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Abstract

The standard model of particle physics is usually cast in symmetry-first terms.

Recently, a geometry-first picture has been proposed, in which the relevant sym-

metries do not appear explicitly at the ground level of ontology (Gomes, 2024).

In this paper I extend this approach to two central mechanisms of the standard

model: spontaneous symmetry breaking and the Yukawa coupling, both essential

for particles to acquire mass. These reformulations offer alternative explanations

cast in purely geometric terms. For example, a particle’s quantum numbers cor-

respond to the internal space it inhabits and to the geometric type of object it is

(e.g. an (n,m)-tensor). I argue that a symmetry-first account in terms of princi-

pal and associated bundles admits a genuine geometry-first counterpart only when

the group’s representation coincides with the automorphism group of the fibre—a

condition that cuts the slack tolerated by the symmetry-first view.

1 Introduction

Should we value mathematically equivalent formulations of a theory? Feynman (1994, p. 127)

gives the gist of my preferred answer to this question:

Every theoretical physicist who is any good knows six or seven different theoretical

representations for exactly the same physics. He knows that they are all equivalent,

and that nobody is ever going to be able to decide which one is right at that level,

but he keeps them in his head, hoping that they will give him different ideas for

guessing.

And he further reflected on the value of alternative ways of thinking about a theory in his

Nobel Prize Lecture (“The Development of the Space-Time View of QED”, 1965), in which

he discussed his path integral formalism, which was mathematically equivalent to Schwinger’s

earlier approach to quantum field theory:
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Theories of the known, which are described by different physical ideas may be equiv-

alent in all their predictions and are hence scientifically indistinguishable. However,

they are not psychologically identical when trying to move from that base into the

unknown. [. . . ] If every individual student follows the same current fashion in ex-

pressing and thinking about electrodynamics [. . . ], then the variety of hypotheses

being generated . . . is limited.

The subsequent career of Feynman’s path integrals is a testament to the validity of his argu-

ments.

Another classic case further illustrates the point: Minkowski’s 1908 recasting of Einstein’s

special relativity into the language of four-dimensional spacetime geometry. Again, the under-

lying physics was unchanged, but the shift in formulation was decisive for future developments.

Einstein initially dismissed Minkowski’s treatment as “überflüssige Gelehrsamkeit” (superflu-

ous erudition), yet by 1912 he had conceded that only the spacetime formulation revealed the

true essence of the theory.1 What Minkowski introduced was not new predictions but a new

ontology: space and time no longer standing apart, but merged into a single structure. And

it was precisely this geometrical vantage point that enabled the later generalisation to general

relativity (cf. (Stachel, 2002, p. 226)).

In the current paper, I aim to provide such an alternative description, though here of

classical gauge theory as it applies to the standard model of particle physics, not quantum

electrodynamics or special relativity, and of a much more humble and less radical nature than

either Feynman’s or Minkowski’s reformulations. Namely, I aim to provide an alternative

formulation of the standard model that does not rely on symmetry. I will call this formulation

geometry-first.

The knowledgeable reader will be quick to point out that gauge theory is already highly

geometrical: principal fiber bundles and connections are, after all, the stock-in-trade of the

geometer. However, the standard formulation also incorporates symmetry into its foundations,

and with it, an ontology that extends beyond the spaces where matter fields actually reside; it

extends the ontology to include the so-called principal fiber bundles. By geometry-first I mean

a formulation that employs only those spaces where matter fields reside, and does not rely on

symmetry to get off the ground. This definition is broad, but here we will focus on the case of

particle physics.

For theories of particle physics, I will assume the spaces where matter fields reside are

vector bundles and that the spaces that introduce symmetry at a ground level are principal

fiber bundles. Principal bundles can still appear in a geometry-first formulation, but if they

do they must be entirely supervenient on the structure of the vector bundles, which is the

subvenience basis for the geometry-first formulation. I do not demand that this picture must

1In 1912 Einstein wrote to Sommerfeld: “I have come to value greatly the four-dimensional formalism of

Minkowski, which I had previously considered unnecessary erudition. In the meantime, I have also become

convinced that only this formalism brings out the true essence of the theory.” (quoted in (Holton, 1974, p.

263))
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be superior in every respect, or practically advantageous. I will start with a more modest aim:

to offer an alternative perspective that clarifies some features of particle theory while omitting

symmetry at the base of the explanatory chain. And, lest I sound too irenic, in Section 5 I will

defend my preference for the geometry-first formulation more openly.

Needless to say, symmetry is the cornerstone of particle physics. Representations of Lie

groups, Casimir invariants, spontaneous symmetry breaking, gauge-fixing: these are the daily

bread of the standard model. (This much will be obvious to anyone familiar with the field,

so I need not belabor the point.) That the associated principal bundles—and with them the

explicit appeal to symmetry at the base of the explanatory chain—might be dispensed with is

therefore anything but trivial.

However, a new geometry-first formulation has recently been proposed, in which symme-

tries are not postulated and principal fiber bundles are unnecessary (Gomes, 2024, 2025a). In

the alternative formulation, the symmetry groups are only implicit: they arise as the auto-

morphism groups of vector bundles. The geometry-first formulation is generally available as

an alternative only for gauge groups that are linear, and for representations obtained from the

fundamental representation (when it is unique) via tensor and direct products, symmetrisa-

tion, and other similar operations. Thus, from the bat, theories whose symmetry groups have

no linear representation and groups that have no unique fundamental linear representation

are outside the scope of an equivalent geometry-first formulation. But more importantly, the

geometry-first formulation demands an alignment between symmetry groups and structure of

the vector spaces where matter resides that is not always guaranteed from the symmetry-first

perspective, with its largely independent principal fiber bundles and representation spaces (I

will have more to say about these restrictions to equivalence in Section 5).

Even in the cases that admit the two formulations as mathematically equivalent, the

geometry-first one comes with a significantly different ontology: for the standard model of

particle physics, it consists of three fundamental vector bundles over spacetime where the var-

ious matter fields reside (as sections of tensor products). There is no need for a separate space

to encode the principal connections.

Change the formulation, and the explanations change with it. Three examples show how

familiar features of particle physics acquire alternative interpretations. First, in a non-Abelian

vacuum Yang–Mills theory with Lie group G, the fundamental dynamical object is no longer

a connection ω on a G-principal fibre bundle (or its spacetime representative AI
µ), but the

covariant derivative Dµ on a vector bundle whose automorphism group corresponds to G—and

this remains true even if no vector fields are present to be differentiated: the affine structure

of the vector bundle can be dynamical. In this setting, a particle’s quantum numbers become

geometric labels: the internal space it inhabits, and the tensor type it is within that space.

(These ideas were explained in Gomes (2024); so this paper will focus on the next two.)

Second, once symmetry groups drop out of the base level of the explanatory chain, the

very notion of ‘symmetry-breaking’ requires reinterpretation. Vector bosons AI
µ are replaced

by covariant derivatives of the fundamental bundles, which are not on the same footing as
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matter fields, and it is no longer clear how they could ‘acquire mass’ in the usual sense. Third,

consider the Yukawa couplings. In the standard formulation, Yukawa terms are scalars formed

from sections of different associated bundles, requiring explicit ‘bridges’ between them. In the

geometry-first picture, by contrast, the fundamental objects are vector bundles themselves,

with particles emerging from the corresponding tensor bundles. Scalars then arise naturally

through inner products and contractions between vectors and their duals.

These examples show how a geometry-first perspective reshapes explanations. But the

real strength of the approach lies in the methodological discipline it suggests. Where the

principal–bundle picture allows considerable slack between symmetry and geometry, the vec-

tor–bundle point of view ties the two tightly together. Section 5 argues that this apparent

restriction is in fact a virtue: it narrows the space of admissible theories in a way that clarifies

the ontology of gauge theory and still encompasses our best physics.

Here is how I will proceed. Section 2 introduces both the familiar principal–bundle formu-

lation and the alternative vector-bundle point of view. Section 3 gives the alternative account

of the Higgs mechanism. Section 4 does not attempt a full reformulation of the Yukawa mech-

anism, but argues that its interpretation is more transparent in the geometry-first approach.

Section 5 develops the methodological defense of the VB-POV. Finally, Section 6 draws the

broader morals.

2 Symmetry-first and geometry-first formulations of gauge theory

Here I will give brief overviews of both the familiar, symmetry-first, and of the less familiar,

geometry-first formulations of gauge theory. I will start with the more familiar and then

introduce the novel.

2.1 Gauge theory and principal fiber bundles: the symmetry-first formulation

In short, the symmetry-first formulation of gauge theory is the familiar one: each fundamen-

tal interaction is associated with a symmetry group, which is taken as the structure group of a

principal fiber bundle. Connections on this bundle then play the role of the vector bosons—the

“force carriers.”

Classical configurations of matter particles charged under a force are described by sections

of vector bundles associated to the principal bundle whose group encodes that force. One

may endow these associated bundles with additional structure (for instance, a Hermitian inner

product on Cn); in such cases, the representations of the structure group are only required to

preserve that structure.

The connection on the principal fiber bundle induces parallel transport on all associated

bundles. Crucially, it is the same connection that governs transport in each case, ensuring that

different matter fields charged under the same interaction remain coordinated: they all “march

in step” under parallel transport, probing the same distributions of electroweak or strong
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forces. Thus, while associated vector bundles are distinct entities, they are tied together by

the principal bundle, which acts as their common coordinator (see (Weatherall, 2016) and

Figure 1). The primacy of the postulated structure group, and the central role it plays, is

what makes this a “symmetry-first” formulation. More specifically, since in the case of gauge

theories the symmetries are introduced as part of the principal fiber bundles, I will call this

version of the symmetry-first picture the principal bundle point of view (PFB-POV). Technical

details are provided in Appendix A.

Formally, a principal fiber bundle (P,M,G) is a smooth manifold P equipped with a smooth,

free action of a Lie group G, projecting onto a base manifoldM—spacetime. Intuitively, such a

bundle codifies the ways in which the symmetry group G can act on geometric objects defined

over M . In this paper, I will focus on one especially important class of such objects: vector

bundles. A vector bundle (E,M, V ) assigns to each spacetime point x ∈ M a copy of a fixed

vector space V , called the typical fiber. Sections of vector bundles are smooth assignments of

an element of V to each point of M , and matter fields are precisely such sections.

Ei := P ×ρi Vi, ,∇i

P (M,G,ϖ)
...

Ej := P ×ρj Vj, ,∇j

ρi

ρj

Figure 1: The principal G-bundle , with structure group G, over the manifold M , with a prin-

cipal connection ϖ (a g-valued one-form on P ), abbreviated by P (M,G, ω), and its associated

vector bundles Ei := P ×ρi Vi, where ρi : G → Vi is a representation of the Lie group onto

the vector space representing the typical fiber, Vi which is linearly isomorphic to π−1
i (x), for

x ∈ M and πi : E → M the projection of the vector bundle onto its base space (spacetime).

The covariant derivatives ∇i are the ones induced by ϖ, as per Equation (A.6). See Appendix

A for more details.

The principal connection, ϖ, is another main character in the principal bundle formalism.

This object determines how orbits of the group residing over neighboring points of M are

related; it can be used to determine parallel transport and covariant derivatives in the vector

bundle (say, by determining which frame over a point in M gets mapped to which frame at an

adjacent point).

Given a typical fiber V , say V ≃ C
n, a principal bundle (P,M,G), and a representation

ρ : G → GL(V ),2 one can construct particular kinds of vector bundles, called associated

2Here ρ is understood as an embedding that is, in general, only a partial homomorphism, since it may fail

to be faithful (injective) or surjective. This will be important in Section 5.
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bundles. The idea is to think of the points of P as providing frames for V over each point

of M , so that the group action corresponds to a change of frames on P , and a corresponding

change of components of a vector in V (e.g. in Cn). Since vector fields are frame-independent,

one quotients pairs (p, v), with v ∈ V and p ∈ P , by the simultaneous action of the group on

P and on V . The resulting object is the associated vector bundle, defined as

E := P ×ρ V.

Particles that are sensitive to a given force are described by sections of vector bundles associated

to the principal fiber bundle with the corresponding structure group3.

The advantage of defining vector bundles in this way is that it becomes transparent that

fields inhabiting bundles associated to the same principal bundle covary under the action of

a symmetry group. A further, related question is whether such vector bundles merely covary

under the group action, or whether they in fact stand in a canonical relation to one another.

Thus, suppose we are given:

E1 = P ×ρ1 V, E2 = P ×ρ2 V (2.1)

Given a local section of P , i.e. for U ⊂ M a map σU : U → P such that π(σ(x)) = x, for all

x ∈ U (see Appendix A), we can write, for ξ1 a local section of E1:

ξ1(x) = [σ(x), v(x)]1, v : U → V. (2.2)

Then the obvious map to consider is:4

T : E1 → E2

ξ1 := [σ(x), v(x)]1 7→ [σ(x), v(x)]2 =: ξ2. (2.3)

So the map acts as the identity on both entries, but nonetheless maps between sections in

distinct vector bundles. However, on the right-hand side of (2.3), the representation under

which we take equivalence classes is different: it is ∼2 and not ∼1. So is this map well-defined

for arbitrary representations ρ1, ρ2? The map should be invariant under gauge transformations

(cf. Eq (A.5)) on both the domain and image. So consider a different representative of the

equivalence class on the domain; according to (2.3) we must have:

[g(x) · σ(x), ρ1(g−1(x))v(x)]1 7→ [g(x) · σ(x), ρ1(g−1(x))v(x)]2 (2.4)

for any g : U → G. But on E2, we have the representation ρ2, and so we must have (omitting

dependence on x ∈M for clarity):

(σ, v) ∼1 (g · σ, ρ−1
1 (g)v) ∼2 (σ, ρ2(g)ρ

−1
1 (g)v) ̸∼2 (σ, v). (2.5)

Where the last inequivalence holds iff ρ1(g)ρ
−1
2 (g) ̸= 1, ∀g, i.e. the equivalence holds iff ρ1 ̸= ρ2.

Thus we find that for the map (2.3) to be well-defined, we must have ρ1 = ρ2.

3For example, SU(3) for the strong force.
4I thank Jim Weatherall for suggesting this.

6



Indeed, in physics, we are often faced with situations in which E1 and E2 have the same

typical fiber, are associated to the same group, and yet have different representations. A simple

example is when one of the representations is the trivial, or singleton, one, and the other is

the fundamental (or any other).5 This occurs many times in the standard model: for fermions

to acquire mass, one must relate sections of bundles that have different representations, since

they represent different particles.

In contrast, in the vector-bundle point of view, all the vector bundles that, in the symmetry-

first formulation, would be associated to the same principal bundle, are already endowed with

a natural relation, as we will now see.

In Section 4 we will see how the issue of relating different vector bundles which, in the

PFB-POV are associated to the same principal bundle, can arise in practice, and how both the

symmetry-first and the geometry-first formulations deal with it.

2.2 Gauge theory and vector bundles: the geometry-first formulation

The geometric perspective I want to develop aims to dispense with the principal fiber bundle

altogether. In this Section I set out a formulation of gauge theory that proceeds without gauge

potentials, principal bundles, or explicit appeal to gauge symmetries.

The analogy with spacetime clarifies what is at stake. Consider (M, g,Ξi), where (M, g)

is a smooth Lorentzian manifold and the Ξi are various tensor fields on M , i.e. objects living

in spaces constructed from the tangent bundle TM . The automorphism group of a typical

fiber TxM is O(3, 1) (or SO(3, 1) if orientation is treated as background structure). This group

becomes explicit once we introduce orthonormal frames. Yet much can be said about the Ξi in

a purely geometric, frame-independent manner, without any reference to SO(3, 1). If instead

we were to posit a different group acting on TM—say O(2) and not SO(3, 1)—a geometrical

rationale would be required to justify that action.

In gauge theory, by contrast, an analogous “frame-free” formulation for the behavior of

matter remains largely undeveloped (cf. (Weatherall, 2016)), and the very idea of a geomet-

ric interpretation of the groups and their representations—for example, the adjoint action of

SU(2) on C
3 endowed with an inner product, as opposed to the fundamental representation

of SU(3)—is seldom raised. We are after a formulation of gauge theories for which these

interpretations are transparent.

I will introduce a realisation of the geometry-first formulation of gauge theory, which I will

call the vector bundle point of view (VB-POV).6 To motivate the VB-POV from interpretational

issues with the PFB-POV, let me recall that the main role of ω in (P,M,G) is to coordinate

covariant derivatives between different associated vector bundles. But what is the physical

status of ω? Jacobs (2023, p. 41) convincingly argues they don’t have one; he concludes:

5A slightly more sophisticated example is as follows. Let G = U(1), V = Ck, and ρi = ni, which acts as

eini1 on Ck. Then for ni ̸= nj for i ̸= j the map (2.3) is not well-defined, as can easily be verified.
6Other kinds of theories could also have a geometry-first formulation, e.g. those based on Cartan geometry,

but here my focus is on particle physics, for which the relevant value spaces are vector bundles.
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Neither the principal bundle nor the [principal] connection on its own represent any-

thing physical. Rather, it is the induced connection on the associated bundle that

represents the Yang-Mills field. [But] This approach has difficulties in accounting

for distinct matter fields coupled to the same Yang-Mills field.

The issue, as he sees it, is that

there is no independent Yang-Mills field that the associated bundle connections

supervene on. This makes it seem somewhat mysterious that these connections

are equivalent. The coordination between associated bundles begs for a ‘common

cause’ in the form of an independently existing Yang-Mills field.7

I agree with Jacobs that this is an issue and in (Gomes, 2024) I showed that it can be

overcome. The introduction of (P,M,G) is unnecessary if particles that interact are all sections

of the same vector bundles or of tensor products of the same vector bundles. Tensor products

over a vector bundle inherit the same covariant derivatives by construction. In this case, parallel

transport of the vector bundles in question automatically march in step. In this case we have

at a hand a natural ‘common cause’ for the coordination of covariant derivatives, without the

introduction of principal bundles. I will here call this the vector bundle point of view of gauge

theory (VB-POV).

In more detail, given two vector bundles, E,E ′, a covariant derivative on E will induce a

covariant derivative on E ′ whenever E ′ is equal to a general tensor product involving E and

its algebraic dual, E∗. In more detail, given E a vector bundle with covariant derivative D,

and E∗ its dual, we define, for sections κ ∈ Γ(E) and ξ ∈ Γ(E∗):

d(⟨ξ, κ⟩)(X) = ⟨∇∗
Xξ, κ⟩+ ⟨ξ,∇Xκ⟩, (2.6)

where here angle brackets represent contraction. The generalisation to arbitrary tensor prod-

ucts is straightforward due to multilinearity.

On this view, no gauge groups need to be postulated at the ground level—the groups of

automorphisms of vector bundles, Aut(E) ⊂ End(E) are implied by the relevant structure. If

principal fiber bundles are ever invoked, they are supervenient on the structure of the vector

bundles, which forms the subvenience basis. The familiar distinction between Abelian and non-

Abelian theories is then simply a distinction between different kinds of automorphism groups.

In particular, one-dimensional vector bundles, whose typical fiber is isomorphic to C, generate

Abelian automorphism groups.

This vantage point also reframes the earlier question of whether there exist canonical maps

between distinct vector bundles. In the PFB-POV, the natural candidate (equation (2.3)) is

well-defined only within the same representation. Matters look different here. We assume that

7Jacobs instead defends the ‘inflationary approach’, which: “reifies not the principal bundle but the so-

called ‘bundle of connections’. The inflationary approach is preferable because it can explain the way in which

distinct matter fields couple to the same Yang-Mills field.” As I have argued in Gomes (2024), I don’t believe

it is preferable in this sense, but I won’t rehash those arguments here.
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all vector bundles charged under a given force descend from a single “fundamental” bundle. In

the cases that I will explore each such fundamental bundle En, will have typical fiber Cn, and

will be equipped with inner product ⟨ . , . ⟩, and possibly a complex orientation (or volume-

form) ε. Different associated bundles then appear not as unrelated objects in need of ad hoc

identifications, but as systematic constructions from En. Their relations are fully accounted

for by the usual functorial machinery: tensor products, (anti)symmetrization, dualization,

projections into tensor factors, contractions, interior products, inner products, and so on.

There is thus no mystery about how these bundles fit together—the geometry itself provides

the correspondences. For instance, to contract an element of En with one of En∗ ∧ En∗ ⊗ En,

we can use the interior product, which generally is a map:

ι : En ⊗ Λm(En∗) → Λm−1(En∗)

(ξ,Ω) 7→ ιξΩ, (2.7)

where Λ is the anti-symmetric product, with Ω ∈ Λm(En∗), and, for anym−1-tuple (ξ1, · · · , ξm−1)

gives

ιξΩ(ξ1, · · · , ξm−1) = Ω(ξ, ξ1, · · · , ξm), (2.8)

etc. Similarly, we could use the inner product to map between En and En∗, and so on.

One might object that a parallel, representation-theoretic argument for associated vector

bundles could be mounted, mirroring the geometric one I have just given. Perhaps given

arbitrary different representations of the same group, for arbitrary vector representation spaces,

there are systematic ways to relate these representation spaces that mirror the ones I displayed

above. That may well be true, but it is beside the point. Even if such arguments exist—and

I have not found or worked one out, and am skeptical that one exists, for representations that

are not faithful an full—the virtue of the geometric route is that it trades purely on geometrical

language, and so it speaks directly to a community trained in geometry rather than in group

and representation theory. The mere availability of a geometric formulation that sidesteps

representation theory or other more technical algebraic machinery is already a win. My aim,

after all, is to broaden the borders of the subject, making it accessible to different habits of

thought.

Still, at first pass the VB-POV may seem too narrow to capture the full menagerie of gauge

theories employed in physics. Some theories—those built from the exceptional Lie groups,

for example—fall outside its reach. And even when a gauge group G is given, it is often a

nontrivial matter to “reverse-engineer” a vector space structure for which Aut(Ex) ≃ G. How,

for instance, does one coax SO(4) out of a space whose typical fiber is C3; or U(1) out of a

space whose typical fiber is Cn with n ̸= 1? I will have much more to say about all this in

Section 5.8

For all that, the standard model of particle physics fits neatly within the VB-POV. In the

PFB-POV in which the standard model is usually described, every particle field is a section of

8The Peter–Weyl theorem guarantees that U(n) admits nontrivial representations on Cm, but extracting from

this a natural structure on Cm that renders the action geometrically meaningful is anything but straightforward.
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an associated bundle for a principal fiber bundle whose structure group is SU(3)×SU(2)×U(1),
and the fundamental representation of each one of these component subgroups (SU(n) or U(n)

for appropriate n) appears for some such section or other. The VB-POV alternative is available

because under any representation of U(n), the corresponding associated bundles can just as

well be constructed by geometric means from the fundamental vector bundle—via tensor and

exterior products, (anti)symmetrization, determinants, and the like. The VB-POV alternative

is compelling (as I will expand on in Section 5), because the particular combination of repre-

sentation, groups, and vector spaces is particularly suited for a geometrical interpretation. In

such cases, a covariant derivative on a single vector bundle suffices to encode one fundamen-

tal interaction, while the various particle fields appear as sections of the appropriate derived

bundles (e.g. tensor products).

Having surveyed both approaches to gauge theory—the symmetry-first PFB-POV and the

geometry-first VB-POV—I now turn to the Higgs mechanism. My aim is to present it from

within the VB-POV, while relegating to Appendix B a sketch of the more familiar PFB-POV

treatment, which can be found in any standard textbook.

3 The Higgs mechanism in the geometry-first formulation

The proof, they say, is in the eating of the pudding. So here, to prove that the geometry-

first perspective embodied by the VB-POV is sufficiently different to the PFB-POV to merit

attention, I will provide a stand-alone derivation of the (classical) Higgs mechanism.

In the standard presentation (cf. e.g. (Tong, 2025, Ch. 2), the Higgs mechanism is of-

ten described in terms of spontaneous symmetry breaking, and one must employ Goldstone’s

theorem, gauge fixing (e.g. unitary gauge), etc. I give a brief overview of that presentation

in Appendix B. Here I will outline an alternative approach, phrased purely in the geometric

language of vector bundles, which makes the essential structure transparent without appeal to

symmetry-breaking jargon.

3.1 The non-linearised Higgs field

Let (En,M,Cn, ⟨·, ·⟩n,∇n) be a Hermitian vector bundle over a manifold M , with fibers En
x ≃

C
n and ⟨·, ·⟩n an inner product on En, which is compatible with ∇n, the covariant derivative on

En. We will omit the subscript when it is understood from context, as it will be in this Section,

so for now we take φ ∈ Γ(E) (the generalisation to φ ∈ Γ(Ei ⊗ · · ·Ej) is straightforward, as

we will see). So φ is a vector-valued spacetime scalar field, satisfying

min
x∈M

∥φ(x)∥ = v′, (3.1)

for some constant v′ > 0. We write ∥φ(x)∥ = (∆+v′), for ∆ ∈ C∞
+ (M) (the positive real-valued

smooth scalar functions on M), and get

φ(x) = ∥φ(x)∥e0 = (∆(x) + v′)e0, (3.2)
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where e0 =
φ

∥φ∥ is a unit section, well-defined since ∥φ∥ > v′ > 0, and ⟨e0, e0⟩ = 1.

The potential term in the Lagrangian—the Higgs potential, V (φ)—is assumed to enforce

such a nonzero minimum, but it need not coincide with v′: we call v the minimum of the

potential. Our focus will be on the kinetic term. Note that:

∇⟨e0, e0⟩ = 2Re ⟨e0,∇e0⟩ = 0, and ∇v′ = 0, (3.3)

where Re takes the real component. Using (3.2) and (3.3) the kinetic term reads

⟨∇φ,∇φ⟩ = ∥∇φ∥2 = (∂∆)2 + (∆ + v′)2⟨∇e0,∇e0⟩, (3.4)

where ∂ is the exterior derivative acting on scalars; i.e. it is the gradient.

When we introduce a connection, it will clearly appear quadratically in the term v′2⟨∇e0,∇e0⟩
(see Equation 3.6 below). But of course, ∇e0 won’t contain all the information in ∇. The part

of ∇ that doesn’t appear in the kinetic term will thus remain ‘massless’. This geometric pre-

sentation of the Higgs mechanism makes the key features clear: the Higgs field picks out a

direction in the bundle, and vector bosons associated with directions orthogonal to it acquire

mass. Since we have expressed everything in terms of abstract index notation, with vector and

tensor fields, it is hard to see how one could ‘break the symmetry’. (Indeed, the mass terms

for the gauge potentials will arise out of a combination of ve0 and the gauge potentials, and

these are perfectly gauge-covariant.)

Moreover, it is important to note that this is a geometric characterization that can be

stated outside of the linearised regime. In this remarkably simple derivation, we are already

able to glimpse all the general features of the mechanism. Again, no mention of stabilisers,

gauge orbits, gauge-fixing, etc, was made, as they would have in order to reach a similar point

in the standard or familiar derivation (see (Hamilton, 2017, Ch. 8.1) or (Tong, 2025, Ch. 2.2)

for a comparison). For instance, the fact that perturbations of the Higgs field are orthogonal

to the orbits of the vacuum is replaced by the orthogonality relation, (3.3), and so on. This

concludes the classical, non-linearised account of the ‘mass acquisition’ mechanism.9

9Had one been considering a whole configuration space of Higgs field, one would have had to re-

strict the analysis to a sector Γ0(E) for which one of the configurations had an absolute minimum (i.e.

minφ∈Γ0(E),x∈M ∥φ(x)∥ = v′). But this entire paper concerns the classical domain, and so one may reason-

ably argue that these symmetry concepts—such as gauge-fixing—may be required when we introduce quantum

mechanics, or the entire sector of configurations. Here is how far my concession would go: in a sum over

configurations, we use e0 as the anchor, or ‘representational scheme’ across physical possibilities; cf; (Gomes,

2025b; Kabel et al., 2025). And indeed, representational schemes can be compared to gauge-fixings (cf. (Gomes,

2025b, Sec. 3.3)). A translation of this idea to the guage terminology would go as follows: consider Γ(E2),

and its sector Γ0(E
2). Let φ,φ′ ∈ Γ0(E

2). The group Aut(E2) acts transitively on the unit normal sections:

it can take any internal direction into any other. Therefore, we could, by a suitable gauge transformation on

φ, make it collinear with φ′. Once they are collinear, it is a trivial matter to separate out the part that has a

given norm from the rest.
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3.2 Mass Generation in the Linearised Theory

Introduce a connection ∇ = d+ω such that de0 = 0 and ω ∈ Γ(T ∗M⊗End(E)), where End(E)

are the linear endomorphisms of E; so for ξ ∈ Γ(E), we have ω · ξ ∈ Γ(T ∗M ⊗ E). Defining

v′ − v =: c, for v a spacetime-independent (i.e. ‘translation-invariant’) minimum of the Higgs

potential, we rewrite (3.2) as

φ(x) = (H(x) + v)e0, (3.5)

where H(x) = ∆(x)+c. If we assume that c and ∆ are of the same order, since c = (v′−v) < 0

and ∆(x) > 0, H(x) can be both positive or negative, i.e. H ∈ C∞(M).10 Then from (3.4)

∥∇φ∥2 = (∂H)2 + (H2 + 2Hv + v2) ∥ω · e0∥2, (3.6)

where, as usual, the norm of a tensor product factorises linearly, i.e. for each basis element

λ⊗ ξ ∈ Γ(T ∗M ⊗ E), we have:

∥λ⊗ ξ∥ := ∥λ∥M∥ξ∥E. (3.7)

But to unclutter notation I will omit the subscripts when understood from context.

Further assuming that O(H) = O(ω) = ε,11 yields

∥∇φ∥2 = (∂H)2 + v2∥ω · e0∥2 +O(ε3). (3.8)

Here we see clearly how the quadratic terms in the connection ω would correspond to vector

bosons ‘acquiring masses’; again, without invoking unitary gauge or Goldstone’s theorem.

But as I said, not all components of ω contribute to ∥ω · e0∥2 in (3.8). In a basis {eI}
adapted to e0, we have

∇eI = ωJ
I eJ , and so ∇e0 = ωi

0ei, with i ̸= 0, (3.9)

from the anti-symmetry of the connection. Then

∥∇φ∥2 = (∂H)2 + v2
∑
i ̸=0

(ωi
0)

2 +O(ε3). (3.10)

Hence, only those components of ω that move e0 (onto the orthogonal directions) ‘acquire

mass’. The components that preserve e0, e.g. ωi
j, i ̸= j, remain massless. In the group-

theoretic language, these would correspond precisely to the stabiliser subgroup of e0.

This concludes the geometric derivation of the Higgs mechanism. Let us now see how it re-

produces standard results from the familiar or standard approach to gauge theory. The missing

ingredient for the comparison is to write the connection ω in terms of preferred representations

of the Lie algebras in question. I will start by providing an example (that is indeed isomorphic

to su(2)) before showing how the usual endpoint of the Higgs mechanism for gauge bosons is

recovered.
10We could of course have started directly from (3.5), by again assuming that: (i) the potential depended only

on the norm of the Higgs field; (ii) that the minimum of the potential was non-zero and spacetime independent;

and (iii) that the norm of the Higgs field did not deviate too much from this minimum, in particular, that it

was also non-zero everywhere. I find the order of assumptions made in my presentation clearer, because they

can be easily stated outside the linearised regime.
11In the comparative sense: that |H|

v ∼ ε << 1, and mutatis mutandis for the appropriate norm on ω.
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3.2.a Example: (M3, g)

Suppose we are dealing with three-dimensional Riemannian manifold. Here a general so(3) ≃
su(2) connection has the form

ω =


0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0

 . (3.11)

If the Higgs unit vector is e0 = (1, 0, 0)T (where T here is the transpose, and it allows us to

write column-vectors in-line!), then

ω · e0 =


0

ωz

−ωy

 . (3.12)

Thus, we would get:

∥∇φ∥2 = v2(ω2
y + ω2

z). (3.13)

So ωy and ωz would ‘acquire mass’, while ωx would remain ‘massless’.

3.2.b Electroweak Example: C2 ⊗ C
1

The covariant derivative on an element v ⊗w ∈ V ⊗W is given by

∇(v ⊗w) = (∇V v)⊗w + v ⊗∇Ww, (3.14)

where ∇V ,∇W are covariant derivatives on, in what follows, V ≃ C
2,W ≃ C

1, respectively.

For the electroweak theory, let e0 = e20 ⊗ e10 ∈ Γ(E2 ⊗ E1) with e20 = (0, 1), e10 = 1. And so

we get:

∇e0 = ω · e20 + e20Z = (ω + iZ1)e20, (3.15)

where ω is the connection for the covariant derivative on C2 and Z is the connection on C. To

complete the comparison with the standard formalism, we choose the weak-isospin eigenbasis,

on which the third generator of the su(2) algebra, T3, is diagonal. Omitting the coupling

constants for brevity, we can write ω as:12

ω =

 iW3 iW1 −W2

iW1 +W2 −iW3

 , and iZ1 =

iZ 0

0 iZ

 . (3.16)

12Note that this is not the ω written in terms of the spin coefficients, i.e. in terms of an orthonormal frame

that includes e0. That could also be done, and indeed it was done in the previous example so(3) ≃ su(2), with

an orthonormal frame (0, 1), (0, i), (1, 0), (i, 0), for the inner product Re⟨·, ·⟩, which is effectively what appears

in Lagrangians, due to the use of the complex conjugate terms, cf. (Hamilton, 2017, Ch. 8). Here we are

attempting to make contact with the standard notation and formalism and so are using its conventions.
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Applying this to e20 in (3.15) gives

∇e0 =

 iW1 −W2

−iW3 + iZ

 . (3.17)

Hence the corresponding quadratic term appearing in (3.8) is

∥∇e0∥2 = W 2
1 +W 2

2 + (Z −W3)
2. (3.18)

Thus W1,W2 and the combination Z − W3 acquire mass, while Z + W3 remains massless.

The latter is identified with the photon. Of course, had we chosen a different form for e20, we

would have obtained different combination of massive and massless bosons. For instance, for

e20 = (1, 0) it is easy to see that it would have been Z +W3 that would acquire mass, while

Z −W3 would remain massless.

4 The Yukawa mechanism

Whereas the Higgs mechanism is used to ‘endow mass’ to the gauge potentials, the Yukawa

form is used to endow mass to the matter fields—here we needn’t use scare-quotes!

In the Standard Model fermion masses cannot be introduced as they can for real or complex-

valued scalar fields. First of all, a Dirac mass term must couple left- and right-handed chiral

fermions; moreover, the two chiralities are mapped into internal spaces that transform differ-

ently under the gauge group G = SU(3)×SU(2)×U(1), so coupling them would violate gauge

invariance: this is related to the issue we saw in Section 2.1 about canonical isomorphisms

between associated vector bundles with different representations. The solution is to introduce

the Higgs field ϕ, in such a way that gauge invariance is preserved, while the fermions acquire

effective masses. This is the Yukawa mechanism.

Here I will essentially follow the treatment given in (Hamilton, 2017, Ch. 8), whose notation

and general approach is already much closer to the geometric approach that I’m pursuing here

(as compared to the treatment of more familiar textbooks, for instance, the one given in

(Weinberg, 2005, Ch. 21), which uses representation theory more heavily). So I will call

the treatment to be followed here ‘the standard’ treatment of the Yukawa mechanism. In

Section 4.1 I will describe the obstruction to the formulation of mass terms for fermions, and

its resolution in this, geometric-friendly but still ‘standard’, exposition. Then in Section 4.2 I

will discuss what I think is explanatorily unsatisfactory about this resolution, and say why I

take the VB-POV to provide a more transparent explanation.

4.1 The ‘standard’ presentation of the Yukawa mechanism

In more detail, here is the obstruction to the formulation of mass terms for fermions. Fermions

are spinors, but for Weyl spinors, the inner product is anti-diagonal in the left and right basis:

ψRψR = 0, and so, in order to extract mass terms we must couple left to right-handed spinors:
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ψRψL. Thus, if both ψL and ψR are valued in the same internal space, i.e. in the same vector

bundle, and are in the same representation, one may add mass terms of the form:

Lmass = −mψψ = −mRe(ψLψR) (4.1)

and this will be gauge invariant since ψL and ψR transform in the same representation of the

gauge group. I.e. locally, ψL ∈ Γ(SL ⊗ E), where (E,M, V ) is the vector bundle with the

representation space V of the gauge group in question, and SL is the bundle of left-handed

spinors over spacetime, whose typical fiber space is called ∆L (mutatis mutandis for right-

handed spinors).

In the Standard Model, however, fermions are both twisted and chiral: left- and right-

handed components transform in inequivalent representations of the gauge group. For instance,

eL ∈ (1,2,−1), eR ∈ (1,1,−2).

These internal vector bundles are representationally inequivalent; e.g. ψL ∈ Γ(SL ⊗ EL) and

ψR ∈ Γ(SR ⊗ER), with different representation spaces, VL ̸≃ VR. Thus a bilinear such as eLeR

is not gauge-invariant, and a bare mass term as in (4.1) is forbidden. (Table 1, reproduced from

(Hamilton, 2017, Table 8.2), shows the representations of SU(2)L×U(1)Y for the fermions and

the Higgs in the standard model.)

Moreover, for VR, VL irreducible, unitary, non-isomorphic representations of G, mass pair-

ings, defined as G-invariant maps, κ : VL × VR → C, complex antilinear in the first variable

and complex linear in the second (so that they form mass terms), are necessarily trivial (see

(Hamilton, 2017, Theorem 7.6.11)).

The remedy is a Yukawa form, defined as follows. Let VL, VR,W be representation spaces

for G = SU(3)× SU(2)× U(1)Y . A Yukawa form is a G-invariant trilinear map

τ : VL ⊗W ⊗ VR −→ C,

antilinear in VL, real linear in W , linear in VR. What do these maps look like, more precisely?

Let us look at an example. Consider the SU(2)× U(1) representations for the leptons (taken

from Table 1):

VL = C
2 ρL= 2−1, (4.2)

VR = C
ρR= 1−2, (4.3)

W = C
2 ρW= 21. (4.4)

Then, for lL : U → VL, ϕ : U → W, lR : U → VR, it is standard to define the Yukawa form as:

τ : VL ×W × VR −→ C, (4.5)

(lL, ϕ, lR) 7−→ l†Lϕ lR, (4.6)

which is SU(2)× U(1) invariant by construction.
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Sector SU(2)L × U(1)Y

rep.

Basis

vectors

Particle T3 Y Q

QL C
2⊗C1/3

( 1
0 ) uL +1

2
+1

3
+2

3

( 0
1 ) dL −1

2
+1

3
−1

3

QR

C⊗C4/3 1 uR 0 +4
3

+2
3

C⊗C−2/3 1 dR 0 −2
3

−1
3

LL C
2⊗C−1

( 1
0 ) νeL +1

2
−1 0

( 0
1 ) eL −1

2
−1 −1

LR C⊗C−2 1 eR 0 −2 −1

Higgs φ C
2⊗C1

( 1
0 ) φ+ +1

2
+1 +1

( 0
1 ) φ0 −1

2
+1 0

Higgs⊥ φc C
2⊗C−1

( 1
0 ) φ 0 +1

2
−1 0

( 0
1 ) -φ+ −1

2
−1 −1

Table 1: First-generation fermion representations under SU(2)L × U(1)Y , together with the

Higgs doublet and its conjugate. Here boldface on the quarks means each such term is a vector

in C
3. (φ0, φ+) as well as the left-handed particles are doublets: they can be rotated into

each other by an SU(2) transformation. Y is the hypercharge, and T3 is weak isospin. Here

Q = T3 +
1
2
Y .

τ is still a map on vector spaces, and so it relies on trivialisations of the vector bundles

(i.e. of the local decompositions of the form E|U ≃ U × V ). Therefore, we must invariently

extend this map to sections of associated vector bundles, but that is easy to do. Given a

section σ(x) of an SU(2) × U(1) principal bundle (cf. (2.2)), we can use the local maps

lL : U → VL, φ : U → W, lR : U → VR above to form sections of the corresponding vector

bundles, eL ∈ Γ(SL⊗EL), φ ∈ Γ(F ), eR ∈ Γ(SR⊗ER) that are independent of the trivialisation

of the vector bundle. For instance, a left-handed electron (I will have more to say about the

‘up’ and ‘down’ components of this particle in a second) would be given by:

eL = ψL ⊗ [σ, lL], (4.7)

where ψL is a left-handed Weyl spinor, ψL ∈ Γ(SL), and λL := [σ, lL] ∈ Γ(EL), where EL is the

vector bundle with typical fiber VL in (4.2), mutatis mutandis for the right-handed electron,

and φ := [σ, ϕ].

In any case, since τ is invariant under SU(2)× U(1), we can define:

T (eL, φ, eR) := τ(lL, ϕ, lR) = l†Lϕ lR, (4.8)

which is gauge-invariant. But why this map? What kind of map would have been analogous
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to this for completely different vector spaces, groups and representations? To answer this

question, I will first translate it into the VB-POV.

4.2 The VB-POV presentation of the Yukawa mechanism

In Section 2.1 I argued that there was no canonical map between associated vector bundles

corresponding to different representations of the principal bundle, and yet I have just presented

a map from different vector bundles into a gauge-invariant scalar. But there is no real mystery

here: we don’t need a canonical map between associated vector bundles. All we need is that

T , given in (4.8), is a map between associated vector bundles, with τ a map between the

representation spaces; and presenting one such map is sufficient for comparison with exper-

iments. Nonetheless, I find this answer unsatisfactory, because opaque: why this particular

map? Couldn’t we have found others? What are the possible maps, would they equally apply

for different groups and representation spaces; and how should we interpret them?

I take the geometric, VB-POV, to provide a more transparent interpretation of what the

map T represents, and what other choices would represent. Again, in the geometry-first formu-

lation, all we have are structures in the fundamental vector bundle spaces. The fundamental

vector spaces are given by (En,M,Cn, ⟨·, ·⟩n), for n = 1, 2, 3 (we will include orientation as

further structure below, when we look at the Yukawa form for quarks). Different particles

are merely different sections of different tensor products for these fundamental vector spaces.

We replace ‘quantum numbers’ by a geometric characterisation of a given particle. Thus, for

instance, a down-right-handed quark (of any of the three generations, but here we assume the

first) is given by:

dR ∈ Γ(E3 ⊗ (E1∗ ⊗ E1∗)), (4.9)

whereas vector bosons are replaced by the corresponding affine covariant derivatives, e.g.

∇1,∇2,∇3 (see (Gomes, 2024, 2025a) for more details).

In this formulation, weak isospin T3—defined only with respect to a chosen basis of the Lie

algebra—has no independent geometrical meaning (see 3.2.b and footnote 12). Accordingly,

left-handed fermions, together with φ+ and φ0 (also SU(2)-doublets), are best understood

simply as components of the vector fields QL and LL. The familiar distinction between, say,

the electron and the electron-neutrino, or between the up- and down-left quarks, does not

arise at this level: it appears only through their couplings with the Higgs. The Higgs field φ

provides a frame within C2 that endows T3—and hence these component fields—with physical

significance. The charges listed in Table 1 are already adapted to this frame, since they

presuppose the choice φ = φ0 = (0, 1)T (i.e. φ+ = 0); for example, only in that frame do the

left-handed up-quark components appear as (uIL, 0)
T .13

But geometrically it makes more sense to define the left-handed components of both leptons

13This explains why Table 1, reproduced from (Hamilton, 2017, Table 8.2), can be misleading: if both

components of the Higgs are retained, the up and down components of the left-handed quarks and leptons do

not yet have any physical meaning.
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and quarks as parallel and orthogonal to the Higgs according to the inner product on E2, i.e.:

eL := ⟨LL, e0⟩2 e0, with eL = ⟨LL, e0⟩2 ; νeL := LL − eL, (4.10)

uI
L := ⟨QI

L, e0⟩2 e0 with uIL = ⟨QI
L, e0⟩2 ; dL := QL − uL, (4.11)

where capital I indicates color components (i.e. red, green and blue) in an orthonormal frame

of C3 and I used the notation e0 for the unit-direction of the Higgs, introduced in Section 3.1

(not to be confused with the left-handed electron, eL).
14

Before we give the geometric interpretation of (4.8), and of the corresponding form for

quarks, note that, given an orthonormal basis for E2, we can form duals: for ξ = ξ⊥e⊥+ξ
∥e0 =

(ξ⊥, ξ∥)T (e.g. eL = L
∥
L, νeL = L⊥

L) the dual takes the conjugate of the transpose, so:

((ξ⊥, ξ∥)T )∗ = (ξ
⊥
, ξ

∥
). (4.12)

Using (4.12) and an orthonormal frame aligned with the Higgs (3.5), the Yukawa term for the

leptons in Equation (4.8) now can be stated directly using (trivialisation-independent) sections

of the vector bundles, without the need to involve the sections σ of the principal bundles, and

reads (including a coupling constant, ge):

T (LL, φ, eR) = ge⟨⟨LL, φ⟩2, eR⟩1 = ge(v +H)eLeR, (4.13)

where the first equality gives the ‘standard’ definition; eL is a Weyl left-handed spinor and

internal scalar (i.e. the magnitude of the vector field along the Higgs); ⟨. , .⟩2 is complex anti-

linear in the first entry and maps elements of E2 ⊗ E1 × E2 into E1 in the obvious way (by

taking inner products among the E2 components); and ⟨. , .⟩1 is just the scalar inner product

in C.15 From (4.13) we can see how mass terms, proportional to gev (as well as interactions

with the Higgs field) emerge for the electron.

Geometrically, the inner products in (4.13) are a very natural way to obtain scalars: we

are measuring ‘internal angles’ between the different particles seen as vector fields on the

same spaces. I take this form of (4.13), namely ⟨⟨LL, φ⟩2, eR⟩1, to be a more transparent

interpretation of the Yukawa term for leptons.

Chirality here shows up in the fact that right-handed particles don’t couple directly to the

Higgs: eR couples to the C1 component of LL. This is geometrically explained by the fact that

only left-handed particles have components in E2. Note, moreover, that in this convention the

neutrinos don’t acquire mass. First, because the left-handed electron-neutrinos are orthogonal

to the Higgs, but more fundamentally, because we have not included right-handed neutrinos

in our particle content. (Because of this feature, the Yukawa terms for leptons are diagonal in

generations: these mass terms don’t mix, say electrons with muons and taus.)

In the case of quarks (or also for the leptons if we include right-handed neutrinos), things

are different: we add another field, which is orthogonal to, but not independent from, the

14Not many textbooks that I have encountered emphasise this point—(Tong, 2025) is an exception. And

none describe it geometrically as I did here.
15This is slightly misleading: what we have here is that φ ∈ Γ(E2⊗3E1), i.e. the third tensor product of E1,

which is still one-dimensional, e∗L ∈ Γ(E2∗ ⊗3 E1∗), and eR ∈ Γ(⊗6E1). This is why they match to a scalar.
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Higgs, and generations mix. This new field, called φc on Table 1, is obtained by recruiting

another geometric structure that we can equip C2 with (besides the Hermitean inner product):

an orientation. This implies we can use the totally anti-symmetric form, or the volume form,

ϵab, as part of the geometrical structure. In other words, whereas the Higgs mechanism, de-

scribed in Section 3, used the structure (E2,M,C2, ⟨·, ·⟩2), here we extend that to the structure

(E2,M,C2, ⟨·, ·⟩2, ϵ).16

Now, besides the metric, we can use ϵab and its inverse ϵab to raise or lower indices.17 Thus

if we call the isomorphism J : E2 → E2∗ which acts as ξ 7→ ⟨ξ, ·⟩ we have:

C := ϵ♯ ◦ J :E2 7→ E2 (4.14)

ξa 7→ ϵachcbξ
b (4.15)

where we used, in abstract index notation, hab as the inner product on E2. Thus we call

φc := C(φ); (4.16)

it can be seen as a measure on the ‘areas’ orthogonal to φ. (see Appendix C for more details

on how this definition relates to the standard one).

Denoting the generation by an index i = 1, 2, 3, we then have, for the total Yukawa coupling

term for quarks:18

T (QL, φ, dR) := Y d
ijQ

i

Lφd
j
R + Y u

ijQ
i

Lφcu
j
R = Y d

ij⟨⟨⟨Qi
L,d

j
R⟩3, φ⟩2⟩1 + Y u

ij ⟨⟨⟨Qi
L,u

j
R⟩3, φc⟩2⟩1.

(4.17)

The boldface on lowercase letters is used to indicate that these are vector fields (and so are the

capital Q and L, and so is the Higgs φ, but omitting boldface here doesn’t conflict with our

notation in what follows). Again, the first equality in (4.17) gives the ‘standard’ definition (cf.

(Hamilton, 2017, Lemma 8.8.4)); the second gives the geometric form of that definition: it is,

in the VB-POV, what really counts.19

Nonetheless, as often is the case in physics, we can glean more by introducing a frame:

here, once more it is convenient, in order to compare with standard presentations, to choose

16Under A ∈ U(2), ϵab is taken to transform as ϵab 7→ det (A)ϵab. So SU(2) preserves it. Moreover, since

AA† = 1 for any A ∈ U(n), we know that det (A) det (A†) = |det (A)| = 1, so det (A) = eiθ denotes an

orientation change the Cn. Using ϵab as a geometric datum then implies we have a fixed orientation, as well as

an inner product, on C2.
17Indeed, in standard differential geometry, we can find a similar sort of operator acting on two dimensions:

the Hodge star: which would take a basis e0, e1 7→ −e1, e0, respectively, so its action on vectors can be written

in this frame as a matrix operator: ∗ =
(

0 1
−1 0

)
, which is of the same form as ϵab.

18Note that here, unlike for the leptons and the left-handed quarks, the up and down right-handed quarks

are genuinely different particles, since they have different components in E1.
19It is a little disappointing that, unlike their left-handed counterparts, up and down right-handed quarks

can’t be straightforwardly understood as components of a single vector field, due to their different components

in C1. If they could be so understood, in place of (4.17), we would have ther simpler:

T (QL, φ,QR) = Y d
ij⟨⟨⟨Qi

L, Q
j
R⟩3, φ⟩2⟩1 + Y u

ij ⟨⟨⟨Qi
L, Q

j
R⟩3, φc⟩2⟩1, (4.18)

which only takes the components of the same inner product along and orthogonal to the Higgs.
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the orthonormal frame (3.5) for the Higgs, which gives the components for the quarks along

and orthogonal to the Higgs (given in Equation (4.10)) as in Table 1, as well as φ+ = 0. Then:

Y d
ij⟨⟨⟨Qi

L,d
j
R⟩3, φ⟩2⟩1 + Y u

ij ⟨⟨⟨Qi
L,u

j
R⟩3, φc⟩2⟩1 = (H + v)

(
Y d
ijd

Ii
L d

Ij
R + Y u

iju
Ii
Lu

Ij
R

)
, (4.19)

where now all variables are scalar (and we are summing over the color indices, I, as well as

over the generations i, j).

Lastly, the Yukawa matrices Y are generically non-diagonal, i.e. they mix generations of

quarks. One can always find linear combinations of quarks such that, say, Y u is diagonal; this

defines what is called the mass basis. But Y u and Y d cannot be diagonalised simultaneously,

and the residual mixing is encoded in the Cabibbo–Kobayashi–Maskawa (CKM) matrix. Most

textbooks (cf. (Hamilton, 2017, p. 515)) then explain that the CKM matrix describes the

physical effects of left-handed quark mixing across generations, from the ‘mass eigenstate basis’

to the ‘weak eigenstate basis’ (the latter being the one we have used here). It then “follows

that the interactions with the W-bosons can connect quarks from different generations if the

CKM matrix is not diagonal” (ibid).

In the geometric perspective the situation is more transparent. If the up and down left-

handed quarks were truly independent particles—i.e. distinct fields rather than components of

the same field (usually called a doublet) in E2—we could diagonalise Yu and Yd separately. But

because they are components of the same E2-field, and because these components are coupled

to different fields (e.g. φ, φc), we can’t. Correspondingly, the W bosons represent ∇2, the

covariant derivative on E2, and so they, too, naturally mix generations when they couple to

the relevant currents.

5 A defense of the geometry-first formulation

To motivate the methodological defense of the VB-POV, let me recall an illustrative example

from the previous Section. The Yukawa coupling for quarks depends essentially on the orien-

tation of C2: it requires the introduction of φc, which encodes the ‘oriented area’ orthogonal

to the Higgs. This shows how, in the VB-POV, group-theoretic distinctions (here, the reduc-

tion from U(2) to SU(2)) arise directly from geometric structures. But no parallel mechanism

seems to exist for C3: why is the orientation of color space geometrically important, so as to

enforce SU(3) rather than U(3)? I will return to this question below, but the broader moral

is already clear: the VB-POV ties the existence of symmetry groups much more tightly to the

underlying geometry than the symmetry-first formulation actually requires. And while this

may look like a liability of the VB-POV, it in fact strengthens its case over the PFB-POV.

In what follows, I will make that case explicit: first, by examining how the PFB-POV allows

symmetry and geometry to come apart; second, by showing that this “slack”is not available

within the VB-POV; and finally, by arguing that the tighter fit demanded by the VB-POV is

not a weakness but a methodological advantage.

The first step is to recall how the two points of view differ in their basic ingredients. In
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the VB-POV, one can only define (sub)groups G as isomorphic to Aut(V ). By contrast, in the

PFB-POV there are in principle three separate ingredients: not only G (or P ) and V , but also

the representation ρ.

Here again the spacetime analogy is instructive. The automorphism group of the tangent

bundle equipped with a Lorentzian metric is SO(3, 1) (or O(3, 1)), a fact that becomes explicit

once orthonormal frames are introduced. Yet most of spacetime geometry can be developed

without ever invoking SO(3, 1); this is precisely why it serves as an analogue for the geometry-

first VB-POV of gauge theory. And in the spacetime case, if one were to posit some other

group acting on TM—say O(2) or SU(n)—a clear geometric rationale would be required:

which feature of TM could elicit such an action?

The situation is different in the symmetry-first approach to gauge theory. In general, one

posits a vector space V , a group G, and an action ρ, without requiring that G transparently

reflect the structure of V . In the equivalence relation that defines associated bundles, (A.5),

g is an element of the structure group of the PFB, but ρ(G) need not coincide with the

automorphism group of the typical fibre V . The only requirement is invariance:

ρ(G) ⊆ Aut(V ). (5.1)

By contrast, in the spacetime case we do have an identification,

SO(3, 1) = G ≃ ρ(G) ≃ Aut(TxM), (5.2)

whereas in general gauge theories

G ≃ ρ(G) ≃ Aut(V ) (5.3)

fails unless the symmetry group is reconstructed from the geometry, as the VB-POV requires.

But when (5.3) holds—e.g. for G ≃ O(4) acting on V ≃ R4 with the Euclidean inner product

via the fundamental representation—one can reconstruct (P,G,M) from Lρ(E) (the bundle of

admissible frames for E, see Section 2.1).

A particularly bad (and ubiquitous) subcase. In many gauge theories—and routinely in the

Standard Model—the fibres of the associated bundles are built from direct sums or tensor

products of distinct factors, e.g. V = V1 ⊗ V2 ⊕ V3, with the gauge group acting differently on

different factors and often trivially on some. In such cases the geometry of a single associated

bundle cannot, by itself, fix the structure group: kernels appear factorwise, so typically G ̸≃
ρ(G) while still ρ(G) ⊂ Aut(V ). Electrons, for instance, carry no colour and are unaffected by

SU(3); right-handed quarks are unaffected by SU(2); and so on. This is precisely the kind of

degeneration that makes the PFB-POV ill-suited to tying groups to geometry in the presence

of factorwise (and trivial) actions.

Both the general situation and this subcase imply a loose link between symmetry and

geometry: neither determines the other. Let us now make this looseness concrete with three

perfectly ordinary PFB-POV examples: U(1) acting on C3 by scalar multiples of the identity;
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SO(4) acting on C2 via a spinor map; and the trivial action of SU(n) on Cm. Each case packs

a lesson.

Example 1 (faithful but not surjective). The condition G ≃ ρ(G) holds iff ρ is faithful

(injective), so that only 1 acts trivially. This is satisfied when the gauge group is U(1), the

fibres are C3 with Hermitian inner product, and the representation is ρy(θ) = eiyθ1 with y ∈ N.

But U(1) is clearly not isomorphic to the full automorphism group of C3, which is U(3): ρ is

not surjective onto Aut(V ). From the PFB-POV this is perfectly admissible: one may posit a

group that preserves the relevant geometric structures without exhausting them. Still, there is

a geometric interpretation: the action rotates the complex volume form of C3.20 Thus in this

case we have

G ≃ ρ(G) ⊂ Aut(V ), dim(G) < dim(Aut(V )). (5.4)

Lesson: even with a faithful representation, the full geometry of the fibre cannot be recovered

from ρ(G) alone. 21

Example 2 (trivial representation). Consider the trivial action of SU(n) on V = C
m. In

this case

ρ(G) = 1 ⊂ Aut(V ), dim(G) ≤ dim(Aut(V )) if m ≤ n, dim(G) ≥ dim(Aut(V )) if m ≥ n.

(5.5)

Even if n = m, one cannot reconstruct G from its representation on V , since the action is

trivial. Thus we have

G ̸≃ ρ(G), ρ(G) ⊂ Aut(V ), (5.6)

so both conditions in (5.3) fail. Intrinsically, G may be either larger or smaller than Aut(V ),

and the group can neither be recovered from, nor recover, the geometry of the fibre.

Lesson: with a trivial representation, the fibre carries no information about G, and G

imposes no structure on the fibre.

Example 3 (non-faithful but geometrically admissible). The reconstruction of G may be

elusive even when the group acts non-trivially. Consider G = SO(4) with fibres V = C
2.

SO(4) admits two inequivalent irreducible representations on C
2, corresponding to left- and

right-handed spinors under SU(2). If we pick one of these factors to act, SO(4) does preserve

the structure of C2, and so the situation is admissible from the PFB-POV. In this case we have

G ̸≃ ρ(G) ≃ Aut(V ), dim(G) > dim(Aut(V )). (5.7)

The image of the representation matches Aut(V ), yet the full group G is strictly larger. Lesson:

even when ρ(G) ≃ Aut(V ), the embedding of G may lack a clear geometric rationale.

20That is, it rotates Λ3C3 (equivalently, the determinant line): scalar multiplication eiθ1 acts by ei3θ on Λ3C3.

Fixing a unit complex volume form reduces U(3) to SU(3); the residual U(1) is the phase on the determinant

line. See footnote 16. In cases like this, the principal connection would, via (A.6), only determine the parallel

transport of a phase.
21On the broader question of recovering the geometry of a vector space from the action of subgroups of

GL(V ), see Gomes et al. (2024).
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In the U(1) case on C3 (Eq. (5.4)), the representation was faithful, so G ≃ ρ(G). Though the

full geometric data of the fibre could not be recovered, it was at least plausible that the group

could be grounded in appropriate geometric structures on the fibre, as we did.22 By contrast,

in the cases of SO(4) acting on C2 and SU(n) acting trivially on Cm, the representation is not

faithful: G ̸≃ ρ(G), so no unique reconstruction of the group from the fibre is possible, even

in principle. These cases illustrate the PFB-POV’s tolerance for symmetry groups that exceed

what can be informed by geometry.

Summing up: there are two necessary conditions for the group to reflect the geometry of the

fibre, as expressed in Equation (5.3), and they can fail independently. We may have G ̸≃ ρ(G),

or ρ(G) ⊂ Aut(V ) without surjectivity. And even when G ≃ Aut(V ), the link between V and

G—namely ρ(G)—may still fail.

A particularly bad—and in the Standard Model, ubiquitous—subcase occurs when whole

factors of the group act trivially on components of V . In such cases, G ̸≃ ρ(G) for every

individual multiplet, and at best we have only ρ(G) ⊂ Aut(V ). The Standard Model abounds

with these situations. For example, electrons are unaffected by SU(3), right-handed quarks by

SU(2), and so on. In other words, the V ’s appearing in associated bundles are often direct sums

or tensor products such as V = V1 ⊕ V2, with entire factors of the gauge group acting trivially

on some component, under the representations defined by the particles’ quantum numbers.

These are precisely of the kind illustrated in Eq. (5.6). There is therefore no prospect that any

single associated vector bundle, with ρ given by its quantum numbers (i.e. its representation

labels), could, on its own, tie the total PFB group to the geometry of its fibre.

That the PFB-POV accommodates such cases is, from its perspective, a feature rather than

a bug. It is necessary in the standard approach, where each particle type is represented as a

section of a particular associated vector bundle, but without any attempt to reconstruct the

gauge group from the geometrical structure of those bundles.

But if one nonetheless tries to recover the group from the automorphisms of the associated

bundles themselves, not only would one fail to get the right verdict; in general, the recovery

would not even be consistent.

Suppose we are given a collection of associated vector bundles that are claimed to come

from the same principal bundle, but we are not told what the gauge group is; we are asked to

recover it from the automorphism groups of the associated bundles.

For concreteness, take V ≃ C
3⊗C

2, and consider two representations: ρ1 = 3⊗1 (a colour

triplet, singlet under SU(2)), and ρ2 = 1⊗ 2 (a weak doublet, singlet under SU(3)). Assume,

22Faithfulness is not, of course, sufficient. The VB-POV strategy is to fix a fibre V together with invariant

geometric or algebraic data (e.g. inner product, volume/symplectic forms, higher-degree tensors), and then

define the gauge group as G = Aut(V,data) ⊂ GL(V ). This works canonically for the classical families, but

for exceptional groups it typically fails to be unique: (i) distinct, equally natural choices of data can select the

same abstract G; (ii) small changes of the data may alter the real form or enlarge the stabiliser; and (iii) the

data alone need not determine isogeny or centre. Hence a unique grounding of an exceptional gauge group via

G = Aut(V,data) is generally not available.
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per impossibile, that the collection

(P,M,G, {ρi}i, {Vi}i), i = 1, 2 (5.8)

is consistent, and that we can reconstruct (P,G,M) from each Lρi(Ei) (the bundle of admissible

frames for Ei, see Section 2.1). The problem is that we would in general recover different groups

for different i: constructing the bundle of admissible frames forces a subgroup G′ ⊂ G ≃ GL(V )

to act trivially on some subspaces of Ei, so the resulting principal bundle reflects only the

subspaces where G′ acts non-trivially—and these differ across the associated bundles. Thus

in this case we would recover G′
1 = SU(3) from one bundle, and G′

2 = SU(2) from the other.

What we would like, of course, is SU(3)× SU(2); but the product structure is nowhere to be

found at the level of any single associated bundle.23

The VB-POV avoids this difficulty by shifting the level at which geometry fixes symmetry.

It requires each gauge-group factor to arise as the automorphism group of a fundamental

(or atomic) vector bundle, not of the composite associated bundles corresponding to particle

multiplets. These fundamental bundles are posited as the basic building blocks: from them

one can reconstruct each factor (SU(3), SU(2), etc.), and then deduce their actions on tensor

products and direct sums. Once the gauge group is in place, each particle type may indeed live

in an associated vector bundle, but at this composite level the group need not be recoverable

from geometry. By contrast, in the PFB-POV one begins with associated bundles for each

particle, and these typically combine several of the VB-POV’s building blocks at once.24

The upshot is that, in general, the PFB-POV allows a certain “slack” between P ’s symmetry

group G and the geometry of the associated vector bundles V . This slack is no problem within

the PFB-POV itself, since one is not attempting to extract symmetries from geometry, but

merely postulating both, requiring only that the former preserve the latter. On the other

hand—thankfully for the geometry-first view—in our world, the symmetry group realised in

Nature happens to fit the VB-POV account of symmetry quite snugly.

23One might try to rescue the PFB-POV by restricting admissible theories to those in which no group element

is superfluous—i.e. such that every non-identity element acts non-trivially on some associated vector bundle.

Formally, for Ei := P ×ρi
Vi one would require

∀g ∈ G, ∃v ∈
⋃
i

Ei such that ρi(g)v ̸= v. (5.9)

This would at least guarantee a faithful action of the entire group on the total field content. But relating this

reconstructed group back to the automorphisms of the individual fibres Vi is obscure. And in any case the

restriction fails in the Standard Model: the action of SU(3) × SU(2) × U(1) on all multiplets has a common

central kernel Γ ∼= Z6, generated (with the convention Q = T3 +
1
2Y ) by (ω3 13, −12, e

iπ), where ω3 = e2πi/3.

Thus the only faithful group available on the total field content is

(SU(3)× SU(2)× U(1))/Γ,

which cannot be read off from the geometry of any single associated bundle.
24Once one has the fundamental representation of a given linear group, one can construct any other represen-

tation. But this already presupposes the fundamental representation itself, which is exactly what the VB-POV

singles out via G ≃ ρ(G) ≃ Aut(V ).
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To close, let me underscore the point with a simple case. In discussing item (i) above, I gave

several examples where the VB-POV would fail. It is easy to imagine such a world—admissible

under the PFB-POV—in which there is a single particle valued in V , together with a prin-

cipal bundle (P,M,G) where dim(G) < dim(Aut(V )). Suppose it were physically possible

in this world to obtain independent evidence for a non-trivial connection ϖ—say, through an

Aharonov–Bohm-type experiment. Then one would have independent evidence for a symmetry

group inferred from ϖ, alongside a geometrical structure for the fermions invariant under a

larger automorphism group.25

But that’s not our world.

Even in the Aharonov–Bohm case, as I have argued elsewhere Gomes (2025a), in the VB-

POV the evidential link for a connection runs through the covariant derivative ∇ on a funda-

mental vector bundle. It is not directly tied to the principal connection, since that does not

figure in the ontology. In this view, what experiments probe is the End(E)-valued representative

of ∇, not ϖ. Therefore, from the geometry-first perspective, no such slack is possible.

The slack-world scenario is implausible; but its very implausibility points to an implicit as-

sumption already built into our use of principal–associated formalisms, which in practice never

exploit the full flexibility of the PFB-POV. The assumption is precisely that such formalisms

ultimately rest on underlying fundamental vector bundles for which

G ≃ ρ(G) ≃ Aut(V ). (5.10)

In other words, the standard use of principal and associated fibre bundles tacitly presupposes

the commitments of the geometry-first formulation of gauge theory.

Summing up: upon reconstructing symmetry groups, the VB-POV insists that each gauge

subgroup factor be the automorphism group of its corresponding fundamental vector bundle.

I do not see this tight identification as a limitation of the VB-POV; on the contrary, it is its

chief virtue. By grounding group actions in geometry, the VB-POV rules out many possible

theories. That restriction is methodologically valuable — and it still encompasses our best

physics: the Standard Model itself falls within its bounds.

6 Conclusions

Feynman’s Nobel prize lecture, with which I began, reflected on his alternative formulation of

quantum electrodynamics via path integrals. That formulation, like Minkowski’s introduction

of spacetime—and indeed many other mathematically equivalent yet conceptually transforma-

tive innovations scattered through the history of physics—proved invaluable. They provided

25I need not get bogged down in operational questions about what kind of experiment could in principle do

this. Electromagnetic fields, after all, are only discernible via their action on charges; does that make their

physical reality supervenient on the motion of particles? The point is simply that the gauge-invariant content

of the principal connection is part of the physical apparatus of a gauge theory formulated in the PFB-POV.
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new explanations and opened new directions for development.26 I do not expect the geometry-

first formulation of gauge theory developed here will ascend to comparable heights, nor do I

expect it will become orthodoxy, as Feynman’s and Minkowski’s did.

But I do not want to understate what has been gained. The geometry-first formalism

postulates a different ontology, offers independent ‘symmetry-free’ explanations of familiar

mechanisms in gauge theory, and, above all, cuts the slack between symmetry and geometry.

That tighter fit might be taken to explain why certain group–geometry correspondences are

realised in our world and others are not.

Let me summarise the virtues of the independent explanations. In brief, in this new formu-

lation, as in the familiar one, the Higgs field is a nowhere-vanishing section of a vector bundle

with approximately constant norm. The component of the Higgs field carrying this constant

nonzero norm plays the role of the Higgs vacuum. And although symmetries and vector bosons

no longer appear at the fundamental level, the existence of such a section is enough: the

geometry alone performs the explanatory work that symmetry was thought indispensable for.

Goldstone modes never appear here, and so never require elimination. The reason is simple:

the constant magnitude of the Higgs vacuum section ensures that it is orthogonal to its covariant

derivative. What in the symmetry-first formulation is described as the ‘acquisition of mass’ by

vector bosons is, in this geometry-first account, nothing more than the non-vanishing of the

(covariant) kinetic energy of the Higgs vacuum. In other words, it is nothing more than the

run-of-the-mill idea that the kinetic term of the Higgs depends on the affine structure of the

vector bundle.

Moreover, the covariant derivative along a single section of a vector bundle does not depend

on all the affine degrees of freedom of the bundle (for dim(Ex) ≥ 2). The absent degrees of

freedom correspond, in the symmetry-first idiom, to the unbroken gauge group, giving rise

at the perturbative level to the massless photons. In this formulation, then, talk of ‘mass

acquisition’ may strike a geometry-first militant—say, a relativist—as misplaced.27

Turning to the Yukawa mechanism: I argued that standard presentations are explanatorily

‘opaque,’ and offered instead a more transparent geometric version of the Yukawa form itself.

I readily admit that my sense of opacity may stem from a general preference for geometric

explanations, simpliciter. But the point remains: as emphasised in Section 2.2, the mere

availability of a geometric argument that bypasses representation theory is grist to my mill. The

aim, after all, is to open the subject to a different community, with different, more geometric

ways of thinking.

In this spirit, the geometric formalism already brings out three points about the Higgs and

Yukawa mechanisms that, to my knowledge, have not been emphasised in the literature. (That

26This kind of independent explanation is not always available for mathematically equivalent theories. If you

disagree, I suggest you try to prove general relativity’s focussing theorem in the alternative language of Einstein

algebras (Geroch, 1972).
27To be sure, some would hesitate to say that gravitons acquire mass merely because a spacetime, or a

collection thereof, admits a kinetic term for a vector field of constant norm; yet that is precisely the consensus

for such theories (Jacobson, 2008).
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does not mean they are controversial; perhaps they are simply too minor to warrant mention

in standard presentations.)

First, fermion masses arise through the Yukawa mechanism without any need for a lin-

earised expansion of the fields, or for the choice of local frames or bundle trivialisations. By

contrast, the ‘mass acquisition’ of vector bosons, insofar as they are expressed tensorially, does

require such choices: one expands the covariant derivative into a flat background plus a gauge

potential. From the VB-POV, what would it even mean for the affine structure, or the covariant

derivative ∇, to ‘acquire mass’?

Second, in the geometric picture, the left-handed up and down quarks, and likewise the

electron and electron-neutrino, are not distinct particles at all. They are simply the parallel

and orthogonal components, with respect to the Higgs direction, of the first-generation left-

handed quark fields and leptons.28

Third, the quark Yukawa term depends essentially on the orientation of C2. Up-type quarks

couple to φc, which encodes the oriented area orthogonal to the Higgs. This explains why the

geometry-first picture singles out SU(2) rather than U(2). By contrast, for C3 I know of

no analogous mechanism: why does the Standard Model employ SU(3) rather than U(3)?29

This open question is emblematic of the broader methodological point: when symmetry is

reconstructed from geometry, its explanatory role becomes sharper—and more constrained—

than in the symmetry-first account.

Finally, Section 5 argued that the geometry-first formulation earns its keep by cutting the

slack between symmetry and geometry. Where the PFB-POV tolerates a loose fit between

the structure group and the geometry of its associated bundles, the VB-POV requires each

gauge-group factor to coincide with the automorphism group of a fundamental vector bundle,

whose sections must figure in the description of particles. The demand is restrictive, but the

restriction is clarifying: it ties symmetries tightly to the spaces where matter fields live, and

narrows the range of admissible theories. Fortunately, that narrowing is a virtue rather than

a liability, since our best physics—the Standard Model—falls squarely within its bounds.

The methodological lesson of cutting the slack between symmetry and geometry points to

two broader morals. First, that future developments of gauge theory might do well to begin

with structured vector bundles and the tensors they carry. Second, that Occam’s razor, if it

has an edge here, cuts with the VB-POV.

28That they cannot represent physically distinct particles before symmetry breaking is noted in some

textbooks—(Tong, 2025, p. 185) is an exception more than the rule—but I have not seen this parallel/orthogonal

decomposition relative to the Higgs section made explicit.
29Indeed, there is a canonical isomorphism U(3) ≃ (SU(3) × U(1))/Z3, but the representations of U(1) in

the Standard Model do not appear to realise this isomorphism. Benjamin Muntz has suggested that the place

to look may be in the triality constraints on baryon coupling: colourless states built from three quarks would

not be invariant under the full U(3).
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APPENDIX

A Principal and associated fiber bundles

I will start with the definition of a principal bundle:

Definition 1 (Principal Fiber Bundle) (P,M,G) consists of a smooth manifold P that

admits a smooth free action of a (path-connected, semi-simple) Lie group, G: i.e. there is

a map G × P → P with (g, p) 7→ g · p for some right (or left, with appropriate changes

throughout) action · and such that for each p ∈ P , the isotropy group is the identity (i.e.

Gp := {g ∈ G | g · p = p} = {e}). P has a canonical, differentiable, surjective map, called a

projection, under the equivalence relation p ∼ g · p, such that π : P → P/G ≃ M , where here

≃ stands for a diffeomorphism.

It follows from the definition that π−1(x) = {G · p} for π(p) = x. And so there is a diffeomor-

phism between G and π−1(x), fixed by a choice of p ∈ π−1(x). It also follows (more subtly)

from the definition, that local sections of P exist. A local section of P over U ⊂ M is a map,

σ : U → P such that π ◦ σ = IdU .

Given an element ξ of the Lie-algebra g, and the action of G on P , we use the exponential

to find an action of g on P . This defines an embedding of the Lie algebra into the tangent

space at each point, given by the hash operator: ♯p : g → TpP . The image of this embedding

we call the vertical space Vp at a point p ∈ P : it is tangent to the orbits of the group, and is

linearly spanned by vectors of the form

for ξ ∈ g : ξ♯(p) :=
d

dt
|t=0(exp(tξ) · p) ∈ Vp ⊂ TpP. (A.1)

Vector fields of the form ξ♯ for ξ ∈ g are called fundamental vector fields.30

The vertical spaces are defined canonically from the group action, as in (A.1). But we can

define an ‘orthogonal’ projection operator, V̂ such that:

V̂ |V = Id|V , V̂ ◦ V̂ = V̂ , (A.2)

and defining H ⊂ TP as H := ker(V̂ ). It follows that Ĥ = Id− V̂ and so V̂ ◦ Ĥ = Ĥ ◦ V̂ = 0.

Moreover, since π∗ ◦ V̂ = 0 it follows that:

π∗ ◦ Ĥ = π∗. (A.3)

30It is important to note that there are vector fields that are vertical and yet are not fundamental, since they

may depend on x ∈ M (or on the orbit).
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The connection-form should be visualized essentially as the projection onto the vertical

spaces: given some infinitesimal direction, or change of frames, the vertical projection picks

out the part of that change that was due solely to a translation across the group orbit. The only

difference between V̂ and ϖ is that the latter is g-valued, Thus we get it via the isomorphism

between Vp and g (ϖ’s inverse is ♯ : g 7→ V ⊂ TP ). We can define it directly as:

Definition 2 (An principal connection-form) ϖ is defined as a Lie-algebra valued one

form on P , satisfying the following properties:

ϖ(ξ♯) = ξ and Lg
∗ϖ = Adgϖ, (A.4)

where the adjoint representation of G on g is defined as Adgξ = gξg−1, for ξ ∈ g; Lg
∗ is the

pull-back of TP induced by the diffeomorphism g : P → P .

Now, in possession of an principal connection, we can induce a notion of covariant derivative

on associated vector bundles :

Definition 3 (Associated Vector Bundle) A vector bundle over M with typical fiber V , is

associated to P with structure group G, is defined as:

E = P ×ρ V := P × V/ ∼ where (p, v) ∼ (g · p, ρ(g−1)v), (A.5)

where ρ : G→ GL(V ) is a representation of G on V .

One can get a covariant derivative on an associated vector bundle E from ϖ as follows:

let γ : I → M be a curve tangent to v ∈ TxM , and consider its horizontal lift, γh. Suppose

κ(x) = [p, v]. Then

∇vκ =
d

dt
[γh, v]. (A.6)

Conversely, we can define a horizontal subspace from the covariant derivatives as follows.

For p = e1, ...en ∈ L(E), and for all curves γ ∈ M such that v = γ̇(0) ∈ TxM , with π(p) = x,

let {e1(t), ..., en(t)} be curves in E such that ∇v(ei(t)) = 0. Doing this for each v defines a

horizontal subspace.

But we can also obtain the vector bundles more directly as follows:

Definition 4 (Vector Bundle) A vector bundle (E,M, V ) consists of: E a smooth manifold

that admits the action of a surjective projection πE : E → M so that any point of the base

space M has a neighborhood, U ⊂M , such that, for all proper subsets of U , E is locally of the

form π−1(U) ≃ U ×V , where V is a vector space (e.g. Rk, or Ck) which is linearly isomorphic

to π−1(x), for any x ∈M .

Note that the isomorphism between π−1(U) and U × V is not unique, which is why there is no

canonical identification of elements of fibers over different points of spacetime. Each choice of

isomorphism is called ‘a trivialization’ of the bundle.
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Figure 2: A vector bundle with a two-dimensional fiber over a one-dimensional base space,

with a section here called L. (Figure taken from Wikipedia)

Definition 5 (A section of E) A section of E is a map κ :M → E such that πE ◦κ = IdM .

We denote the space of smooth sections by κ ∈ Γ(E) (see Figure 2 for a formulation of such a

section).

Given a vector bundle (E,M, V ) a covariant derivative D is an operator:

D : Γ(E) → Γ(T ∗M ⊗ E) (A.7)

such that the product rule

D(fκ) = df ⊗ κ+ fDκ (A.8)

is satisfied for all smooth, real (or complex)-valued functions f ∈ Γ(M).

Thus we can define parallel transport as follows:

Definition 6 (Parallel transport in a vector bundle) Let D be a covariant derivative on

(E,M, V ), v ∈ Ex and γ(t) a curve in M such that γ(0) = x. Then we define the parallel

transport along γ as the unique section vh(t) of E|γ such that:

Dγ′vh = 0. (A.9)

The existence and uniqueness of this map is guaranteed for γ ⊂ U some open subset of M ,

and it follows from properties of solutions of ordinary differential equations (cf. (Kobayashi &

Nomizu, 1963, Ch. II.2)).

Here D is an operator, not a tensor. But by introducing a coordinate frame or basis, we

can represent it as such. This is the same as for spacetime covariant derivatives, ∇: it is only

upon the introduction of a frame or basis that we find an explicit representation.

It will prove useful to know that, given any vector bundle (E,M, V ) the bundle of frames

for E, called L(E), is itself a principal fiber bundle (L(E),M,GL(V )): here elements of π−1(x)

are linear frames of Ex, and G ≃ GL(V ) acts via ρ on the typical fibers. By construction,

E ≃ L(E) ×ρ V . Now, for G′ ⊂ G ≃ GL(V ) we can partition the points of each orbit in P ,

Op := Gp, into orbits of G′. Each such choice gives a principal bundle with group G′ and it

induces further structure on the associated vector bundle, e.g. an inner product, by selecting
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which frames are considered orthonormal. This is also a principal fiber bundle, (L′(E),M,G′),

whose structure group is a proper subgroup of the general linear group, G′ ⊂ GL(V ), taken to

be the group that preserves the structure of V . This is called the bundle of admissible frames,

e.g. of orthonormal frames. Conversely, if V has more than just the structure of a linear vector

space, e.g. if it is endowed with an inner product, it will induce a subgroup G′ ⊂ GL(V ) on P

that respects that structure.

B The Standard Group-Theoretic Exposition of the Higgs Mechanism

Before turning to our geometric reformulation, we briefly review the conventional mathematical

account of the Higgs mechanism, as in Hamilton (Hamilton, 2017, Ch. 8). This will allow us to

highlight the points at which symmetry groups, stabilisers, and coset spaces enter essentially.

We begin with a compact Lie group G acting unitarily on a complex vector space W (the

Higgs vector space). A Higgs potential of the form

V (w) = −µ∥w∥2 + λ∥w∥4, µ, λ > 0,

is G-invariant, and has minima along a sphere

Mvac = {w ∈ W : ∥w∥ = v}, v =
√
µ/2λ.

Thus the set of vacua is itself a homogeneous G-space:

Mvac
∼= G/H,

where H = Gw0 is the stabiliser (isotropy subgroup) of a chosen vacuum vector w0 ∈ W .

Already here the reasoning is group-theoretic: the possible vacua are classified by subgroup

data (G,H).

A vacuum configuration is given by a constant section Φ0 of the Higgs bundle, with Φ0(x) =

w0 for all x ∈M . The unbroken subgroup H is compact (as a closed subgroup of G). If H ⊊ G,

the gauge theory is said to be spontaneously broken (Hamilton, 2017, Def. 8.1.6). The Higgs

condensate Φ0 is the non-zero background field in which other particles propagate, and is

invariant only under H ⊂ G. Again, the classification of broken versus unbroken symmetries

is a stabiliser argument.

Perturbations of the Higgs field Φ = Φ0 + ϕ̃ decompose relative to the tangent space at w0:

Tw0W
∼= Tw0(G · w0)⊕ (Tw0(G · w0))

⊥.

Group theory guarantees this orthogonal splitting (Hamilton, 2017, Lem. 8.1.12). One then

expands ϕ̃ in an eigenbasis of the Hessian:

ϕ̃ =
1√
2

d∑
i=1

πiei +
1√
2

2n−d∑
j=1

σjfj,
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with {ei} tangent to the orbit G · w0 and {fj} orthogonal. The πi are massless scalar fields:

the Nambu–Goldstone bosons. The σj are massive scalars: the Higgs bosons (Hamilton, 2017,

Def. 8.1.14). This is precisely Goldstone’s theorem: dim(G/H) massless scalars, deduced from

the group structure of the vacuum manifold.

Physically the Goldstone bosons are unobservable, since they can be gauged away. Math-

ematically this is formalised by the unitary gauge (Hamilton, 2017, Def. 8.1.18, Thm. 8.1.20).

One uses a physical gauge transformation γ : M → G to rotate the Higgs field entirely into

the fixed direction w0:

Φ(x) 7→ γ(x) · Φ(x) = (0, . . . , 0, v + h(x)).

By definition, in unitary gauge the shifted Higgs field is orthogonal to the orbit G ·w0, and the

Nambu–Goldstone bosons vanish. This step is again an essentially group-theoretic argument,

exploiting the transitivity of the G-action on the vacuum manifold.

Let g = g be the Lie algebra of G, with h = Lie(H) the subalgebra of unbroken generators.

With respect to an invariant scalar product, decompose

g = h⊕ h⊥.

The h⊥ directions correspond to broken generators. It is exactly these components of the gauge

field Aµ that acquire mass terms from the kinetic energy of the Higgs:

∥DΦ∥2 ⊃ v2
∑
X∈h⊥

∥AX
µ ∥2.

Conversely, the h-components remain massless. This is the algebraic re-expression of the

stabiliser picture.

In the electroweak theory G = SU(2)L × U(1)Y acts on W = C
2. Choosing a vacuum

vector w0 = (0, v), the stabiliser is a diagonal U(1) subgroup, which is identified with electro-

magnetism. The Lie algebra su(2)⊕ u(1) decomposes accordingly, and a change of basis (the

Weinberg angle) diagonalises the mass form, producing massive W±, Z0 and a massless pho-

ton. Each of these identifications rests on the subgroup structure of G and the group-theoretic

decomposition of its representation on W (Hamilton, 2017, Ch. 8.3).

Summary

The group-theoretic presentation of the Higgs mechanism thus depends essentially on:

1. Identifying the vacuum manifold as G/H, a homogeneous space.

2. Invoking Goldstone’s theorem: dim(G/H) massless modes.

3. Using unitary gauge to remove Goldstone bosons by G-action.

4. Decomposing g into h⊕ h⊥ to classify massive and massless gauge bosons.
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5. In the electroweak case, applying these steps to SU(2)L×U(1)Y , producing W±, Z0, and

the photon.

These symmetry-based arguments provide the conventional foundation. In the next section we

shall see how the same results can be obtained directly from the geometry of vector bundles,

without recourse to stabilisers, cosets, or gauge fixing.

C Connecting the geometric and the standard interpretations of φc

Let V ∼= C
2 be the fundamental SU(2) doublet space. We use only:

� the SU(2)-invariant Hermitian form h : V × V → C,

� the SU(2)-invariant complex symplectic form ε : V × V → C (bilinear, antisymmetric),

� and the natural dual V ∗ = Hom(V,C).

Write the “Hermitian dual” (transpose+conjugate) map

J : V −→ V ∗, J(v) := h(v, ·).

This map is antilinear and SU(2)–equivariant into the contragredient representation:

J(Uv) = J(v) ◦ U−1 (U ∈ SU(2)).

Next, use ε to identify V with its dual linearly :

ε♭ : V → V ∗, ε♭(w) := ε(w, ·), with inverse ε♯ := (ε♭)−1 : V ∗ → V.

Equivariance of ε is the identity UT εU = ε, which is equivalent to

ε♯ ◦ α∗ = α ◦ ε♯ for all α ∈ End(V ).

Definition. Define the antilinear, SU(2)–equivariant map

C := ε♯ ◦ J : V −→ V, ṽ := C(v).

Equivariance follows immediately:

C(Uv) = ε♯
(
J(v) ◦ U−1

)
=

(
ε♯ ◦ J(v)

)
U−1 = U

(
ε♯ ◦ J(v)

)
= U C(v).

If v has hypercharge Y , then J (being the Hermitian dual) implements the phase eiY θ 7→ e−iY θ,

so C flips Y 7→ −Y . Hence, for the Higgs doublet ϕ ∈ (2,+1) we set

ϕ̃ := C(ϕ) = ε♯
(
h(ϕ, ·)

)
∈ (2,−1).
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Component check. Choose an orthonormal basis so that h is the identity and ε = ( 0 1
−1 0 ). Then

J(ϕ) is the Hermitian row vector ϕ†, and

ϕ̃ = ε♯(J(ϕ)) = ε−1 ϕ† = ε ϕ∗ = iσ2 ϕ
∗,

i.e. the usual ϕ̃.
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