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Abstract 
Machine learning (ML) systems play increasingly important roles in scientific 
discovery. Recent efforts seek to build ML systems that predict upcoming 
discoveries and who is likely to make them, identify emerging research trends, 
and suggest novel concepts, questions, hypotheses and experiments to 
investigators. These predictive discovery and recommender systems (PDRS) 
hence aim to augment and automate key activities that are central to the roles 
currently played by human researchers. This paper argues, first, that PDRS raise 
novel conceptual and methodological disruptions, creating uncertainty around 
whether PDRS can and should play such roles. Second, the paper draws out four 
major questions, and associated concerns, about the roles PDRS are envisioned to 
play. These issues have not received attention in the literature thus far, leaving 
unclear what the proper roles of PDRS in science could be and how these roles 
should be carved out through appropriate designs and divisions of labor. To 
address these issues, the paper explores concerns about PDRS’ potential impacts, 
their likely limitations, and how PDRS fit into our broader views of how science 
should function. 
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1 Introduction 
Machine learning (ML) systems play increasingly important roles in scientific discovery across a 
wide range of fields, including astrophysics, materials science, bioinformatics, and others 
(Jumper et al. 2021; Sourati and Evans 2023; Iten et al. 2020; Cranmer et al. 2020; Udrescu et al. 
2020; Wu and Tegmark 2019; Boiko et al. 2023; Melnikov et al. 2018). As ever more significant 
epistemic tasks are delegated to ML systems, and ML researchers endeavour to build fully 
automated systems that perform research tasks from start to finish (Gu and Krenn 2024a, 6; 
Boiko et al. 2023; Melnikov et al. 2018; Lu et al. 2024), significant conceptual disruptions (Löhr 
2023; Hopster et al. 2023) arise: central concepts we use to understand and organize scientific 
pursuits come under pressure. A key concept affected is the role-concept of ‘researcher’: do 
emerging ML systems already partly assume functions associated with this concept? What 
abilities are necessary for this role and what limitations do ML systems exhibit in regard to such 
abilities? Answers to these questions are crucial for determining good divisions of labor between 
human researchers and ML systems in view of their respective abilities (cf. Stuart 2019; Barman 
et al. 2023), but there are no clear answers emerging.  
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However, this paper argues, making progress on such questions becomes increasingly urgent in 
light of recent efforts to extend the roles for ML systems beyond execution-level roles and 
towards agenda-setting roles in scientific discovery. Specifically, so far, ML systems in 
scientific discovery are largely used to search large epistemic spaces in contexts where the goals 
of research projects are determined by human investigators, e.g. to identify new protein 
structures, compounds that bind to specific targets, or new materials that exhibit certain desirable 
properties (Jumper et al. 2021; Abramson et al. 2024; Juan et al. 2021; Sen et al. 2022; Notin et 
al. 2024). However, more recently, there are increasing efforts to use ML approaches to predict 
upcoming discoveries and who is likely to make them, identify emerging research trends, and 
suggest novel concepts, ideas, questions, hypotheses and experiments to investigators (e.g. Krenn 
et al. 2023, Wang et al. 2023; Sourati and Evans 2023). These efforts aim to augment and 
(partly) automate key activities relating to science’s self-governance that are central to the role of 
‘researcher’, which includes determining or shaping the goals of scientific inquiry, rather than 
just taking given goals and performing tasks in their pursuit.  
In this paper, I argue that these emerging ML systems, which I call predictive discovery and 
recommender systems (PDRS), raise four major questions, and concerns, about whether 
machines can and should perform such roles.  

1) Do PDRS merely predict scientific discoveries or do they also causally influence 
discovery trajectories? If the latter, is it desirable to use PDRS, given it is unclear in 
which directions they may steer discovery trajectories? 

2) What, exactly, is predicted when PDRS predict new discoveries and suggest new ideas, 
concepts, questions, hypotheses or experiments; and what underlying values (e.g. impact, 
surprise, feasibility) are encoded in their predictions and recommendations? 

3) Do PDRS have sufficient capacity to predict strongly novel discoveries or are they 
limited to more conservative predictions/recommendations? 

4) How may PDRS account for the role of social, moral and political values in shaping 
research agendas, and what views about the aims of science are they compatible with? 

This paper provides a first systematic discussion of these important questions. In doing so, it 
makes several relevant contributions at once. First, PDRS have so far not been identified as 
cluster of ML approaches that, while exhibiting substantial variation in goals pursued and 
techniques applied, also share important commonalities regarding the epistemic, methodological 
and ethical concerns they raise. In carving out PDRS as an interesting target of inquiry for 
philosophers of science, the paper draws out the important, but underappreciated shift in moving 
from uses of ML systems for execution-level towards agenda-setting tasks. Second, by putting 
PDRS and the questions and concerns they raise on the map, the paper highlights and addresses 
important gaps in the philosophy of science and machine learning literatures, which have neither 
discussed nor addressed the issues this paper highlights, leaving unclear what the proper roles of 
PDRS in science could be and how they should be carved out through appropriate designs and 
divisions of labor (see e.g. Markowitz et al. 2024; Leslie 2023). Third, the paper applies the 
emerging framework of conceptual disruptions (Löhr 2023; Hopster et al. 2023) to frame the 
discussion around PDRS: the issues that PDRS raise can be usefully understood as speaking to 
larger conceptual and practical questions around the concept of ‘researcher’ and how emerging 
ML approaches seek to automate central tasks associated with this role, yet raise questions about 
their abilities to perform these roles well. While not seeking to offer definitive answers to the as-
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of-yet underexplored issues it raises, the paper prepares the grounds for careful, informed and 
systematic efforts to negotiate the emerging roles of PDRS in science, in light of their possible 
impacts, limitations and our views of how science should function. 
The discussion is organized as follows. Section 2 provides an overview of ongoing efforts to 
build PDRS. Section 3 outlines how PDRS aim at automating tasks associated with the role of 
‘researcher’ and how this yields conceptual and methodological disruptions. Section 4 draws out 
four question clusters that emerge from these disruptions and articulates a series of concerns 
related to them. Finally, Section 5 concludes with suggestions for how to engage these concerns 
and stresses the importance of negotiating the novel roles for ML in scientific discovery. 
 

2 Agenda-Setting Roles for ML in Scientific Discovery  
A much-discussed, Nobel prize-yielding success story of ML in scientific discovery concerns 
AlphaFold’s achievements in predicting the three-dimensional structures of proteins with levels 
of accuracy on par with experimental determinations of protein structures (Jumper et al. 2021; 
Abramson et al. 2024) but at much greater speed, thus promising to significantly accelerate 
structure determination and downstream efforts that build on structural knowledge (e.g. drug 
discovery). Beyond AlphaFold, ML systems are increasingly used across the special sciences to 
search vast epistemic spaces, e.g. to discover new materials and predict the stability of new 
compounds, generate new molecules with specific, desired properties, discover planets and black 
holes, and so on (Juan et al. 2021; Sen et al. 2022; Notin et al. 2024). What connects these efforts 
is that ML systems are used for execution-level tasks: given a concrete epistemic objective (e.g., 
to find new protein structures), dedicated ML systems are built and incentivized to learn subtle, 
distributed patterns from existing data, and exploit these patterns for predictive purposes. Such 
ML approaches are often successful when 1) the boundaries of a discovery problem are well-
understood, 2) relevant background knowledge about how to tackle the problem empirically, at 
least in principle, as well as large, high-quality datasets exist, 3) an epistemic space is too vast to 
be efficiently searched by humans (e.g. by means of experimental methods), and 4) human 
investigators can’t draw on strong priors for where to search for what. Here, human investigators 
hence have a clear understanding of the goals at issue: they determine the objectives of an 
inquiry, i.e. what the research problems and questions are, the class of hypotheses to be 
investigated, and the type of outcome that is desired and why it is significant - but they may lack 
the ingredients (e.g. time, resources, or access) to execute a set of epistemic tasks that promote 
these given goals efficiently. 
There is a second, rather different approach to using ML in scientific discovery settings that has 
been emerging over the last decade and is currently receiving increased interest. This approach 
aims to build ML systems that can 1) find fruitful adjacencies and unexplored relationships 
among existing scientific knowledge and data (often based on large, science-scale knowledge 
graphs and semantic networks) (Krenn and Zeilinger 2020), 2) predict upcoming discoveries and 
collaborations (Krenn et al. 2023), 3) suggest novel ideas, concepts, hypotheses and experiments 
to investigate (Si et al. 2024; Gu and Krenn 2024a; 2024b; Gottweis et al. 2025), and 4) conduct 
discovery projects end-to-end, from formulating research questions, over planning experiments, 
conducting them with self-driving labs, to interpreting and writing up the results as research 
papers (see Gu and Krenn 2024a 5; Kramer et al. 2023; Kitano 2021; Lu et al. 2024; see 
Castelvecchi 2024; Strickland 2024 for criticisms). 
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Among this menu of related pursuits, I will focus here on systems that predict discoveries and 
recommend novel research pursuits. I will call these systems, according to what they are intended 
to do, predictive discovery and recommender systems (PDRS). PDRS notably mark a move away 
from using ML systems for execution-level tasks and instead aim to support and (partly) 
automate agenda-setting roles thus far played by human researchers: assessing what are 
promising questions, hypotheses or experiments to pursue in order to gain new and significant 
knowledge about the world. In doing so, PDRS are supposed to mitigate challenges relating to 
the ever-increasing amount of published scientific literature and increasing specialization that 
make it difficult for human researchers to recognize fruitful connections and adjacencies to be 
pursued (Hanson et al. 2024; Gu and Krenn 2024a).  
Let me provide a brief overview of two families of PDRS to provide a better sense of what these 
systems are supposed to do and how they work. 

 
2.1 Generating Novel Research Ideas & Assessing Them 
A first family of PDRS is designed to generate novel, expert-level research ideas. For instance, 
Gu and Krenn (2024a) propose SCIMUSE, an LLM-based system that can “[…] suggest 
compelling research directions and collaborations, revealing opportunities that might not be 
readily apparent and positioning AI as a source of inspiration in scientific discovery” (2024a, 1). 
The suggestions made by SCIMUSE are evaluated by a large (110) cross-disciplinary panel of 
research group leaders from the Max Planck Society, who ranked 4,400 LLM-generated research 
ideas across various fields in the natural and social sciences according to how interesting they 
are. Gu and Krenn report that expert raters scored nearly 25% of all suggested ideas at 4 or 5 (out 
of 5), with 394 suggestions rated as ‘very interesting’ (5) (2024a, 4). Moreover, based on these 
data, Gu and Krenn proceed to train two ML systems to predict how interesting human expert 
raters would find specific research ideas. According to Gu and Krenn, their approach “[…] not 
only allows us to identify connections between properties of ideas and their interest-level, but 
also enables us to accurately predict the level of interest of new ideas […], which will be 
important when expensive human-expert data is unavailable.” (2024a, 1, emphasis added). Gu 
and Krenn sketch an optimistic outlook on the utility of PDRS for research idea synthesis, 
indicating that “[…] large scientific organizations, national funding agencies, and other 
stakeholders may find value in adopting [PDRS] methodologies […] to foster new highly 
interdisciplinary and interesting collaborations and ideas that might otherwise remain untapped. 
This, hopefully, could advance the progress and impact of science at a large scale.” (Gu and 
Krenn 2024a, 6)  
More recently, Google Research has presented a related PDRS called “AI co-scientist” (Gottweis 
et al. 2025). Framed as a collaborator, rather than a tool to automate scientific discovery, their 
PDRS involves a multi-stage agential workflow building on Google’s Gemini 2.0 LLM to 
furnish a pipeline that “is intended to help uncover new, original knowledge and to formulate 
demonstrably novel research hypotheses and proposals” (Gottweis et al. 2025, 1) The AI co-
scientists generates research ideas in response to user prompts (e.g., specifications of research 
problems and constraints), using a multi-agent workflow, where generated ideas are subjected to 
internal review and competition in order to distil the most promising competitors to suggest to 
users. Beyond presenting such outputs, the AI co-scientist also offers a conversational layer to 
allow users to interact with the system in natural language to provide feedback, ask follow-up 
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questions, or make suggestions. In developing and testing their PDRS, Google involved multiple 
research groups to test their system. For instance, a group of researchers from ICL’s Department 
of Life Sciences used the AI co-scientist in the context of their research on antimicrobial 
resistance (Penadés et al. 2025), querying the system about a mechanistic question regarding 
gene transfer in bacterial evolution that the group had previously investigated in so-far 
unpublished experimental work. They report that “remarkably, AI co-scientist’s top-ranked 
hypothesis matched our experimentally confirmed mechanism […]. We critically assess its five 
highest ranked hypotheses, showing that some opened new research avenues in our laboratories.” 
(Penadés et al. 2025, 1) These test-bed impressions support Google’s framing of their PDRS 
as a collaborator to accelerate scientific discovery, e.g. by speeding up detailed literature 
reviews, identifying gaps and feasible, but yet unexplored, hypotheses and experiments. By 
the lights of the ICL researchers, the AI co-scientist shows that “AI can act not just as a tool 
but as a creative engine, accelerating discovery and reshaping how we generate and test scientific 
hypotheses.” (ibid.)  
 
2.2 Predicting Future Discoveries 
A second family of PDRS are built to predict future discoveries, research trends, and fruitful 
collaborations. There is a large and growing literature on this sub-programme, starting with early 
work in information science, bibliometrics, scientometrics and science of science, which draws 
on statistical and network-based techniques to predict, among others, how many citations 
specific papers, researchers or bodies of literature are likely to receive in the future, what 
research topics will be popular in a discipline, or what future collaborations are likely between 
researchers (Wang et al. 2013; Bai et al. 2017, Xia et al. 2023). Recent efforts in this space have 
turned to ML methods for these tasks. One instance is Krenn et al. (2023), who propose a 
benchmark competition called Science4Cast, centered around a temporal graph-based semantic 
network that traces the evolution of concepts and ideas in artificial intelligence research over 
time. They propose and compare ten predictive systems with respect to whether they can 
successfully predict the evolution of this network, e.g. whether two nodes representing specific 
ideas or concepts such as “generative adversarial networks” and “image synthesis” that have not 
been connected at time 𝑡 will be connected at time 𝑡 + 𝛿. In related, subsequent work, Gu and 
Krenn (2024b) present an ML system that “[…] can predict with high accuracy which concept 
pairs, that have never been jointly investigated before in any scientific paper, will be highly cited 
in the future” (2024b, 2). Reporting the predictive successes of different ML systems, Krenn et 
al. note that “[…] [b]eing able to predict what scientists will work on is a first crucial step for 
suggesting new topics that might have a high impact.” (2023, 1327, emphasis added) 
A potential drawback to this approach is that the data that PDRS are trained on reflect a highly 
filtered distribution of research, i.e. research that was eventually conducted and published. This 
observed distribution naturally differs from the distribution of potential research ideas considered 
and explored by researchers before being filtered out by, e.g., considerations regarding impact 
and strategy, funding mechanisms, as well as various biasing mechanisms, such as those 
involved in publication bias. When aiming to turn predictions into recommendations, as Krenn et 
al. suggest (2023, 1327), it seems plausible to think that recommendations should not only be 
based on predicting research that will be eventually observed with high probability. For instance, 
it may be important for human investigators to learn which research trajectories have the promise 
of yielding significant discoveries, but have a low rather than high probability of being pursued. 
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A related approach that takes such considerations into account is developed by Sourati and Evans 
(2023) in the context of materials science and biomedicine, where a key discovery aim is to find 
desirable compound-property relationships, e.g. whether a material is ferroelectric or whether a 
compound binds to a specific target. Building on previous work that used natural language 
processing techniques to identify latent knowledge of future discoveries in existing published 
literature (e.g., Tshitoyan et al. 2019), Sourati and Evans propose a PDRS that does not only take 
into account the contents of published research (content-only models), but also the distribution of 
researchers and the collaboration networks among them. This information can be scraped from 
publication metadata and is jointly represented in a so-called hypergraph that encodes 1) existing 
relationships among materials and properties, 2) among researchers to those materials and 
properties, and 3) collaborative relationships among researchers. Based on this, Sourati and 
Evans’ PDRS seeks to identify discovery pathways that are cognitively accessible to researchers. 
For instance, a researcher A who has worked on material M is more likely to infer and explore a 
fruitful connection between material M and property P if they have previously collaborated with 
researcher B, who has experience with P. According to Sourati and Evans, this hybrid approach 
allows their PDRS not only to identify previously unrecognized adjacencies between existing 
ideas and concepts (e.g. whether a specific compound may exhibit a certain desirable property 
such as ferroelectricity) but also predict promising, but so far unrealized, collaborative pathways 
between researchers that are favourably situated to make certain discoveries. Comparing their 
PDRS against earlier models (Tshitoyan 2019), Sourati and Evans report significant gains in 
predictive accuracy (2023, 1693). However, beyond improving on benchmarks, they also stress a 
second important advantage of their approach: it enables the generation of ‘alien’ predictions and 
recommendations, i.e. suggesting “[…] complementary hypotheses, which are not only unlikely 
to be considered by unassisted human experts, but outperform published discoveries.” (2023, 
1683) In sum, Sourati and Evans’ approach seeks to further augment PDRS capacities beyond 
merely accelerating the pursuit of discovery trajectories that are likely to be pursued anyway by 
also helping researchers ‘go against the grain’ to pursue fruitful adjacencies that are promising 
but unlikely to be explored without intervention. 

 
2.3 Are PDRS a Serious Target? 
How seriously should we take PDRS, then? As with many emerging technologies, it is currently 
unclear whether and how PDRS will be adopted by scientists. While, in light of familiar 
‘publish-or-perish’ pressures, it is not implausible to think that scientists may experience 
incentives to partly automate the generation of new research ideas with the help of (more 
advanced, future) PDRS, adoption remains a largely speculative issue for the moment. So, 
keeping these uncertainties in mind, are there other reasons to take PDRS seriously?  
Even if PDRS fail at generating adoption, there may still be independent reasons to challenge the 
often uncritical technological imaginaries around automated science they figure in, and that 
motivate their development. There is no shortage of highly visible communications, publications 
and prizes that promote visions about automated science, such as Nobel prize lectures by 
Deepmind’s Demis Hassabis, position papers (Griffin et al. 2024) and review articles (Wang et 
al. 2023), or competitions and prizes like the Nobel Turing Challenge, which aims at 
“developing a highly autonomous AI and robotics system that can make major scientific 
discoveries, some which may be worthy of the Nobel Prize and even beyond.” (Kitano 2021, 1)  
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Even those sceptical of PDRS’ promises may think that it is useful to critically challenge such 
imaginaries precisely because they think that automating agenda-setting tasks in scientific 
discovery holds little promise. On such a stance, it may seem especially urgent to point out that 
resources (e.g. funding) would be misdirected towards such endeavours and that sociotechnical 
imaginaries about artificial researchers and scientists misguide the attention of policymakers and 
perpetuate simplistic views of science on the part of the public.  
Across divides between optimists and pessimists, this paper seeks to advance debate about PDRS 
by drawing on philosophy of science resources to point out underappreciated problems that may 
arise already at the stage of conceiving PDRS and not only if and when PDRS are put to use. 
Such a project mirrors other philosophical literature discussing emergent technologies that have 
yet to reach maturity and/or widespread adoption, such as fully autonomous vehicles. Such 
literatures, while arguably precautionary in flavor, help publicize important philosophical 
concerns around the responsible development and deployment of novel technologies. While 
PDRS may not raise attention-grabbing, trolley-caliber issues, the largely uncritical imaginaries 
they are embedded in present a clear and relevant target to be engaged by philosophy of science. 
In particular, as early critics of PDRS like Leslie (2023) point out, determining what role ML 
systems should play in science must involve deliberate reflection, negotiation, and active design- 
and use-choices by developers and scientists. Philosophy (of science) has plenty to contribute to 
enabling and shaping these negotiations, beginning with the observation that PDRS put 
entrenched concepts and divisions of labor under increasing pressure, as I now turn to highlight. 

 
3 PDRS Generate Disruptions and Uncertainties 
Efforts to build PDRS for agenda-setting roles in scientific discovery raise significant conceptual 
disruptions (cf. Löhr 2023; Hopster et al. 2023): central concepts we use to structure and 
organize scientific discovery enterprises come under pressure. When concepts are disrupted, both 
conceptual as well as methodological uncertainty arises regarding how we should apply familiar 
concepts, such as ‘researcher’, ‘scientist’, or ‘discoverer’, and distribute associated expectations 
or responsibilities (Michel 2020; Clark and Khosrowi 2022). For instance, among the growing 
literature discussing the roles of ML (and AI more broadly) in the sciences, there are both 
increasingly frequent suggestions that ML systems may or should take on the role of 
‘researchers’ or ‘co-researchers’ (Kitano 2021; Markowitz et al. 2024; Griffin et al. 2024; 
Gottweis et al. 2025) as well as mounting objections to ML systems playing such roles on 
various grounds (Messeri and Crockett 2024; Leslie 2023; Chawla 2021). These disagreements 
suggest that there are indeed substantial conceptual and methodological uncertainties regarding 
how to understand and apply central concepts to emerging ML systems and whether ML systems 
should be built and understood to perform certain roles. In what follows, I focus specifically on 
disruptions that affect the concept of ‘researcher’1, which is a role concept traditionally applied 
to humans, to highlight how PDRS may unhelpfully encroach on this role when assuming central 
functions and tasks associated with it. In light of concerns about PDRS’ abilities perform these 
functions and tasks competently, such encroachment creates practical and methodological 
uncertainties about how to divide labor between humans and machines in discovery settings, and 

 
1 I use ‘researcher’ as shorthand to refer to ‘scientific researcher’ and take this concept to be sufficiently overlapping 
with the concept of ‘scientist’, to which the arguments offered here extend.  
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broader conceptual uncertainties regarding how to frame the roles that PDRS may and should 
play, including in the wider technological imaginaries that surround their development. 
There is, to my knowledge, no comprehensive account in the philosophy of science that 
systematically analyses what it means to be a researcher, and, specifically, what qualities, 
abilities, duties and tasks are distinctively associated with this role (though see Michel 2020 for a 
related project). This is perhaps not surprising as there was not much need for such an account so 
far: for the most part, we might think that we know a researcher when we see one2. But as 
increasing efforts seek to build PDRS that are supposed to augment and automate crucial parts of 
agenda-setting activities, there is a need to be clearer. Absent a mature account to lean on, we 
can make some progress by considering some plausible qualities, abilities, duties and tasks. 
Roughly, researchers appear to have two types of jobs: planning and executing research. On the 
planning side, researchers must exhibit curiosity, imagination and creativity (Stuart 2019; Boden 
2009); they must be able to form concrete epistemic and practical goals, draw on values to 
inform these goals (Douglas 2023); and must be strategic in making plans to reach these goals. 
On the doing side, researchers must exert epistemic agency, autonomy and leadership to pursue 
their goals effectively, e.g. by running experiments, collecting and analysing data, building 
models, and recruiting instruments; they must seek and acquire epistemic goods such as 
knowledge, understanding or explanations; and draw on existing epistemic resources as well as 
skills, such as perceptiveness or interpretive abilities, in pursuing these goods. 
Across these concept clusters, execution-level ML systems have sought to assist with, and partly 
automate, a range of doing-tasks, specifically 1) executing epistemic scripts, such as by 
conducting physical or virtual experiments, 2) collecting data, 3) extracting correlational and 
causal information from data, 4) furnishing (often implicit, connectionist) models that represent 
and compress data, and 5) providing predictions or explanations of phenomena. 
PDRS instead focus on automating planning-related tasks, such as identifying novel questions, 
hypotheses or experiments to pursue. But it is unclear whether they can and should be used for 
these purposes. Specifically, should we think that it is possible and promising to delegate 
agenda-setting roles to PDRS if they only possess some of the qualities and abilities that we 
usually associate with researchers? If not, can labor in discovery be neatly separated along the 
distribution of such qualities, e.g. using ML systems to identify patterns in large datasets and 
having human investigators interpret these patterns? Can PDRS and human investigators work 
together seamlessly, without sacrifice, and perhaps substantial advantage to discovery outcomes? 
Or should we think that the role for PDRS must be carved out, and restricted, more clearly, in 
light of principled, conceptual, or practical concerns we may have about their functioning and 
their impacts on discovery enterprises? The subsequent discussion seeks to make progress on 
these larger questions. 

 
4 Questions and Concerns about PDRS 
On the heels of the disruptions created by PDRS, a whole suite of philosophical and 
methodological questions arises about how to carve out the proper roles for PDRS in discovery 

 
2  Though citizen science and activist research routinely raise questions about the distinction between ‘scientists’, 
‘researchers’ and other epistemic agents (see Koskinen 2023), as do thorny demarcation issues between science, 
non-science, and pseudo-science more generally (see Hanson 2021; Michel 2020). 
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settings. Here, I focus specifically on four related question-clusters that have so far received little 
attention in the philosophical and ML literatures: First, can PDRS (successfully) inform 
discovery trajectories and, if so, is it desirable to use them towards this end? Second, by what 
standards, and underlying values, do PDRS make predictions and recommendations, and which 
standards are the right ones? Third, do PDRS have sufficient capacity for predicting paths 
towards genuinely novel and significant discoveries? Fourth, how may PDRS account for the 
role of social, moral and political values in determining research agendas, and what general 
views about the aims of science are they compatible with? 
In what follows, I draw out a series of concerns that are prompted by these questions, 
demonstrating that carving out and negotiating the proper roles for PDRS in science is an 
important and equally delicate project that requires joint attention by philosophers of science, 
methodologists of the special sciences, and ML researchers on multiple fronts. Before engaging 
these concerns one by one, let me stress two caveats: first, the concerns do not all apply equally 
to different kinds of PDRS, given substantial differences in their respective aims and techniques. 
I index the concerns, where needed, to specific kinds of PDRS. Second, some of the concerns I 
elaborate here build on larger, familiar epistemological and methodological insights from the 
philosophy of science and other literatures. Any familiarity, however, should not detract from the 
novelty of the concerns I highlight, however, given some have not been articulated in relation to 
PDRS so far, or have been anticipated but not elaborated in detail. 
 

4.1 Performativity 
The first major concern that PDRS raise is about performativity. In recent years, social scientists, 
philosophers of science and computer scientists have increasingly emphasised that many 
predictive tools, such as analytical and computational models as well as decision-support 
systems, do not only (aim to) predict events but that their predictions can also causally influence 
the outcomes to be predicted – their predictions are performative (van Basshuysen et al. 2021; 
van Basshuysen 2023; Perdomo et al. 2022; Khosrowi et al. 2025). Broadly, performativity 
obtains when a model predicts an outcome 𝑋 and the prediction has the capacity to causally 
influence 𝑋. The existing literature distinguishes two basic types of performativity: self-fulfilling 
and self-undermining. In the first case, a model might predict 𝑋 = 𝑥 and, as a result of the 
prediction, the value of 𝑋 = 𝑥, whereas it would have been 𝑋 = 𝑥’ otherwise. For instance, an 
economic model might predict liquidity problems of a bank, and, in response, customers 
withdraw their assets, causing the very liquidity problems that the model predicted. A more 
pernicious case concerns the use of risk assessment tools to predict the risk of criminal 
defendants to reoffend in the future, which can become self-fulfilling when high-risk individuals 
are imprisoned and imprisonment itself increases their risk to reoffend (Khosrowi and van 
Basshuysen 2024). Conversely, predictions might also be self-undermining when a model 
predicts 𝑋 = 𝑥 and, as a result of the prediction, the value of 𝑋 to be 𝑋 = 𝑥’, rather than 𝑋 = 𝑥. 
For instance, an epidemiological model might predict high infection numbers and deaths in a 
population, but, in response, individuals may choose to be more cautious, avoiding travel and 
contacts, thus decreasing infections and deaths relative to the predicted values (van Basshuysen 
et al. 2021). In each of these cases, a model is not merely predicting a static target quantity, but 
there is a causal coupling between the models’ predictions and that quantity. What these 
literatures highlight is that it is easy to misconstrue the role of predictive tools as being merely 
predictive, failing to recognize the way in which they can causally shape outcomes. When 
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recognizing performativity as a phenomenon, novel epistemological and ethical questions about 
the responsibilities of modelers arise, and about the proper roles of putatively predictive tools in 
various real-world contexts (Khosrowi 2023). 
PDRS raise acute concerns about performativity, too, which have not been anticipated and 
discussed in depth in the literature to date (though see Evans 2013 for an early version of this 
concern; Chawla 2021; Khosrowi et al. 2025). Specifically, predicting discoveries can plausibly 
causally affect the research pursuits that human researchers will undertake. Two general types of 
behavioral response by researchers to PDRS predictions and recommendations are to follow the 
prediction and invest in projects that are deemed likely or promising, or strategically eschew the 
prediction by focusing on other, including unrelated or orthogonal, projects, e.g. in the hope of 
minimizing competition and achieving discovery priority (see also Sikimić and Radovanović 
2022). This range of responses and their mixtures makes clear that it is largely uncertain how, 
exactly, PDRS may impact the discovery trajectories ultimately pursued.  
What is clear, however, is that PDRS are unlikely to be merely predictive tools: if they work as 
intended, they must be able to inform actual discovery pursuits, and if they do, it should be 
recognized that PDRS do not merely predict, but can (and perhaps should) causally affect 
discovery trajectories. Such effects are not problematic per se. After all, if PDRS are supposed to 
contribute anything towards scientific discovery, e.g. by highlighting promising ideas, boosting 
scientists’ imagination or creativity, making the identification of relevant questions, hypotheses 
and experiments more efficient, their predictions and recommendations must have some causal 
bearing on eventual discovery trajectories, if only by accelerating discoveries that would have 
been made regardless. However, current attempts to build PDRS have failed to recognize and 
discuss these performative potentials, often casting PDRS as mere predictive systems, and their 
task as making accurate predictions (Sourati and Evans 2023; Krenn et al. 2023; Gu and Krenn 
2024a; 2024b). Neglecting performative aspects, however, leaves unclear what PDRS’ 
performative powers in shaping research trajectories are and should be, and how PDRS that have 
the potential to steer discovery efforts in specific directions should be designed and deployed. 
To better understand PDRS’ potential performative impacts, we can envision an epistemic 
landscape with a set of in principle possible discoveries 𝐷, as shown in Fig. 1.  

 
Figure 1. The space of possible discoveries 𝐷, and the discovery envelopes 𝐷! and 𝐷", with and without machines.  
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The circle describing 𝐷 is subdivided into two partitions, the upper partition 𝐷!, encoding 
discoveries worth pursuing and the lower partition 𝐷", those that are not worth pursuing. I ask 
the reader to imagine, for the sake of argument, that pursuitworthiness is a tractable measure we 
can agree on, which of course is rarely true. With these partitions in place, we can now imagine 
the two ellipsoid discovery envelopes: 𝐷# (for ‘machines’) which contains discoveries that can 
be achieved in the presence of PDRS and 𝐷$ (for ‘humans’) that can be achieved by human 
investigators without PDRS. These envelopes may overlap significantly (𝐷# ∩ 𝐷$), but also 
come apart importantly. Specifically, there are two areas of interest: 𝐷#! ∪ 𝐷#" , the set of all 
discovery trajectories that may be taken with PDRS but couldn’t be taken without them and 
𝐷$! ∪ 𝐷$", the set of all discovery trajectories that may be taken without PDRS but couldn’t be 
taken with PDRS; each irrespective of how pursuitworthy the discoveries at issue truly are. In 
short, there will likely be some nonempty set of discovery trajectories that, perhaps for now, are 
inaccessible to PDRS-based discovery but may be accessible to human investigators, e.g. 
because PDRS do not have the creative or imaginative capabilities to conceive of them. Equally, 
if PDRS work as intended, there will also be a nonempty set of trajectories that humans would 
fail to consider at all, or fail to consider as sufficiently promising, without PDRS. 
With this map in view, we can now more clearly imagine that performative PDRS may steer 
discovery trajectories towards a distribution at the intersection 𝐷# ∩ 𝐷$, and at the union 
𝐷#! ∪ 𝐷#"  respectively. Where, exactly, PDRS may steer discovery efforts within these spaces 
remains unclear, however, as there seem to be at least two different goals that PDRS are meant to 
promote: 1) supporting or accelerating the pursuit of discovery trajectories that would be pursued 
anyway, i.e. 𝐷# ∩ 𝐷$, and 2) promoting the pursuit of (promising) discovery trajectories that 
would not be pursued without PDRS, i.e. 𝐷#! . Such efforts, however, come at the risk of steering 
discovery efforts towards 𝐷#" . What these possibilities suggest is that how, exactly, PDRS impact 
the distribution of discovery trajectories that are pursued remains an open, empirical question 
and that the answer to this question is importantly determined by how PDRS are designed, how 
human researchers respond to their predictions and recommendations, and by larger visions and 
understandings of what PDRS’ proper roles in supporting/automating agenda-setting should be. 
Currently, there is no evidence that these larger questions are considered and addressed in the 
PDRS literature or among philosophers of science. The performative potentials of PDRS, 
however, press us to confront these issues and should make us sceptical about the way PDRS are 
built and how their functioning is framed. Currently, following broader tendencies in ML 
research, many PDRS approaches transform the problem of choosing promising new discovery 
trajectories into a predictive problem. Key to demonstrating the effectiveness of such PDRS is to 
show that they can accurately predict important features of actual discovery trajectories 
undertaken by human researchers (e.g. Gu and Krenn 2024a; 2024b; Sourati and Evans 2023). 
But it remains unclear what we could infer from such predictive success. Specifically, existing 
PDRS largely predict ‘off-policy’, that is, they predict past distributions of discovery trajectories 
that could not be influenced by the predictions made. Here, predictive success indicates that 
PDRS must somehow have latched onto features of the mechanisms by which human researchers 
form new ideas and select questions and hypotheses to investigate, as well as features of the 
world latent in existing literature, e.g. whether a material M might exhibit property P. In essence, 
PDRS that can boast such predictive successes hence seem promising tools to accelerate the 
pursuit of some discovery trajectories in 𝐷# ∩ 𝐷$, i.e. discoveries made anyway.  
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However, what we can learn from predictive success changes once PDRS are deployed in 
practice and predictions/recommendations get take-up by human investigators. Here, predictions 
are made ‘on-policy’, i.e. they predict discovery trajectories that are chosen, partly, in light of 
PDRS’ predictions and recommendations. Here, accurate prediction tells a much murkier story: 
in an on-policy setting, predictive accuracy is not, or at least not only, a signal of whether a 
PDRS has successfully latched onto features of the mechanisms by which human researchers 
form new ideas and select questions and hypotheses to investigate, and relevant features of the 
world, but is rather, at the same time, a measure of the performative power (cf. Hardt et al. 2022) 
that PDRS exert on the distribution of discovery trajectories undertaken, i.e. their power to 
induce discovery trajectories that are pursued in virtue of being predicted or recommended (cf. 
Chawla 2021). Predictive success achieved in on-policy settings is hence ambiguous on whether 
PDRS successfully predict research that gets done anyway, or whether they merely successfully 
change the distribution of discovery trajectories to whatever is predicted. This ambiguity presses 
us to consider a second important concern about PDRS, which I now turn to. 

 
4.2 What, Exactly, Is Being Predicted? 
A second, major concern about PDRS is that it is often unclear what, exactly, is being predicted, 
and on grounds of which values recommendations are made (cf. Chawla 2021). So far, I have 
described PDRS as providing two kinds of outputs: predictions of future discoveries and 
recommendations of ideas, questions, hypotheses or experiments. Both are, usually, the result of 
training an ML system on existing observational data, usually published papers and publication 
metadata (e.g. about citations, authors, networks, collaborations etc.), as well as additional data, 
such as human experts’ ratings and preferences regarding feasibility, surprise, etc. As outlined 
earlier, PDRS, such as those developed by Gu and Krenn (2024a) or Sourati and Evans (2023), 
are trained by incentivizing a learning system to predict certain relevant characteristics, e.g. the 
likelihood of a new connection between previously unconnected concepts A and B (i.e. that a 
new publication at time 𝑡 will contain A and B), or whether a specific idea or connection will be 
rated as ‘feasible’ or ‘surprising’ by human raters. But the observed distributions of ideas, 
concepts, researchers, their collaborations, as well as ratings, are high-level realizations of a 
whole array of underlying mechanisms and norms that govern discovery processes, and 
discovery outcomes correlate with various underlying features, some of which are intrinsically 
desirable whereas others are not. Because of this, even though it may be clear what PDRS predict 
outright, it may often be unclear what underlying features are co-predicted and what underlying 
values are encoded and promoted by the choice of predictive targets.  
To see these complications more clearly, let me distinguish between observable predictive 
targets, i.e. what we explicitly train PDRS to predict and what we use to evaluate their predictive 
skill, and latent predictive targets, i.e. the sorts of things that are difficult to measure (and hence 
predict) directly, but are deemed ultimately desirable when making predictions. Observable 
predictive targets may include, for instance, whether two nodes, e.g., concepts, attributes, 
entities, researchers, are connected at time 𝑡; how frequently a paper is cited and by who; or how 
human raters evaluate an output, e.g., regarding such features as feasibility, plausibility or 
surprise. These predictive targets are hoped to correlate with other desirable features, i.e. latent 
predictive targets such as the pursuitworthiness of an idea, and the quality, novelty, impact, or 
significance of the research relating to it.  
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However, in many cases, observable predictive targets will correlate not just with desirable 
latent predictive targets but also with a range of (possibly undesirable) confounding factors. For 
instance, whether two ideas A and B unconnected at 𝑡 will be connected at 𝑡 + 𝛿 may depend on 
1) the conceptual and theoretical continuity between A and B, e.g. whether B, such as a material 
property, can be theoretically conceived to be connected to A, given available theories at 𝑡, 2) the 
dynamics of funding mechanisms that govern whether discovery trajectories regarding A-B are 
deemed pursuitworthy by expert panels, 3) how visible research regarding A and B is to 
researchers, 4) how much agenda-setting power and funding agents potentially interested in the 
A-B relationship have; 5) the social networks among researchers with expertise regarding A and 
B, and so on. 
A PDRS that is trained to successfully predict the linkage of A-B must hence also, invariably, 
incorporate information about these confounding factors. For instance, predicting a connection 
between A and B when there are no social network links permitting exchange of information 
between researchers with expertise on A and B respectively, will unlikely turn out accurate. 
Similarly, when a community does not consider exploring the connection between A and B 
pursuitworthy, regardless of its actual pursuitworthiness, then it is less likely that a positive 
prediction regarding the A-B connection will be borne out. PDRS that pursue predictive goals, 
such as Gu and Krenn (2024a) or Sourati and Evans (2023), are hence bound to take into account 
a host of potentially undesirable confounding factors that govern the evolution of actual 
discovery trajectories when making predictions. However, it is unclear whether it is desirable to 
take such factors into account. For instance, predicting a connection between A and B mainly on 
the grounds that researchers at well-connected institutions I and J are generally likely to explore 
adjacencies between their individual research foci does not imply that pursuing the A-B 
connection is pursuitworthy – it is just likely to be explored, but this likelihood does not 
necessarily confer much information about its (relative) pursuitworthiness over projects that 
explore other connections, such as A-C or B-D, and are less likely to occur.  

This is a major problem for PDRS programmes. Developers of such systems slip between 
describing PDRS as making predictions and as making recommendations, for instance when 
Krenn et al. 2023 articulate their vision of building “[…] a computer program that can 
automatically read, comprehend and act on AI literature. It can predict and suggest meaningful 
research ideas that transcend individual knowledge and cross-domain boundaries.” (2023, 1326). 
Such slippage is problematic since it is prone to a naturalistic fallacy trap: predicting that 
discovering a new relationship, say, between a material A and a property B, is likely and 
concluding that, therefore, discovering the A-B relationship is good and hence should be 
recommended. For PDRS not aimed at prediction but rather only aimed at making 
recommendations to steer discovery trajectories towards outcomes that wouldn’t otherwise be 
achieved (e.g. Sourati and Evans 2023), a similar conclusion holds: just because A-B wouldn’t 
be discovered otherwise, doesn’t imply, all by itself, that discovery pursuits should be steered 
towards A-B. The upshot of the naturalistic fallacy trap is this: neither the natural evolution of 
discovery trajectories is uncontroversially good, in and of itself, nor is it ever clear that 
intervening on these trajectories is good. For a PDRS prediction/recommendation to be 
considered a good intervention in the evolution of discovery trajectories, it is plausible to think 
that 1) it must be clear by which values such interventions proceed, including particularly which 
predictive targets are chosen and what their correlates are, 2) a community must agree that these 
values, and the targets that supposedly track them, are appropriate, and 3) the intervention must 
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successfully promote the achievement of those values. Already the first of these requirements is 
not met by current PDRS, since, beyond their prima facie predictive targets, it remains unclear 
what exactly they predict and by which values they make recommendations. 
What is more, even if specific predictive targets could be isolated more precisely from their 
potentially undesirable correlates, choosing between them may have the capacity to put research 
programs on significantly different tracks. For instance, aiming to predict results that are highly 
surprising may yield outcomes that are discontinuous with existing theory and conceptual 
schemas and hence less likely to attract attention, citations or funding. Conversely, optimizing 
predictions for the latter metrics may fail to steer discovery towards surprising and strongly 
novel results. Finally, there are various qualities that are difficult to predict when training PDRS 
on observed publication data. For instance, for lack of being represented in such data, subliminal 
research, i.e. pursuits that may in principle be fruitful but whose results don’t get published and 
hence are not included in PDRS’ training data, is more difficult to take into account in making 
predictions. Similarly, ideas published in remote places, approaches articulated in a conceptual 
language that is discontinuous with existing theoretical orthodoxies, and so on, may lie beyond 
the predictive horizon of PDRS. 
In sum, 1) PDRS often leave unclear what exactly is predicted and on grounds of what values 
recommendations are made; 2) the choice between predictive targets is delicate; 3) it is unclear 
what downstream consequences different types of predictive targets may have on the distribution 
of discovery trajectories undertaken; and so it is unclear whether PDRS-based predictions and 
recommendations are, overall, beneficial or rather harmful interventions on the distribution of 
discovery trajectories. These challenges have so far not received systematic attention among 
PDRS developers and philosophers of science but require scrutiny before PDRS can be 
responsibly deployed with a clearer understanding of what they do. 
 
4.3 Novelty, Creativity, Conservatism and Homogenization 
A third, related class of concerns about PDRS regards novelty, creativity, epistemic 
conservatism, and homogenization. In a nutshell, PDRS may be substantially restricted in how 
novel the connections, questions, hypotheses, and suggestions they offer can be, and might be 
restricted to conservative predictions on an epistemic landscape, e.g. combining familiar ideas in 
novel ways, but less able to make more dramatic, transformative moves on an epistemic 
landscape, e.g. predicting or recommending altogether new ways of approaching phenomena that 
are discontinuous with existing approaches (cf. Weisberg and Muldoon 2009; Ratti 2020). 
Relying on PDRS may hence carry the risk of conservatism, and possibly inferior epistemic 
outcomes. In view of such limitations, PDRS also raise concerns about the (re)homogenization 
of discovery (cf. Messeri and Crockett 2024; Anderson et al. 2024; Griffin et al. 2025). Many of 
the special sciences have only recently made sincere efforts to increase the epistemic diversity 
among knowledge-producers, partly in light of impactful feminist critiques of the past decades 
(e.g. Longino 1990; cf. Oreskes 2019). One worry about PDRS is that they may have the 
capacity to partly wash out this diversity, starting from concerns about the comprehensiveness of 
the data they are trained on, the assumptions and goals that go into building them, and extending 
to worries about the PDRS landscape being dominated by few systems that have sufficient reach 
to streamline the efforts of large knowledge-seeking communities in ways that homogenize the 
distribution of discovery pursuits undertaken (e.g. owed to incentives not to depart from PDRS’ 
predictions and recommendations).  
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This class of concerns is not new: the existing literature has articulated related worries regarding 
execution-level ML systems in scientific discovery and paints a mixed picture of whether ML 
systems used for execution-level discovery tasks have the capacity to achieve what Ratti calls 
strong novelty (Ratti 2020; see also Boge 2022; see Boden 2009 in regard to creativity), i.e. to 
facilitate predictions and explanations of phenomena that are significantly novel, e.g. to correctly 
predict the three-dimensional structure of never-before-synthesised proteins, or to correctly 
identify novel physics equations or variables that best describe a new phenomenon or system 
without any prior knowledge of the physics that govern that system. 
There is a wealth of proof-of-concept work demonstrating purported successes of ML systems in 
achieving strong novelty. For instance, in materials discovery, Szymanski et al. (2023) purport to 
demonstrate how their automated ML-driven discovery pipeline A-Lab has “[…] realized 41 
novel compounds from a set of 58 targets.” (2023, 86). Similarly, Chen et al. (2022) propose an 
ML-system that can purportedly identify fundamental state-variables of physical system from 
observational data (see Eva et al. 2023 for a related project; see Langley et al. 1987 for a 
historical precursor). The goal behind this and other, related projects is to identify new physics 
variables and relationships from scratch, i.e. without drawing on any prior knowledge about what 
fundamental variables and relationships between them best describe the behavior of a system. 
Meanwhile, several purported demonstrations of strong novelty from ML systems have been met 
with scepticism. For instance, Leeman et al. (2024) point out doubts about whether Szymanski et 
al.’s (2023) materials discovery ML pipeline A-Lab has truly discovered any new materials. 
Similarly, Hillar and Sommer (2012) put pressure on purported demonstrations by Schmidt and 
Lipson (2009) of symbolic regression algorithms learning Hamiltonians, Lagrangians, and other 
laws of geometric and momentum conservation from experimental data without any prior 
physics knowledge (Schmidt and Lipson 2009, 81). As Hillar and Sommer (2012) argue, there 
are reasons to believe that these successes are driven by strong inductive biases and physics 
knowledge leaking into the algorithms (cf. Battaglia et al. 2018). More broadly, some authors 
caution that we should remain sceptical about ML systems’ potential for strong novelty. For 
instance, Ratti (2020) argues that ML systems are not able to produce strongly novel knowledge 
in molecular biology and genomics but are constrained to weakly novel discoveries.  
There are hence reasons to be sceptical of whether execution-level ML systems have the capacity 
for strongly novel discoveries. However, so far, the PDRS literature has mostly ignored to what 
extent these wider concerns may carry over to PDRS, instead focusing on street-level 
demonstrations, such as surveying domain experts to rate LLM-generated ideas for novelty (Si et 
al. 2024). Yet, following extensive concerns about execution-level ML systems, we may be 
equally sceptical whether PDRS are, or will be, able to predict and recommend discovery 
trajectories that yield strongly novel discoveries: in the language of the epistemic landscape 
sketched earlier, it remains unclear whether the envelope of PDRS’ predictions and 
recommendations 𝐷# overlaps sufficiently with, while also reaching significantly beyond, 𝐷$. 

 
4.4 Values 
The final concern that existing PDRS programmes raise is that they largely ignore the role that 
social, moral and political values play in making choices about scientific pursuits. The 
philosophy of science as well as science and technology studies literature have long recognized 
and elaborated that science is not a value-free fact-finding endeavour aiming at truth or 
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knowledge, full stop (Longino 1990). Rather, prominent views insist that science is laden with 
social, moral and political values (often summarized as non-epistemic values), and that, in many 
cases, this is unavoidable and/or desirable (Douglas 2009; Elliott 2017; 2022). While 
disagreement persists around the appropriate roles for non-epistemic values in science, there is 
widespread agreement that so-called external stages of scientific research, in particular, the 
selection of problems, questions and hypotheses to investigate and pursue, are necessarily and 
appropriately informed by non-epistemic values without thereby compromising desirable 
attributes of the subsequent research such as objectivity (e.g. Longino 1990; Anderson 1995; 
Koskinen 2023). Values are needed to tell which real-world problems are important, e.g. 
diseases, climate change, or cybersecurity risks, and in carving out what role science should play 
in addressing them, e.g. studying what drugs may help cure a disease, acquiring knowledge about 
how the earth’s climate is likely to evolve, or how to make IT systems robust to attacks. While 
the selection of problems to study and ways to study them must importantly be shaped by 
members of society and their representatives (e.g. political decision-makers), scientists, too, must 
draw on value-judgments in deciding what issues and questions to focus on and how. 
Debates around the proper role of values in science also center around the larger question what 
science, as a general epistemic enterprise, should aim at. Historically, views have been divided 
between those who insist that science should aim at producing truth or knowledge simpliciter, 
and, more recently, those who stress that science should aim at significant truth: it should 
function in the service of society, engaging and addressing the epistemic and practical needs of 
humans by pursuing epistemic goods that cater to these needs (Kitcher 2011). If we subscribe to 
this latter picture, it seems clear that at least one important role played by human researchers is 
difficult to delegate to PDRS: determining by what values scientific inquiry should proceed and 
what goals it should cater to. Perhaps machines are better than humans at determining efficient 
discovery trajectories that promote finding significant truth; but determining what is significant 
in the first place, is up to humans on this view. This suggests that determining a suitable division 
of agenda-setting labor between human investigators and machines is important, but it is unclear 
how such labor can be effectively divided with PDRS. One simple proposal could insist that 
humans determine the values and goals of an inquiry, and PDRS then help steer discovery efforts 
conditionally on these values and goals. But this conditioning view faces problems. First, it is not 
clear whether conditioning is always possible as, often, values and goals are not fully settled in 
advanced, but rather discovered and negotiated as inquiry proceeds (cf. Brown 2020). Consider 
the many ethical issues, e.g. regarding bias, fairness, or explainability, that are raised by ML 
research only as such research progresses and how these issues iteratively shape research 
trajectories, e.g. towards efforts to mitigate algorithmic bias, study different fairness criteria, or 
build systems that are inherently explainable. It can hence not be assumed that a sequential 
division of labor is generally or typically possible. Moreover, second, as argued above, it is often 
not clear what additional values are encoded in PDRS’ predictions and recommendations, so it is 
difficult for human investigators to tell whether these align with those deemed relevant. Third, it 
is unclear how to design institutions that could effectively enforce a conditioning-based 
workflow: given the promises of PDRS to rapidly accelerate discovery trajectories, there may be 
strong incentives for human investigators to forego thorough reflection of the value-related 
aspects of PDRS’ predictions and recommendations and ‘run with’ their predictions and 
recommendations in the accelerated pursuit of, e.g., publications or funding. Finally, fourth, 
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existing PDRS do not explicitly encode the role of values and do not allow human investigators 
to prompt these systems for conditional predictions or recommendations.3 
In sum, whether we deem certain roles as suitable for automation through PDRS will depend on 
our answers to the larger question what science, as an enterprise, should aim at. If machines are 
better at finding efficient trajectories to produce new knowledge, and the aim of science is the 
pursuit of truth or knowledge simpliciter, then machines perhaps should, as much as possible, 
play agenda-setting roles. But if the aim of science, as per Kitcher (2011), should be to produce 
truth or knowledge that is significant as judged by human interests and values, and these values 
are not fixed but rather discovered as science progresses, then humans must remain heavily 
involved in agenda-setting roles and PDRS should not encroach on this role. This, of course, 
does not imply that ML systems more broadly cannot be helpful in values discovery and 
negotiation, too; indeed, there may be significant scope for augmenting such processes. The 
point, however, is that the determination of goals and values central to an inquiry should heavily 
and authentically involve human agents, which may suggest new emphases in our conceptions of 
what it means to be a researcher. 
 

4.5 What’s new and what’s next? 
The above concerns form a set of key obstacles in the way of building and deploying PDRS to 
play the kinds of agenda-setting roles that larger imaginaries around automated science envision.  
So how should one respond to them? One option is to insist that several of the concerns 
articulated here apply to exclusively human-led discovery, too, suggesting there is nothing 
particularly novel or acute about them. However, this response misses that automation and 
standardization streamline and scale undesirable attributes in a way that significantly amplifies 
concerns about them. This is not a new insight: across a range of domains, e.g. algorithmic 
systems used in hiring, loan approval, recidivism risk prediction, critics have argued that 
automation both amplify familiar concerns about, bias, fairness, and discrimination that apply to 
humans, too, but also raise novel issues, e.g., automation bias, the atrophying of important skills, 
or responsibility gaps. What is more, unlike for human decision-makers or investigators, it often 
seems possible, at least in principle, to mitigate these issues. This suggests a more active stance 
on PDRS, following calls by critics like Leslie (2023), to explore ways in which PDRS 
development as well as the broader negotiations of their roles in discovery may be facilitated. 
The discussion offered here yields five recommendations to promote this project. 
 
1) In light of concerns about performative prediction, PDRS should not be framed as mere 
predictive tools. Rather, their performative potentials should be recognized already at the stage 
of forming and communicating imaginaries and narratives around PDRS as well as of designing 
them. This goes hand in hand with making clear distinctions between the aims of prediction and 
recommendation, clarifying on what grounds and in what ways predictions (e.g. of the likely 
impact or surprise of an idea) may inform recommendations of research pursuits related to the 
idea. 

 
3 One exception to this may be Google’s AI co-scientist (Gottweis et al. 2025), which allows users to specifically 
prompt the system with detailed descriptions of concrete research problems and questions. Doing so may fix values 
relevant to determining the scope of an inquiry; however, since the AI co-scientists also involves extensive internal 
iteration through its multi-agent asynchronous design, this may indeed open  
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2) The predictive targets of PDRS should be made more explicit and it should be studied how 
families of concepts, ideas, or questions hang together with observable predictive targets (e.g. 
publication and citation outcomes) and latent predictive targets (e.g. disparities in access to 
funding) and how correlations with undesirable features can be disentangled and broken.  
 
3) Building on the first two points, systematic efforts, such as through simulation studies, may be 
undertaken to study potential performative effects (e.g., by simulating a network of agents that 
responds to PDRS’ predictions and recommendations). Likewise, systematic sensitivity studies 
are needed to explore how the distribution of predictions and recommendations made by PDRS 
changes in response to changes to the predictive targets they track. Both types of studies may 
help epistemic communities better understand the directions in which PDRS may steer discovery 
pursuits.  
 
4) Developers and proponents of PDRS should articulate more clearly what roles, exactly, PDRS 
are envisioned to play, and in virtue of what features PDRS can and should play such roles. Such 
more explicit framings may help promote critical debate among experts around whether PDRS 
are indeed suitable for these roles and regarding what divisions of labor and what forms of 
interaction between human researchers and PDRS are desirable.  
 
5) Relevant stakeholders, including developers and prospective users, should work towards 
creating new benchmarks and experiments to study relevant features of human-machine 
interaction with PDRS and study the effects of PDRS on research trajectories regarding salient 
features such as speed, diversity (of ideas, approaches, etc.), originality, surprise, and others. 
 
Together, such advances may help put PDRS research programs on track to deal with the 
concerns raised in this paper, and facilitate reflection and debate among stakeholders around the 
proper roles for PDRS in scientific discovery.   
 
5 Conclusions: The Proper Roles for ML in Science 
Predictive discovery and recommender systems (PDRS) are built to predict scientific discoveries 
and recommend ideas, questions, hypotheses, and experiments for human investigators to pursue. 
The growing PDRS literature casts these systems as crucial instruments in accelerating scientific 
discovery and scientific progress more broadly, enabling otherwise inaccessible discoveries by 
helping researchers and other stakeholders (such as funding agencies) identify promising 
connections and adjacencies and pursue fruitful research agendas more efficiently. It also paints 
more ambitious visions of “[…] the entire scientific process becoming fully automated – from 
the generation of an interesting idea […] to its automated execution and implementation.” (Gu 
and Krenn 2024a, 6) suggesting significant reallocations of labor from humans towards PDRS. 
Notably, this includes assigning PDRS roles that do not merely augment human researchers but 
more fully automate central agenda-setting tasks, such as identifying novel, unrealized 
connections between existing knowledge items, formulating new research ideas and gauging 
what capacity for novelty and surprise they harbor, predicting the impact and success of a 
research agenda, or planning which collaborations are likely to be fruitful.  
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In view of these visions, PDRS may have the capacity to significantly intervene on the 
trajectories of humanity’s largest epistemic project. Yet, despite much uncritical enthusiasm and 
interesting demonstrations, ongoing efforts to build PDRS have so far failed to anticipate and 
engage a range of important questions and concerns about what roles such systems can and 
should play in science. This paper has drawn out four of these questions, including 1) whether 
PDRS merely predict or causally influence discovery and whether their use is desirable, given 
this ambiguity; 2) by what values PDRS make predictions and recommendations, 3) whether 
PDRS have sufficient capacity to steer discovery trajectories towards strongly novel outcomes, 
and 4) whether PDRS can account for the ineliminable role that values play in scientific inquiry. 
By drawing out a series of concerns relating to these questions, I have argued that it currently 
remains largely unclear how the use of PDRS may affect the sciences, at the broadest level, and 
in what ways their impacts may be beneficial or harmful. In light of reasonable doubts about 
PDRS’ abilities and open questions about their impacts, it is crucial for PDRS developers, 
philosophers of science and researchers in the special sciences to more fully reflect whether 
PDRS can, and should, assume roles distinctive of researchers. Targeting these issues through 
the lens of conceptual disruptions helps focus attention on the importance of basic concepts in 
negotiating these roles, e.g. the role-concept of ‘researcher’, including the qualities and abilities, 
such as creativity or imagination, as well as tasks and responsibilities, e.g. bringing values to 
bear on shaping discovery trajectories, typically associated with this role. Focusing on these 
issues, I suggest, helps draw attention to two key big-picture questions about the proper roles of 
ML in scientific discovery: 1) can and should PDRS assume roles distinctive of researchers and 
2), what are good divisions of labor between humans and machines in discovery settings, given 
our views on what science is supposed to do and how it should function. The questions, concerns 
and arguments provided in this paper, I hope, will stimulate a wider debate among philosophers 
of science, machine learning researchers involved in building PDRS as well as domain experts 
and stakeholders across the special sciences. In line with the arguments offered here, the goals 
and values that PDRS research pursues are far from settled, and negotiating where PDRS 
research should go next is an important task that we shouldn’t delegate.  
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