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Abstract. Synergy between stochastic noise and deterministic chaos is a

canonical route to unpredictable behavior in nonlinear systems. This letter

analyzes the origins and consequences of indeterminism that has recently

appeared in leading Large Language Models (LLMs), drawing connections

to open-endedness, precariousness, artificial life, and the problem of

meaning. Computational indeterminism arises in LLMs from a combination

of the non-associative nature of floating-point arithmetic and the arbitrary

order of execution in large-scale parallel software-hardware systems. This

low-level numerical noise is then amplified by the chaotic dynamics of

deep neural networks, producing unpredictable macroscopic behavior. We

propose that irrepeatable dynamics in computational processes lend them

a mortal nature. Irrepeatability might be recognized as a potential basis

for genuinely novel behavior and agentive artificial intelligence and could

be explicitly incorporated into system designs. The presence of beneficial

intrinsic unpredictability can then be used to evaluate when artificial

computational systems exhibit lifelike autonomy.

Keywords: randomness, indeterminism, nondeterminism, noise, large
language models, open-endedness
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1 Introduction

Critics of AI rightfully argue that rule-based models neglect the embodied, context-sensitive

nature of cognition (Birhane & McGann, 2024; Goddu et al., 2024; Jaeger et al., 2024; Roli

et al., 2022). From this standpoint, models like ChatGPT may simulate intelligence (Jaeger,

2024), but lack the grounding (Mollo & Millière, 2023) necessary for true thought or genuine

meaning. The argument goes that without key properties of life, these systems cannot be

genuinely alive (Ciaunica, 2025; Dubois, 2003; Rosen, 2012). Consequently, they can only

ever simulate sense-making (Fuchs, 2021). They are not truly engaged in it.

Simultaneously, the capabilities of these models continue to advance at a surprising rate,

even to their developers. The overwhelming success of Large Language Models (LLMs) has

transformed the landscape of artificial intelligence (Minaee et al., 2025; W. X. Zhao et al.,

2025). This has led to a significant shift in the “modes of computing” (Pineda, 2024) away

from rule-based programs, and towards natural (Bongard & Levin, 2023), physical (Horsman

et al., 2014), “intelligent” (Zhu et al., 2023) or “polycomputing” (Bongard & Levin, 2023)

systems, where outputs appear to allow for more flexible forms of ’reasoning’ that may or

may not produce reliable results (Borji, 2023; Zhou et al., 2024).

The increasing number of practical successes and the many heated debates (Bender et al.,

2021; Ciaunica, 2025; Mitchell, 2021) surrounding these developments have obscured some

interesting observations relevant to the capacities of these technologies for sense-making.

Recently, users and developers have been pointing to a curious phenomenon: LLMs often

produce varying outputs, even under controlled, supposedly deterministic conditions (Atil

et al., 2025; Klishevich et al., 2025; Ouyang et al., 2025; Y. Song et al., 2024).

Considering these observations, could some of the recent advances in the competencies

of LLMs be linked to this emergent randomness? Could this be another example of the

constructive role of noise (Azpeitia et al., 2020; Black, 1986; McGann, 2025; Roli et al., 2024;

Swain & Longtin, 2006; A. Zhao et al., 2022)?
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Interestingly, long before the recent boom of LLMs, (Froese & Taguchi, 2019) working within

embodied cognitive science had proposed that “Future work should investigate in more detail

the possible underlying bases for this amplified nondeterminism and incompleteness in the

behavior of the living.” They argued that such nondeterminism might help solve the meaning

problem in AI and robotics by giving a route for its efficacy in behavior generation to be

expressed. In contrast, determinism implies that all behavior is fixed by a combination of

initial conditions and entailing laws, leaving no room for meaning.

The interplay of complexity (Aaronson, 2011; Gershenson, 2024) and indeterminism can open

a space for open-endedness, which in turn can lead to a computational form of precariousness

(Froese, 2017) and “mortality” (Harvey, 2024; Hinton, 2022; Ororbia & Friston, 2024).

Effectively, intrinsic indeterminism means that each computational state trajectory becomes

fundamentally irrepeatable, thereby going beyond claims that computer simulations in

principle fail to satisfy the conditions of living agency by being digitally immortal (Froese,

2017; Hinton, 2022). Perhaps emergent indeterminism is not just a coincidence but a necessary

condition for some of the advanced capabilities we see in LLMs, and maybe one means by

which the problem of meaning is being resolved in these systems, as they take on more lifelike

qualities (Dorin & Stepney, 2023; Froese, 2025). The field of artificial life provides a suitable

framework to evaluate the consequences of the transition to irrepeatable LLMs.

2 Open-Endedness and Emergence of Novelty

Open-endedness has long been considered a keystone problem in artificial life (Bedau et al.,

2000; Packard et al., 2019; Taylor et al., 2016). Although there is no singular definition (A.

Song, 2022), it is usually related to a system’s capacity to generate an unbounded diversity of

genuinely novel, creative (Soros et al., 2024), and complex structures or behaviors over time.

The objective of researchers at present is to develop systems where evolution (Lehman et al.,

2020) or learning (Guttenberg et al., 2019) can continue indefinitely, and also to form tests
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and measures for open-endedness: it is problematic to measure with formal methods (Hintze,

2019; Stepney & Hickinbotham, 2024). Interestingly, it has been suggested to use LLMs to

measure open-endedness (Kumar et al., 2024; Nisioti et al., 2024). If the identification of

open-endedness requires open-endedness, and LLMs can accurately identify it, this might

help demonstrate that they have this property.

Irreducibility and undecidability might be necessary for open-endedness (Hernández-Orozco

et al., 2018). Predictable evolution imposes strict limits on the growth of complexity (Standish,

2006). Open-ended systems must be irreducibly unpredictable.

Open-endedness is now a central topic in AI and artificial life research (Stanley, 2019; Stanley

& Lehman, 2015), and many argue that continual novelty is required for artificial general

intelligence (Hughes et al., 2024). Indeterminism alone is insufficient: a meaningful process

should beneficially utilize randomness (Weber et al., 2025). To see how this can happen we

must first show that intrinsic indeterminism exists, something absent from classical computers.

The following section explains why modern LLMs possess such indeterminism and how it

underpins their potential for open-ended creativity and sense-making.

3 Indeterminism in LLMs

Early informal reports of this “parasitic” indeterminism arose around the release of ChatGPT-3.5,

sparking concerns about reproducibility and robustness in AI systems. Even with explicit

efforts to enforce determinism (such as fixing random seeds, temperature settings, and

identical prompts), variability in LLM outputs persists in some cases (Atil et al., 2025;

Klishevich et al., 2025; Ouyang et al., 2025; Y. Song et al., 2024; Yu, 2023). It is especially

noticeable with larger and more capable models, although the reasons are difficult to discern

in closed-source models.

Technical analysis from high-performance computing (Shanmugavelu et al., 2024) and neural
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networks (Kim et al., 2024; Ravi et al., 2025; Xiao et al., 2021) research allows us to fill in

some essential details. In summary, LLM indeterminism appears to be emerging from the

combination of three main factors:

1. Non-associative Floating-Point Arithmetic: Floating-point operations (such as

summation) are non-associative: the order of operations can influence the result (e.g.

(a + b) + c ≠ a + (b + c)) (Goldberg, 1991; Lafage, 2020). These numerical artifacts

are exacerbated by the widespread use of lower-precision floating-point arithmetic in

modern neural network frameworks, introducing unintended numerical noise.

2. Arbitrary Execution Order in Parallel Computing: Massive parallelization, a

cornerstone of contemporary AI computation (particularly on GPUs), can introduce

unpredictable race conditions and variability in execution order, which in combination

with non-associativity will lead to different results (Shanmugavelu et al., 2024; Villa

et al., 2009). While deterministic parallel algorithms exist, their implementation often

incurs substantial computational overhead (Motwani & Raghavan, 1996; Zhuang et al.,

2021).

3. Chaotic Amplification in Deep Networks: Small numerical perturbations introduced

by floating-point non-associativity or parallel execution can be exponentially amplified

by the chaotic dynamics of deep neural networks (Liu et al., 2024; Saxe et al., 2014;

Schlögl et al., 2023; Schoenholz et al., 2017; Storm et al., 2024; Y. Sun et al., 2022).

Recent work explicitly demonstrates transient chaos in transformer models, linking tiny

initial differences to significant divergences in output sequences (Inoue et al., 2022).

Other architectural features and technical decisions, such as using Mixture-of-Experts layers

in some LLMs, have also been suggested as potential contributors to indeterminism (Huckle

& Williams, 2025).

While it is still possible to trace the origin of this indeterminism, deterministic algorithms are

usually slower (Motwani & Raghavan, 1996). Complete determinism might not be practically
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possible for cutting-edge LLMs.

As models scale to hundreds of billions of parameters spread across thousands of devices,

perfect hardware-level synchrony is no longer practical, so small numerical divergences

inevitably surface in software (Harvey, 2024). Accepting modest indeterminism, therefore,

improves efficiency. More than that, indeterminism has coincided with the latest performance

gains, echoing evidence that randomness boosts generalization (Altarabichi et al., 2024) and

supports lifelike behavior.

4 Indeterminism in Artificial Life

Early platforms like Tierra (Ray, 1991) and Avida (Adami & Brown, 1994) demonstrated

that digital “organisms” (short programs) could replicate, mutate, and evolve, with random

mutations introducing variability and enabling the exploration of diverse evolutionary

pathways. These systems embraced randomness as an essential ingredient for evolution

and adaptation (Standish, 2006). New models often involve parallel computations, which

might include some of the indeterminism discussed in the previous section (Agüera y Arcas

et al., 2024).

Another example is the proposed ulam programming language (Ackley & Ackley, 2016),

designed for “best-effort” computing on unreliable hardware. The ulam treats unpredictability

not as an error but as a standard operating condition, promoting robustness through

adaptation rather than rigid control, which results in more resilient and scalable computing

systems. A similar idea was recently formulated in the context of AI. “Mortal computation”

(Hinton, 2022; Kleiner, 2024) is the mode of computing in which software and hardware

are inseparably linked, so much so that a program cannot be copied to new hardware and

effectively “dies” when its physical substrate “dies”. This idea was introduced to artificial life

by Inman Harvey (Harvey, 2024): the mortality of computation was discussed in the context

of analog computations and evolutionary hardware.
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LLMs show some properties of “mortality” due to the irrepeatability of their state trajectories.

Large-scale parallelism effectively removes the unnatural “clocking” discussed in (Harvey,

2024) as a condition for “immortality”.

Philosophical implications of “immortality” were also previously discussed in the context

of “soft” artificial life. Reproducible computational agents might not be precarious (Beer &

Di Paolo, 2023; Birhane & McGann, 2024) and therefore cannot acquire value and meaning

because they can be quickly “resurrected” without loss of identity (Froese, 2017).

Furthermore, deterministic AI does not permit the randomness and openness intrinsic to

living systems (Froese & Taguchi, 2019). There is no space for meaning to make a difference

if everything is predetermined (Froese et al., 2025; Kleiner & Ludwig, 2024). Therefore,

indeterminism may be necessary for genuine sense-making. Thus, the uniqueness of large-scale

indeterministic, and therefore to some degree “mortal”, computations changes this analysis.

Surprising capabilities of LLMs may arise not despite their indeterminism, but because of it.

Their responses, shaped by historical contingency and irreducible variability, mimic situated,

adaptive behavior of living agents.

But why should this be so? From an enactive perspective, meaning arises through a system’s

active, context-sensitive engagement with its complex environment. The precarious agent

must maintain its existence to make sense of noisy inputs.

In work by (Jakobi et al., 1995), noise was analyzed from the “hard” artificial life perspective.

This analysis also involved physically embodied systems and was concerned with the so-called

reality gap – the mismatch between simulated training environments and the real world.

One successful strategy for bridging this gap was to inject noise during training, so evolved

behaviors were more robust; an “envelope of noise” ensured controllers tolerated a broader

range of perturbations.

Could it be the case that a similar “envelope of noise” due to noise in training data,
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combined with randomness in learning and inference, is one of the reasons for the success

of LLMs? If meaning depends on uncertainty, contingency, and the capacity to adapt, then

the unpredictability we observe in LLMs may bring them closer to genuine understanding.

This vision resonates with the enactive view that where there is life, there is mind (Kirchhoff

& Froese, 2017), and that meaning arises from navigating continuous risk and regeneration.

It is also consonant with relational and self-referential principles of the organization of the

living, which argue against life being complete and entirely predictable (Rosen, 1991, 2012).

However, life-likeness or lack of it in AI and LLMs remains an open question and one with

many attendant technical and ethical considerations (Alavi et al., 2025; Belew, 1991; Birhane

& McGann, 2024; Boyd, 2025; Ciaunica, 2025; Gershenson, 2024; Harvey, 2024; Kleiner,

2024; Seth, 2025; Tureček & Sobička, 2025; Witkowski & Schwitzgebel, 2024). For instance,

current LLMs usually lack a capacity for self-modification, with some notable exceptions such

as (Q. Sun et al., 2025). It is worth noting, however, that if one considers the foundational

parts of LLMs as computational environments, and system prompts as “agents”, then it is

possible to have replication and mutation (Fernando et al., 2023; Stenzel et al., 2024; Wei,

2025). Indeterminism, then, will be a source for novelty during artificial evolution (Standish,

2006).

5 Conclusion

Critics of LLMs have highlighted many shortcomings of a purely formal and statistical

approach to intelligence. However, as we showed, in many instances, LLMs do not fit the

traditional category of software systems that are the target of these criticisms due to the

presence of an intrinsic indeterminism in their operations amplified by chaotic information

processing. With that, the dynamics of the LLM exhibit a new lifelike property – their

conversational trajectories are “mortal” in the generalized sense of realizing irrepeatable

processes. Recognizing this shift has implications not only for design but for interpretation, as
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mortality and unpredictability may be foundational, not peripheral, to autonomous systems

that act meaningfully in the world in an open-ended manner (Estrada, 2018; Froese, 2017;

Ororbia & Friston, 2024).

Building on these considerations, we propose a practical test to assess when a computational

system approaches a new regime and AI begins to exhibit lifelike complexity: specifically,

through the intersection of intrinsic unpredictability and context-sensitive adaptability.

• Predictable, mechanistic computation: Systems that are deterministic or exhibit

negligible variability do not pass this test. While extremely useful as tools (calculators or

classic search algorithms), such systems are essentially immortal machines that produce

the same outcomes given the same conditions, and thus cannot embody self-referential

autonomous systems.

• Unpredictable yet meaningful information processing: Systems that exhibit

intrinsic and irreducible randomness and still produce consistently meaningful, contextually

adaptive output. Natural systems, best-effort computing, reservoir computing, and,

perhaps, some LLMs operate in a mortal regime. Each run is unique, and its internal

states evolve in a path-dependent way. These behaviors are not repeatable in detail, but

maintain coherence and adaptability, qualities analogous to the precarious, historically

contingent nature of life (Jahrens & Martinetz, 2025). If randomness can be removed

without affecting the system’s behaviors, then it does not have any constructive role

and thus does not satisfy the test. Hence, indeterminism must be constitutive to the

system itself.

Practically, this test is vital in the contexts of reproducibility (Gundersen et al., 2023;

López-ibáñez et al., 2021), AI safety (Yampolskiy, 2019, 2024), and AI welfare (Witkowski &

Schwitzgebel, 2024). In high-stakes domains, such as finance (Yu, 2023), irregular behavior

complicates evaluation, audit, and alignment. In other domains, more flexible but less precise

models may be preferred. Developers, users, and policymakers will need to weigh the benefits
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of adaptability against the costs of reduced control.

Reunion and mutual exchange between artificial life theory and contemporary AI practice can

help inform these understandings and thus deserves closer attention (Belew, 1991; Gershenson,

2024; Steels, 1993). Embracing indeterminism will improve how we design and evaluate

intelligent systems and deepen our understanding of life and mind as they emerge in artificial

form.
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