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Abstract

This paper examines Lorentz’s 1895 derivations of the classical Doppler
formula and Fresnel drag, Einstein’s 1905 derivation of the relativistic
Doppler effect and aberration, and Einstein’s 1907 kinematical route to
the exact velocity composition law from which Fresnel drag is obtained as a
low-velocity limit. Einstein acknowledged that he had read Lorentz’s Ver-
such well before 1905. In 1907, Einstein identified Lorentz’s Versuch as a
crucial precursor to relativity. In that work, Lorentz had already invoked
local time to derive Fresnel’s drag coefficient from Maxwell’s equations.
There is a genuine “family resemblance” between Lorentz’s and Einstein’s
treatments in that both preserve the phase of a plane wave under trans-
formation. Yet I demonstrate that this resemblance is only formal. I
also discuss the absence of the relativistic Doppler and aberration laws in
Poincaré’s Dynamics of the Electron.

1 Introduction

This paper examines Lorentz’s 1895 derivations of the classical Doppler formula
and Fresnel drag, Einstein’s 1905 treatment of the relativistic Doppler effect
and stellar aberration, and his 1907 kinematical derivation of the exact velocity
composition law from which Fresnel drag emerges as the low-velocity limit.
Einstein had read Lorentz’s Versuch well before 1905 [CPAE1], Doc. 130; by
1902, he had studied the treatise in which Lorentz introduced local time to
recover Fresnel’s coefficient from Maxwell’s equations. In his 1907 review, ”On
the Relativity Principle and the Conclusions Drawn from It,” Einstein identified
Lorentz’s 1895 Versuch as a crucial precursor to relativity, noting that although
it still assumed an immobile ether, it won empirical support by correctly yielding
Fresnel’s drag coefficient in agreement with Fizeau’s experiment [Ein07].

By following the Doppler effect (longitudinal and transverse), aberration,
Fresnel drag, and the velocity addition law side by side, I show that the appar-
ent algebraic continuities conceal a decisive conceptual break. Einstein does not
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merely repair Lorentz’s formulas; he replaces the premises from which those for-
mulas were drawn, and in so doing parts ways with both Lorentz and Poincaré.

The history of the Doppler effect has been thoroughly examined in [Dar]
and will not be pursued further here; see also [Nol] for its early reception,
later vindication, and modern applications. For the histories of the Fizeau
experiment, Fresnel dragging, and aberration, see [Jan-Sta].

2 Doppler and Aberration

2.1 Asymmetric Classical Doppler Effect in Ether Theory

The classical Doppler effect in an ether theory involves two factors: (1) how the
source emits wave crests into the ether, and (2) how the observer encounters
them while moving through the ether. This gives two basic formulas, one for
approaching motion and one for receding motion:

ν′ = ν

(
c+ u

c− v

)
, Approaching motion, (1)

ν′ = ν

(
c− u

c+ v

)
, Receding motion, (2)

where c is the wave speed in the ether, u the observer’s velocity through the
ether, v the source velocity through the ether, ν the emitted frequency, and ν′

the observed frequency.

First case: moving source, stationary observer (u = 0). The source emits crests
into the ether as it moves at speed v. If the source recedes, the crests are spaced
farther apart, and the frequency decreases; if it approaches, the crests bunch
together, and the frequency increases. For sound, this corresponds to a change
in pitch; for light (if carried by an ether), to a color shift (redshift or blueshift).
From equation (1), the approaching case is:

ν′ = ν

(
c

c− v

)
. (3)

As v → c, the denominator vanishes and ν′ → ∞. For sound waves, this
is the precursor to a shock. Once the source surpasses the speed of sound,
the familiar picture of wave crests bunching up in front of the source breaks
down. For light, this leads to an unphysical singularity of infinite frequency and
vanishing wavelength.
From equation (2), the receding case is:

ν′ = ν

(
c

c+ v

)
. (4)

As v → c, ν′ → ν/2, the observed pitch halves (or wavelength doubles).
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Second case: stationary source (v = 0), moving observer. The source emits
crests at a steady rate ν. A moving observer encounters them more frequently
as they approach and less frequently as they recede.
From equation (1), for approach (u > 0):

ν′ = ν
(
1 +

u

c

)
. (5)

At u → c, ν′ = 2ν, the observed pitch doubles.
From equation (2), for recession:

ν′ = ν
(
1− u

c

)
. (6)

At u → c, ν′ → 0, no crests are encountered (silence or darkness).

In summary, motion of the observer produces a bounded effect (frequency be-
tween 0 and 2ν), while motion of the source leads to extreme predictions, in-
cluding a singularity as v → c. This asymmetry arises because the ether selects
a preferred rest frame, distinguishing source motion from observer motion.

At first glance, the classical Doppler formulas (1) and (2) look nicely symmet-
ric because the observer’s speed u appears in the numerator, and the source’s
speed v appears in the denominator. This seems to treat the two roles, ob-
server and source, on the same footing, just as in Einstein’s relativity. But
the resemblance is misleading. In the classical (ether) picture, the two terms
mean very different things. The u-term reflects how the observer moves through
the medium and intercepts the crests, while the v-term reflects how the source
lays down the crests into the medium. The symmetry is only mathematical; it
depends on an absolute frame, the ether, in which the wave speed c is defined.

Einstein removed the ether and the asymmetry. In relativity, only relative
motion matters, so the Doppler effect has the same formula whether the source
or observer moves. In his longitudinal Doppler law (55), there is no need for a
separate observer speed u and source speed v. Only the relative velocity between
themmatters. Thus, Einstein’s formula involves just v (the relative speed) and c,
not both u and v. What looks like the same symmetry in the classical equations
is in fact a disguised asymmetry, because it rests on the hidden assumption
of the ether. The relativistic law (55) still predicts ever-larger shifts as relative
speed approaches c, but the divergence at v = c is unreachable, since no material
object can attain the speed of light (see the discussion in section 2.3)

2.2 Lorentz Derives the Classical Doppler Effect

In his 1895 treatise, Lorentz begins with the plane wave of phase (7) written in
the ether rest frame. In other words, the source is taken as stationary in the
ether and the observer is moving through the ether with velocity −p. This is
the second case discussed in the previous section 2.1.
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He introduces moving coordinates (8), and substitutes them into the phase.1

This yields equation (14), where pn is the projection of the (Σ, Y, Z)-frame
velocity along the wave normal (15); the observer’s velocity is −pn. At fixed
(Σ, Y, Z), the oscillation period T ′ is defined by the condition that the phase
advances by 2π between t and t+ T ′. Since the coefficient of t is 1 + pn/V [see
equation (18)], the observed period is T ′ (21), hence the observed frequency is
ν′ (22). Equation (24) is Lorentz’s form of the classical Doppler principle (to
first order in p/V ).

Lorentz begins by expressing a plane wave in an immobile ether [Lor85]:

Φ = A cos
2π

T

(
t − axx+ ayy + azz

V
+ p

)
. (7)

Here, T is the oscillation period, V the propagation speed of light in the ether,
ax, ay, az the direction cosines of the wave normal, and p a constant phase.

Now he introduces new coordinates Σ, Y, Z adapted to an observer moving
at velocity −p relative to the ether [Lor85]:

x = Σ− pxt, y = Y − pyt, z = Z − pzt. (8)

These are Galilean transformations between the ether frame (x, y, z, t) and the
moving observer’s frame (Σ, Y, Z, t′), where t = t′.
Plugging the coordinate transformation (8) into the phase (7) yields [Lor85]:2

Φ = A cos
2π

T

(
t+

pn
V

t − axΣ+ ayY + azZ

V
+ p

)
, where: (14)

1I shall not discuss here the work of Woldemar Voigt and its possible relation to Lorentz’s
later formulations. Readers interested in this subject are referred to Abraham Pais’s account
in Subtle is the Lord (see Chapter 6), where he reviews Voigt’s 1887 transformations, Lorentz’s
delayed awareness of them, and Minkowski’s later comments [Pais].

2We substitute the coordinate transformation (8) into the linear form in the numerator of
the phase (7):

axx+ ayy + azz = ax(Σ− pxt) + ay(Y − pyt) + az(Z − pzt). (9)

Then, we expand:

axx+ ayy + azz = (axΣ+ ayY + azZ)− (axpx + aypy + azpz) t. (10)

We introduce the projection of p along the wave normal (15). Thus:

axx+ ayy + azz = (axΣ+ ayY + azZ)− pnt. (11)

Now we plug back the linear form (11) into the phase (7), and the phase becomes

Φ = A cos
2π

T

(
t−

(axΣ+ ayY + azZ)− pnt

V
+ p

)
. (12)

We then separate terms:

Φ = A cos
2π

T

(
t−

axΣ+ ayY + azZ

V
+

pn

V
t+ p

)
. (13)

This finally yields equation (14).
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pn = axpx + aypy + azpz. (15)

is the component of the velocity along the wave normal.
Equation (14) describes the wave phase expressed in the moving observer’s co-
ordinates (Σ, Y, Z). The first two temporal terms:

t+
pn
V

t, (16)

show that the frequency is shifted compared to the ether frame, and the spatial
part:

axΣ+ ayY + azZ

V
, (17)

represents the propagation of the wavefronts in the observer’s coordinate system.
We want to know what an observer at rest in the moving frame (Σ, Y, Z)

measures. What are the oscillations of the wave measured by this particular
observer? At the moving coordinates (Σ, Y, Z), the observer is at rest. That
means their coordinates do not change with time Σ, Y, Z = const. So the only
variable that changes for them is the time t. Then the phase (14) reduces to
purely a function of t only:

Φ = A cos
2π

T

(
(1 +

pn
V

)t + const.
)
. (18)

Lorentz asks after what interval of time T ′ does the phase advance by 2π for the
moving observer? The wave repeats itself whenever the argument of the cosine
increases by 2π. So let T ′ be the observed oscillation period. Then we must
have:

2π

T

(
1 +

pn
V

)
T ′ = 2π. (19)

Canceling 2π gives:
1

T

(
1 +

pn
V

)
T ′ = 1. (20)

Solving for T ′ yields the observed oscillation period as measured by the moving
observer who is at rest in the (Σ, Y, Z) system [Lor85]:

T ′ =
T

1 + pn

V

. (21)

where T is the “true” oscillation period of the wave in the ether frame and T ′ is
the ”apparent” period for a fixed observer in the moving frame. Equivalently,
for the frequency ν′ = 1/T ′:

ν′ = ν
(
1 +

pn
V

)
. (22)

This is Lorentz’s classical Doppler expression [equivalent to equations (5) and
(6)].
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Doing a first–order Taylor expansion in the small parameter
p

V
, assuming pn ≪

V , yields [Lor85]:3

T ′ ≃ T
(
1− pn

V

)
, (23)

ν′ = ν
(
1 +

pn
V

)
. (24)

With a = (ax, ay, az) the direction cosines of the wave normal (in the direction
of propagation), the sign of p determines the Doppler shift.

If pn > 0, i.e., the observer is moving toward the source along the wave
normal, then ν′ > ν, so the observed frequency is increased (blue-shifted).
Conversely, if pn < 0, i.e. the observer is receding along the wave normal, then
ν′ < ν, so the observed frequency is decreased (red-shifted). If ν′ = 0, then this
requires:

1 +
pn
V

= 0 =⇒ pn = −V. (25)

As explained in section 2.1, this corresponds to the observer moving away from
the source precisely at the wave speed. Physically, the wave crests never catch up
to the observer, and the observed frequency drops to zero—the oscillations dis-
appear. This is therefore the maximum possible redshift in the classical Doppler
formula (since negative frequencies are not physical here). This is paradoxical
because an observer receding at the speed of the wave sees no oscillations at
all. However, light cannot just “disappear” by changing frames. The darkness
paradox highlights the internal inconsistency of the ether-based view, and is
discussed in detail in section 2.4.

What Lorentz derived is the classical Doppler effect for a moving observer

in a stationary medium (ether), to first order in
p

V
. So, for the opposite case,

pn = +V , the formula (24) gives ν′ = 2ν (see explanation in section 2.1). That
would also be problematic, as it represents the maximum blueshift in this simple
linear theory.

2.3 Einstein Derives the Relativistic Doppler and Aber-
ration Formulas

In section §7 of his 1905 relativity paper, Einstein begins in the “rest” frame K
with the electromagnetic plane wave of phase Φ (28). Substituting the inverse
Lorentz transformation (30) into Φ yields the transformed phase (31). By the
principle of relativity, the phase in k must retain the form (32). Equating
coefficients of τ, ξ, η, ζ in (32) with those in (31), Einstein obtains from the τ

3Notice that the denominator of T ′ (21) makes it nonlinear in pn
V

because expanding it

contains all powers of pn
V

. However, the first-order approximation keeps only the linear term

in pn
V

[in (23)]. On the other hand, the exact expression for ν′ (22) is already linear in pn
V

,
because no higher-order terms appear when expanding it. Thus, the approximation (24) does
not change it.
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term the frequency relation (33), and from the spatial terms (38), (41), (42).
With l = cosφ, these give the Doppler and aberration laws (46) and (49):

1. Einstein starts with a plane electromagnetic wave in the system K4 with
phase [Ein05]:

Φ = ω

(
t− lx+my + nz

c

)
. (28)

Here, c is the velocity of light, l,m, n are the direction cosines of the wave
normal, and ω = 2πν is the angular frequency.

2. He asks how these waves appear in the moving system k? He applies the
Lorentz coordinate transformations from section §3 (for x, y, z, t):

τ = γ
(
t− v

c2
x
)
, ξ = γ (x− vt), η = y, ζ = z, γ =

1√
1− v2

c2

(29)
He inverts the transformations (29) to express t, x by τ, ξ to get the inverse
Lorentz transformation:

t = γ
(
τ + v

c2 ξ
)
, x = γ(ξ + vτ) , y = η, z = ζ. (30)

and then substitutes the inverse Lorentz transformation (30) into the
phase (28):

Φ = ω

[
γ
(
τ +

v

c2
ξ
)
− l γ(ξ + vτ)

c
− m

c
η − n

c
ζ

]

= ω

[
γ
(
1− lv

c

)︸ ︷︷ ︸
coeff of τ

τ + γ
(

v
c2 − l

c

)︸ ︷︷ ︸
coeff of ξ

ξ − m
c η − n

c ζ

]
.

(31)

Einstein considers two inertial systems:

I) system K is the ”rest” system in which the source is described and the
plane electromagnetic wave is written with phase (28).

II) system k moves with constant velocity v in the +x–direction relative
to K.

Coordinates in K are (x, y, z, t) and in k are (ξ, η, ζ, τ).

4Written as:

X = X0 sinΦ, Y = Y0 sinΦ, Z = Z0 sinΦ, (26)

L = L0 sinΦ, M =M0 sinΦ, N = N0 sinΦ, (27)

.
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The Lorentz transformation (29) carries events from K to k; we use its
inverse (30) to express (x, t) by (ξ, τ) and substitute into the phase (28).
This gives the transformed phase (31) written in k-coordinates, but still
with the K-parameters (ω, l,m, n).

3. According to the principle of relativity, equation (28) in system K can be
written in the plane-wave form in system k:

Φ = ω′
(
τ − l′ξ +m′η + n′ζ

c

)
= ω′τ − ω′

c
(l′ξ +m′η + n′ζ) . (32)

By the relativity principle, a plane wave must again retain the same form in
any inertial system. Hence, in k the same physical wave has the canonical
form (32) with its own frequency ω′ and its own direction cosines (l′,m′, n′)
of the wave normal measured in k.

4. Now he equates like terms, the coefficients of τ, ξ, η, ζ. Terms in the equa-
tion (31) derived by the inverse Lorentz transformation (30) = terms in
equation (32). We start from the coefficient of τ [Ein05]:

ω′ = ωγ

(
1− lv

c

)
. (33)

Then we calculate the coefficient of ξ:5

l′ =
l − v

c

1− lv
c

. (38)

Then we calculate the coefficient of η and ζ:6

5 We calculate:

−
ω′

c
l′ = ωγ

(
v

c2
−
l

c

)
. (34)

We multiply the equation (34) through by c:

−ω′l′ = ωγ
(v
c
− l

)
. (35)

So: l′ = −
ω

ω′ γ
(v
c
− l

)
. (36)

Now we use the transformation (33), and rewrite it as:

ω

ω′ γ =
1

(1− lv
c
)
. (37)

Substituting equation (37) into equation (36), we get (38).
γ cancels out in equation (38) or the dependence on γ is absorbed into the frequency trans-
formation ω′ (33). l′ is a direction cosine.

6For η:

−
ω′

c
m′ = −

ω

c
m ⇒ m′ =

ω

ω′ m. (39)
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m′ =
m

γ(1− lv
c )

. (41)

n′ =
n

γ(1− lv
c )

. (42)

Equating like coefficients of τ, ξ, η, ζ between (31) and (32) yields: from
the τ–term, the frequency transformation (33); from the ξ–term, the lon-
gitudinal direction–cosine transformation (38); and from the η, ζ–terms,
the transverse direction–cosine transformations (41)–(42).

5. From the transformation of the angular frequency ω′ (33), Einstein derives
the general Doppler formula [Ein05]:7

Relativistic Doppler principle: ν′ = ν
1− v

c cosφ√
1− v2

c2

. (46)

Next, from the transformed direction cosine l of the wave normal Einstein
extracts the Aberration law [Ein05]:8

Relativistic Aberration law: cosφ′ =
cosφ− v

c

1− v
c cosφ

. (49)

Substituting equation (37), we get equation (41). And for ζ:

−
ω′

c
n′ = −

ω

c
n ⇒ n′ =

ω

ω′ n. (40)

Substituting equation (37), we get equation (42).
7In the rest frame K, the plane wave is written with direction cosines:

l = cosφ, m = cos θ, n = cosψ. (43)

Since Einstein chose the x = ξ-axis (the direction of relative motion between the frames), he
singled out:

l = cosφ. (44)

We substitute (44) into ω′ (33):

ω′ = ωγ
(
1−

v

c
cosφ

)
. (45)

Dividing both sides by 2π, yields the frequency ν′ (46).
8Substituting equation (44) into equation (38) transforms as:

l′ =
cosφ− v

c

1− v
c
cosφ

. (47)

Since:
l′ = cosφ′ (48)

we get the relativistic aberration formula (49).
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Now we interpret the symbols as observers would. In K the wave normal
makes an angle φ with the +x–axis, so l = cosφ. The observer at rest in
k moves through K with velocity v along +x. The measured angle in k is
φ′ with l′ = cosφ′ [equation (48)]. Inserting l = cosφ [equation (44)] into
(33) gives the general relativistic Doppler formula (46). From (38) with
equation (44), we obtain the aberration law (49).

6. If φ = π
2 (the source is 90◦ from our velocity direction), then cosφ = 0,

and equation (49) reduces to [Ein05]:9

cosφ′ = −v

c
. (51)

This means the light ray has an x-component opposite the observer’s mo-
tion. In other words, the ray is tilted by an angle ≈ v

c (in radians) from
the transverse direction.10

7. Finally, Einstein reduces the general Doppler formula to the simple longi-
tudinal form (φ = 0, i.e., the source and the observer on the same line as
the motion, with the source receding) [Ein05]:11

Doppler Principle (receding): ν′ = ν

√
1− v

c

1 + v
c

, (55)

9By the aberration equation (49), we get:

Equation (49)
cosφ=0

= −
v

c
̸= 0. (50)

.
10We can recover Bradley’s classical aberration result, if we start from Einstein’s aberration

law (49), expand to first order in v
c
(for v

c
≪ 1), and get that the apparent direction is shifted

toward the direction of motion by an angle: α ≈ v
c
sinφ.

For the special case: φ = π
2
⇒ sinφ = 1 (the star is 90◦ from the observer’s velocity direction),

we consider light arriving transverse to the motion in the rest frame, and get: α = v
c
. That

is the familiar Bradley umbrella–rain effect: tilt your umbrella by v
c
result. This equals the

maximum annual aberration angle.
11 We take the longitudinal case φ = 0. Then:

ν′ = ν
1− v

c√
1− v2

c2

= γν (1−
v

c
) = ν

1− v
c√

(1− v
c
)(1 + v

c
)
= ν

√
(1− v

c
)2

(1− v
c
)(1 + v

c
)
. (52)

= ν

√
(1− v

c
)(1− v

c
)

(1− v
c
)(1 + v

c
)
= ν

√
1− v

c

1 + v
c

. (53)

If instead the source approaches (φ = π, so cosφ = −1), we get the complementary form:

ν′ = ν
1 + v

c√
1− v2

c2

= ν

√
(1 + v

c
)(1 + v

c
)

(1− v
c
)(1 + v

c
)
= ν

√
1 + v

c

1− v
c

. Doppler Principle (approaching)

(54)
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where Lorentz’s formula is valid for v ≪ c.12

8. Einstein concludes: “One sees that — in contrast to the usual conception
— for v = −c, ν′ = ∞” [Ein05].

In other words, “in contrast to the usual conception,” where one would
expect linear behavior, instead, relativity forces these limiting divergences.

Two special cases follow from the Doppler general law (46):

I) 1905 : The pure longitudinal case φ = 0 or π, giving the longitudinal
Doppler formulas (55) [and its approaching variant (54)] [Ein05].13

II) 1907 : The pure transverse Doppler case/time–dilation effect, the case
φ′ = π/2 in system k (recall that the source is at rest in K and the observer is
at rest in k, the ”moving system”). The general Doppler equation (46) reduces
to:14

ν′ = ν

√
1− v2

c2
. (61)

In his 1907 review article, ”On the Relativity Principle and the Conclusions
Drawn from It,” Einstein stated that, observed from the observer’s reference

system, the moving clock’s rate is smaller by the ratio
√

1− v2

c2 , [equivalently

its period is dilated by the factor γ in (62)] [Ein07].15

12For small v
c
≪ 1:

γ = 1 + 1
2

v2

c2
+O(

v4

c4
). (56)

Plugging equation (56) into equation (52), yields:

ν′

ν
= γ(1±

v

c
) =

[
1+ 1

2

v2

c2
+ 1

2

v3

c3
+O(

v4

c4
)
]
(1±

v

c
) = 1±

v

c
+O(

v2

c2
). So to first order: (57)

ν′ ≈ ν
(
1±

v

c

)
, which is Lorentz’s classical Doppler formula (24). (58)

13Setting l = cosφ = ±1 in the general Doppler principle (46) gives the purely longitudinal
cases (see comment 11): 1) Receding source: φ = 0 (wave normal along +x in K), (55). This
is a redshift. 2) Approaching source: φ = π (wave normal along −x in K), which is (54).
This is a blueshift.

14We start with the general Doppler equation (46) and the aberration law (49). We then
impose the condition in the observer’s frame k: φ′ = π/2 so cosφ′ = 0. Inserting this into
the aberration equation (49), we get:

0 =
cosφ− v

c

1− v
c
cosφ

⇒ 0 · (1−
v

c
cosφ) = cosφ−

v

c
⇒ cosφ =

v

c
. (59)

We substitute this into the general Doppler law (46):

ν′ = ν
1− v

c
· v
c√

1− v2

c2

= ν
1− v2

c2√
1− v2

c2

= ν

√
1−

v2

c2
, (60)

which is equation (61).
15We regard the monochromatic source at rest in K as a clock with proper frequency

11



2.4 Lorentz’s Doppler Darkness Paradox

I) Einstein’s relativistic longitudinal Doppler law (55). The difference between
Lorentz’s ”usual conception” (24) (Einstein’s remark 8) and Einstein’s relativis-
tic longitudinal Doppler law (55) jumps out:

The Doppler equations (46) and (55) are not just a technical correction of
Lorentz’s equation (24). The gap is conceptual, not merely technical. The
relativistic Doppler and aberration equations (49) demonstrate that Lorentzian
dynamics can at best sustain bounded Doppler behavior from equation (24). At
the same time, only the kinematical approach grounded in the heuristic relativity
principle and the Lorentz transformation (30) entails unbounded behavior as
v → ±c.

The classical Doppler formula [equation (24)] is linear and modest in its pre-
dictions. When we contrast the relativistic longitudinal Doppler law (55) with
the classical Doppler law (24), the difference becomes dramatic upon examin-
ing the limits:16 If we let v → c (approaching) in ”the usual conception”, i.e.,
Lorentz’s equation (24), the frequency doubles ν′ → 2ν. However, if v → −c
(receding at the speed of light), the frequency would vanish (see section 2.1):

ν′ = ν
(
1 +

v

c

)
= ν

(
1− c

c

)
= 0. (65)

From equation (65), in the limit v → −c, the observed frequency tends to zero.
The period goes to infinity, and the wave crests never catch up to the observer,
so the oscillation rate vanishes. Practically, if v = −c, the observer would see
no oscillation. In physical terms, the observer would not detect any light at
all — complete redshift, which is effectively darkness. Conceptually, Lorentz
still used the Galilean addition of velocities law. In that framework, there is
no formal prohibition against writing v = −c. One can, at least algebraically,

ν = 1/T and proper period T . From (61) we have
ν

γ
. Hence the observed period in k is

increased (dilated) by the factor γ:

T ′ =
1

ν′
=

1

ν

1√
1− v2

c2

= γ T =
T√

1− v2

c2

. (62)

Equivalently, the moving clock’s rate is reduced by the factor 1/γ, i.e., a clock moving uni-

formly with speed v runs slow by the factor 1/γ =

√
1− v2

c2
in its rate:

ratemoving

raterest
=

ν′

ν
=

√
1−

v2

c2
, (63)

which is equation (61).
16The Lorentzian-Galilean wave picture gives the Doppler equation:

ν′ ≃ ν
(
1 +

v cosφ

c

)
, (64)

where c is the propagation speed of light (in the Lorentzian-Galilean theory, it is the ether
speed), and v is the velocity of the source/observer. If motion is along the line of sight, then
φ = 0, and we obtain Lorentz’s Doppler equation.
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imagine an observer moving at the speed of light. Thus, according to Lorentz’s
formula (65), there appears to be an observer moving at the speed of light.

However, Maxwell’s theory states that electromagnetic waves propagate with
a speed c in the ether. If an observer moves with v = −c relative to the ether
in the same direction as the wave, then relative to that observer, the light
would stand still (standing wavefronts, frequency zero). That is impossible
within Maxwell’s equations. So the situation was paradoxical even in the ether
framework. At the age of 16, Einstein imagined moving alongside a light wave
at v = c. In that case, we would see electric and magnetic fields oscillating
sinusoidally in space, but constant in time. It is not darkness (no crests arrive);
it is a contradiction. This is Einstein’s chasing a light beam paradox at v = c.

Since the Galilean kinematics did not forbid v = −c, the darkness case was
a fundamental problem in Lorentz’s framework. Lorentz’s formula allows us to
plug in a light-speed observer, and predicts a vanishing frequency as if massive
bodies could travel at c.

In section §7, Einstein solves Lorentz’s Doppler darkness paradox as follows.
Instead of capping at 2ν or going to exactly zero at v ± c, he shows a smooth,
asymptotic shift. Einstein’s relativistic longitudinal Doppler law (55) shows
that as v → c, the observed frequency tends to zero, so the wave is redshifted
away. Still, no observer with mass can ever reach v = c, so these divergences
are merely asymptotic. Conversely, as v → −c, the observed frequency tends to
infinity, so the wave is infinitely blueshifted, but never realized physically. This
is the essence of Einstein’s comment 8. The relativistic law exhibits radical di-
vergences at the limiting velocity, which are direct consequences of the principle
of relativity, Einstein’s new kinematics, and the Lorentz transformations (30).

II) Einstein’s transverse relativistic Doppler law (61). In 1905, Einstein
enforced reciprocity and symmetry, and then, in 1907, he explicitly pointed to
the transverse Doppler effect (61) as a test of time dilation.

That conceptual re-founding is an achievement, and not a tweak of Lorentz’s
Doppler law (24). One cannot obtain the transverse Doppler shift (61) (or time
dilation) while retaining Galilean velocity addition as a physical law. The pre-
relativistic dynamic approach that retained Galilean velocity addition yields
only the first-order (classical) Doppler law and no transverse effect. One ob-
tains the transverse Doppler and the correct aberration law only by renouncing
the Galilean addition law and treating the Lorentz transformation as the kine-
matics for clocks, rods, and waves. Hence, Einstein did not just port a sound
formula to light. His derivation of the relativistic Doppler effect was not a mere
generalization of Lorentz’s classical Doppler law (24). He rebuilt the kinematics
from which he derived the relativistic Doppler and aberration laws, including
the transverse Doppler effect (pure time dilation).

2.5 Doppler and Aberration à la Poincaré?

Poincaré writes the Lorentz transformation, which gives us relations between
coordinates (x, t, y, z) and (x′, t′, y′, z′) (where c = 1) [Poi05]:

13



x′ = k (x+ εt), t′ = k (t+ εx), y′ = y, z′ = z, (66)

with: k =
1√

1− ε2
, (67)

We begin with a monochromatic plane wave in (x, y, z) of phase Φ:

Φ = ωt− nxx− nyy − nzz. (68)

We denote by n = (nx, ny, nz) the wave normal, normal to the wavefronts, in
the direction of propagation, and write:

ωt− nxx− nyy − nzz = ω′t′ − n′
xx

′ − n′
yy

′ − n′
zz

′. (69)

Now, that is retro-fitting Einstein’s conceptual step into Poincaré’s framework.
It is not something Poincaré himself could have justified in 1905. Here, we
declare the phase to be invariant under Lorentz transformations (66). In mod-
ern language, this means the phase is a relativistic scalar. This is not just a
calculation move. Making the phase invariant was a conceptual step, not a
purely technical one. That is a very Einsteinian step because it assumes that
all inertial frames are equivalent and that no preferred ether frame exists. The
wave’s oscillations look the same to all observers [see Einstein’s equation (32)
and stage 3 in his derivation]. Assuming the phase to be invariant (69), we
can write down the Doppler and aberration formulas (71) in relativistic form
by substituting Poincaré’s Lorentz transformation formulas (66) into the phase
(68) and equating coefficients of t, x, y, z: terms in the equation derived by the
Lorentz transformation (66) = terms in equation (69).17

Poincaré would not naturally make that assumption. Poincaré, in 1905,
was still thinking within Lorentz’s electron theory. His Lorentz transformations
(66) are a clever mathematical tool that demonstrates no experiment can reveal
absolute motion relative to the ether. From that point of view, the phase of
a light wave (68) would be ”attached” to the ether frame. Thus, for Poincaré,
to assert that the phase is invariant would have been tantamount to denying
the ether’s privileged status — something he never did. That is the reason why
Poincaré had all the mathematics in his hands (Lorentz transformation, group
property, etc.), but did not derive the relativistic Doppler or aberration formulas
the way Einstein did.

17This yields the transformation of the wave normal and frequency:

ω′ = k
(
ω − ε nx

)
, n′

x = k
(
nx − ε ω

)
, n′

y = ny , n′
z = nz . (70)

from which the relativistic Doppler and stellar aberration are obtained:

ν′ = k ν (1− ε cos θ), (ν = ω/2π), and: cos θ′ =
cos θ − ε

1− ε cos θ
. (71)
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3 Fizeau and Fresnel

3.1 Fizeau’s Experiment

Suppose light propagates in water at speed c/n (where n is the refractive index
of water and c is the speed of light in vacuum) in the rest frame of the water. The
water itself is flowing at speed v relative to the lab frame (where the apparatus is
at rest). Then, according to the Galilean addition law of velocities, an observer
in the lab frame measures the light speed:

u =
c

n
+ v. (72)

However, in 1851, Hippolyte Fizeau measured the speed of light in moving
water and discovered that the velocity of light in water does not fully obey
the Newtonian velocity addition formula (72) [Fiz1], [Fiz2]. Instead, Fizeau’s
experiment confirmed Augustin-Jean Fresnel’s formula [Fren]:

u =
c

n
+ v(1− 1

n2
), (73)

where the factor:

1− 1

n2
, (74)

is called the Fresnel dragging coefficient.
This result showed partial dragging of the light wave by the moving water,

which classical mechanics did not predict. It indicated that light’s speed was
not simply as expected from Newtonian mechanics, as given by equation (72).
Fizeau’s results supported the idea that light’s velocity is modified according to
Fresnel’s formula.

3.2 Lorentz Derives Fresnel’s Formula

In 1895, Lorentz attempted to reconcile Fresnel’s dragging formula. Lorentz’s re-
sponse to Fizeau’s water tube experiment was to think that light waves were par-
tially dragged by the dielectric, but the ether itself remained immobile. Lorentz
begins with the wave in the medium at rest (relative to the ether) [Lor85]:

Φ = A cos
2π

T

(
t− bxx+ byy + bzz

W
+B

)
.

φ = t− b·r
W

+B. → Φ = A cos
2π

T
φ.

(75)

The medium is in uniform motion. After imparting to the medium a uniform
velocity p, Lorentz’s theorem of corresponding states says that a solution of the
same form exists in the moving medium when one replaces t by the local time
[Lor85]:
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t′ = t− pxx+ pyy + pzz

V 2
. t′ = t− p·r

V 2
. (76)

Lorentz writes [Lor85]:

Φ = A cos
2π

T

(
t′ − bxx+ byy + bzz

W
+B

)
. φ = t′ − b·r

W
+B. (77)

In equation (77), Lorentz introduces the local time t′ (76) to describe what
happens in the moving system. He is basically re-expressing the phase as it
would appear in coordinates adapted to the moving system. Thus, the phase

(75) acquires, to first order in |p|
V , the correction [Lor85]:

Φ = A cos
2π

T

(
t− pxx+ pyy + pzz

V 2
− bxx+ byy + bzz

W
+B

)
.

φ = t − p·r
V 2

− b·r
W

+ B.

(78)

This is the essential operative step. The term
pxx+pyy+pzz

V 2 comes from the local
time (76). It is an additional correction to the phase.
Then Lorentz says that new direction cosines b′x, b

′
y, b

′
z of the wave normal are

proportional to:

bx
W

+
px
V 2

,
by
W

+
py
V 2

,
bz
W

+
pz
V 2

. (79)

So that we get [Lor85]:

bx
W

+
px
V 2

=
b′x
W ′ ,

by
W

+
py
V 2

=
b′y
W ′ ,

bz
W

+
pz
V 2

=
b′z
W ′ ,

b

W
+

p

V 2
=

b′

W ′ .

(80)

Substituting the right-hand side of equation (80) into the right-hand side of
equation (78), Lorentz gets [Lor85]:

Φ = A cos
2π

T

(
t−

b′xx+ b′yy + b′zz

W ′ +B

)
.

φ = t− b′ ·r
W ′ +B .

(81)

Lorentz comments that ”one sees that W ′ is the velocity with which waves of
the relative oscillation period T propagate in the direction (b′x, b

′
y, b

′
z) in the

moving body” [Lor85]. Lorentz’s derivation demonstrates that the phase in the
moving system (81) has the same functional form as the rest-frame plane wave
(75), in line with Lorentz’s 1895 “corresponding states” program.
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Now, Lorentz re-expresses (78) as a plane wave with a shifted normal and
speed. Then, he extracts the speed W ′, the light speed relative to the moving
medium. To obtain the speed relative to the ether W ′′, Lorentz added back the
component of the medium’s drift along the ray [Lor85]:18.

W ′′ = W ′ + pn = W +
(
1− 1

N2

)
pn, W =

V

N
, (87)

which is Fresnel’s formula.

3.3 Retrofitting Lorentz’s Derivation

By retrofitting Lorentz’s derivation, one can recover a first-order analogue of
the velocity addition law. Starting from equation (90), which arises under the
assumption of an isotropic medium and the neglect of terms beyond the first
order in p

V , the wave speed in the moving medium may be written in the form:19

18We start from the vector relation that comes from (80) and take norms using |b| = |b′| = 1
(b and b′ are direction cosines, unit vectors), and then square:∥∥∥∥ b

W
+

p

V 2

∥∥∥∥2 =

∥∥∥∥ b′

W ′

∥∥∥∥2 =
1

W ′2 , (82)

Then, we expand the left-hand side (pn ≡ p · b) [Lor85]:(
b

W
+

p

V 2

)
·
(

b

W
+

p

V 2

)
=

b·b
W 2

+
2b·p
WV 2

+
p·p
V 4

=
1

W 2
+

2 pn

WV 2
+

|p|2

V 4
. (83)

We neglect terms of the second order O(p2/V 2), which gives [Lor85]:

1

W ′2 =
1

W 2
+

2 pn

WV 2
=

1

W 2

(
1 +

2 pnW

V 2

)
. (84)

From (84), we get:

W ′

W
=

(
1 +

2 pnW

V 2

)−1/2

. (85)

Let ε =
2 pnW

V 2
. Since p ≪ V, ε≪ 1,

1
√
1 + ε

≈ 1−
ε

2
. Therefore, to first order, (85) becomes

[Lor85]:

W ′ ≈W

(
1−

1

2

2 pnW

V 2

)
=W −

pnW 2

V 2
. (86)

Using W =
V

N
(i.e.,

W 2

V 2
=

1

N2
), we get: W ′ = W −

pn

N2
. Now we add the medium’s drift

along the ray of light (a first-order addition), equation (87)
19It comes from the following path to Fresnel’s formula (which Lorentz does not follow).

Equation (80)(b′ = b) gives:

1

W ′ =
1

W
+

pn

V 2
. Inverting to first order: W ′ =

1
1

W
+
pn

V 2

=
1

1

W

(
1 +

Wpn

V 2

) . (88)

We use a first-order expansion
1

1 + x
= 1 − x + x2 − . . . ≃ 1 − x and set x =

Wpn

V 2
. For

|x| << 1, hence:
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W ′ =
W

1 +
Wpn
V 2

. (91)

We add the drift velocity of the medium along the ray (87)W ′′ = W ′+pn. Drop-

ping higher-order terms O(
p2
n

V 2 ) (which is Lorentz’s first-order scheme), gives:20

W ′′ ≃ W + pn

1 +
Wpn
V 2

. (94)

3.4 Einstein Rederives the Addition Law

In his 1907 review article, Einstein revisited the derivation he presented in 1905.
This time, he extended it to refractive media, reintroduced Fizeau’s experiment,
and showed that the same phase-invariance method yields the exact relativistic
velocity-addition law for phase velocity. Einstein’s 1907 methodology is identical
to his 1905 procedure; the only difference is that Einstein now makes the velocity
addition law explicit. However, when applied to media, the law reduces to
Fresnel’s drag to first order.

Einstein began with the phase (95) in the rest frame S′ and transformed it to
the laboratory frame S using the Lorentz transformation (96), obtaining (101).
By the principle of relativity, the phase in S must still take the plane–wave
form (97). Comparing (101) with (97), Einstein derived the relations (102).
Eliminating ω and ω′ gives the exact relativistic addition law for phase velocity
(104). For u′ = c/n, this reduces to (106), which for v ≪ c yields Fresnel’s drag
coefficient (107).

Let S be the stationary (laboratory) system with coordinates (x, y, z, t) and
S′ a system moving with constant velocity v in the +x-direction relative to
S, with coordinates (x′, y′, z′, t′). The liquid is at rest in S′ and is assumed
homogeneous and isotropic in that system.

For a monochromatic plane wave in S′ propagating along +x′ with phase
velocity u′, the phase may be written as [Ein07]:

W ′ ≃W

(
1−

Wpn

V 2

)
, dropping: O

(
W 2p2n
V 4

)
terms. (89)

W ′ =
W

1 +
Wpn

V 2

≃ W

(
1 −

W pn

V 2

)
= W −

W 2

V 2
pn. (90)

20Now we put everything over the common denominator:

W ′′ =
W

1 + Wpn
V 2

+ pn =
W + pn

(
1 + Wpn

V 2

)
1 + Wpn

V 2

=
W + pn +

Wp2n
V 2

1 + Wpn
V 2

. (92)

W ′′ =
W + pn

1 + Wpn
V 2

+

Wp2n
V 2

1 + Wpn
V 2

=
W + pn

1 + Wpn
V 2

+ O

(
p2n
V 2

)
. (93)
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Φ = ω′
(
t′ − x′

u′

)
. (95)

Between S and S′ the Lorentz transformation holds:

x′ = γ(x− vt), t′ = γ
(
t− v

c2
x
)
, γ =

1√
1− v2

c2

. (96)

According to the principle of relativity, the phase in S (the laboratory) is:

Φ = ω t − ω

u
x. (97)

Substituting the Lorentz transformation (96) into the phase (95),21 and multi-
plying by ω′ gives:

Φ = ω′γ
(
1 +

v

u′

)
︸ ︷︷ ︸

ω

t − ω′γ

(
1

u′ +
v

c2

)
︸ ︷︷ ︸

ω/u

x. (101)

We compare with the plane–wave form in the S frame (97) to identify [Ein07]:

ω = ω′γ
(
1 +

v

u′

)
,

ω

u
= ω′γ

(
1

u′ +
v

c2

)
. (102)

Now we divide them:

u =
ω
ω
u

=
1 +

v

u′

1

u′ +
v

c2

. (103)

Solving the second relation yields the (exact) velocity addition law for the phase
velocity [Ein07]:

u =
u′ + v

1 +
u′v

c2

. (104)

In his Jahrbuch der Radioaktivität und Elektronik review paper, Einstein men-
tions Fizeau’s experiment and hints at the derivation [Ein07]. He does not carry

21collecting terms:

t′ −
x′

u′
= γ

(
t−

v

c2
x
)

−
γ

u′
(x− vt) (98)

= γ
[
t−

v

c2
x−

x

u′
+

v

u′
t
]

(99)

= γ

[(
1 +

v

u′

)
t −

( 1

u′
+

v

c2

)
x

]
. (100)
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out the algebra himself in the review. Instead, he footnotes Max Laue’s paper
[Lau07], published earlier in 1907, which contains the explicit derivation. Since
Einstein’s review was intended as a summary rather than a research article, and
because Laue had already published the derivation, Einstein simply indicated
the result and referred readers to Laue for the full demonstration. In 1907, Laue
inserted u′ = c

n into the velocity-addition formula (104), and obtained equation
[Lau07].22

w =
c
n + v

1 +
v

nc

=
c+ nv

n+ v
c

. (106)

For v ≪ c , he used the first-order Taylor expansion of (1+x)−1, and got [Lau07]:

w ≈ c

n
+ v

(
1− 1

n2

)
+ O

(
v2

c2

)
, (107)

Fresnel’s drag to first order (for n = 1, u = c).

4 Abolishing the Ether Kinematics

Einstein acknowledged that he had read Lorentz’s Versuch [Lor85] well before
1905. By 1902, he had carefully studied the 1895 treatise, CPAE1, Doc. 130. In
that work, Lorentz had already derived the classical Doppler effect (discussed
in section 2.2) and invoked local time to derive Fresnel’s drag coefficient from
Maxwell’s equations (discussed in section 3.2). In his 1907 Jahrbuch review,
Einstein explicitly pointed to Lorentz’s 1895 Versuch as a key precursor to
relativity, emphasizing that although it still presupposed an immobile ether, the
theory had gained empirical support—not least by correctly yielding Fresnel’s
dragging coefficient in agreement with Fizeau’s experiment [Ein07]. As my
reconstructions of Lorentz’s 1895 and Einstein’s 1905-1907 derivations show,
the ”family resemblance” between them is genuine. I will summarize the main
points here.

Lorentz’s 1895 optics of moving bodies was valid only to first order in v
c ,

sufficient to explain the classical Doppler effect and Fresnel’s drag [Lor85]. Ein-
stein, by contrast, began from the phase of the wave in his kinematical treatment
of the optics of moving bodies. This led directly to the relativistic Doppler and
aberration laws and to the exact velocity addition formula [Ein05, Ein07], with
Fresnel’s drag emerging as the v ≪ c limit [Lau07].

22According to Einstein’s methodology, we formulate the phase (95) in the rest frame of the
medium as:

Φ = ω′
(
t′ −

n

c
x′
)

= ω′
(
t′ −

x′

u′

)
, where u′ = c/n, (105)

and then if the medium in S′ is effectively nondispersive with refractive index n (so u′ = c
n
),

equation (104) gives equation (106).
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In section 3.3, I show that by retrofitting Lorentz’s derivation, one can re-
cover a first-order analogue of the velocity addition law. The result (94) re-
sembles the relativistic law of addition of velocities (104). Yet the resemblance
is purely formal. It holds only to first order in pn/c, since the starting point,
equation (90), was itself already a first-order approximation. The similarity
to Einstein’s formula is therefore accidental. In Einstein’s theory, the velocity
addition law follows rigorously and exactly from the Lorentz transformations,
valid to all orders in v

c . The relativistic law of velocity addition emerges imme-
diately and without approximation. What looks structurally similar is thus no
more than a first-order mimicry of relativity, whereas Einstein’s result is exact
and grounded in a new heuristic.

The mathematical technique (starting with a rest–frame plane wave, map-
ping to a moving frame, and comparing coefficients) and the local–time struc-
ture clearly flow from Lorentz [Lor85] to Einstein [Ein05, Ein07]. But Einstein’s
methodology could hardly be more different. Einstein converts Lorentz’s con-
structive recipe into a principle theory with phase invariance, Lorentz invariance,
and no ether. The same Fresnel number emerges, but now as kinematics, not
as a property of ether–matter interaction:

Lorentz’s derivation is valid only to first order and uses the device of local
time (76). Einstein’s derivation is exact, employing the full Lorentz transfor-
mation (96) (and only then reduced to first order by recovering Fresnel’s drag).
The technical template — starting from a plane wave in the comoving frame,
transforming it, and then reading off the frequency and wave number — is com-
mon to both. Einstein’s equations (95), (96), (101), and (102) implement this
exactly in the collinear case. Lorentz’s equations (75), (76), (80), and (81) are
the earlier version, worked out vectorially but truncated at first order. Lorentz
derives from the corrected phase the identity (80) as an algebraic device. Ein-
stein’s relations (102) express the same content in the collinear case, but they
fall out immediately by reading off the coefficients in (101) and matching to
equation (97).

Lorentz shows constructively that the phase in the moving system can be
recast into the same form as in the rest system in the ether, by redefining
direction cosines b and speed W [see equations (80) → (81)]. In other words,
Lorentz demonstrates phase invariance (80) to first order via local time (76).
Equation (80) is thus the vector, first-order ancestor of the exact coefficient
relations (102). This is a derived, ether-based, first–order ”same form.” By
contrast, Einstein requires from the outset, by the principle of relativity, that
the wave in any inertial frame has the plane–wave form (97). The equality of
form is not demonstrated but postulated, and the Lorentz transformations (96)
then guarantee it exactly.

This methodological contrast recalls Paul Ehrenfest’s remark after reading
Einstein’s 1905 analysis of the electron mass. Ehrenfest interprets Einstein’s
relativity as essentially Lorentz’s theory reformulated, since the results coincide
[Ehr]. In his reply to Ehrenfest, Einstein acknowledged the identity of results,
yet denied an identity of theories. His relativity principle, he emphasized, was
not a deductive ”closed system” but a heuristic principle that guides connections

21



across domains [Ein07]. Thus, Einstein’s contribution lies not in producing the
same mathematical forms as Lorentz, but in the shift of conceptual foundation
— from derivation within an ether theory to the postulation of a principle that
guides and demands formal identity across inertial frames.

Einstein’s move was to change the kinematics. He abolished the ether kine-
matics. He assumed from the outset the principle of relativity and treated the
Lorentz transformations as exact, kinematical relations between inertial frames.
For him, the phase invariance of a plane wave was not a device to salvage
Maxwell’s equations, but a direct consequence of the principle of relativity.
From this purely kinematical basis, he derived the exact relativistic velocity
addition law, along with the relativistic Doppler effect and aberration.

According to Michel Janssen, Einstein’s 1905 innovation was not new math-
ematics but a new interpretation of Lorentz’s 1895 Versuch. Where Lorentz
regarded the invariance of Maxwell’s equations as a property tied to an immo-
bile ether, Einstein elevated this invariance into a universal feature of nature
grounded in the relativity principle and the constancy of light speed. In doing
so, he supplied a common-cause explanation. The Lorentz invariance of both
fields and matter was no longer an unexplained coincidence but a necessary
consequence of the underlying spacetime structure: ”...the new interpretation
traced to a common cause what in the old interpretation were unexplained co-
incidences” [Jan].

When deriving the classical Doppler effect (see section 2.2), Lorentz retained
the Galilean velocity addition rule as the kinematics (so that an observer moving
with velocity v relative to the ether would “see” light at c−v). His substitution
(8) is nothing but a Galilean change of variables, assuming x′ = x−vt and t′ = t.
This is the kinematical step that embodies Galilean addition. By contrast, in the
same 1895 treatise, for electrodynamics in moving media, Lorentz introduced
the local time to preserve the form of Maxwell’s equations (see section 3.2)
[Lor85]. The result was an uneasy hybrid. On the one hand, electrodynamics
remained formally invariant by virtue of local time; on the other, the underlying
kinematics still presupposed Galilean velocity addition, so that in principle one
could “ride along” with a light wave and see it stand still if v = c.

Einstein’s step in 1905 was far more radical. He rejected this hybrid and
unified the optics and electrodynamics of moving bodies under a single kine-
matics. By deriving the Lorentz transformations from the relativity principle
and the constancy of c, he obtained both the relativistic Doppler effect [Ein05]
and the velocity addition law [Ein07] (and thus Fresnel’s drag [Lau07]) within
one kinematical framework. In Lorentz’s work, the two phenomena required
different prescriptions (Galilean kinematics for Doppler, local time for media)
[Lor85]. Still, in Einstein’s relativity, they emerge as two aspects of the same
relativistic kinematics.

While there is a genuine influence of Lorentz on Einstein’s reasoning, the
conceptual distance is profound. It is precisely the gap Einstein later described
as that between a constructive theory (Lorentz’s mathematical maneuvers on
an ether background) and a principle theory (special relativity, founded on gen-
eral principles from which the formalism follows). Only then does the paradox
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vanish. We can never transform into a frame where a propagating light wave
stands still, because c is invariant and no inertial frame reaches v = c.

Poincaré went further than Lorentz by recognizing the group properties of
the transformations and emphasizing the principle of relativity. Yet he too
remained within the conceptual confines of the ether, with all the limitations
this entailed. The absence of the relativistic Doppler and aberration laws in
Poincaré’s electron dynamics cannot be explained simply by noting that he
treated forces, stresses, and Lorentz’s electron model, while Einstein focused on
waves. The deeper reason is ontological. Like Lorentz, Poincaré retained the
ether—conceived as a real, if undetectable, medium—as the ultimate backdrop
of electrodynamics. This commitment barred him from taking the decisive step
that Einstein did in 1905.

It is therefore mistaken to suppose that both men possessed the same for-
mal machinery and that Einstein merely applied it to different problems, such
as Doppler or aberration. As I demonstrate in Section 2.5, even with Poincaré’s
full Lorentz transformation (66) [Poi05], those relativistic laws could not have
been followed. Einstein’s achievement was not one of topic choice but of concep-
tual revolution. The relativistic Doppler and aberration formulas, which arise
naturally in his 1905 paper, testify to something more profound: a wholesale
rethinking of the framework itself. Where Poincaré extended Lorentz’s dynam-
ics, Einstein established a new kinematics—and with it, a new conception of
Newtonian classical mechanics.

Thus, the relativistic Doppler and aberration laws do not mark a different
application of the same theory — they mark the point at which Einstein’s theory
departs from Lorentz’s and Poincaré’s theories altogether.
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