers working on small neuronal circuits are starting to 

construct populations of models instead of single exemplar models to capture the real-

life variability of biological mechanisms (cf. Prinz, 2010; Marder&Taylor, 2011). 

Specifically, a large number (usually thousands or even millions) of model instances 

are generated to represent individual neurons or individual neuronal circuits with the 

same behaviour or activity pattern. In other words, rather than idealising away the 

variability, this population-based modelling approach accommodates numerous distinct 

instances and represents a degenerate population, hence it avoids the failure of 

averaging. Moreover, as will be clearer later, such a modelling approach can offer 

mechanistic explanations – what I call population-based mechanistic explanations – for 

the behaviour of a population of neurons or neuronal circuits despite their lower-level 

variability, hence it preserves the generalisability of the explanations.  
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Note that according to this population-based modelling approach, researchers 

do not usually use actual experimental data for each model instance in the population 

due to the impracticality of experimentally recording millions of preparations. Instead, 

to mimic experimental data, they generate the population by assigning randomised 

parameter values to model instances and select those instances that exhibit the target 

behaviour. In such a model population, each model instance is defined by a distinct set 

of parameter values, occupying a point in the multi-dimensional parameter space, while 

representing a unique individual. The region in the parameter space where instances 

show the target behaviour is called the ‘solution space.’ Thus, the solution space at least 

approximately represents the population of all the individuals exhibiting the 

explanandum phenomenon. 13  A general goal for the researchers who adopt this 

population-based approach is to figure out the shape and the contour of the solution 

space. There are many different ways to explore the solution space. For example, 

researchers can vary the parameters with a certain step size and analyse all the resulting 

models (that is, solution space exploration on a grid, see Fig. 3, left). More recently, 

multi-objective evolutionary algorithms are proven efficient in generating good model 

instances (see Fig. 3, right). Inspired by natural selection, these evolutionary algorithms 

‘breed’ model instances exhibiting good performance to derive new generations of 

model instances that have better performance for the target phenomenon 

(Smolinski&Prinz, 2009).  

 
13 I acknowledge that the solution space can only be an approximate representation of the 
population in questions. For one thing, the population of models, however densely sampled, can 
hardly exhaust all the parameter combinations for the target behaviour. Moreover, the multi-
dimensional parameter space does not usually reflect the possibility of, say, two individuals 
having exactly the same set of parameters, which is another idealisation. 
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Fig.3 Schematic illustrations showing solution space exploration. White boxes represent the parameter 
space. Grey areas represent the solution space. Dots represent model instances, including solutions 

(white) or non-solutions (black). Left: solution space mapping on a grid. Right: solution space 
exploration using evolutionary algorithms, where solution space can be further explored by 

hyperplanes spanned by subsets of results (dots with white centre and black outline). After Fig.4d from 
Prinz (2010, p.2402). 

 

An example can better illustrate the idea. Lamb and Calabrese (2013) employed 

the population-based modelling approach to account for the activity of heart (HE) motor 

neurons in the leech. The HE motor neurons in the leech exhibit signature rhythmic 

activities that are largely the same across individuals, whereas the intrinsic membrane 

properties of these neurons – mainly the maximal conductances determined by the 

density of voltage-gated ion channels – show significant animal-to-animal variability. 

To study the contribution of different maximal conductances (ḡ) to the activity pattern, 

Lamb and Calabrese developed a multi-compartmental Hodgkin-Huxley style model 

for the HE motor neurons, parameterised by eight different maximal conductances. The 

target neuronal activity was defined by a complete input-output data set recorded from 

one preparation, with simultaneous recording of the activities of premotor interneurons 

and HE motor neurons as well as their synaptic weight. To find the parameter values 

that produce the target activity, Lamb and Calabrese used multi-objective evolutionary 

algorithms to generate model neuron instances and evaluate them against a list of output 

activity metrics (including measures of spike frequency, duty cycle, phase, etc.). As a 

result, a population of more than 40,000 model instances of the HE motor neurons were 
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constructed. All of these model instances have good performance of the target activity 

and differ in their maximal conductance parameters, hence constitute the solution space. 

The researchers believed that this population of model neurons captures the key 

functional characteristics and structural variability of actual HE motor neurons, hence 

can serve to provide further explanatory insights. 

We can now turn to the important questions: What kind of explanatory insights 

does this population-based modelling approach offer? First, recall that degeneracy 

hampers the explanatory power of mechanistic models by threatening the 

generalisability of the answers to w-questions regarding interventions on single 

components (section 3.1). Specifically, in the example above, if one asks, ‘how would 

the spike frequency of the HE neurons change if the maximal conductance of sodium 

channels (ḡNa) is increased by 20%?’, no generalisable answer can be offered for the 

whole population of HE motor neurons. This is because, given their variability, some 

neurons in the population might have abundant sodium channels, whereas some have 

very few. Hence, the same intervention on the sodium channels would result in different 

quantitative effects on the phenomenon in different neurons. Granted, some coarse-

grained, qualitative generalisations can be proposed (e.g. ‘the spike frequency will more 

or less increase if ḡNa is increased’). However, such answers to the w-questions are less 

systematic and hence ‘shallow’ in terms of the explanatory insight they provide. 

A population of models, on the other hand, can yield the distributions of 

parameter values in numerous individuals constituting a solution space, which allows 

us to gain different explanatory insight. In particular, after successfully explored the 

solution space with the population of models, Lamb and Calabrese turn their attention 

to ‘how the model instances were distributed in parameter space, or how the parameter 
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values for successful model instances were related to each other’ (Lamb&Calabrese, 

2013, p.10) In other words, they aimed to find patterns or regularities among all the 

instances in the population. Specifically, they evaluated the partial correlations 14 

between each pair of parameters, and showed that, roughly, many outward conductance 

parameters (e.g. ḡK2, ḡKA, ḡK1) were positively correlated with inward conductance 

parameters (e.g. ḡP, ḡNa), whereas outward conductance parameters were negatively 

correlated with each other, and so were the inward conductances. Moreover, 

manipulationist experiments were conducted on the whole population to determine 

(qualitatively) the functional role of each conductance. Lamb and Calabrese perturbed 

each parameter by ±25% and ±50% in more than 1000 model instances, and observed 

that, roughly, increases in outward conductances reduced spike frequency and duty 

cycle while inward conductances had the opposite effects. They hence concluded that 

‘[c]onductances that had positive correlations opposed one another and had the opposite 

effects on activity metrics when perturbed, whereas conductances that had negative 

correlations could compensate for one another and had similar effects on activity 

metrics.’ Thus, they further inferred that co-regulation (i.e. regulatory factors that 

modify multiply conductances at the same time) might be in place to sustain the 

robustness of neuronal activities in HE motor neurons and further explain why there 

are such correlations between conductances. 

In short, in their population-based modelling study, Lamb and Calabrese (a) 

presupposed and represented the variability in maximal conductances underlying the 

activity of HE motor neurons, and (b) provided information about all the parameter 

values that can produce the activity by exploring the solution space. Such information 

 
14 The partial correlation between two parameters is the correlation after compensating for the 
remaining parameters with a linear model. 
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involves (i) regularities among all the model instances, (ii) a functional interpretation 

of the parameters, and (iii) further insights on why there are such regularities in the 

solution space (i.e. the co-regulation). More generally, I propose that, ideally, a 

population-based mechanistic explanation of a phenomenon  

(a) presupposes and represents the variability in the mechanisms underlying the 

phenomenon, and (b) provides information on all the mechanism variants of the 

phenomenon, which usually involves (i) information about the regularities 

among these mechanism variants, (ii) information on the functional role of 

component type variants, and (iii) further explanations for the regularities.  

Condition (a), I believe, is what fundamentally distinguishes population-based 

mechanistic explanations from ‘ordinary’ exemplar-based mechanistic explanations: 

the former explicitly embraces variability and represent a plurality of mechanisms 

underlying the same phenomenon, whereas the latter only offers singular exemplars 

that sweep degeneracy under the rug. In condition (b), what I call a ‘mechanism variant’ 

is one that underlies at least one instance of the explanandum phenomenon. As 

mentioned, all the mechanism variants are approximately represented by the solution 

space. A population-based mechanistic explanation counts as a mechanistic explanation 

because it sheds light on how the organised mechanistic component parts and 

operations give rise to the phenomenon by specifying the mechanism variants and 

providing information (i)-(iii) listed in condition (b).15  

How does this information differ from the explanation provided by the 

exemplar-based alternative? I argue that population-based mechanistic explanations 

can deepen explanatory insight by offering answers to different kinds of w-questions. 

 
15 Note that a population-based mechanistic explanation might only provide some but not all of 
this information; the information provided might also be incomplete. 
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First, they can answer individual-level w-questions (i.e. w-questions specific to 

individuals) for all individuals in the population. For example, one can answer whether 

a certain HE motor neuron can maintain its activity given perturbations on its 

conductances based on whether its parameter values stay in the solution space. But what 

about the more generalised ‘population-level’ w-questions? I suggest that population 

mechanistic explanations at least have the potential to offer generalised insights 

regarding the relation between the phenomenon and multiple types of components. For 

example, recall that Lamb’s and Calabrese’s results suggest that several outward 

conductances can compensate for one another in neurons with the same activity. Hence, 

although single outward conductances contribute differently in different neurons, it 

might be the case that multiple outward conductances as a group have a definitive 

contribution to the neuronal activity that is universal across neuron instances. In other 

words, a stable, linear dependency relation might hold between the phenomenon and 

the sum of the contribution of several component types.16 Lamb and Calabrese’s model 

population can hence (at least potentially) offer generalisable answers to questions such 

as ‘how would the neuronal activity change if a group of outward conductances is 

changed’. More generally, population-based mechanistic explanations can (at least 

potentially) offer generalisable answers to w-questions with the form ‘how would the 

phenomenon change if a group of components is changed?’ By providing systematic 

answers to these w-questions, population-based mechanistic explanations deepen the 

explanatory insight into degenerate mechanisms. 

However, I acknowledge that the modelling strategy presented above might 

only apply to some but not all cases of degenerate mechanisms. Specifically, due to the 

 
16 This echoes Aizawa’s (2013) idea of multiple realization by compensatory differences. 
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limitation of computation power, the members in the model population are usually 

inherently similar to each other; they might have to share a common ‘skeleton model’ 

with a limited degree of freedom. Thus, if the degenerate mechanisms have more 

‘eccentric’ or more complex variations, they might not be captured by such a model 

population. Moreover, in order to represent all the variations in terms of the model 

parameters, we must have enough prior knowledge about the mechanisms. This might 

also require the mechanisms in questions to be relatively simple. Thus, the population-

based mechanistic explanations might only work for a class of degenerate mechanisms, 

namely degenerate mechanisms that are relatively simple and well-understood with 

more tractable variations. Nevertheless, population-based mechanistic explanation as a 

burgeoning explanatory strategy has been employed in many research projects in 

cellular and molecular neuroscience (e.g. Prinz et al., 2004; Caplan et al., 2014; 

Alonso&Marder, 2020). With the rapid development in modelling techniques, I believe 

that its application can only become wider. 

In sum, in this section I introduced population-based mechanistic explanations 

as a novel strategy for dealing with degeneracy in neural systems. Instead of dismissing 

degeneracy or idealising it away, such an explanatory strategy embraces the lower-level 

variability and offers explanatory insights on all the mechanism variants underlying the 

phenomenon. By doing so, researchers can deepen the explanation while preserving the 

generalisability of the explanation. However, I argue that such an explanatory scheme 

has consequences for our understanding of mechanistic explanations. In the next section, 

I will explore some of such implications.  

 

5. Implications for the ‘how-actually’ mechanistic model 



23 
 

Current discussions in the new mechanist literature are mostly based on the 

default, exemplar-based view of mechanistic explanations. For instance, Craver (2006, 

2007, see also Machamer et al. 2000) famously argues that mechanistic models should 

be ‘how-actually models,’ which represent the real mechanisms underlying the 

explanandum phenomenon. Such a normative claim is endorsed or debated by many 

new mechanist authors (e.g. Craver, 2014; Povich, 2015; 2018; Brainard, 2020). 

However, examples of how-actually models in this literature are mostly, if not all, 

exemplar models. I believe that the notion ‘how-actually model’ needs to be 

reconsidered in light of degeneracy and population-based mechanistic explanations. 

Rather than posing objections to the how-actually-vs.-how-possibly distinction, I want 

to raise some caveat about the use of the term ‘how-actually models.’ Specifically, I 

argue that the model instances representing the unique individuals in a population are 

more entitled to be termed ‘how-actually’ than the exemplar models with the same grain 

of description derived from averaging techniques. However, the target of a model 

population should not be confined with the actual mechanism instances currently 

existing in the world, but encompass non-actual, past or potentially future instances. 

Thus, there is more nuance to what it means when we argue that good mechanistic 

models should be how-actually models. 

According to Craver, a how-actually model represents (or approximately 

represents) ‘real components, activities, and organizational features of the mechanism 

that in fact produces the phenomenon’ (Craver, 2007, p.112). In contrast, how-possibly 

models might ‘have explanatory purport, but they are only loosely constrained 

conjectures about the sort of mechanism that might suffice to produce the explanandum 

phenomenon’ (Craver, 2007, p.112). According to the proponents of this how-actually 

vs. how-possibly distinction, the former has clear advantage for mechanistic 
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explanations because they offer reliable information about the mechanism in question. 

Based on this distinction, I believe that exemplar models with parameter values fixed 

by averaging techniques are hardly ever qualified as how-actually models. In particular, 

as introduced in section 3, averaging techniques are usually applied under the 

assumption that the mean value is the representative parameter value of the target 

mechanisms in the population in question. However, such an assumption is usually 

unsupported by evidence – that is, it is a loosely constrained conjecture. In other words, 

this assumption is a how-possibly element featuring in such exemplar models. And as 

a result, the failure of averaging occurs when this conjecture misfires – that is, the 

problem occurs when what was believed to be possible (or even plausible) fails to 

capture how the mechanisms underlying the phenomenon actually are. The model 

instances in a model population, on the other hand, avoid this pitfall by implementing 

parameter values that can actually produce the target phenomenon and hence providing 

reliable mechanistic information. Thus, I believe that the model instances score better 

than the said exemplar models on the how-actually-vs.-how-possibly axis.17 

However, a new mechanist might turn her attention to models with a coarser 

grain of description. In particular, as indicated in section 3, if a model refrains from 

specifying the quantitative details in the mechanism – that is, if it refrains from 

specifying parameter values and only contains qualitative descriptions – no averaging 

technique will be needed, hence the loosely constrained conjecture mentioned above 

can be avoided. Moreover, such a coarse-grained, abstract model can be true of all 

 
17 This result should also be expected from the perspective of Darwinian theories. Specifically, 
according to Mayr (2004), Darwinian theories of evolution introduced a new mode of thinking – 
namely, the Darwinian ‘population thinking’. This mode of thinking emphasises the uniqueness 
and variability of every individual in a population. According to the Darwinian population thinking, 
‘it is this variation among the uniquely different individuals that has reality, while the calculated 
statistical mean value of this variation is an abstraction’ (Mayr, 2004, p.88, original emphasis). In 
other words, only the particular individuals, not essentialist archetypes, are real or actual. 
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individuals in the target population, hence qualify as a how-actually model without 

compromising its scope. However, recall that Craver (2007; also Machamer et al. 2000) 

makes another normative distinction, namely the distinction between mechanism sketch 

and complete mechanistic models. In particular, a mechanism sketch is an incomplete 

mechanistic model that leaves important details unspecified, whereas a complete 

mechanistic model fills in all such details. I believe that a model that sacrifices 

quantitative details are likely to score lower on the axis of mechanism sketch vs. 

complete mechanistic models. This is because, as shown in my case studies, 

quantitative details are often relevant to the explanandum phenomena that modern 

neuroscience is interested in. In other words, although a model can stay how-actually 

by abstracting away from certain details, it might do so at the cost of its completeness. 

Population-based modelling strategy on the other hand, is capable of better achieving 

both actuality and completeness by representing the population with a large number of 

models. 

However, the sense of actuality in the context of model populations deserves 

further examination. Consider a population of models of the activity of leech HE motor 

neurons. Suppose that a model instance M captures the parameter values of an actual, 

living HE motor neuron N, hence represents an actual mechanism instance underlying 

an instance of explanandum phenomenon. When neuron N dies and ceases to exist, the 

parameter values are no longer instantiated by any actual living neuron, hence M no 

longer represents an actual mechanism instance underlying the phenomenon. However, 

I believe it would be implausible to say that M suddenly becomes a misrepresentation 

and should be excluded from the solution space of the model population. This is because, 

although neuron N no longer exists, the mechanism variant represented by model M 

still counts as a ‘solution’ for the phenomenon, which might be instantiated by other 
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individuals in the population again. The same argument applies to potential future 

neurons in the population: suppose that a model instance represents the features of a 

neuron that will exist and produce and phenomenon in the same population some time 

in the future; it seems implausible to say that such a model instance is only valid when 

the potential future neuron embodying the features of the model is brought to life. 

Therefore, if a how-actually model is understood as one that represents the 

actual mechanistic details of a system that exists at the present time, then members of 

a model population in a population-based mechanistic explanation are not necessarily 

how-actually models. Rather, the mechanistic configurations that used to be instantiated 

in the past and the ones that are potentially instantiated in the future are all valid target 

for the model population. In my view, this extension stems from the scope of scientific 

explanations. In particular, when researchers want to explain, say, the heart rhythm in 

the leech, it seems that they are not only interested in the currently living leeches – since 

if this is the case, we should renew our explanatory accounts every several years for 

each new generation of leeches. Rather, the explanations they seek should also be 

applicable to past and future organisms of the same species. More generally speaking, 

to the extent that mechanistic explanations have scope (i.e. are generalizations), they 

apply to a wider range of instances, some of which are actual, some non-actual (i.e. past 

or future). Such a distinction is masked by the assumption of a homogenous population. 

However, thinking about degeneracy can reveal this gap, since the past and future 

mechanism instances might diverge from the present ones.  

In sum, model instances in a population-based mechanistic explanation are 

promising candidates for how-actually models, if actuality is understood in terms of 

how much loosely constrained conjecture about the phenomenon is involved. However, 
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if actuality is understood in terms of existence at the present time, then it seems 

problematic to require all the model instances in a model population to be actual. Of 

course, a new mechanist might broaden the talks of ‘how-actually models’ to 

accommodate both past and potential future mechanisms – perhaps by endorsing a 

growing block theory of time and some determinist assumptions. However, this option 

would still call for careful examination of what counts as actual for mechanistic models 

and how we can distinguish them from how-possibly models.  While I do not intend to 

raise objections against the how-actually-vs.-how-possibly distinction, I do invite new 

mechanist philosophers to reassess their framework in light of the ubiquity and 

importance of degeneracy among biological populations. 

 

6. Conclusion 

In this paper, I discussed the notion of degeneracy in the framework of new 

mechanist philosophy, presented a new strategy to explain degenerate mechanisms in 

the nervous system, and addressed its implications for our understanding of mechanistic 

models in neuroscience. Specifically, I argued that the standard, exemplar-based 

mechanistic explanations are sometimes beset by the failure of averaging problem. I 

then proposed an alternative strategy for researchers to explain degenerate mechanisms, 

namely, to offer what I call population-based mechanistic explanations which provide 

information of all the mechanism variants underlying the explanandum phenomena. 

Finally, I suggested that the use of population-based mechanistic explanation has 

implications for the notion ‘how-actually models’ in the new mechanist literature. To 

be sure, with the increasing scientific attention paid to degeneracy in the nervous system 

and the rapid development of modelling technologies, the application of population-
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based mechanistic explanations and similar strategies can only be on the rise. I believe 

that the above account serves as an adequate complement to the new mechanist 

philosophy that reflects this rising trend in scientific practice.  
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