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Abstract

Counterfactual dependence and probabilistic dependence are two criteria
frequently used to analyze causation. “Mere correlations” — instances of
probabilistic dependence and counterfactual independence — are a well-studied
class of cases where these criteria diverge. In this essay, I provide an example of
the opposite type of divergence: counterfactual dependence and probabilistic
independence. The butterfly effect of chaos theory says that had a butterfly in the
distant past not flapped its wings, but everything else was identical, it is possible
(and indeed probable) that a present tornado would not have occurred. However,
the math of chaos also tells us that whether or not the butterfly flaps its wings,
the probability of the tornado is the same. I show how these two claims fit
together, highlighting the distinct and unorthodox counterfactual origin of
probabilistic independence in chaotic systems. Examining the case under different
theories of causation, I find widespread disagreement about whether the butterfly’s
flap causes the tornado. I argue that this disagreement can be explained by an
underlying semantic indeterminacy in our ordinary conception of causation.
Rather than being exceptional, we should expect these types of relationships, and
thus indeterminacies, to predominate in chaotic systems over long timescales.



1 Introduction

Difference-making accounts of causation tend to analyze causation in terms of two
properties: probabilistic dependence and counterfactual dependence.1 According to the
probabilistic criteria, causes raise the probability of their effects. As a first pass, A
causes B when P (B|A) > P (B|¬A). According to the counterfactual criteria, changing
the cause changes whether the effect occurs. However, there is a well-known place
where these criteria disagree. Cases of “mere associations” exhibit probabilistic
dependence and counterfactual independence. The rooster regularly crows before the
sunrise, but the sunrise is insensitive to changes in the crow. The counterfactual criteria
correctly deems these cases as non-causal, and the basic probabilistic criteria must be
amended, often by conditioning on relevant background conditions (Cartwright, 1979;
Skyrms, 1980).

There are no well-studied examples of disagreement in the opposite direction:
cases of counterfactual dependence and probabilistic independence. In this paper, I
describe such a case: the butterfly effect of classical chaos theory. According to the
popular example, a butterfly flaps its wings in Brazil and a tornado occurs in Texas a
month later. In an otherwise identical world where the butterfly does not flap, the
tornado does not occur. However, the math of chaos also tells us that whether or not
the butterfly flap its wings, the probability of the tornado will be the same. The first
part of the paper is an analysis of how this conjunction of properties happens in chaotic
systems. Rather than being exceptional, these types of relations tend to be pervasive
over long timescales in chaotic systems.

None of this tells us whether the butterfly’s flap causes the tornado. I turn to this
question in the second part of the paper. It turns out that different philosophical
accounts of causation give dramatically different answers as to what causes what in
chaotic systems. Rather than side with one of these accounts I attempt to locate the
source of the disagreement. I argue that, along the manipulationist understanding of
causation, chaotic systems exemplify many pathologies that prevent us from giving a
clear causal description. Thus, whether the butterfly’s flap “causes” the tornado is best
thought of as being semantically indeterminate.

The paper is structured as follows. In §2, I describe the butterfly effect using the
math of chaos theory, showing how probabilistic independence arises. In §3, I describe
two senses in which the tornado counterfactually depends on the butterfly’s flap. In §4,
I argue that the butterfly effect is semantically indeterminate. I extend the discussion
to causal chains in §5 and give concluding remarks in §6. A technical appendix is
included in §7.

1For examples of the former, see Mellor (1995) and Suppes (1970). For the latter, see Lewis (1973).
Another class of difference-making accounts not discussed here are regularity theories, such as Mackie’s
(1980) INUS account.
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Note: In the rest of the paper, I will make frequent distinctions between
micro-events and macro-events. A micro-event is the precise way that an event
happened, and will be designated by lower case letters a, b, c, ... and words
flap1, f lap2, ... A macro-event is an approximate description of an event, comprised of
many micro-events. Macro-events are designated by upper case letters A,B,C... and
words Flap, Tornado, etc.

2 The Butterfly Effect

2.1 Some Preliminaries

The enduring metaphor for chaos theory is Edward Lorenz’s (1972) butterfly effect.
Robert Bishop describes the butterfly effect as

the flapping of a butterfly’s wings in Argentina could cause a tornado in
Texas three weeks later. By contrast, in an identical copy of the world sans
the Argentinian butterfly, no such storm would have arisen in Texas (2024).

The description is a counterfactual one, resembling how philosophers talk about “actual
causation” — i.e. the causal relations between actually occurring events. In future
sections, we will make precise the counterfactual dependence that obtain in the case.

There is one interpretation of the counterfactual that is not consistent with the
mathematics of chaos. Barry Loewer mistakes the example to mean that “whether or
not a butterfly flaps its wings off the coast of Africa can make a difference to the
probability of a storm occurring in the Caribbean” (2023, 24). In this section, I will
give a gloss of chaos theory as it pertains to the butterfly effect. We will find out why
this probabilistic reading is incorrect.2 The discussion will be held at a largely informal,
conceptual level. Additional mathematical details are provided in the appendix.

In understanding the case, I will assume that the weather is at least
approximately chaotic in the ordinary mathematical sense described below, tabling
some complex issues of how chaos is actually borne out in modern meteorology.3 In

2This statement is also at odds with Lorenz’s original talk on the butterfly effect, where he writes
“If the flap of a butterfly’s wings can be instrumental in generating a tornado, it can equally well be
instrumental in preventing a tornado” (1972, 1)

3Lorenz’s (1963) original weather “system” is chaotic in this sense. It is a highly simplified model of
fluid convection featuring three coupled ordinary differential equations. However, the full equations for
fluid dynamics, and thus the weather, are a set of partial differential equations called the Navier-Stokes
equations. They add many subtleties to the case that we shall avoid. First, they are not continuously
dependent on their initial conditions. This means that convergence of the initial conditions does not
imply a convergence in future states. As a consequence, there is a finite time horizon beyond which
future predictions cannot be extended, no matter the precision of initial data. This is a stronger form
of chaos than what is discussed here and in Lorenz’s 1963 paper, although it is discussed in his later
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general, while chaos-like behavior is believed to be widespread in classical systems,
rigorously proving an abstract dynamical system to be chaotic is a notoriously difficult
exercise requiring many simplifying assumptions.4 As usual, the inference from simple
models to the real world is licensed by the fact that certain subsystems of the world
behave in a way well-described by mathematical chaos. For example, we can use
observational atmospheric data to estimate the exponential rate of divergence between
nearby initial weather states, one of the hallmarks of chaos (Zeng et al., 1991). Other
observable examples of chaos (e.g. double pendulums and various many-body systems)
or quasi-chaos (e.g. dice rolls and coin flips) abound. Therefore, we can import many of
the same conclusions drawn from this case there.

Finally, my analysis will be entirely restricted to the context of deterministic
classical systems. Determinism is a standard assumption in both the physics literature
on chaos (see Zuchowski 2017, 67) and the philosophical literature on counterfactuals
(Lewis, 1979; Dorr, 2016; Loewer, 2023). It remains unclear to what extent the world’s
fundamental dynamics are deterministic.5

2.2 Dual Faces of Chaos

Chaos theory can be understood in two complementary ways. Most frequently, chaos is
described in terms of sensitive dependence of initial conditions; slight differences in the
initial state of a system lead to large differences in future states. Suppose we have a
space of all possible states our system can take, call it Γ. This “phase space” is usually
a very high dimensional space given by the possible values for all the system’s degrees
of freedom (e.g. positions and momenta of all the particles). The dynamics of the
system will deterministically trace out a curve in Γ called a trajectory. Chaos tells us
that if we have two initial states x(0), y(0) that start out close together in Γ, their
trajectories will tend to grow farther apart at an exponential rate.6 At some future
time, they will occupy very different parts of Γ.

work (Lorenz, 1969). Secondly, in modern meteorological models, there is a separation of scales between
the “small-scale” (spanning a few kilometers), mesoscale (tens to hundreds of kilometers), and the global
scale (thousands of kilometers). Small scale error quickly multiplies, but the degree to which this error
get amplified up to large scale error is highly variable (Palmer et al., 2014). Lastly, because the weather
is not an isolated system, it involves forcing and damping and is only chaotic on a so called “strange
attractor.” More details of this are offered in §7.2 of the appendix.

4To get a sense for the difficulty of such an enterprise, see Yakov Sinai’s (1970) seminal article.
5In quantum mechanics, this question largely turns on solutions to the quantum measurement prob-

lem. For a discussion of chaos in Everettian quantum mechanics, see (Wallace, 2012, 64-102). For a
discussion of chaos in Bohmian mechanics, see Dürr et al. (1992). Of these two interpretations, the
arguments of this paper are most easily ported to Bohmian chaos. However, it is also unsettled because
we do not yet have a final fundamental theory of physics.

6‘Closeness’ is measured in terms of a relevant phase space norm.
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Figure 1: Sensitive Dependence on Initial Conditions in Phase Space Γ. Two initial
states, x(0) and y(0), are identical except for a butterfly’s flap. They quickly diverge
under time evolution. At time t, x(t) is in region associated with the macro-event of a
tornado’s occurrence (made up of many possible tornado configurations), and y(t) ends
up in a very different region of Γ. Note: these trajectories represent the time evolution
of the entire weather system, not the flight paths of the butterfly!

For our purposes, let us take Γ to be the possible states of the global weather
system. Call x(0) the actual initial state. This is associated with a certain butterfly
flapping in a precise way, flapa, as well as the precise background conditions of the rest
of the weather systems k. Call y(0) some nearby initial state where the butterfly does
not flap, ¬flap1, that features the same background k (i.e. in an otherwise identical
world). Finally, call Tornado the macro-event of the tornado occurring at time t,
comprised of many micro-realizers (tornado1, tornado2...). In Γ, Tornado will be
associated with a region of Γ consistent with the tornado’s occurrence. Under the
butterfly effect hypothesis, the dynamics will carry these initial states forward in time
to x(t) and y(t), where we find that x(t) ∈ Tornado and y(t) ̸∈ Tornado. This is
illustrated in Figure 1.
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Figure 2: Mixing in Phase Space Γ. A region of initial states A(0) begins to mix
under the dynamics at t = 1, becoming fully mixed in the limit as t → ∞. The lighter
gray at t → ∞ indicates that A(t) does not change sizes, but is becoming stretched into
arbitrarily thin filaments that are spread across all of phase space. It is worth taking a
moment to consider how Figures 1 and 2 are complementary, where trajectory
divergences in Figure 1 also describe the spreading of regions in Figure 2.

Carrying this analysis further would yield the unsurprising conclusion that
counterfactual and probabilistic dependence can obtain between small antecedents and
large consequents. It is also not relevant toward understanding the counterfactual at
hand: “had the butterfly not flapped, the tornado would not have occurred.” This
statement does not uniquely specify the exact micro-state of the butterfly in the
counterfactual scenario, but rather the macro-event of its non-occurrence.

When relating macro-events, chaos has a different face. While chaos is frequently
characterized as the divergence of individual trajectories, it can also be understood as
the convergence of probability distributions. Suppose that instead of considering an
exact initial state of the system, we wanted to consider a “macro-event,” A(0),
associated with a continuous region of exact initial states. We can we evolve A(t)
forward in time by evolving each of these exact initial states. If the system is chaotic,
every initial A(0) will have the same long-run behavior; A(t) will be deformed into a
highly complex filamented structure that uniformly spreads across all of Γ to greater
and greater precision (Figure 2). Formally, this property is known as “mixing” because
the process resembles a drop of ink being mixed into a glass of water (Gibbs, 1902,
144-145). No matter where drop originates, it will converge to the same spread-out
distribution across the glass. Similarly, every initial probability distribution will spread
out across Γ in the same coarse-grained fashion, approaching a single fixed distribution
(with small exceptions outlined in the appendix). For this reason, chaos is sometimes
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identified with the condition that for all macro-events A,B:7

lim
t→∞

P (Bt|A0) = P (B). (1)

The prior probability P (B) is obtained from the system’s fixed distribution. In Figure
2, it can be roughly equated with the size of B relative to the whole Γ. The conditional
probability is given by the proportion of initial conditions in A(0) that end up in B at t
(i.e. the relative overlap between A(t) and B). (1) says that every event at time 0
grows probabilistically irrelevant for every event at t as t → ∞. Here is another way to
see (1); over the course of time, chaotic systems strip away all regularities between
macro-events, leaving only the precise deterministic laws.8 Even though the precise
equality in (1) only holds in the infinite time limit, for practical purposes these
distributions become indistinguishable in finite times.

Returning to the butterfly effect, instead of considering the exact initial state of
the butterfly, we now consider a range of nearby initial states consistent with the
macro-events of the butterfly flapping, Flap, and not flapping, ¬Flap.9 Again, to probe
the consequences of changing only the flap, we freeze background degrees of freedom at
their precise values k.10 Therefore, our initial macro-states are [Flap& k](0) and
[¬Flap& k](0). For large enough t, [Flap& k](t) and [¬Flap& k](t) will both be
uniformly spread out across Γ similar to Figure 2. For any macro-event at t, such as
Tornado, the conditional probabilities given either of these initial regions will converge

7Werndl (2009, 215) shows that under certain common assumptions about probability in dynamical
systems (see appendix), mixing is equivalent to (1). She also argues that mixing is both necessary and
sufficient for chaos.

8This is assuming the macro-events occupy roughly equal measure in phase space. For example, in
thermodynamics systems, chaotic microdynamics can lead to a reliable approach to equilibrium in the
macrodynamics due the the equilibrium state occupying an overwhelming measure of phase space.

9¬Flap cannot be simply the set complement of Flap in Γ because that will include very distant
alterations of Flap, such as the butterfly being in Japan rather than Brazil.

10Barry Loewer has suggested that we use macro-background conditions to evaluate these types of
counterfactuals (Loewer, 2023, 37). The problem with this approach is that it allows spurious counterfac-
tual dependencies between dynamically unconnected events. Suppose the flap occurs on Earth and the
tornado occurs on some very distant planet such that the events are spacelike separated in a relativistic
spacetime (i.e. cannot influence one another). Evolving the initial macro-conditions of that planet’s
atmosphere forward, we will find a low probability of the tornado occurring. This would render the
false judgment that had the butterfly not flapped, the distant tornado probably would not occur, even
though the flap cannot influence the tornado at all. As such, the way I am analyzing counterfactuals
is much closer in spirit to Lewis’ (1979) account in that it heavily favors perfect match between worlds
over approximate match.
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to that event’s prior probability:

P (Tornadot|Flap0& k0)︸ ︷︷ ︸
≈P (Tornado)

≈ P (Tornadot|¬Flap0& k0)︸ ︷︷ ︸
≈P (Tornado)

. (2)

The details of (2) are elaborated in the appendix. This tells us that, contra Loewer,
whether the tornado occurs is probabilistically independent of whether the butterfly
flaps.11 Importantly, (2) will hold for virtually all macro-events at sufficiently distant
times. The right hand side of (2) also reveals the distinctive counterfactual behavior for
chaotic systems that will guide the rest of our discussion; change virtually any
macro-event in the sufficiently distant past, and you effectively re-roll the dice for all
present macro-events. The probability that any given event occurs will be in line with
its overall objective probability; high probability events probably will happen, low
probability events probably won’t.

Here is a way to visualize the situation (Figure 3). At our initial time, separate Γ
into the degrees of freedom associated with the butterfly Γbutterfly and the degrees of
freedom associated with the rest of the system Γbackground such that
Γ = Γbutterfly × Γbackground, where × is the Cartesian product. Γbackground is fixed at their
actual values k, while Flap and ¬Flap are associated with regions of initial conditions
in Γbutterfly. Inspecting Γbutterfly, each initial condition of the flap either leads to
Tornado occurring (light grey) or Tornado not occurring (dark grey). You can imagine
the initial regions as looking like a cookie with sprinkles, where the doughy regions are
heading to ¬Tornado at t and the sprinkled regions are heading to Tornado. The
sprinkles are numerous, tiny, and randomly placed throughout both cookies (much
more finely intermixed than illustrated). (2) says that the proportion of initial
conditions in Flap and ¬Flap leading to Tornado is approximately the same; they both
approximate the relative size of Tornado in Γ. This will be true even if we consider
non-uniform distributions over Flap or ¬Flap, so long as they are not allowed to vary
too fast in a way that is pathologically tailored towards a certain outcome.12

11It might be objected that full probabilistic independence requires =’s and not ≈’s in (2). However,
exact independence rarely, if ever, occurs in real world data. Therefore, (2) is consistent with the
probabilistic independence we use in real-world applications. Furthermore, (2) grows arbitrarily close to
equality as t increases.

12This is Henri Poincaré (1905, 224-226) celebrated method of arbitrary functions. For more detailed
discussions, see Myrvold (2021) and Strevens (2011).
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Figure 3: Phase Space Sketch of the Butterfly Effect at time 0. Background
conditions are frozen at their actual values k. In the Flap and ¬Flap regions, the light
grey initial conditions end up in Tornado at t and the dark grey initial conditions end
up in ¬Tornado. flapa represents the actual initial conditions of the flap. Flap and
Tornado are probabilistically independent because Flap and ¬Flap have the same
proportion of initial conditions heading to Tornado. See Diaconis et al. (2007, 216) for
similar figure for coin flips.

3 Counterfactual Dependence

In the previous section, we described how probabilistic independence occurs in the
butterfly effect due to chaos. This leads to a “whether-whether” probabilistic
independence; whether Flap occurs does not change the probability of whether
Tornado occurs, even given precise background conditions. In this section, I will
describe how the tornado counterfactually depends on the flap.

It should be noted that counterfactual dependence has been defined many times
over and not every definition will agree about the case. Indeed, some authors tie
counterfactual dependence to chance raising, making the conjunction of probabilistic
independence and counterfactual dependence an analytic impossibility.13 However, one
does not have to look far for counterfactual analyses that yield the conclusion that the
tornado counterfactually depends on the flap. In this section, I will point to two
distinct, non-trivial ways in which the tornado exhibits counterfactual dependence on

13See, for example, David Lewis (1986, 175-184) and Chrisopher Hitchcock (2003, 140)
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the flap, despite the two events being uncorrelated. The first is a type of “how-whether”
dependence, and the second is a “whether-whether” dependence.

3.1 Counterfactual Sensitivity

In his 2000 counterfactual account of causation, David Lewis presented the notion of
“influence.” A influences B if changing the specifics of A would have led to a large
change in the specifics of B. This is a type of “how-how” counterfactual dependence,
the specifics of how A occurs (or does not occur) change how B occurs (or does not
occur). In our example, Flap will have a considerable influence over Tornado insofar as
the specifics of the tornado, and indeed whether it occurs at all, are sensitive to very
precise specifications of the butterfly’s flap. In this section, I am going to present a
modified and stronger notion of “how-whether” counterfactual dependence, modeled on
Lewis’ notion of influence, that also applies to the case. The reason for this will become
apparent in the next section; it gives us the resources to describe two very different
counterfactual origins of probabilistic dependence.

Assume that in the actual world, Flap and Tornado occur, with flapa being the
precise initial conditions of the flap. Because the system is sensitively dependent on
initial conditions, there will be many initial conditions nearby to flapa which will
deterministically evolve into ¬Tornado. Thus, Tornado is counterfactually sensitive to
changes in Flap, where:

Counterfactual Sensitivity: If A and B are two actually occurring events,
and A is realized by aa, then B is counterfactually sensitive to A iff there
exists a wide range a1, a2,... of distinct but not-too-distant alterations of A
such that if a1 or a2 or ... had occurred, then B would not have occurred.

Again, this can be described as “how-whether” counterfactual dependence: the precise
details of how A occurs can change whether B occurs. For dynamical systems,
counterfactual sensitivity tracks the following question. Are there a non-negligible
amount of initial conditions in either A or ¬A which lead to ¬B? If so, then B is
counterfactually sensitive to A. What counts as negligible will be a contextually
determined, but for our purposes just assume that it is some very small proportion of
the initial conditions. As we can see from Figure 3, Tornado is counterfactually
sensitive to Flap. This is true even though there is not a systematic connection between
the macro-events (e.g. Flap being mostly one color and ¬Flap being mostly the other).

Counterfactual sensitivity allows us to say something general about chaotic
systems. As we have mentioned before, changing virtually any macro-event in the
distant past would reroll the dice on the system’s macro-future.14 So long as the future

14This is assuming the macro-events are not extremely gerry-mandered.
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event’s objective chance is above some small value, then it will be counterfactually
sensitive to nearly all macro-events at some sufficiently distant past time. For example,
take Sun to be the event of sunshine in some patch of the Mojave desert at t, assumed
to be a very probable event. Even this event will be counterfactually sensitive to
changes in the distant past. For virtually all macro-events A at time 0, there will be a
small portion of initial conditions in A& k and ¬A& k which lead to ¬Sun.

We have a situation that might be described as counterfactual rampancy : nearly
all macro-events in the future are counterfactually sensitive to nearly all macro-events
in the distant past.15 Change virtually anything in the distant past, and virtually
anything in the present might not occur. However, the changes made to the present
would be effectively random; the probabilities for every present event would fall in line
with their objective probability. Thus, this rampant counterfactual sensitivity cannot
be used to tilt future distributions one way or another. We cannot fix the initial
weather state precisely enough to raise or lower the probability of the tornado, and even
if we did have god-like abilities of control we would also need god-like abilities of
prediction to know which initial states lead to which outcomes.

3.2 Two Routes to Probabilistic Independence

We have just seen that Tornado is counterfactually sensitive to Flap, even though the
two events are probabilistically independent. It is worth pausing for a moment to
contrast this type of probabilistic independence with more “standard” cases. Here is a
test. Imagine finding out that two events A and B are probabilistically independent,
given precise background conditions k. My guess is that your default assumption is that
the occurrence of the second event will be insensitive to changes in the first.

Here is an example. Suppose that just before the tornado touches down in Texas
at t, John sneezes in London at t− 1. The sneeze might exchange some minuscule
conserved quantities with the impending tornado, but certainly not enough to change
whether it occurs. Thus, whether John sneezes is probabilistically independent of
whether the tornado occurs, given the background conditions. As we did with the
butterfly flap, if we represented the weather system’s phase space as
Γ = ΓJohn × Γbackground, fixed the degrees of freedom in Γbackground at their actual values
k, and traced out the relevant Sneeze and ¬Sneeze regions, we would find Sneeze does
not raise the probability of Tornado:

P (Tornadot|Sneezet−1& kt−1) = P (Tornadot|¬Sneezet−1& kt−1). (3)
15Counterfactual rampancy is something that distinguishes genuinely chaotic systems from quasi-

chaotic ones such as coin tosses and dice rolls. Quasi-chaotic systems are sensitive to their initial
conditions, but not arbitrarily so, and they are not mixing over their state spaces.
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Figure 4: Phase Space Sketch of the sneeze at t− 1. Background conditions are frozen
at their actual values k. In the Sneeze and ¬Sneeze regions, the light grey initial
conditions end up in Tornado at t and the dark grey initial conditions end up in
¬Tornado (there aren’t any). The actual initial conditions of the sneeze are represented
by sneezea. Sneeze and Tornado are probabilistically independent because Sneeze and
¬Sneeze have the same proportion of initial conditions heading to Tornado (all of
them).

But (3) has a much different origin than (2). (3) holds because all initial conditions in
Sneeze& k and ¬Sneeze& k end up in Tornado at t. That is, Tornado is
counterfactually insensitive to Sneeze. The contrast between this case and the
butterfly effect is obvious when we compare Figure 4 with Figure 3.

Counterfactual sensitivity allows us to articulate two distinct counterfactual
routes to probabilistic independence. Along the “typical” route, there are no relevant
changes to the first event that would make the second event not occur. The second
event is counterfactually insensitive to the first. However, sensitive dependence on
initial conditions provides another path. This path can be characterized as
counterfactual hypersensitivity: there are many changes to the first event that would
lead to second event not occurring, but these changes become too fine-grained to be
picked up as a correlation between macro-events. Thus, probabilistic independence
contains a degeneracy of counterfactual possibilities. Merely knowing that two events
are probabilistically independent, we do not know whether changing the first can
change the second’s occurrence.
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3.3 Actual Counterfactual Dependence

So far, we have seen that the butterfly effect conjoins “how-whether” counterfactual
dependence with “whether-whether” probabilistic independence. Now we will extend
the analysis to include “whether-whether” counterfactual dependence.

Again, assume that in the actual world a certain Brazilian butterfly flaps and a
certain Texas tornado occurs sometime much later. Given the previous discussion, we
expect that changing some macro-event like Flap will effectively re-roll the dice on the
system’s future; the probability distribution over future events will be close to their
prior probabilities. The probability of a tornado occurring within a small geographic
area at a specific time is going to be extremely low, so we should expect that
P (Tornado) ≈ 0. Therefore, had the butterfly not flapped it is overwhelmingly likely
that the tornado would not have occurred, because chaos ensures that
P (¬Tornadot|¬Flap0& k0) ≈ P (¬Tornado) ≈ 1. As we will see below, most ordinary
counterfactuals with false antecedents must be justified by reference to overwhelming
likelihood. Thus, the butterfly effect answers to the following notion of counterfactual
dependence:

Actual Counterfactual Dependence: If A and B are actual events, B
counterfactually depends on A iff had A not occurred, B very probably
would not have occurred.

In the rest of this section, I will show why this definition has become more or less the
standard in the literature on counterfactual conditionals.

It is commonly assumed that B is counterfactually dependent on A iff

(I) A □→ B

(II) ¬A □→ ¬B.

where A □→ B is the counterfactual conditional “If A were the case, then B would be
the case.” Another standard assumption in the analysis of counterfactuals — see, for
example, Stalnaker (1968, 104), Lewis (1973, 26), and Edgington (1995, 290) — is that
when A and B occur in the actual world, then (I) is automatically true:
(A&B) → (A □→ B).16 Thus, when A and B are actual events, A counterfactually

16This principle is known as “Conjunction Conditionalization” (CC). While widely adopted in the
literature on counterfactuals (see Table 2 in Starr, 2021), (CC) has been the subject of debate. Numerous
objections have been raised against (CC) (Bennett, 1974; McDermott, 2007; Woodward, 2023), citing
unintuitive cases that follow from the principle. However, Walters and Williams (2013) have made
a compelling case that (CC) is no idle wheel in the logic of conditionals. They show that various
combinations of less contentious logical principles for conditionals entail (CC), and so rejecting it is “no
minor surgery, but a complicated operation involving the mutilation of far more entrenched aspects of the
logic of conditionals” (2013, 584). Furthermore, Walters (2016) suggests that the unintuitive cases can be

13



depends on B iff ¬A □→ ¬B. Consequently, assuming that Flap and Tornado are
actual events, whether Tornado counterfactually depends on Flap comes down to
whether ¬Flap □→ ¬Tornado.

How can we determine the truth of ¬Flap □→ ¬Tornado? David Lewis analyzed
counterfactuals with respect to a similarity ordering of possible worlds. According to
Lewis, there will be many worlds that are equally similar to ours where ¬Flap is true.
¬Flap □→ ¬Tornado is true when all of these ¬Flap worlds are also ¬Tornado
worlds.17

However, Lewis’ definition turns out to be much too stringent. The world is
objectively chancy. For one, quantum mechanics might imply that the dynamics of the
world are chancy and not deterministic. But even if the world is fundamentally
deterministic, determinism of the microphysics almost never implies determinism of the
macrophysics. Accordingly, specifying some macrophysical change in the past is rarely
sufficient to uniquely determine the occurrence of macrophysical events in the future.
However, I would seem right to assert that

If I were to leave an ice cube on the counter, it would melt. (4)

despite the fact that in a small portion of the relevant initial conditions, the ice cube
gets colder. Since the time of Boltzmann, we have known that even our most secure
macroscopic regularities can only be probabilistically underwritten by the underlying
microphysics.18 As numerous authors have pointed out, if we follow Lewis in thinking
that there are many closest possible worlds, and we take A □→ B to mean that B is
true in all closest A worlds, then almost all counterfactuals we utter in ordinary
conversation will turn out to be false (Hoefer 2004, 107-110, Stalnaker 2019, 196, and
Edgington 2008, 14). Thus, there must be a link between probabilities and
counterfactuals that grounds our use of counterfactual conditionals in physics while
respecting our ordinary judgments.

There are a number of different candidate proposals for how to square our use of

explained by the fact that if (CC) is true, then A&B is logically stronger than A □→ B. Under Grice’s
maxim of quantity, asserting A □→ B typically carries a conversational implicature that A did not
happen. Likewise, Lewis writes “It is conversationally inappropriate, of course, to use the counterfactual
construction unless one supposes the antecendent false; but this defect is not a matter of truth conditions”
(1986, 18). Thus, counterexamples to (CC) can be successfully explained pragmatically, while keeping
the usual semantics of counterfactuals intact.

17Lewis’ adds a slight wrinkle to this because because he believes it is possible for worlds to get
indefinitely more similar to w. Accordingly, he says that A □→ B is true at world w iff there is an
A&B world more similar to w than any A&¬B world. We will ignore this wrinkle for the purposes of
exposition.

18The second law of thermodynamics has this character; there are always small, nonzero measure
regions of initial conditions where entropy will decrease (Albert, 2000).
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counterfactual conditionals with objective chances. Alan Hájek believes that most
counterfactuals we utter are strictly false, although we can use high chance to
“legitimately assert” them in the forgiving context of ordinary conversation (Hájek,
2014, 87). Robert Stalnaker famously asserted that the probability of a conditional
being true equals the conditional probability of P (B|A), an idea that has generated
enormous debate (1970, 75).19 Dorothy Edgington has argued that when the antecedent
of a counterfactual is false, it has no truth value (2008). Instead, its acceptability goes
by the conditional probability of B, given A. On all of these proposals,
¬Flap □→ ¬Tornado is on par with most counterfactual scenarios we routinely assert
and accept in daily discourse; as expressions of the highly probable consequences of
minimal changes to the actual world.

In summary, Tornado counterfactually depends on Flap in the same way we
ordinarily evaluate counterfactuals dependence among actual events. Counterfactuals
answer the question; how would the world be different if A had been true? If A is true
in actuality, the answer is “no different.” If A is false, the answer must be grounded in
the probable, not inevitable, consequences that would follow were it true.20 If we live in
a world where a butterfly flapped its wings in the distant past and a tornado just
occurred, then chaos tells us that had the butterfly not flapped its wings, the tornado
very probably would not have occurred.

4 Causation

Here is a summary of the previous sections’ claim that the butterfly effect exhibits both
counterfactual dependence and probabilistic independence:

19This has come to be known as “Stalnaker’s Thesis.” Despite its initial appeal, David Lewis (1986,
136-139) famously put forward a series of results which show that if we allow for arbitrary nesting of >’s,
there is no proposition A > B that can satisfy Stalnaker’s Thesis without trivializing the probability
distribution in question. Lewis’ results led to more triviality results (Carlstrom and Hill, 1978; Hájek,
2011). See chapter 4 and 5 of Bennett (2003) for a review of this history. Despite this, it has also been
shown by van Fraassen (1976) and Bacon (2015) that a contextualized version of Stalnaker’s Thesis does
hold in a Stalnakerian semantic framework. Finally, subsequent literature has shown that the triviality
results for Stalnaker’s Thesis are actually a problem for connecting probability with epistemic modality,
generally (Goldstein and Santorio, 2021).

20It may feel strange that we are allowed to use facts about the actual world to justify Flap □→
Tornado, but need to rely on probabilities to justify ¬Flap □→ ¬Tornado. Flap □→ Tornado would
turn out false if we evaluated it probabilistically since P (Tornadot|Flap0 & k0) ≈ 0. However, coun-
terfactuals are intended to be counter-to-the-facts-uals. Only when their antecedents are false do we
need to start looking at worlds beyond our own to ascertain truth conditions. Once we are looking
beyond our world, we are confronted with the problem of objective chance. When dealing with a similar
issue, Jonathan Bennett writes “It is expectable that the conceptual structures we use in subjunctive
conditionals should make a special case of the actual world” (2003, 250).
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1. Probabilistic Independence: Where Flap and Tornado are macro-events,
given precise background conditions k for the rest of the weather system,
conditioning on whether Flap or ¬Flap occurs does not raise or lower the
probability that Tornado occurs.

2. Counterfactual Sensitivity: If Flap and Tornado are actual events and Flap
is realized by flapa, then there are many nearby initial conditions
flap1, f lap2, ...,¬flap1,¬flap2, ... that lead to ¬Tornado.

3. Actual Counterfactual Dependence: If Flap and Tornado are actual events,
had Flap not occurred, Tornado very probably would not have occurred.

Thus, we have “whether-whether” probabilistic independence, “how-whether”
counterfactual dependence, and “whether-whether” counterfactual dependence all
coexisting in a single case. None of these judgments have not been cut from whole
cloth. The probabilities are supplied by dynamical systems theory and the analysis of
counterfactuals is in line with mainstream approaches to the subject: counterfactual
sensitivity is modeled after David Lewis’ (2000) notion of influence, and actual
counterfactual dependence fits within the frameworks offered by Stalnaker (1968; 1970)
and Edgington (2008).

So far, I have not addressed the question of whether the butterfly’s flap causes
the tornado. But the butterfly “effect” is a patently causal claim. Since its introduction
by Edward Lorenz (1972), it is routinely described in the philosophy and physics
literature in explicitly causal terms (see Smith 1990, 247, Frisch 2014, 212, Bricmont
2022, 83, and Hilborn 2004).21 When these authors describe the case, it is a simple
binary relationship — the flap of the butterfly’s wings causes the tornado. Can we
make sense of this with any existing philosophical accounts of causation?

4.1 Probabilistic and Counterfactual Theories of Causation

I will focus on two broad types of causal theories — probabilistic and counterfactual.
The primary insight of the probabilistic camp is that causes tend to raise the probability
or chances of their effects. The fact that smoking causes lung cancer is evidenced by the
fact that smoking raises one’s chance of getting the disease. The insight of the
counterfactual theory is that the second event changes when the first event changes.

Probabilistic or chance raising analyses of causation straightforwardly rule out the
possibility that Flap causes Tornado. The standard proposal is some variation of

A causes B iff P (B|A ∩K) > P (B|¬A ∩K) (5)
21This is not an appeal to the authority of these philosophers’ and physicists’ intuitions on causation.

Rather, it is a way of excluding the intuitions of laypeople who have only ever encountered the butterfly
effect as a causal claim and have no understanding of the underlying dynamics from which it originates.
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for some background conditions K.22 Chaos ensures that Flap will not raise the
probability of Tornado for precise k or imprecise K background conditions. As t → ∞,
only conditioning on precise micro-specifications of the flap
{flap1, f lap2, ...¬flap1,¬flap2} plus precise background conditions k, could you raise
or lower the probability of Tornado.

Additionally, the case will elude accounts that use probability raising to analyze
counterfactual dependence. For example, Christopher Hitchcock describes
counterfactual dependence as

the actual chance of e’s occurrence, Ch(e), at the time of c’s occurrence, is
higher than Ch(e) would have been, at the same time, had c not occurred
(Hitchcock, 2003, 140).

According to such a chance-raising account of counterfactual dependence, Tornado at t
will not counterfactually depend on Flap time 0.

The most a chance-raising analysis can say is that Tornado causally depends on
flapa & k, the actual micro-conditions of the flap together with the precise background
conditions.23 On such a reading, we might say that causation reduces to
micro-determinism in chaotic systems at t → ∞. The macro-present causally depends

22See Suppes (1970) and Mellor (1995) for two probabilistic accounts of causation
23A probabilistic theory of causation would count the case as probabilistically and causally dependent

if it compared the conditional probabilities given the actual microstate of the flap with those given the
macrostate of the flap not occurring

P (Tornadot|flap0a & k0)︸ ︷︷ ︸
1

> P (Tornadot|¬Flap0 & k0)︸ ︷︷ ︸
≈P (Tornado)≪1

.

Determinism implies that that the left hand side equals 1 or 0 (in this case 1), while chaos ensures the
right hand side equals the prior probability of the tornado. Thus, a probabilistic theory of causation
could go either way, depending on what initial events we are contrasting.

First, we should note that this is contrasting two levels of analysis, micro and macro, when actual
counterfactual dependence occurs at the macro-physical level. For counterfactual dependence, we have a
natural explanation for why the probabilistic symmetry between Flap and ¬Flap is broken, one of them
occurs in the actual world while the other does not. We could try to recreate this outcome using a hybrid
micro-macro account, but we are then comparing the criteria for causation at different event-levels for
the two accounts.

More importantly, this strategy would not offer an independently viable conception of either proba-
bilistic dependence or causal dependence. We are comparing probabilities conditioned on a precise mi-
crostate, either 0 or 1, with probabilities conditioned on a macrostate, which will generally be somewhere
between 0 and 1. On this hybrid analysis, probabilistic independence will only show up in circumstances
of deterministic macro-physics. For example, suppose I can choose between two coins to flip, a penny
and a nickel. I pick the penny and flip heads. The outcome should be probabilistically independent of
my choice in coin, with the probability of heads being 1/2 for each. However, if I am comparing the
micro-event of the penny flip, penny, with the macro-event of nickel flip, Nickel, then this analyses will
say that the outcome is “probabilistically dependent” on the choice in coin: P (Headst|penny0) = 1 while
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on micro-events in the distant past but not macro-events.24 While this would be
provocative conclusion, it is too sure-footed. The idea that in chaotic systems there are
no macro-causes of the present in the distant past is indeed surprising because we
would expect there to be many. The deeper problem is that this approach treats
counterfactual insensitivity and counterfactual hypersensitivity as causally on a par. At
the very least, the notion that Flap is not a cause of Tornado (Figure 3) is not as
obvious as the notion that Sneeze is not a cause of Tornado (Figure 4).

A strictly counterfactual theory of causation could explain why one might be
inclined to say that the butterfly’s flapping can cause the tornado’s occurrence. Lewis’
original 1973 account has this flavor. According to Lewis, B causally depends on A iff
B counterfactually depends on A: A □→ B and ¬A □→ ¬B (Lewis, 1973, 563). If A
and B are actual events, then A □→ B is automatically true and B causally depends
on A iff ¬A □→ ¬B. Furthermore, A causes B iff there is a chain of causal dependence
between A and B (causal dependence is sufficient but not necessary for causation). We
will return to the issue of causal chains in §5, but for now let us just consider whether
Tornado causally depends on Flap. As we have mentioned before, Lewis requires that
¬B holds in all closest ¬A worlds. However, given the prevalence of objective chance, it
would be hard to find a single case of causal dependence using his semantics for
counterfactuals. Here are two modifications to the counterfactual semantics worth
entertaining:

(Prob-Lewis): a version of Lewis’ 1973 theory where high probability can
license ¬A □→ ¬B. Tornado causally depends on Flap due to actual
counterfactual dependence. So too would all low-probability macro weather
events that co-occur with Tornado.

(Stal-Lewis): a pairing of Lewis’ 1973 theory of causation and Stalnaker’s
(1968) counterfactual semantics. Stalnaker (1968, 104) holds that there will
be a unique closest ¬Flap world. If this world is a ¬Tornado world, as it is
very likely to be, then Flap causes Tornado. Additionally, counterfactual
sensitivity entails that this world might be a ¬Tornado world (Stalnaker
(1981) understands “might” in terms of epistemic possibility), and thus it

P (Headst|Nickel0) = 1/2.
The direction of probabilistic dependence will also frequently misalign with expectations. For example,

suppose I decide to ride my motorcycle to work today instead of the less dangerous option of taking
the bus. If, given the exact initial conditions for my ride, I arrive safely, then riding my motorcycle
(supposedly) raised the probability of me getting to work safely. Attaching a theory of causation to
this analysis of probabilistic dependence will yield similarly strange judgments, such as my decision to
smoke causing me to not develop lung cancer merely because I, in actuality, took up smoking and did
not develop lung cancer (supposing this is a microdeterministic process).

24Or at least no macro-events on any natural coarse-graining of phase space.
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will be robustly the case that Flap not occurring might have caused
Tornado to not occur.

Accordingly, simple modifications to Lewis’ theory can support the causal interpretation
of the butterfly effect. Problems with Lewis’ 1973 theory tend to crop up on the
necessity side; cases of late preemption and overdetermination show us that causation
does not imply counterfactual dependence. However, counterfactual dependence is still
thought to be sufficient, or nearly sufficient, for causation (Paul and Hall, 2013, 4).25

Thus, we have our first solid support for the idea that the Flap is a cause of Tornado.
The butterfly effect also shows up in Lewis’ (2000) revised “influence” analysis,

which relies on a “how-how” counterfactual dependence. Recall that according to this
account, A influences B iff, roughly, nearby changes in the specifics of A (including
changes where A still occurs and changes where A does not occur) leads to substantial
changes in the specifics of B. Similar to before, B causally depends on A iff A
influences B, and A causes B if there is a chain of stepwise influence from A to B. To
illustrate, Lewis offers a helpful analogy:

Think of influence this way. First, you come upon a complicated machine,
and you want to find out which bits are connected to which others. So you
wiggle first one bit and then another, and each time you see what else
wiggles. Next, you come upon a complicated arrangement of events in space
and time. You can’t wiggle an event: it is where it is in space and time,
there’s nothing you can do about that. But if you had an oracle to tell you
which counterfactuals were true, you could in a sense “wiggle” the events;
it’s just that you have different counterfactual situations rather than
different successive actual locations. But again, seeing what else “wiggles”
when you “wiggle” one or another event tells you which ones are causally
connected to which (2004, 91).

In the weather system, wiggling any macro event at time 0 would significantly wiggle all
weather events at t. Recall that there is widespread counterfactual sensitivity within
the system, and counterfactual sensitivity is, in general, a stronger condition than
influence. Thus, everything would be causally connected according to Lewis. But this
wiggling would by highly unsystematic. For example, moving between initial conditions
in Flap and ¬Flap, we would see vast changes in what occurs at t, but these changes
would not covary with Flap or ¬Flap. Over the course of many wiggles, the relative
frequency of each event at t would match its objective probability. Again, this is very
different than Sneeze at t− 1, where wiggling would produce few notable changes at t.

25One potential counterexample on the sufficiency front is cases of double prevention, although their
status remains controversial.
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In summary, on certain modified versions of Lewis’ 1973 counterfactual theory of
causation, Flap at time 0 causes Tornado at t. On his 2000 influence account,
practically all meteorological events at time 0 are causally connected with practically all
meteorological events at t. According to probabilistic theories of causation, Flap cannot
cause Tornado because it does not raise the probability of Tornado. However, the
micro-conditions of the flap — flapa — could count as causing Tornado, if
supplemented with precise background conditions. Evidently, there is extensive
disagreement about this case. How should we proceed?

4.2 Causation and Manipulation

We might be tempted to think that, with the butterfly effect, science has furnished a
counterexample to probability-raising accounts of causation. Or we might want to say
that, given our best contemporary accounts of causation use probability raising, we
were mistaken to ever believe that butterfly flaps can cause tornadoes. Yet another
direction, the one I propose we take, is to step back and think not about what causation
is, but what causation is for, and how the butterfly effect fits into that picture. This is
the strategy adopted by “manipulationist” or “interventionist” theories of causation,
exemplified by James Woodward (2003; 2021). I turn to this way of thinking not as yet
another a way of adjudicating the case, but as a way of understanding the source of the
disagreement between the aforementioned theories of causation.

On the manipulationists reading, our understanding of causation should account
for why causation is an incredibly useful concept to beings like us. In everyday and
scientific inquiry, we have pragmatic aims when identifying causal dependencies. It is
not enough that we know what correlates with what, we want what Nancy Cartwright
calls “effective strategies”: ways to manipulate our environment to bring about desired
ends (1979, 419). The rooster’s crow regularly precedes the sunrise, but we cannot mute
the rooster to prevent the sunrise. For Woodward, once we have observed a correlation,
we are tasked with understanding whether and how this correlation can be “exploited
for purposes of manipulation and control” (2007, 72). In short, the purpose of causation
is to enable us to successfully manipulate the world in ways that tilt the future in our
favor.

Since we are macroscopic beings, we are, by and large, only capable of observing
macroscopic differences and implementing macroscopic interventions. Thus, we
routinely rely on the assumption that the macroscopic, coarse-grained behavior of a
target system is not dependent on the details of its microscopic realizers (Woodward
2007, 80; Weinberger et al. Forthcoming, 20). This assumption breaks down in chaotic
systems in spectacular fashion. Even the smallest differences in initial states lead to
macroscopically large future differences. Thus, even if flapa causes Tornado on a
probability-raising account, it is not the type of causal relationship that can be
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exploited by us. The types of variables we might hope to control, such as
{Flap,¬Flap}, cannot help us prevent future weather disasters because they yield the
same future probability distributions.

Another property of helpful causal generalizations is their stability under various
background conditions (Woodward, 2007, 77). Causal dependences are useful when
they apply to a large range of relevant situations. It would be useless, for example, to
find a causal relationship that only holds when the rest of the universe is in a very
precise state, a state we are never going to see again. Something approximating this
obtains in chaotic systems. Whether flapa “causes” Tornado is dependent on the
fine-grained details of the rest of the atmosphere. It also depends on even the smallest
outside perturbations. Michael Berry provides a calculation for a simple chaotic system:
two classical oxygen atoms colliding in a closed container under the gravitational effect
of an electron at the edge of the observable universe (Berry, 1978, 95-96). By their 56th
collision, the gravitational effect will have noticeably altered the location of their
collisions. For turbulent fluids, these microphysical differences are hypothesized to
rapidly cascade up to macrophysical differences (Bandak et al., 2024). Thus, we could
generate a “butterfly effect” between a tornado and even the smallest and remotest
influences that have reached us. Clearly, as timescales increase, probability-raising
causal relationships in chaotic systems become increasingly unstable, and, therefore,
useless.

So where does this leave us? Macro-events like Flap cannot be used to tilt future
distributions in our favor, and micro-events like flapa are physically inaccessible and
require too much knowledge of background conditions to be of any use. Therefore, the
relation between the flap and the tornado is too delicate and unpredictable for the
purposes of manipulation and control. Despite this, certain counterfactual dependencies
can be drawn from the case, and these have been enough for various authors to describe
it in causal terms. How might we explain any lingering sense that there is something
causal going on here?

4.3 Indeterminacy of ‘Cause’

A recent paper by Woodward with Naftalie Weinberger and Porter Williams
(Forthcoming) offers a clue. They identify several contingent features of the world that
license and support causal reasoning, what they call “the worldly infrastructure of
causation.” One of those features we have already described; macroscopic, coarse
grained behavior of target systems should be independent of their exact microscopic
realizers. Again, this does not hold over long timescales in chaotic systems. When these
infrastructure features break down, they write that:

it is warranted to conclude that the behavior of such systems simply will not
admit a straightforward causal interpretation, at least on anything like how
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we presently think about causation... some systems – at least when modeled
at certain levels of analysis – may simply be “unfriendly” to causal analysis
because important worldly infrastructure is not present (Forthcoming, 34).

This is a starting point for my proposal for the present case. The reason one might have
conflicting intuitions about the butterfly effect, and the reason various philosophical
accounts of causation diverge, is because, at the event-level, chaotic systems over long
timescales become unfriendly to causal analysis.26 We are taking the concept of
causation beyond the domain it is tuned for; the domain of manipulation and control.

A stronger way of putting this is that ‘causation’ has become referentially
indeterminate, or, exhibits “open texture” in the sense Friedrich Waismann (1945,
121).27 According to Waismann, a concept is open texture insofar as there exists
potential contexts under which there is no correct answer as to whether it applies. This
is because there are two or more definitions of the term that are coextensive within its
ordinary domain of use, but disagree in the novel context.

In particular, I contend that when pondering whether Flap causes Tornado, our
judgments are split between two competing conceptions of causation that typically
align.28 One conception is closely tracked by the conjunction of counterfactual and
probabilistic dependence. Counterfactual dependence tells us that varying A will vary
B, and probabilistic dependence ensures that they covary. Another conception is that
causation is just something like counterfactual dependence. On this reading,
probabilistic dependence is not part of the meaning of ‘cause’ but rather part of its
ordinary context. This is because the counterfactual dependencies which are readily
observed and controlled, the ones that make causation a useful concept to have, are the
ones which are predictable. The butterfly effect provides a novel case where these two
conceptions come apart. By ascribing referential indeterminacy to ‘cause’ in this case,
we can explain conflicting intuitions, as well as the divergence in philosophical accounts.

To see how this could be the case, consider how we ordinarily discover causal
relationships. First, we observe a correlation between some events or variables X and
Y . Then, we investigate whether changing X in various ways can be used to reliably
change Y , or vice versa. If we discover that varying X produces variations in Y , then
we can label the relationship as causal. We will often use this knowledge about

26As David Danks and Maralee Harrell (2015) point out, chaotic systems also make us reconsider
whether the right causal variables to consider are events, or higher level features of the system.

27On this point Woodward and I depart company. He insists on a monocriterial view of causation
centered on manipulability (Woodward, 2003, 93) with the worldly infrastructure helping to account for
the other criteria while relegating them to a subordinate semantic role. My view is more ecumenical
among these competing criteria, best articulated by as the “amiable jumble” view of Brian Skyrms (1984,
254) described below.

28A similar story could be told about whether flapa causes Tornado, instead focusing on the presumed
stability under different background conditions of causal connections.
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type-level causal relationships to then make causal claims about actual events. The
question the butterfly effect confronts us with is: should the initial correlation count as
part of the conceptual content of ‘cause’ or merely a heuristic for identifying it? The
path of discovery to the butterfly effect bypasses this identification process. We did not
observe a correlation between butterfly flaps and tornadoes. Rather, the example is
drawn out of the mathematics of chaos theory. Only after sensitive dependence was
discovered in the dynamics of weather models did physicists begin speculating about
counterfactuals like the butterfly effect and labeling them as causation.

This situation is not without precedent. Brian Skyrms (1984) describes something
similar in the context of the violations of locality observed in entangled quantum
systems. He writes that “our ordinary, everyday conception of causation is an amiably
confused jumble” of many distinct causal theses, such as probabilistic dependence and
the transfer of energy/momentum, which “in the noisy macroworld of everyday life ...
go together” (ibid. 254). In the context of certain experiments on quantum systems,
these ideas come decoupled, and we are unsure whether our concept applies. Thus, this
would not be the first time that advances in physics have opened up a semantic
indeterminacy for our ordinary understanding of causation.

There are some additional surprising features about the current case. First, the
concept is coming apart along a new axis: the probabilistic and counterfactual. Second,
it appears in classical physics, a primarily macro-domain that is less prone to clashing
with the manifest image. Finally, the physical circumstances of the present
indeterminacy are neither delicate nor unusual. In chaotic systems, they will
predominate over long timescales.

But now that we have the indeterminacy in our sights, we can close it by fiat! I
am inclined to agree with Skyrms that “It is better to stick with the amiable jumble.
Anything else will seem inadequate” (ibid. 254). Except I would go even further.
Whether or not we should try to modify our folk notion of cause will depend on
whether we even can modify it in any meaningful way. My guess is that causation will
turn out to be too deep in our conceptual stack for idle tinkering. Just as our folk
notion of time cannot be brought into line with what relativistic physics refers to as
‘time’, our core folk notion of cause might refuse to fall in line with whatever scientists
deem to be the most productive use of the word.

5 Long Timescales, Causal Chains, and Causal Explanations

Before ending, I will discuss the possibility of causal chains in chaotic systems. Since
the time between the flap and the tornado was assumed to be large, it is natural to
wonder what happens when we include the many mediating connections between the
two events. Perhaps if we accounted for these connections, in the form of a causal
chain, we would get a clear causal picture. I will handle this in two parts; I will first
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address the timescale question and then the question of causal chains.
First, there are many systems which are chaotic over much shorter timescales

than the weather. The timescale on which a system displays chaos is known as the
Lyapunov time. The weather has an estimated Lyapunov time of ∼14 days. A double
pendulum’s Lyapunov time is much shorter at ∼5 seconds. Additionally, there are
many quasi-chaotic processes — e.g. dice rolls, coin flips, and roulette wheels — whose
hypersensitivity to initial conditions creates probabilistic independence on short
timescales, even though they are not mixing. Any of these systems could create a
“butterfly effect” in short order. Thus, there is nothing in principal that keeps the type
of behavior described confined to relatively long timescales, or compels us to consider
mediating variables.

Now let us think about causal chains in the butterfly effect example. Similar to
the case of standard causal dependence, the butterfly effect requires us to delineate two
different interpretations of “causal chain” that are often blurred together.

It is true that you could specify a probability raising chain of weather “events”
stretching from the butterfly’s flap at time 0 to the tornado at time t. Considering a
partitioning of the weather’s phase space into macrostates, M1,M2, ...,Mn, such that
each macrostate involves an approximate macrophysical specification of the atmosphere
(local temperature, pressure, moisture, etc.) all the way down to a scale that can pick
up the small differences left from the butterfly’s flap. Each macrostate will consist of
many microstates. Given the macrostate of the atmosphere at an instant M tn

i , there
will be a macrostate M tm

j that is highly probable a short time later; P (M tm
j |M tn

i ) ≈ 1.
Given a different macrostate at tn, the probability of M tm

j is much lower. Thus, we
could string a chain of macrostates from time of the butterfly’s flap to the tornado’s
occurrence such that each macrostate raises the probability of the next. We might even
be able to represent this as what advocates of the “Network Model of Causation”
describe as “vast and mind-bogglingly complex ‘neuron diagram”’ (Beebee, 2004, 291)
of localized weather events that are causally related to neighboring weather events.
Thus, if by causal chain we just mean a chain of probability raising relations mediating
Flap and Tornado, then the case appears to meet this criteria.

However, often when we talk about causal chains we assume that the chain figures
in a stable causal connection between macrophysical tokens or types. In other words,
given the initial macrostate at time 0, there is a kind of regularity in the complex chain
of events that leads to the macrostate at t. However, in this case, even if we observed
the same weather macrostate in the future that we did at time 0, the course of events
that would follow would (almost certainly) be extremely different. Unaccounted for
microphysical differences would be constantly bubbling up and changing the course of
macro-physical events in large ways. Thus, there is no stable causal chain that will
connect the Flap and Tornado.
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Another way of looking at the situation is in terms of causal explanation.
Immediately preceding the tornado, there are large macro-events that causally explain
it, in the sense of making its occurrence unsurprising. For example, we could say that
the tornado was caused by the large difference in vertical temperature immediately
preceding it. This temperature difference was caused by dense cloud cover and warm
air drifting off the Gulf of Mexico. These in turn have their own causes, which have
their own causes, etc. What we cannot do is link these explanations together
indefinitely to tell a convincing story about how macro-conditions in the distant past
caused the tornado. The reasons are not purely combinatorial, where one effect has
many causes (Lewis, 1986, 214-215). It is because at each step in the causal chain, we
need to specify the past at a finer level of grain, so that our “macrostate” occupies a
smaller region in phase space. Otherwise, conditioning on the past state will not raise
the probability of the tornado’s occurrence. Eventually, this level of grain will cease to
be macro-physical. Accordingly, chaotic systems admit causal explanations between
macro-events over short timescales, but not long timescales. Given a macrophysical
description of the weather 10 years ago, you cannot, in principle, tell a clear causal
story that leads to its current state.

6 Conclusion

What are we to make of Edward Lorenz’s original question; can the flap of a butterfly’s
wings in Brazil cause a tornado in Texas?29 The physical side of his question has been
largely settled in the intervening years; yes the weather is highly chaotic. The semantic
side of this question has received little attention. We have seen that chaos creates a
situation where a tornado can counterfactually depend on the butterfly’s flap, even
though the two macro-events are probabilistically independent. Due to this odd
combination of properties, I argued that there is no correct answer for whether the
butterfly’s flap “causes” the tornado. This is because there are two meanings of ‘cause’
— counterfactual dependence vs. predictable counterfactual dependence — which are
coextensive inside the concept’s normal domain, but come apart in this novel context.

We are left in an odd practical situation. While it may be true that changing
something as small as a butterfly’s flap in the distant past would have probably
prevented an actual tornado from occurring, we cannot in practice manipulate butterfly
flaps to achieve favorable meteorological outcomes. We have imperfect knowledge of the
present, and changes we can make in the present are macro-sized. Such macro-sized
changes cannot be used to tilt the probabilities of far-off future events in our favor; they
reshuffle an already shuffled deck. However, while appreciating chaos in this way does
not augment our abilities of control, it does deepen our understanding of where to

29Lorenz uses the phrase “set off” instead of “cause” in his original lecture (1972, 1).
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situate ‘causation’ between us and nature.

7 Appendix

In this appendix, I will describe some standard mathematics of chaos theory as well as
some technically involved details that were omitted in the main paper.

7.1 Measure-Preserving Dynamical Systems

A measure-preserving dynamical system can be defined by a quadruple (Γ,Σ, µ, ϕ). Γ is
the phase space of the system, the set of all possible states the system can take. The
state of a dynamical system is represented as a point x in its phase space. Σ is a
σ-algebra on Γ, defining the measurable sets. Measurable sets A ∈ Σ are also called
“events.” µ : Σ → [0, 1] is a measure where µ (Γ) = 1. ϕt : Γ → Γ is a surjective map
given by the system’s dynamics: ϕt(x) is phase point x ∈ Γ evolved forward by time
t ∈ R or Z. For all A ∈ Σ, ϕt(A) = {ϕt(x) : x ∈ A}. A dynamical system is measure
preserving iff for all measurable subsets A ∈ Σ, µ(ϕ−1

t (A)) = µ(A), where ϕ−1
t (A) are all

the points that get mapped onto A.
A measure-preserving system is mixing iff for any two events A,B ∈ Σ,

lim
t→∞

µ (ϕt (A) ∩B) = µ(A)µ(B). (6)

This says that the measure of A that ends up in B is the product of the measures of A
and B. In other words, every region A of phase space eventually evolves towards the
same spread-out distribution over every other region B. To state this probabilistically,
it is typical to use the time-invariant, normalized measure as an objective probability
measure for the system (Berkovitz et al., 2006, 673). The prior probability of event
A ∈ Σ is given by the measure of that event,30

µ(A) = P (A) for all A ∈ Σ. (7)

The invariant measure can be thought of as providing the long-run objective chance for
30This can be justified by the fact that mixing systems are ergodic, meaning that for almost all x ∈ Γ,

lim
τ→∞

1

τ

∫ τ

0

f(ϕt(x)) dt =

∫
Γ

f dµ

for any measurable function f : Γ → R such that f ∈ L1(µ). This equation implies that, for almost all
trajectories, the proportion of time spent in any region of phase space will be equal to the measure of
that region. Note that ergodicity is strictly weaker than mixing, so there are systems (such as the simple
harmonic oscillator) that are ergodic but do not satisfy (6)
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an event occurring. For any two events A,B ∈ Σ occurring at times 0 and t,

P (Bt &A0) = µ(ϕt(A) ∩B). (8)

The probability of B occurring after A is defined as the “amount” of A that ends up in
B, or the measure of initial conditions in A that lead to B. From (7) and (8), the
definition of mixing (6) implies:

lim
t→∞

P (Bt &A0) = P (A)P (B), (9)

or using the standard ratio formula for conditional probability, P (B|A) =
P (A ∩B)/P (A),

lim
t→∞

P (Bt|A0) = P (B) (10)

which is equation (1) in the main text.

7.2 From Time-Invariant Measures to Snapshot Attractors

The time invariant measure µ is specific to the system in question. For example, in
mixing thermodynamic systems, such as a box of hard sphere gas, the time invariant
measure is the microcanonical measure which is uniform over the microstates with a
given energy. This measure represents thermal equilbrium. Importantly, this would not
be the relevant measure for the weather system or systems like it. The weather does
not reach thermal equilibrium, but is constantly undergoing forcing and dissipation.

A better first approximation for understanding the weather system’s dynamics is
to consider the invariant measure of systems like the Lorenz system (see §7.4 below).
These systems feature “strange attractors” that almost all nearby trajectories are
asymptotically drawn towards, and the invariant measure is defined over the attractor
region. These apply to non-isolated chaotic systems, like the weather, that undergo
external forcing and dissipation. The invariant measure over these attractors are often
non-uniform and can only be approximated numerically by letting ensembles of initial
conditions relax towards the time-invariant distribution. Regarding these systems,
Charlotte Werndl states that “for characterizing the unpredictability of motion
dominated by strange attractors, it is widely acknowledged that it suffices to consider
the dynamics on attractors, where natural invariant measures can be defined” (Werndl,
2009, 199).

An additional subtlety comes from the fact that the Earth’s weather dynamics are
always shifting as the forcing and dissipation parameters change over time (e.g. changes
in the seasons, changes in the chemical composition of the atmosphere, etc.). Thus, the
attractor region will also evolve over time as these parameters change, as will its
natural measure. However, the same general lesson applies here; once the initial
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conditions have spread across this time-dependent attractor region, there will be no
detectable correlation between Flap& k and Tornado. Both ensembles, Flap& k and
¬Flap& k, will be similarly distributed across what is called a “snapshot” attractor
(Romeiras et al., 1990), which is the time t attractor observed by taking an ensemble of
trajectories in the distant past and evolving them to time t under the same equations of
motion. Different initial ensembles converge to the same distribution over the snapshot
attractor at t in much the same way as occurs in systems with time-invariant measures
(see Drótos et al. 2015 and references therein). Thus, the prior probability P (Tornado)
for a weather model that accounts for these time-dependencies will be given by the
natural probability measure over this snapshot attractor at the time the tornado occurs.

7.3 Conditioning on Measure-Zero Events

Many of the probabilistic claims made in the text implicitly rely on conditioning on
events that are measure zero in µ. Therefore, the ratio formula used to derive (10) does
not apply because it involves division by zero. Here, I propose a modified understanding
of conditional probability for the cases at hand. This strategy is broadly in keeping
with Hájek (2003) suggestion that the ratio formula (particularly when applied to the
full phase space measure) as is not the only salient definition of conditional probability.

The easy case involves conditioning on a single micro-state x, corresponding to
the exact initial conditions of a flap and exact background conditions. There is a
natural definition of conditional probability suited for this task:

P
(
Tornadot|x0

)
=

{
1 if x(t) ∈ Tornado

0 if x(t) ̸∈ Tornado.

Determinism will entail that counterfactual and probabilistic independence cannot run
apart at the level of micro-states.

The more difficult case is the one involving the initial regions Flap ∩ k and
¬Flap ∩ k, which involve a spread out region in Γbutterfly and a point in Γbackground.
They will be measure zero according to the full phase space measure (think about how
a line has zero area), and will remain so under time evolution. Thus, the relevant
conditional probability cannot be defined by applying the ratio formula with this
measure.31 Instead, for our given k, we define a probability measure Pk(·) strictly over
Γbutterfly. What we want to know is the proportion of the initial conditions in Flap and

31According to the full phase space measure,

P (Tornadot|Flap0 & k0) =
µ(ϕt(Flap ∩ k) ∩ Tornado)

µ(Flap ∩ k)
=

0

0
.
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¬Flap that lead to Tornado at t, while holding k fixed. The relevant conditional
probability is given by

P (Tornadot|Flap0& k0) =
Pk(ϕ

−1
t (Tornado) ∩ Flap ∩ k)

Pk(Flap)
. (11)

In other words, we use the inverse transformation to find the set that maps to Tornado
after t and take the intersection with Flap ∩ k. This will select the initial conditions in
Flap ∩ k that end up in Tornado at t. The rest is just an application of the ratio
formula, only using the measure Pk(·). This is type of measure that can be tacitly
assumed from Figure 3. Again, as stated in the main text, given how interspersed the
regions of initial conditions that lead to different outcomes will be, just about any
non-pathological Pk(·) will suffice to give probabilistic independence.

7.4 The Mixing Problem

Given this description of conditional probabilities, mixing does not directly imply that
Tornado and Flap are probabilistically independent. Consider again the initial region
Flap ∩ k. Mixing alone does not guarantee that this region will spread out under time
evolution. In chaotic systems, positive measure regions in phase space are exponentially
stretched in some directions and exponentially contracted in others. The stretching
directions correspond to unstable manifolds in phase space and the contracting
directions stable manifolds (Hilborn, 2000, ch. 4). If the initial region Flap ∩ k is
confined to a lower dimensional subspace purely along a stable manifold, then we will
not get the chaotic behavior described in the case.32

However, if the hypothesis of the butterfly effect is true — i.e. changing only a
butterfly’s flap can change the tornado’s occurrence — then this implies that the Flap
and ¬Flap regions are not confined to the stable manifolds. As long as the equations of
motion for the system are sufficiently coupled, virtually any initial macro-differences
along one or more dimensions will be smeared out over all of phase space. To use a

32For example, consider the Baker’s map

(xn+1, yn+1) =

{
(2xn, yn/2) if 0 ≤ x < 1

2

(2xn − 1, (yn + 1)/2) if 1
2 ≤ x ≤ 1

which is a chaotic 2D map from the unit square onto itself whose invariant measure is the 2D Lebesgue
measure. Say our initial region is a vertical line consisting of an interval of values in the y direction that
are fixed at a single value in the x direction. Even though the Baker’s map is mixing for all regions with
positive 2D Lebesgue measure, this lower-dimensional region will not spread out to fill the state space
as n → ∞. Rather, it will exponentially shrink under iteration.
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Figure 5: Simulation of the Lorenz system. A 1-dimensional ensemble of initial
conditions spreads across the whole attracting region under time evolution.

relevant example, take Lorenz’s (1963, 135) original model for atmospheric convection

dx

dt
= 10(y − x), (12)

dy

dt
= x(28− z)− y, (13)

dz

dt
= xy − 8

3
z, (14)

which is known to be chaotic. A line of initial conditions with non-zero length in only
the x, y, or z directions will spread out across the entire attractor region (Figure 5).
This is because the equations are coupled in such a way that differences along any of
these dimensions immediately creates differences along all of them.
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