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Abstract: The Language of Thought (LOT) hypothesis posits that at least some important 
cogni've processes involve language-like representa'ons. These representa'ons must be 
processed by appropriate hardware. Since the organ of biological cogni'on is the nervous 
system, whether biological cogni'on relies on a LOT depends on how neural hardware works. I 
dis'nguish between different versions of LOT, ar'culate their hardware requirements, and 
consider which versions of LOT are supported by empirical evidence. I argue that the Classical 
LOT hypothesis (Fodor 1975) is ruled out; the version of LOT that is best supported by empirical 
evidence is the Nonclassical LOT thesis that some neural representa'ons mirror some of the 
structure of natural language and represent in a language-like way, yet they encode informa'on 
nondigitally and are processed by ordinary (nondigital, and hence Nonclassical) neural 
computa'ons that rely not only on syntac'c structure but many other features. 
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This report is a revised version of an unpublished essay that has circulated since early 2025. 
Since it has been cited in print and others are engaging with it in unpublished manuscripts, I am 
making it public in this form while I work on a monograph that will draw from this material. 
 
 
 
 
 
 
 
 
 

 
1 This work was par,ally done on the land of the Osage Na,on, Otae-Missouri, Chikasaw, Illni, Ioway, Quapaw, 
Shawnee, Delaware, Kickapoo, Sac & Fox, Omaha, and Santee Sioux. This paper builds on 30+ years of research and 
too many conversa,ons for me to thank everyone involved; among the most relevant, memorable, and helpful are 
exchanges with Hessameddin Akhlaghpour, Sonya Bahar, Kenneth Black, Trey Boone, Robert Brandom, MaQ Brown, 
David Chalmers, David Colaço, MaQeo Colombo, Guy Dove, Frankie Egan, the late Jerry Fodor, Randy Gallistel, 
David Glanzman, the late Gilbert Harman, John Krakauer, Corey Maley, Eric Margolis, Brian McLaughlin, Marcin 
Milkowski, Alex Morgan, Mirinda James, Michael Kremer, Joe Lau, John McDowell, Jonathan Najenson, Tomaso 
Poggio, Kyrill Potapov, Michael Rescorla, Brendan Ritchie, David Rosenthal, Carl Sachs, Richard Samuels, Steve 
Selesnik, Mark Sprevak, Wayne Wu, and two anonymous readers. Many thanks to Hanzhe Dong and Omar Ghaffar 
for invaluable research assistance and illumina,ng exchanges. Special thanks to David Barack for detailed and very 
helpful feedback on the earliest dra\s of this essay. Thanks to the many audiences who heard some of this material 
for their aQen,on and feedback. 
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1. New Rules for an Old Game 
 
The Language of Thought (LOT) hypothesis holds that at least some important cogni've 
processes involve “language-like” (Fodor, Bever, and GarreX 1974) representa'ons that 
cons'tute a “mentalese” (Sellars 1964) or “language of thought” (Harman 1968a, b, 1969, 
1970a, b).2 In LOT’s most influen'al version (Fodor 1968, 1972, 1975; Fodor, Bever, and GarreX 
1974), mentalese is a formal language consis'ng of language-like data or instruc'ons processed 
by a compu'ng system with an architecture similar to that of ordinary digital computers 
(“Turing/von Neumann architectures,” writes Fodor 1987, 139). I will refer to this as Classical 
LOT.  
 
Classical LOT has been called the “only” or “best” game in town. But the game’s rules were 
always too fuzzy to determine a winner. In this paper, I propose rules that are clear and cogent 
enough to play fairly and take the game to the next level. Following these improved rules, I will 
argue that Classical LOT is not a viable endgame. If you are interested in proposi'onal thought, 
the endgame involves a kind of Nonclassical LOT I will sketch. In brief, my argument is that any 
LOT hypothesis, Classical or Nonclassical, requires hardware with the ability to process 
language-like representa'ons. Since biological cogni'on is carried out by nervous systems, any 
plausible LOT hypothesis must be consistent with how nervous systems work. And we know 
enough about neural hardware to perform an elimina've induc'on against Classical LOT in favor 
of Nonclassical LOT. 
 
Here is how to play. By “cogni've processes” (or “thought”), I mean reasoning, planning, 
imagining, decision making, and so forth. By “hardware”, I mean the (implemented) 
components that process representa'ons, such as microchips within digital computers and 
biophysical neurons within brains.3 By “representa'on”, I mean states or state sequences—such 
as strings of digits within a digital computer or spike trains within a nervous system—that carry 
seman'c content. Since the representa'ons in ques'on are realized in nervous systems, I will 
follow the mainstream and refer to them as neural representaDons—representa'ons of the sort 
that is observed in nervous systems (Thomson and Piccinini 2018). By the same token, I will 
refer to computa'ons over neural representa'ons as neural computaDons.  
 
Crucially, neural representa'ons and computa'ons have composiDonal structure such that 
simpler, lower-level representa'ons (e.g., spike trains from single neurons) compose more 
complex, higher-level representa'ons (e.g., neural manifolds from neuronal assemblies or 
popula'ons), computa'onal opera'ons on simpler representa'ons compose computa'onal 
opera'ons on more complex representa'ons, and the seman'c content of composite 

 
2 The term “language of thought” was used at least since the 19th century, o\en to mean something like Leibniz’s 
characteris,ca universalis (e.g., Gadamer 1967). Harman appears to be the first who used it in the sense relevant to 
this essay. 
3 Some,mes, nervous systems are said to contain “wetware” rather than “hardware”, to stress that neural ,ssues 
are alive, more plas,c than typical computer hardware, and bathed in blood, inters,,al and cerebrospinal fluids, 
and a soup of neurotransmiQers, hormones, and other signaling biomolecules. For present purposes, neural 
wetware is a type of hardware. 
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representa'ons is largely a func'on of the seman'c content of their component 
representa'ons plus the way they compose. For instance, what the cor'cal visual system 
represents and computes is largely a func'on of what cor'cal visual areas represent and 
compute, which is largely a func'on of what individual cor'cal columns within each area 
represent and compute, which in turn is largely a func'on of what neurons within each column 
represent and compute.4 
 
Hardware constrains and is constrained by computaDonal architecture, which is the system of 
organized compu'ng components that process representa'ons appropriate for that hardware in 
accordance with algorithms appropriate for that hardware. For example, a microchip within a 
digital computer may play the computa'onal role of central processing unit, or a neural circuit 
might carry out the computa'onal opera'on of normalizaDon (Carandini and Heeger 2012). As I 
will discuss in more detail shortly, representa'ons cannot be processed, and algorithms cannot 
be followed, unless an appropriate computa'onal architecture is in place. Therefore, the 
rela'on between hardware, architecture, algorithms, and representa'ons is central to a proper 
assessment of any theory of cogni'on such as LOT. 
 
The importance of computa'onal architecture has been underappreciated, perhaps in part 
because Marr (1982) omits it from his influen'al framework for analyzing compu'ng systems. 
Marr ar'culates three levels of analysis: computa'onal (e.g., mul'plica'on), algorithmic (e.g., 
mul'plying by compu'ng par'al products and then summing them), and implementa'on (e.g., 
a microchip). He skips computa'onal architecture (e.g., the CPU and memory of a von 
Neumann architecture implemented by microchips), which lies between the algorithmic and 
implementa'on levels. Algorithms run on a computa'onal architecture, which is realized by 
hardware and explains how the hardware can process relevant representa'ons in accordance 
with relevant algorithms. In what follows, I will consider four levels of analysis: computa'onal, 
algorithmic, architecture, and hardware. This four-level framework matches Marr and Poggio’s 
original framework (1976), the difference being that Marr and Poggio use the term 
“mechanisms” where I use “architecture”.5 

 
4 Seman,c composi,onality in neural representa,ons, unlike seman,c composi,onality in formal logic, is not 
always transparently intelligible to external observers. Some neural manifolds may have seman,c content that is 
difficult to decompose in easily interpretable ways (cf. Burnston 2021). More generally, one and the same 
mul,level phenomenon, such as neural computa,on, o\en depends on complex rela,onships between processes 
that occur at different scales (cf. Rice 2024). A detailed account goes beyond the scope of this ar,cle. For recent 
advances in understanding neural representa,ons and their content, see Nestor 2024, Heemskerk 2025, and 
Mar,nez 2025. For a defense of the view that neural representa,on and computa,on are mul,level, see Counts 
2025. For an argument that the LOT hypothesis needs to be integrated with cogni,ve neuroscience, see Schneider 
2011. For a defense of the relevant integra,onist framework, including cri,ques of assump,ons some,mes 
fallaciously invoked in defense of Classical LOT, such as the alleged autonomy of psychology and the Church-Turing 
thesis, see Piccinini and Craver 2011; Morgan and Piccinini 2018; Piccinini 2020a, 2020b, 2022; Piccinini and 
Hetherington 2025; Piccinini and Fuentes 2025. 
5 The “Marrian” three-level framework was already outlined by Reichardt and Poggio (1976). According to Poggio 
(pers. comm.), Marr (1982) omiQed the architectural level to keep the framework simple given that in the nervous 
system you must study the one and only implementa,on to understand its architecture; another considera,on was 
that the three-level framework matched the three levels described by Reichardt and Poggio (1976). For our 
purposes, it is cri,cal to understand the rela,ons between all four levels of analysis. Computa,onal architecture, as 
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I will advance the debate on LOT by taking three important steps. In Sec'on 2, I dis'nguish 
different LOT hypotheses—including Representa'onal, Computa'onal, Classical, and 
Nonclassical LOT hypotheses—in terms of the computa'onal architecture they require. This 
clarifies the empirical commitments of different LOT hypotheses. In Sec'on 3, I rebut some 
popular arguments for Classical LOT, including the argument that neuroscien'fic evidence is 
merely relevant to how computa'ons are implemented. I argue that, on the contrary, 
neuroscien'fic evidence is crucial to iden'fying the correct computa'onal architecture, which 
in turn is crucial to iden'fying the correct representa'ons and algorithms. In Sec'on 4, I discuss 
the degree to which different LOT hypotheses are supported or undermined by neuroscien'fic 
evidence about computa'onal architecture. I argue that Classical LOT (Fodor 1975) is ruled out. 
The only empirically supported version of LOT is the Nonclassical LOT thesis that human brains 
are capable of cogni've processes that support and are supported by natural language, and 
hence some neural representa'ons involved in such processes mirror some of the structure of 
natural language and represent in a language-like way, yet they encode informa'on nondigitally 
and are processed by ordinary (nondigital, and hence Nonclassical) neural computa'ons that 
rely not only on syntac'c structure but many other features. I wrap up in Sec'on 5. Please note 
that providing a detailed model of a Nonclassical LOT goes beyond the scope of this report, 
although I will refer to relevant scien'fic work when appropriate. The aims of this report are to 
expand the conversa'on so that Nonclassical LOT is recognized, clarify the role of computa'onal 
architecture, and defend the elimina've induc'on against Classical LOT in favor of Nonclassical 
LOT. 
 
I hasten to add that Classical LOT has been cri'cized before, and many past cri'cs have pointed 
out that it clashes with neuroscien'fic evidence (e.g., DenneX 1978; Churchland 1992; Horgan 
and Tienson 1996; Bechtel and Abrahamsen 2002; MaXhews 2010; De Brigard 2015). 
Nevertheless, as we shall see, Classical LOT has con'nued to be defended and the maXer is far 
from seXled.6 In addi'on, the recent literature is ohen unclear about what Classical LOT is 
commiXed to, what a Nonclassical LOT amounts to (cf. Aydede 1997, fn. 51), or how LOT 
hypotheses should be tested. I will sharpen these ques'ons by placing Classical and Nonclassical 
LOT in the broader context of Representa'onal and Computa'onal LOT simpliciter and by 
relying on recent advances in our understanding of computa'on and representa'on, including 
the recogni'on that there are many types of nondigital, and hence Nonclassical, computa'on 

 
I use the term, is similar to what Pylyshyn (1984) calls “func,onal architecture”. It should not be confused with 
what Classicists some,mes call “cogni,ve architecture,” by which they tend to mean the symbols and basic 
computa,onal opera,ons posited by their theory (cf. Fodor and Pylyshyn 1988, 10). This so-called “cogni,ve 
architecture” is s,ll at Marr’s algorithmic level. 
6 Part of the reason might be that some of the most popular cri,ques are dubious. For instance, many have argued 
that brains aren’t digital computers because digital computers are serial while brains are “massively” parallel. But 
the ways in which a compu,ng system is serial versus parallel is a delicate maQer that is rela,ve to level of 
organiza,on. In fact, conven,onal digital computers can exhibit several forms of parallelism, including “massive” 
parallelism at the circuit level, which is the level most directly comparable to neural networks (cf. Piccinini 2015, 
Sect. 13.5). 
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(e.g., Piccinini 2015, Shagrir 2022). As a result, we will see more clearly why and how 
neuroscien'fic evidence refutes Classical LOT but supports Nonclassical LOT. Or so I hope. 
 
 

2. Varie>es of LOT and their Representa>on and Architecture Requirements 
 
A LOT hypothesis can have broader or narrower scope depending on how much cogni'on it 
applies to. It could apply to all cogni'on, many cogni've processes, or only a few. It could apply 
only to humans or also to other species. For instance, a LOT hypothesis restricted to human 
internal vocaliza'ons that, introspec'vely, feel like linguis'c episodes is plausible but also 
rela'vely narrow in scope. In fact, I will conclude that something close to this is the only 
empirically well-supported LOT hypothesis. In contrast, a LOT hypothesis that applies to many 
cogni've processes in many species including insects (e.g., Gallistel and King 2009) is much 
more ambi'ous and correspondingly harder to establish. 
 
For our purposes, the important versions of LOT are the following: 
 

Representa>onal LOT: Some cogni've states represent their targets in a language-like 
way (e.g., Ockham 1323).7 

Computa>onal LOT: Representa'onal LOT + LOT is processed computa'onally 
(Sellars 1954, 1956, 1960, 1962).8 

 
7 Many other historical figures besides Ockham defended Representa,onal LOT. Ockham’s defense is probably the 
best known in the contemporary literature, partly due to his discussion by Geach (1957, 101-6). Panaccio (2017) 
surveys the ancient and medieval literature. 
8 Sellars defends Computa,onal LOT as a useful analogy: 
 

[The] learning of a language or conceptual frame involves the following logically (but not chronologically) 
dis,nguishable phases:  
(a) the acquisi,on of S[,mulus]-R[esponse] connec,ons pertaining to the arranging of sounds and visual 
marks into paQerns and sequences of paQerns. (The acquisi,on of these "habits" can be compared to the 
serng up of that part of the wiring of a calcula,ng machine which takes over once the "problem" and the 
relevant "informa,on" have been punched in.)  
(b) The acquisi,on of thing-word connec,ons. (This can be compared to the serng up of that part of the 
wiring of the machine which enables the punching in of "informa,on.") (Sellars 1954, 333) 
 
[T]he theory is to the effect that overt verbal behaviour is the culmina,on of a process which begins with 
'inner speech' [i.e., thoughts] … there are many who would say that it is already reasonable to suppose 
that these thoughts are to be 'iden,fied' with complex events in the cerebral cortex func,oning along the 
lines of a calcula,ng machine. (Sellars 1956, 186-8) 
 
Suppose such an anthropoid robot to be 'wired' in such a way that it emits high frequency radia,on which 
is reflected back in ways which project the structure of its environment (and its 'body'). Suppose that it 
responds to different paQerns of returning radia,on by prin,ng such 'sentences' as 'Triangular object at 
place p, ,me t' on a tape which it is able to play over and over and to scan.[omiQed footnote] Suppose 
that, again by virtue of its wiring diagram, it makes calcula,onal moves from 'sentences' or sets of 
'sentences' to other 'sentences' in accordance with logical and mathema,cal procedures (and some 
system of priori,es) and that it prints these 'sentences' on the tape. (Sellars 1960, 51-2) 
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Classical LOT: Computa'onal LOT + LOT representa'ons and 
computa'ons are digital (Harman 1968a, 1973; Fodor 1968, 1972, 1975; 
Pribram 1971; Fodor, Bever, and GarreX 1974). 
Nonclassical LOT: Computa'onal LOT + LOT representa'ons and 
computa'ons are nondigital. 

 
Representa'onal LOT maintains that cogni'on involves language-like representa'ons. There are 
two broad classes of relevant languages: (i) natural languages and (ii) formal languages from 
logic and computer science. Different versions of LOT rely on analogies between thought and 
either natural languages or formal languages, including the sort of machine language that runs 
on program-controlled digital computers.  
 
The original LOT hypothesis draws an analogy between thought and natural language (Ockham 
1323; Sellars 1956, 1960, 1968; Harman 1968a, 1970a, 1973).9 Like linguis'c uXerances, 
mentalese structures might be made of words that can play the roles of subjects, predicates, 
etc. and can combine into structures that can play the roles of atomic sentences, which in turn 
can combine into something equivalent to complex sentences via something equivalent to 
logical connec'ves. Like linguis'c uXerances, mentalese structures might have a composi'onal 
seman'cs and inferen'al roles that facilitate inference, whereby mentalese conclusions can be 
generated from mentalese premises in ways that are either deduc'vely valid or induc'vely 
jus'fiable. 
 
Based on such analogies, some philosophers influenced by Sellars argue that acquiring natural 
language is what allows human beings to engage in proposi'onal thinking (e.g., Brandom 1994; 
McDowell 1994; Gauker 2011). A related and influen'al view is that mentalese is not just 
analogous to natural language but just is natural language that has been learned, internalized, 
and is used as a vehicle of thought (Vygotsky 1934/2012).10 Vygotsky’s followers (like Sellars’s) 
typically eschew the “LOT” label, probably because, aher Fodor (1975) embraced it, it has 
become associated most closely with his version of Classical LOT. But Vygotskians’ idea that 
natural language, once internalized, acts as a cogni've scaffolding or neuroenhancement (e.g., 
Rumelhart et al. 1986; DenneX 1991; Clark 1998, 2008; Lupyan and Bergen 2016; Tomasello 
2019; Dove 2020; Borghi 2023; Kompa 2024a) is a version of mentalese as natural language (cf. 

 
 

But to point to the analogy between conceptual thinking and overt speech is only part of the story, for of 
equally decisive importance is the analogy between speech and what sophis,cated computers can do, and 
finally, between computer circuits and conceivable paQerns of neurophysiological organiza,on. (Sellars 
1962, 33) 

9 At least in the philosophical literature, Sellars (1956) marks the transi,on from more tradi,onal versions of 
Representa,onal LOT, based on introspec,on or armchair reflec,on, to LOT as a scien,fic of quasi-scien,fic model 
aimed at explaining cogni,on. 
10 Despite the similari,es between Sellars and Vygotsky’s views, Sellars appears to have developed his ideas about 
mentalese without knowing about Vygotsky’s, perhaps because Vygotsky’s main work (1934) was not published in 
English un,l 1962. Both Vygotsky and Sellars knew of Dewey (Carl Sachs, pers. comm.), who already argued that 
“psychic events, such as are anything more than reac,ons of a creature suscep,ble to pain and diffuse comfort, 
have language for one of their condi,ons” (Dewey 1925, 169). 
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also Kaye 1995; Munroe 2025). Another version of LOT as natural language is that mentalese is 
an internal language (“I-language”) made possible by an innate language faculty unique to 
humans, which allows humans to acquire and process natural language (“E-language”; Chomsky 
1986, 1993; on an innate language faculty, cf. Chomsky 1957, 1965). In contrast, the best-known 
LOT hypothesis is that mentalese is disDnct from natural language, needed to acquire and 
understand natural language (Katz 1966), and analogous to the formal languages of logic and 
computer science (Fodor 1968, 1972, 1975; Pribram 1971; Fodor et al. 1974).11 This last view 
comes with at least one addi'onal possible (non-mandatory) analogy: if mentalese is like digital 
computers’ programming languages, mentalese programs might control computa'ons in the 
way that ordinary computer programs control computa'ons. 
 
Both natural and formal language inspira'ons for LOT share a common core. To be language-
like, a system of representa'ons must have, at a minimum, the following features: cons'tuents 
that play the seman'c roles of subjects and predicates within a sentence; when such 
cons'tuents are combined correctly, they form structures that play the seman'c roles of atomic 
sentences; and when atomic sentences are combined correctly, they form structures that play 
the seman'c roles of complex sentences. Of course, ordinary languages have more structure 
than that; for example, they have quan'fica'onal operators such as “all” and “some”, which 
augment their expressive power; so, language-like representa'ons may have a richer seman'c 
structure than the minimal structure I ar'culated. And, in addi'on to their seman'c 
(representa'onal) proper'es, language-like representa'ons may have syntac'c structure and 
inferen'al roles analogous to those of linguis'c structures. 
 
The debate about LOT is 'ed to the debate between empiricism and na'vism. People on Sellars 
and Vygotsky’s side ohen lean towards the empiricist view that natural language is acquired via 
domain-general learning. In contrast, people on Chomsky and Fodor’s side ohen lean towards 
the na'vist idea that natural language is acquired via innate, language-specific processes. 
Fodor’s na'vism is somewhat mandated by his reliance on analogies between mentalese and 
computer code, because it’s implausible that cogni've systems could come to think via 
something like a computer code by learning it in the absence of any such computer code in their 
environment. Other associa'ons are op'onal. Specifically, we should avoid the misconcep'on 
that, if thought is like natural language, acquiring mentalese requires acquiring natural language 
first. That is one possible view, yet it’s not mandatory. Even when the analogy is with natural 
language, mentalese may well be at least par'ally innate—some cogni've systems may contain 

 
11 Both Fodor and Chomsky maintain that mentalese is supported by in an innate language faculty, but Chomsky 
denies that mentalese is dis,nct from natural language: “[i]t is o\en argued that another independent language of 
thought [i.e., independent of natural language] must be postulated, but the arguments for that do not seem to be 
compelling” (Chomsky 2007, 16; cited by Dupre 2021, 774; cf. Hinzen 2013). Fodor, Bever, and GarreQ aQribute to 
Pribram (1971) the view that “there is a language ‘of thought’ (or ‘of the neurons’) which is different from the 
language we speak, and that speaking involves the encoding of messages which are originally formulated in that 
language” (Fodor et al. 1974, 376). Pribram does defend the idea that humans think by means of a language 
analogous to computer programming languages (Pribram 1971, esp. Ch. 19). Harman aQributes to Katz (1966) the 
view that “when a person speaks, he encodes his thoughts in his language; and when he understands someone 
else, he must decode what the other has said by transla,ng it into the basic language of thought” (Harman 1968b, 
20). Harman’s interpreta,on seems fair even though it goes somewhat beyond what Katz says. 
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an innate mentalese that allows them to have proposi'onal thoughts even prior to and 
somewhat independently of acquiring the ability to process a (public) natural language, and 
possessing mentalese may even be a necessary condi'on for acquiring (public) natural 
language. Nevertheless, such an innate mentalese may be analogous to natural language. 
Roughly, that is Chomsky’s view. Of course, even if mentalese is both par'ally innate and either 
analogous to natural language or the same as the neural representa'ons involved in acquiring 
natural language, it may well be that, as Vygotsky’s followers argue, acquiring the ability to use 
a (public) natural language augments our thinking prowess. At any rate, the extent to which 
mentalese is innate is a difficult empirical quesDon on which I remain neutral. 
 
Representa'onal LOT, by itself, says nothing more about the proper'es of mentalese and offers 
no mechanism for how cogni've states are processed in accordance with their language-like 
structure and seman'c content. In this respect, Representa'onal LOT is compa'ble with 
whatever neuroscience finds in the brain provided that, in the relevant cases, there are 
language-like neural representa'ons. Thus, Representa'onal LOT per se has no architectural 
requirements because it’s not yet a computa'onal hypothesis; all it requires is that some neural 
representa'ons be language-like.12 
 
Computa'onal LOT adds to Representa'onal LOT a generic computa'onal requirement, 
according to which mentalese is processed computa'onally. While what counts as physical 
computa'on is controversial (Anderson and Piccinini 2024), three aspects of computa'on are 
rela'vely uncontroversial and sufficient for our purposes. First, computa'ons are physical 
processes that can manipulate representa'ons in accordance with their seman'c content. 
Second, there are different kinds of computa'on—digital, analog, neural, etc.—that involve 
different kinds of representa'ons and algorithms. Third, different kinds of representa'ons and 
algorithms require different computa'onal architectures. Examples include the so-called von 
Neumann architecture (von Neumann 1945; PaXerson and Hennessy 2011), which can process 
digital representa'ons in accordance with suitable digital algorithms encoded as programs and 
stored in long-term memory, and the general-purpose analog computer (Pour-El 1974), which 
can process analog representa'ons in accordance with suitable analog methods. By posi'ng 
that mentalese representa'ons are processed by an appropriate computa'onal architecture, 
Computa'onal LOT constrains the physical mechanism for processing mentalese—
Computa'onal LOT requires computa'onal machinery that can combine language-like 
representa'ons and manipulate them in the requisite way. 
 
Computa'onal LOT is commiXed to there being language-like representa'ons in the brain as 
well as components capable of compu'ng over them in accordance with their seman'c 
proper'es.13 Computa'onal LOT simpliciter simply asserts that some form of computa'on is 

 
12 For an aQempt to develop Representa,onal LOT in a noncomputa,onal direc,on, see Horgan and Tienson 1996. 
13 Strictly speaking, there are LOT hypotheses that aQribute language-like structure to thoughts, possibly in 
combina,on with suitable computa,onal processes, while rejec)ng Representa,onal LOT (e.g., S,ch 1983). In this 
essay, I consider only LOT hypotheses that entail Representa,onal LOT. 
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enough to process mentalese in the right way (Sellars 1954, 1956, 1960, 1962).14 Beyond this 
rather vague requirement, the exact features of the representa'ons and hardware posited by 
Computa'onal LOT can be leh up to neuroscience to discover. Crucially, Computa'onal LOT 
simpliciter does not require that primi've computa'onal opera'ons be defined over the 
seman'cally primi've LOT cons'tuents (i.e., mentalese words).15 All that maXers for 
Computa'onal LOT to be true is that the LOT cons'tuents be encoded and processed in ways 
that accord with their seman'c content. They could be encoded in layers of ordinary neural 
representa'ons and processed via ordinary neural computa'ons (more on this in Sect. 4). 
 
Classical LOT adds a digitality requirement that allows LOT cons'tuents—par'cularly, mentalese 
words—to be encoded as seman'cally atomic yet digitally encoded “symbols” and processed 
via computa'onal opera'ons defined over the syntac'c proper'es of the symbols (Fodor 1975; 
Newell and Simon 1976; Pylyshyn 1984). The term “symbol” is highly ambiguous and, 
regreXably, it is rarely disambiguated in the LOT literature. It has at least four relevant 
meanings: (i) representaDon simpliciter, (ii) representaDon with an arbitrary semanDc content 
(this is Peirce’s no'on of symbol, which contrasts with icons, whose content is due to something 
like resemblance, and indices, whose content is due to something like causa'on; Atkin 2023), 
(iii) amodal representaDon, and (iv) digitally encoded representaDon. Let me briefly explain why 
the fourth meaning is the most relevant to assessing Classical LOT. 
 
It is experimentally well established that neurocogni've systems rely on representa'ons (e.g., 
Thomson and Piccinini 2018). Since human languages and other communica'on systems are 
symbolic in Peirce’s sense, presumably the neural representa'ons involved in processing 
language and other symbolic communica'on systems are symbolic in that sense (more on this 
in Sect. 4.1). Surely there is more to Classical LOT than this basic point. An amodal 
representa'on is one that is not 'ed to any specific sensory modality (Wajnerman Paz 2017); 
whether a representa'on is amodal is orthogonal to whether it is language-like (cf. Calzavarini 
2025). That is, natural language itself can be represented within various sensory modali'es 
including auditory (spoken language), visual (wriXen language), or tac'le (Braille), while neural 
representa'ons may be amodal without being language-like (e.g., Tamber-Rosenau et al. 2013) 
and the modal-amodal dis'nc'on might even be an idealiza'on that comes in degrees (Michel 
2021). Thus, that some neural representa'ons are Peircean symbols is insufficient for Classical 
LOT, and whether they are amodal is orthogonal to Classical LOT. 
 
Classical LOT requires something more specific: it requires digitally encoded representa'ons of 
the sort found in formal logic and classical computability theory—the kind that can be 
processed via digital computa'on—or else it collapses into generic Computa'onal LOT. As we’ve 
seen, Classical LOT draws an analogy with such formal languages. The main defining feature of 

 
14 In fairness, Sellars’s analogy appears to be between thought and language-like digital compu,ng. Crucially, it is 
explicitly a par,al analogy, not a claim that cogni,ve processes are literally digital computa,ons. Therefore, his 
view leaves room for the possibility that the analogy holds between thought and computa)on simpliciter, and 
hence that thoughts and their neural realizers be nondigital. 
15 I use “words” to denote these seman,cally primi,ve mentalese cons,tuents regardless of whether they would 
map onto words in natural language. 
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formal languages—what allows them to be processed via digital computa'on—is that their 
structures are composed of digitally encoded Peircean symbols. Accordingly, from now on, 
when I refer to the symbols posited by the Classical LOT hypothesis, I mean digitally encoded 
Peircean symbols. 
 
Therefore, in addi'on to the assump'ons that thoughts represent in a language-like way 
(Representa'onal LOT) and are processed computa'onally (Computa'onal LOT), Classical LOT 
adds that the computa'onal architecture that encodes and processes mentalese structures is 
like a digital computer. This, in turn, implies that, like the digital representa'ons processed by 
digital computers (Piccinini 2015), mentalese structures are concatena'ons of finitely many 
types of digits. By “digit”, I mean a discrete state that belongs to one of finitely many types that 
the system can dis'nguish reliably from other types (digits do not come in degrees), and which 
can be concatenated with other digits so that it’s clear which digit comes first, which is next, 
and so forth un'l the last digit in any composite representa'on. 
 
It's important to appreciate two things about digital encoding. First, digital encoding of 
language-like representa'ons is such a core commitment of Classical LOT hypotheses that it’s 
usually leh implicit. Yet it’s a nonnego'able commitment. In fact, Classical LOT theorists 
typically discuss computa'on as if digital encoding were a necessary but not even sufficient 
condi'on for computa'on, and thus nothing can be computa'onal without being digitally 
encoded.16 
 
Second, digital encoding is a demanding requirement, which goes beyond encoding informa'on 
into discrete representa'ons. Cogni'on is uncontroversially categorical. That is, humans and 
other animals ohen organize informa'on that may vary along a con'nuum into discrete 
categories (e.g., Cesanek et al. 2023). On the sensory side, cognizers ohen experience a sharp 
shih in percep'on at certain points along a physically con'nuous spectrum, rather than a 
gradual change. On the ac'on side, cognizers produce categorically dis'nct responses (e.g., 
walking, jogging, running) rather than responses that vary along a smooth con'nuum. To 
engender categorical percep'on, neurocogni've systems amplify differences near category 
boundaries, perhaps through a combina'on of lateral inhibi'on, top-down modula'on, and 
representa'onal clustering, even though neural representa'ons themselves are typically graded 
(and hence nondigital; more on this in Sect. 4.3). To engender categorical motor control, 
neurocogni've systems rely on different neural circuits for different ac'on paXerns and possibly 
global inhibi'on (cf. Penconek 2025). Even more generally, neural systems ohen encode 
informa'on in the ac'vity of neural assemblies (Yuste et al. 2024)—group of neurons that fire 
together and trigger other assemblies to form complex paXerns of ac'vity.17 Therefore, a 
representa'onal system can separate targets that vary along a con'nuum into discrete 

 
16 For instance, Fodor agreed that neural processes appear to be nondigital and concluded that, therefore, they are 
not computa,onal: “what is usually characterized as computa,onal neurology isn't computa,onal” (Jerry Fodor, 
pers. corr., 2005). As I will point out shortly, the kind of narrow concep,on of computa,on to be found in much of 
Fodor’s work is no longer tenable (Piccinini 2015, Shagrir 2022). 
17 Such paQerns are some,mes called “neural syntax” (e.g., Buzsáki 2019), which should not be confused with the 
kind of linguis,c syntax at issue here. 
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categories without being language-like and without encoding informa'on digitally (cf. Block 
2023, esp. Ch. 6, to which I am indebted here). I submit that categorical representa'on is 
enough for neurocogni've systems to represent and process mentalese, without needing to 
encode its syntax or other proper'es digitally let alone process it via digital computa'on. 
Meanwhile, the Classical LOT hypothesis maintains just the opposite: mentalese is represented 
and processed by digitally encoding its syntax. 
 
Digital encoding is neither necessary nor sufficient for language-like representa'on. It’s 
insufficient because we can digitally encode representa'ons that are not language-like (e.g., 
Johnson-Laird 1983). It’s unnecessary because language itself can be encoded via nondigital 
representa'onal systems such as cursive, pictographs, logographs, or ideographs. That said, 
language-like systems can be encoded digitally. Therefore, if the right hardware and sohware 
were present within brains, Classical LOT would explain how cogni've computa'ons process 
language-like structures in accordance with their content: by performing primi've digital 
opera'ons on mentalese words and sentences based on their (digitally encoded) syntac'c 
structure. For, as Turing (1936-7) and other logicians showed, digital computa'ons can be 
defined over (digital encodings of) syntac'cally structured representa'ons in such a way that 
certain seman'c rela'ons (e.g., of entailment) between such representa'ons are respected. 
Fodor and collaborators are especially insistent on this point and ohen define LOT simpliciter as 
a model that posits computa'ons sensi've to the combinatorial syntax of mental 
representa'ons, as if “Nonclassical LOT” were an oxymoron.18 Digital computers dominate 
compu'ng technology and digital computa'on used to dominate cogni've science, or at least 
Classical cogni've science. Accordingly, at least historically, most defenders of LOT restricted 
their aXen'on to Classical LOT.19 

 
18 Here is an example: 
 

Classical theories—but not Connec,onist theories—postulate a ‘language of thought’ (see, for example, 
Fodor, 1975); they take mental representa,ons have a combinatorial syntax and seman)cs, in which … the 
seman,c content of a (molecular) representa,on is a func,on of the seman,c contents of its syntac,c 
parts, together with its cons,tuent structure… In Classical models, the principles by which mental states 
are transformed, or by which an input selects the corresponding output, are defined over structural 
proper,es of mental representa,ons (Fodor and Pylyshyn 1988, 12-13; emphasis original). 

 
Here is another way they put the point: 
 

It would not be unreasonable to describe Classical Cogni,ve Science as an extended aQempt to apply the 
methods of proof theory to the modeling of thought (and similarly, of whatever other mental processes 
are plausibly viewed as involving inferences; preeminently learning and percep,on) (Fodor and Pylyshyn 
1988, 20-21). 

 
This is meant to map to something in the brain:  
 

[T]he symbol structures in a Classical model are assumed to correspond to real physical structures in the 
brain and the combinatorial structure of a representa,on is supposed to have a counterpart in structural 
rela,ons among physical proper,es of the brain (Fodor and Pylyshyn 1988, 13) 

 
19 Even Harman did so: 
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To properly assess LOT, we must also include Nonclassical LOT hypotheses, especially since I will 
argue that they are the only viable ones. For present purposes, to a first approxima'on, a LOT 
hypothesis is maximally Nonclassical just in case it posits mentalese representa'ons and 
computa'ons that are nondigital. The no'on of computa'on is more general than the no'on of 
digital computa'on. For starters, there is analog computa'on, which was developed well before 
modern digital computers. Around the 'me that McCulloch and PiXs (1943) modeled the brain 
as a digital compu'ng system, Craik (1943) and others (Gerard 1951; Lashley 1958; cf. von 
Neumann 1958) suggested that the brain is more like an analog computer. In contrast, later I 
will argue that neural computa'on is sui generis (per Piccinini and Bahar 2013). For now, the 
important point is that different kinds of computa'on require different kinds of computa'onal 
architectures that manipulate different kinds of vehicles according to different kinds of 
algorithms. 
 
As we’ve seen, the analogy between thought and formal languages is primarily due to the 
appeal of digital computa'on in the first place. Therefore, if the digitality requirement is 
dropped, there is hardly any reason to invoke analogies with formal languages, and the most 
natural analogy becomes between thought and natural language. As we’ve already seen, Sellars 
defends a LOT hypothesis of the laXer sort, which is poten'ally Nonclassical. Many subsequent 
authors may also fit into this Nonclassical LOT camp (for a recent proposal, see Wu et al. 2024). 
 
To avoid confusion between different Classical architectural assump'ons, let’s subdivide 
Classical LOT into at least three versions of increasing strength: 
 

Weak Classical LOT: Classical LOT + Cogni'on is carried out by digital compu'ng systems 
aka automata (McCulloch and PiXs 1943,20 Harman 1973). 

 
 

An abstract automaton is specified by its program. The program indicates possible reac,ons to input, how 
internal states plus input can yield other internal states, and how internal states and input can lead to 
various sorts of output (Harman 1973, 42). 
 
We were led to see a person as an automaton. To understand a type of mental state or process is to see 
what func,on such states or processes can have in a person’s “program.” … I will speak of a “language of 
thought” and will speculate on the rela,ons between the inner language of thought and the outer 
language we speak (Harman 1973, 53-4). 

 
In context, it’s clear that by “automaton”, Harman means something like a finite state automaton or a Turing 
machine—a type of digital compu,ng system (cf. Harman 1968a, 594-5). 
20 McCulloch and PiQs (1943) argue that nervous systems are digital compu,ng systems that process proposi,onal 
representa,ons. In their model, neurons process proposi,onal representa,ons by implemen,ng logical inferences, 
a view that comes close to Weak Classical LOT, though they didn’t talk about encoding or processing syntac,c 
structure. S,ll, the connec,on they drew between formal logic, computa,on, and brain theory is the germ of 
Classical LOT. 
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Moderate Classical LOT: Classical LOT + Cogni'on is carried out by special-purpose 
digital processors dis'nct from digital memory (Fodor 1972, 1983; Cummins 198321). 
Strong Classical LOT: Classical LOT + Cogni'on is carried out by program-controlled 
digital processors (Miller, Galanter, and Pribram 1960; Fodor 1968, 1975; Fodor, Bever, 
and GarreX 1974; Newell and Simon 1976; Pylyshyn 1984). 

 
To understand the hardware requirements of these three Classical LOTs, we need to dis'nguish 
three relevant kinds of digital compu'ng systems: hardwired, plas'c, and program controlled. 
Hardwired digital compu'ng circuits, like those found in ordinary computer processors, perform 
fixed opera'ons. Typically, changing the opera'ons performed by such circuits requires 
physically rewiring the components. This is what programming a computer consisted of in some 
early computers: manually plugging cables to connect components in the desired way. Of 
course, in the brain there are no programmers to manually rewire circuits. And we know that 
cogni'on requires flexibility: different opera'ons need to be selected depending on task, 
evidence, and so forth. We also know that neural circuits are plas'c—they change their input-
output func'on over 'me. Therefore, serng aside the nonactual possibility that brains have a 
fixed structure, there are two main op'ons consistent with Classical LOT: either neural circuits 
are plas'c—that is, they can change their own organiza'on over 'me—or they divide into 
processing and control components that cons'tute a (collec'on of) program-controlled, digital 
processor(s). 
 
The former view, according to which the relevant circuits are plas'c and self-organize, is more 
closely associated with Connec'onism and computa'onal neuroscience, but it may also be 
combined with Weak or Moderate Classical LOT (more on this in Sect. 4).22 In contrast, the laXer 
view, according to which cogni've processes are execu'ons of programs stored in memory 
banks separate from the processors, is Strong Classical LOT (Fodor 1968, 1975; Newell and 
Simon 1976; Pylyshyn 1984). 
 
We can now sketch the representa'on and architectural requirements of Classical LOT. All 
versions of Classical LOT share the same representa'on requirement: a system of digital 
representa'ons that encode language-like syntac'c structures processed via primi've digital 
opera'ons defined over seman'cally atomic symbols. This, in turn, requires a finite list of words 
(atomic symbols) plus rules for combining the words into atomic sentences and atomic 
sentences into complex sentences. Typically, digitally encoded language-like systems build 

 
21 Cummins (1983) accounts for computa,on in terms of program execu,on but then accounts for program 
execu,on in terms of merely ac,ng in accordance with a program, so his view sounds like Strong LOT but is 
probably a version of Weak or Moderate LOT. 
22 Classical LOT is o\en contrasted with Connec,onism, computa,onal neuroscience, or both. By “Connec,onism”, 
I mean a framework that uses ar,ficial neural networks to provide how-possibly explana,ons of cogni,ve 
capaci,es without being constrained by neuroscien,fic evidence. By “computa,onal neuroscience”, I mean a 
framework that appeals to biological neural structures (including but not limited to neural networks) to explain 
cogni,ve capaci,es and is constrained by neuroscien,fic evidence. Thus, as I define them, in principle both 
Connec,onism and computa,onal neuroscience are compa,ble with Classical LOT, and neither of them is 
commiQed to cogni,on being solely a maQer of associa,on, although typical Connec,onist and 
neurocomputa,onal models are Nonclassical. 
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words out of leXers from a finite alphabet, though the leXers carry no seman'c informa'on by 
themselves. The use of an alphabet increases the efficiency of the system but is not strictly 
necessary.23 This representa'on requirement leads to Weak Classical LOT’s architectural 
requirement: a system of digital components whose states can encode the mentalese 
cons'tuents (words, sentences)—including the concatena'on between them that realizes their 
combina'ons—and can process those representa'ons. I will argue that these general 
requirements are not sa'sfied by biological brains. 
 
Weak Classical LOT has no provision for the separa'on of processors and memory. The 
separa'on of processors and memory is some'mes implicit and some'mes explicit in 
formula'ons of Moderate Classical LOT. Let’s make it explicit. Moderate Classical LOT 
dis'nguishes processors and memory, which stores representa'ons for extended periods. 
Coordina'ng between digital processors and memory requires sophis'cated control 
components that keep track of what is stored in different memory loca'ons, which opera'ons 
need to be performed on data structures and in which order, and which data structures need to 
be either fetched from or stored within specific memory loca'ons at any given 'me.  
 
In contrast to Weak and Moderate Classical LOT, Strong Classical LOT posits full-blown general-
purpose processors that execute programs stored in memory on data structures also stored in 
memory. From a distance, the architectural requirements of Moderate and Strong Classical LOT 
look similar. In fact, Strong Classical LOT requires less hardwiring of the control structure 
because much of the control is delegated to instruc'ons that can be stored in memory in the 
same form as the data. 
 
Having outlined the dis'nc'on between Classical and Nonclassical LOT and their architectural 
requirements, we now turn to the arguments and evidence for and against LOT. The next step is 
to tackle some general arguments that have been given for Classical LOT. 
 
 

3. Architectural Arguments and The Implementa>on Objec>on 
 
There are some general arguments for Classical LOT based on architectural features that are 
allegedly needed to explain cogni'on. Most notably, Minsky and Papert (1969) proved that two-
layer perceptrons cannot compute rela'vely simple 2-bit Boolean func'ons such as XOR, Fodor 
and Pylyshyn (1988) argued that certain associa've neural networks cannot account for the 
alleged produc'vity and systema'city of cogni'on, and Gallistel and King (2009) argued that 
synap'c strength cannot account for animal memory.24 Since Classical LOT can be used to 

 
23 In McCulloch and PiQs’s 1943 model, there aren’t even words. Each atomic symbol encodes a fully proposi,onal 
content. That is not yet a true LOT hypothesis as I understand it here; sub-senten,al structure is indispensable. 
24 Of these, systema,city is probably the most discussed (e.g., Aizawa 2003; Calvo and Symons 2014). For recent 
evidence that Nonclassical architectures can exhibit the requisite degree of systema,city, see O’Reilly et al. 2022; 
Lake and Baroni 2023; von der Malsburg 2024. For an excellent cri,que of Gallistel and King’s argument, see 
Morgan 2019. 



 15 

compute XOR and explain produc'vity, systema'city, and memory, Classical LOT is some'mes 
thought to follow. I call these considera'ons architectural arguments for Classical LOT.  
 
Note that architectural arguments do not provide observa'onal evidence that brains contain 
the representa'ons and architecture posited by Classical LOT; they only provide an inference to 
what is alleged to be the best (or only) explana'on. Their structure is the following: 
 

(P1) Classical LOT can explain cogni've capacity C;  
(P2) Nonclassical architecture M cannot explain C; 
(C) Therefore, Classical LOT is the likely explana'on of C.  

 
The original proponents of architectural arguments may or may not have intended them to 
prove that Classical LOT is the only possible explana'on of cogni'on. Since at least some of 
them are ohen interpreted as such, or at least as providing strong evidence for Classical LOT, we 
need to address them as such. If architectural arguments succeed, then the debate over LOT is 
seXled regardless of how brains turn out. Let’s see why they fail. 
 
Luckily, we do not need to get into the details of what each architectural argument purports to 
show or whether any of the specific alterna'ves they consider can or cannot explain the 
phenomena in ques'on. The reason architectural arguments fail is that even if M cannot explain 
C, Nonclassical architectures other than M might. 
 
The failure of architectural argument can be boiled down to the following computability 
considera'ons. We know that brains can compute func'ons such as 2-bit XOR. We know they 
can store informa'on and expand their use of memory resources up to a point. At least some 
nervous systems show behaviors that exhibit some degree of produc'vity and systema'city. 
These are important, coarse-grained facts about neural computa'on that can be inferred from 
behavior alone, or perhaps from behavior in combina'on with general theore'cal 
considera'ons. Such facts constrain our understanding of neurocomputa'onal architecture and 
virtually no one disputes them. 
 
Nevertheless, brains are finite. Therefore, when unaided by external memory storage, at any 
given 'me, brains are computa'onally equivalent to (very large) finite state automata (FSA). 
What I mean is that, whether or not brains use digital representa'ons and computa'ons (as 
Classical LOT alleges), insofar as their computa'onal capaci'es can be modeled by computability 
theory, their computa'onal capacity can be modeled by FSA (though see Maley and Piccinini 
2016 for some subtle'es). This constrains what the computa'onal architecture of nervous 
systems is capable of, but it determines neither the format of neural representa'ons nor other 
details of neurocomputa'onal architecture. 
 
In general, the same outer behavior is compa'ble with many inner structures. In other words, 
inner structure is underdetermined by outer behavior. A theory of the brain’s computa'onal 
architecture is no different. The mind sciences, especially when they appeal solely to behavioral 
benchmarks without looking under the hood, are especially prone to underdetermina'on (cf. 
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Anderson 1978 for a classic case study). The Classical LOT hypothesis is a case in point—a 
cau'onary tale that illustrates how risky it is to speculate about internal structure solely on the 
basis of behavioral evidence and theore'cal considera'ons, or rela'vely successful models, 
without considering available evidence about inner structure. 
 
Most relevantly, there are lots of ways to build FSA-equivalent devices, some digital and 
program-controlled, some digital and hardwired, some digital and plas'c, many nondigital, 
some known, and many unknown. Even if a specific type of FSA-equivalent system (say, one that 
must use only two-layer perceptrons, certain types of associa've neural networks, or synap'c 
strength as an account of memory) fails to explain some cogni've capacity, it doesn’t follow that 
another specific type of FSA-equivalent system (say, one that uses a Classical LOT) is the way the 
brain works. Therefore, general architectural arguments for Classical LOT do not establish that 
Classical LOT is the correct explana'on of cogni'on, or even a plausible one. The computa'onal 
architecture of the brain cannot be discovered via general considera'ons merely based on 
behavioral benchmarks; it can only be discovered by examining brains and figuring out which 
computa'onal architecture is there. 
 
Here, defenders of Classical LOT might reply that I am missing the point of the architectural 
arguments. They might suggest that no maXer what the performance limits of nervous systems 
might be in prac'ce, a theory of cogni'on inves'gates the competence of the system. In turn, 
architectural arguments strongly suggest that the competence of cogni've systems is 
computa'onally equivalent to a universal Turing machine, and universal Turing machines 
process digitally encoded data and programs. Any system with the right competence must be 
computa'onally more powerful than any FSA and, therefore, it must process a Classical LOT.25 
 
This is s'll a non sequitur, and my response is three-fold. First, not every Classical LOT 
hypothesis posits a computa'onally universal architecture; only Strong Classical LOT does.26 And 
Strong Classical LOT is much less plausible than Moderate Classical LOT (more on this in Sect. 
4.3). Thus, the more plausible version of Classical LOT—Moderate Classical LOT—is inconsistent 
with the above reply. Second, while architectural considera'ons are hugely important (more on 
that in Sect. 4), here we are just focusing on sheer computa'onal capacity. Sheer computa'onal 
capacity, or any more specialized capacity considera'ons such as the need to explain 
produc'vity and systema'city to the extent that cognizers exhibit it (cf. Johnson 2004), does not 
support Classical LOT. 

 
25 Some authors have speculated that brains might be computa,onally more powerful Turing machines, which of 
course are computa,onally more powerful than FSAs (e.g., Copeland 2000). But no mechanism by which such 
hypercomputa,onal power could be achieved has been proposed, and no evidence that cognizers have 
hypercomputa,onal powers has been given. Whether cogni,on is hypercomputa,onal should not be confused 
with whether cogni,on includes aspects that are Turing-uncomputable, e.g., because they include random aspects 
(cf. Turing 1950; Piccinini 2003, 2020a). 
26 Strictly speaking, even Strong Classical LOT, as I defined it, need not posit a computa,onally universal 
architecture; it only needs an architecture that is program-controlled. A program-controlled architecture may or 
may not be universal, depending on whether it supports a universal set of instruc,ons. This does not affect the 
thrust of my argument, so I set it aside. 



 17 

 
Third, even if there were a sense in which the competence of (idealized) cogni've systems is 
computa'onally universal, Classical LOT in the most important sense would s'll not follow. 
Computa'onal universality depends on three architectural proper'es: unbounded memory, the 
ability to store data and instruc'ons, and the ability to control computa'ons in response to 
instruc'ons. None of this requires the core Classical assump'ons that instruc'ons and data be 
encoded and processed digitally, and that memory and processing func'ons be carried out by 
structurally separate components. 
 
In fact, there is a clear and uncontroversial sense in which idealized, linguis'cally competent 
humans are, indeed, computa'onally universal, though in a way that is limited in prac'ce by 
their small memory capacity. Humans can follow any sequence of linguis'c instruc'ons they can 
memorize on any data they can memorize, thereby being equivalent to computa'onally 
universal systems un'l they run out of memory (which is usually preXy quickly). For all we 
know, humans may accomplish this by encoding and processing data and instruc'ons 
nondigitally within neural systems that fulfill both memory and processing func'ons. In other 
words, insofar as human neurocogni've systems are computa'onally universal, they might 
accomplish this feat by means of a Nonclassical computa'onal architecture. At any rate, 
cogni've systems are s'll limited by their finiteness, and hence equivalent in prac'ce to an 
FSA—unless aided by an unbounded external memory, which is beside the point. 
 
In addi'on, later we’ll see that computa'onal architectures that have liXle or nothing to do with 
Classical LOT are beXer than Classical LOT architectures at processing human language itself—
the very capacity that inspired LOT in the first place. To find out how neurocogni've systems 
exhibit their competence, we must inves'gate their actual computa'onal architecture, 
including but not limited to the format of their representa'ons, the type of processors they use, 
the opera'ons they perform, the type of memory they have, and whether memory is separate 
from processors. And the only way to discover our neurocomputa'onal architecture is to study 
how brains work. 
 
There remains what I call the implementaDon objecDon. This is the idea that the best that 
“Connec'onist” (and, presumably, neurocomputa'onal) theories can hope for is to explain how 
the algorithms and representa'ons posited by Classical LOT are implemented (Fodor and 
Pylyshyn 1988, pp. 64-6). The implementa'on objec'on goes hand in hand with the 
architectural arguments. We’ve already seen that the architectural arguments carry no water. 
Let’s briefly diagnose what goes wrong with the implementa'on objec'on. 
 
The implementa'on objec'on assumes that all the evidence pertaining to a theory of cogni'on 
belongs either at the algorithmic level (algorithms and representa'ons) or the implementa'on 
level. Furthermore, the objec'on assumes that “psychology” (i.e., behavioral evidence) is solely 
in charge of the algorithmic level.27 Ergo, any evidence that is supposedly not about algorithms 

 
27 Cf.: “[I]n the language of neurology…, presumably, no,ons like computa,onal state and representa,on aren’t 
accessible” (Fodor 1998, 96). Of course, nothing could be further from the truth. 



 18 

and representa'ons—i.e., all the evidence from neuroscience—must be about implementa'on. 
This misconstrues the situa'on in at least two crucial ways. First, as I pointed out, there is a 
level of analysis between algorithms and implementa'on: computa'onal architecture (e.g., 
processors, memory, and how they are organized). Second, the hardware constrains the 
architecture, which in turn constrains the algorithms and representa'ons it can run. 
 
For instance, ordinary digital computers are made of logic gates arranged to cons'tute 
processors and memory. Computer engineers call this “logic design”. This is the computa'onal 
architecture of digital computers. One and the same computa'onal architecture can be 
implemented using vacuum tubes, electromechanical relays, various kinds of integrated circuits, 
or some other means. The laXer are the physical technologies used to build digital compu'ng 
hardware. If the hardware—whatever it is—lacks appropriate degrees of freedom and 
organiza'on, it fails to cons'tute the relevant architecture. Specifically, if a system contains no 
hardware components that implement logic gates, it cannot be a von Neumann architecture. 
And without the relevant architecture, digital computa'ons cannot run. Another example of 
computa'onal architecture is the use of analog integrators and other analog components 
(adders, mul'pliers, etc.) to solve differen'al equa'ons within a general-purpose analog 
computer. Analog integra'on can be physically implemented using balls rota'ng on a disc or 
opera'onal amplifiers. But if a physical system contains no hardware components that 
implement analog integra'on (and other analog opera'ons), the system cannot be a general-
purpose analog computer. 
 
To reiterate, compu'ng systems can be analyzed at four levels of analysis: the computa'ons 
they perform, the algorithms and representa'ons they use to perform them, the computa'onal 
architecture that processes the representa'ons in accordance with the algorithms, and the 
technology that implements the architecture. Just because a computa'onal architecture can be 
implemented using different technologies, it would be fallacious to conclude that any physical 
technology, no maXer how arranged, cons'tutes a computa'onal architecture capable of 
running digital representa'ons and algorithms. 
 
Levels of analysis constrain one another. In one direc'on, algorithms and representa'on of any 
given type can only run on architectures capable of running them, and a given architecture can 
only be implemented on hardware with relevant proper'es. In the other direc'on, if hardware 
has a certain structure and organiza'on, this constrains the computa'onal architectures it can 
implement, which in turn can only support certain types of representa'ons and algorithms. 
Thus, if neural structure and organiza'on do not implement a Classical architecture, the brain 
cannot run Classical LOT representa'ons and algorithms, and the Classical LOT hypothesis fails. 
The crucial point is that if neural hardware suppor'ng a Classical architecture is missing, then 
Classical LOT is false. 
 
Another way to put this point is that “implementa'on” is ambiguous between implemen'ng 
algorithms and representa'ons within a computa'onal architecture and implemen'ng a 
computa'onal architecture using a certain physical substrate. The implementa'on objec'on is 
right only insofar as Classical LOT requires a Classical computa'onal architecture. But whether a 
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Classical architecture is present in neural systems can only be established by examining neural 
systems.28 
 
In conclusion, both the architectural arguments and the implementa'on objec'on provide no 
evidence whatsoever that Classical LOT is the correct explana'on of cogni'on. At best they 
establish that, if Classical LOT is true, then brains must possess the relevant computa'onal 
architecture. Our ques'on, then, is whether the kinds of representa'on and algorithm posited 
by any version of LOT, including Classical LOT, and the kinds of computa'onal architecture such 
representa'ons and algorithms require, are found in the brain. 
 

 
28 Two anonymous readers objected almost iden,cally: 
 

[Reader 1] But there is a third op,on: a physical substrate implements one computa,onal architecture 
(the kind of informa,on processing observed in cogni,ve neuroscience) which then implements another 
computa,onal architecture. We see this all the ,me in computers, where one computa,onal architecture 
implements another (and perhaps more—there is no reason why this could only iterate once), and all 
these hierarchically implemented architectures are realized in the same piece of hardware. This was the 
claim of Fodor and Pylyshyn: connec,onist networks, which are not physical substrates but are a 
computa,onal architecture, can implement another computa,onal architecture that supports LOT, and 
this is not an implausible claim about how it works in the brain.  
 
[Reader 2] [A] classicist could basically grant everything the author says about the messy, graded, and 
stochas,c nature of neural wetware, then argue that this neural substrate realizes a virtual machine that is 
classical and digital. The claim here isn't that neurons are logic gates, but that the organized ac,vity of vast 
popula,ons of neurons implements the func,onal profile of a system that processes discrete symbols 
according to rules. This "virtual machine" defense is about a higher level of organiza,on: the con,nuous 
dynamics of the lower-level system could be organized such that, at a higher level of descrip,on, its states 
map cleanly onto the discrete states of a Turing machine or classical symbol-processing system. 

 
Compare Fodor and Pylyshyn: 
 

[I]mplementa)on, and all proper,es associated with the par,cular realiza,on of the algorithm that the 
theorist happens to use in a par,cular case, is irrelevant to the psychological theory; only the algorithm 
and the representa,ons on which it operates are intended as a psychological hypothesis. Students are 
taught the no,on of a “virtual machine” and shown that some virtual machines can learn, forget, get 
bored, make mistakes and whatever else one likes, providing one has a theory of the origins of each of the 
empirical phenomena in ques,on (1988, emphasis original). 

 
These remarks invoke a third no,on of implementa,on: implemen,ng a virtual machine by a physical machine. A 
virtual machine in this sense is a complex arrangement of data and instruc,ons stored in the memory of a digital 
computer together with the execu,on of the instruc,ons on the data. Implemen,ng a virtual machine in this sense 
requires digitally encoding the virtual machine, storing it in memory loca,ons dis,nct from the processors, 
possessing a system of digital addresses for accessing the content of memory when needed, keeping track of the 
memory loca,ons that need to be accessed at each step, and much more—in other words, a program-controlled 
version of the Classical architecture that I am ques,oning (technically, a virtual machine can be stored in virtual 
memory, whose addresses are automa,cally translated into physical addresses by the opera,ng system and 
memory management hardware). As I will argue shortly, neurobiological systems lack all the features needed to 
support the implementa,on of virtual machines in this sense. Because this objec,on presupposes precisely the 
kind of Classical, program-controlled architecture that is under dispute, it unwirngly begs the ques,on. 
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4. Evidence for and against LOT 

 
I will now briefly review some of the evidence for or against the claim that brains operate in the 
way required by Classical LOT or, indeed, any LOT.  
 

4.1 Evidence for Representa>onal LOT 
 
Let’s begin with Representa'onal LOT, the rela'vely modest claim that some (sequences of) 
cogni've states represent their targets in a language-like way. There are three types of evidence 
in its favor. 
 
First, there is outer speech. Humans use both natural and formal languages, including the 
languages of logic and math; therefore, human brains contain machinery capable of language 
processing. No one disputes this. So, merely poin'ng to language use is not enough to support 
the existence of a mentalese. Yet it is both obvious and a well-established finding of 
contemporary linguis'cs and philosophy of language that human linguis'c uXerances have 
complex syntac'c, seman'c, and pragma'c structure, much of which is not explicitly encoded in 
uXerances themselves but must be understood by speakers and listeners based on a broader 
understanding of the language and context in which uXerances are made. Given all this, it’s 
hard to see how humans could acquire the ability to understand and produce language without 
processing neural representa'ons that mirror both the overt and covert structure of uXerances 
and their linguis'c context. In addi'on, humans acquire the ability to construct and 
comprehend not only simple uXerances but full arguments that employ logical connec'ves. It’s 
hard to see how humans could acquire this ability without there being something in human 
brains that tracks the structure of complex linguis'c construc'ons and arguments. Whatever 
neural representa'ons are involved in language processing must be able to disambiguate 
ambiguous expressions and represent the syntac'c, seman'c, pragma'c, and inferen'al 
proper'es of language, and more (e.g., phonology). At any rate, it has been empirically 
demonstrated that human brains bear neural signatures of uXerances during produc'on and 
comprehension.29 These are neural representa'ons that occur while people process language. 
Such neural representa'ons mirror at least some of the structure of linguis'c uXerances 
(Fedorenko et al. 2024).30 There is also evidence that even some non-linguis'c perceptual 
representa'ons involved in natural language comprehension acquire some language-like 
structure (cf. Bocanegra et al. 2022). This is already enough to establish a version of 

 
29 I first learned this from a talk by Patrick Suppes (cf. Suppes et al. 1999). 
30 Since public language can be ambiguous or otherwise underspecified in a way that language comprehension and 
produc,on are not, mentalese must contain addi,onal structure not found in public language (cf. Kaye 1995, 101; 
Hinzen 2015; Dupre 2021, Sect. 3). Dupre (2021, Sects. 5-6) argues that mentalese cannot be natural language, by 
which he means the i-language posited by genera,ve linguists. His reason is that there are sentences that are 
ungramma,cal yet acceptable; therefore, there might be a medium dis,nct from the i-language in which to express 
such sentences. Even if Dupre’s conclusion were correct (a big if, given that he himself explores several strategies 
for avoiding it), this is consistent with the present point. The medium posited by Dupre may well be a type of 
language-like neural representa,on partly dis,nct from the neural representa,ons that underlie the i-language. 
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Representa'onal LOT: at least the neural representa'ons involved in language produc'on and 
comprehension represent in a language-like way.31 
 
Second, there is inner speech. Many humans report experiencing at least some of their 
thoughts as if they were a kind of inner monologue, expressed within a natural language they 
understand and either heard or spoken in their head. This is robust introspec've evidence that 
some cogni've events have language-like structure (in natural language). Yet inner speech need 
not be introspectable. There is evidence that some thought processes involve unconscious 
linguis'c imagery of the sort that humans can some'mes introspect, that human brains bear 
neural signatures of inner speech (Jack et al. 2019), and that inner speech enhances some 
cogni've func'ons (Nedergaard et al. 2023a, b; cf. Carruthers 1998, 2002; Lagland-Hassan and 
Vicente 2018; Munroe 2023, 2025; Frankfort 2024; Kompa 2024a, b). This is strong evidence 
that neural representa'ons involved in inner speech represent in a language-like way. 
 
Third, there are linguis'c determinants of human thought. As Hinzen et al. (2024) argue 
persuasively, natural languages encode gramma'cal proper'es such as Person (the difference 
between I, you, they, etc.) and Tense (the difference between was, is, etc.), among others, that 
are not known to have non-linguis'c counterparts or to exist independently of natural language 
and are not reducible to other syntac'c or seman'c proper'es. It is independently plausible 
that humans have at least some thoughts that are expressible in natural language and include 
such gramma'cal proper'es (cf. Hinzen 2013)—if nothing else, as the previous paragraph points 
out, it is introspec'vely obvious to many of us that we can recite linguis'c uXerances in our 
own inner speech. Therefore, at least the neural representa'ons that realize linguis'cally 
expressible thoughts represent in a language-like way. Importantly, the gramma'cal proper'es 
in ques'on are proper'es of natural language, not of any mentalese dis'nct from natural 
language. 
 
Further evidence for language-like representa'ons is hard to come by, especially when it comes 
to the digitally encoded symbols posited by Classical LOT. I will briefly consider two puta've 
examples. 
 
The first example is a defense of LOT offered by Dehaene and collaborators based on a series of 
recent studies: “humans possess mul'ple internal languages of thought, akin to computer 
languages, which encode and compress structures in various domains (mathema'cs, music, 
shape…) … [H]umans […] engage a logical, recursive mode of representa'on akin to a 
programing language” (Deheane et al. 2022, 751-2). If their analogy with computer programs is 
interpreted strictly, this is a version of Strong Classical LOT. Here I cannot do jus'ce to the depth 

 
31 The present argument from language acquisi,on and processing to language-like neural representa,ons should 
not be confused with superficially similar-sounding arguments from language acquisi,on and processing to 
“classical, symbolic architectures” (e.g., Dupre 2023, 410). Classicists argue that only a Classical LOT architecture 
can acquire and process language. The conclusion of this non sequitur is directly refuted by the fact that our best 
models of language processing are deep neural networks that use con,nuous (Nonclassical) representa,ons (cf. 
Chowdhery et al. 2023; Milliere forthcoming).  
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of their work. The following brief considera'ons will suffice to illustrate how difficult it is to find 
evidence for LOT, par'cularly Classical LOT. 
 
The evidence offered by Dehaene and collaborators pertains to sequences, such as regular 
sound sequences like ABAB… or AABBAABB… (Al Roumi et al. 2023), or regular geometric 
paXerns like zig zags and squares (Sablé-Meyer et al. 2021). Such regular sequences can be 
generated by nested repe''ons of primi've opera'ons. School-educated humans can exploit 
symmetries and repe''ons in such sequences to encode them in a compressed form that 
depends on the order, number, and nes'ng of the opera'ons. Subjects memorize such 
sequences, predict how they will con'nue, and compare them with deviant sequences beXer 
than they do with less regular sequences, whose representa'ons cannot be compressed in the 
same way. Brain recordings using magnetoencephalography suggest that when it comes to 
regular geometric sequences, subjects’ brains encode not only specific loca'ons but also the 
geometric proper'es of transi'ons between loca'ons and the ordinal posi'on of transi'ons 
within a sequence (Al Roumi et al. 2021), strongly sugges'ng that regular sequences are 
neurally represented in a compressed form that depends on the order, number, and nes'ng of 
the opera'ons. Monkeys appear to either lack such capaci'es for compressed representa'ons 
of regular sequences or acquire them more slowly (Wilson et al. 2017; Ferrigno et al. 2020). 
Preschoolers and adults with no Western-style schooling perform somewhere in between 
monkeys and schooled adults (Deheane et al. 2022). The different capaci'es of schooled 
humans, non-schooled humans, and monkeys suggest that ac'vi'es commonly performed by 
humans and reinforced in schools facilitate the efficient encoding of symmetries and nested 
repe''ons. If I had to guess, I would guess that when subjects observe, produce, or manipulate 
regular sequences repeatedly, as Westerners do in school, their brains construct a compressed 
sensorimotor code for such sequences that relies on symmetries, repe''ons, and nes'ng of 
opera'ons, possibly in a way that is facilitated by acquiring a natural language. Note that there 
is independent evidence that nonhuman brains can memorize sequences in highly compressed 
ways (Liu et al. 2024). 
 
The evidence presented by Dehaene and colleagues is consistent with (human) neurocogni've 
systems possessing one of at least five dis'nct algorithmic/architectural features, which I list 
here from least to most specula've: (i) the ability to encode compressed representa'ons of 
symmetries and nested repe''ons of opera'ons nondigitally by using ordinary (composi'onal) 
neural representa'ons (cf. Xie et al. 2022 for the non-compressed version of such 
representa'ons); this hypothesis is consistent with the denial of LOT; (ii) the ability to encode 
and manipulate nonlinguis'c-yet-compressed representa'ons of sequences facilitated by 
acquiring a natural language; this hypothesis is consistent with a Nonclassical LOT; (iii) the ability 
to encode compressed representa'ons of sequences digitally; such representa'ons need not be 
especially language-like but this hypothesis goes at least part of the way towards Weak or 
Moderate Classical LOT; (iv) the ability to encode compressed representa'ons of sequences in a 
language-like digital format; this hypothesis requires a Weak or, more likely, a Moderate 
Classical LOT; (v) the ability to encode compressed representa'ons of sequences in the form of 
digital computer programs; this hypothesis entails Strong Classical LOT. 
 



 23 

The issues raised by Dehaene et al. are complex and may point towards novel aspects of neural 
representa'on and computa'on. Yet their evidence does not entail that neurocogni've systems 
use Peircean symbols or any sort of language-like representa'ons, let alone digitally encoded 
symbolic structures or computer programs. Therefore, their evidence does not unequivocally 
support LOT, let alone Classical LOT. 
 
Our second example is Quilty-Dunn et al.’s (2023) detailed and sustained argument for LOT. I 
lack space for a detailed response, so the following brief observa'ons will have to do.32 The 
upshot will be that some of their evidence supports, at best, a generic (either Classical or 
Nonclassical) LOT. Perhaps this is all they intend, since it’s unclear which version of LOT they 
endorse. In some passages, they imply they are defending the same view as Fodor, Pylyshyn, 
and other proponents of Classical LOT.33 Furthermore, at least one of them defends Classical 
LOT explicitly elsewhere (e.g., Green and Quilty-Dunn 2021). Nevertheless, their official thesis is 
that some cogni've processes involve a LOT, and LOT representa'ons form a natural kind with 
six proper'es: discrete cons'tuents, role-filler independence, predicate-argument structure, 
logical operators, inferen'al promiscuity, and abstract conceptual content. This may sound like a 
version of Representa'onal LOT (Chalmers 2023), to which they respond by endorsing 
Computa'onal LOT explicitly (Quilty-Dunn et al. 2023, 72-3). S'll, it remains uncertain whether 
they endorse Classical LOT or a generic version of Computa'onal LOT. If they embrace the laXer, 
or even beXer if they embrace Nonclassical LOT, I welcome them as allies. S'll, it is instruc've to 
see what their evidence does and does not support. 
 
The main limita'on of Quilty-Dunn et al.’s argument is that the six proper'es they use to define 
LOT, as they ar'culate them, fall short of a language-like representa'onal format in the relevant 
sense. To be clear, I am not merely saying that each of their six proper'es is individually 
insufficient for a language-like format. I am saying that even all six proper'es, were they 
instan'ated together, are insufficient for the relevant kind of format. Partly because of this, 
most of their evidence fails to support any LOT hypothesis properly so called, while some of it 
supports at best a generic (either Classical or Nonclassical) LOT. As I men'oned in Sect. 2, at a 
minimum, language-like representa'ons should have cons'tuents that play the seman'c roles 
of linguis'c subjects and predicates, which combine into structures that play the seman'c roles 
of atomic sentences, which in turn combine into structures that play the seman'c roles of 
complex sentences. Let’s see how Quilty-Dunn et al.’s six proper'es compare. 
 
Four of the proper'es listed by Quilty-Dunn et al.—discrete cons'tuents, role-filler 
independence, inferen'al promiscuity, and abstract conceptual content—do not mandate a 
language-like format under any interpreta'on. Languages have these proper'es; many non-

 
32 A more detailed rebuQal to the sort of argument offered by Quilty-Dunn et al. 2023 with respect to percep,on 
may be found in Block 2023, though Block also appears to assume that cogni,on involves Classical LOT, without 
providing evidence. 
33 For example: “We will argue [that] … [i]n the half century since Fodor’s (1975) founda,onal discussion, the case 
for the LoTH has only grown stronger over ,me” (1); “These proper,es [which define LOT] are intended to capture 
the spirit of earlier presenta,ons of LoTH – a combinatorial, symbolic representa,onal format that facilitates 
logical, structure-sensi,ve opera,ons (Fodor & Pylyshyn, 1988)” (Quilty-Dunn et al. 2023, 3). 
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language-like representa'onal systems have them too. Let’s quickly see why. Depending on 
what is meant by “discrete”, many non-language-like formats have discrete cons'tuents; e.g., 
neural representa'ons ohen cluster into discrete categories and composite iconic 
representa'ons can be built out of discrete cons'tuents (e.g., using pictograms). Role-filler 
independence can be exhibited by any system flexible enough to perform the same opera'on 
regardless of what its input represents (cf. Millière and Buckner 2025). Any representa'onal 
format can be used in inference; degree of inferen'al promiscuity depends on factors that 
include aspects of computa'onal architecture that go beyond representa'onal format. Finally, 
many non-language-like formats can represent abstract contents; e.g., contemporary 
(Nonclassical) ar'ficial neural networks (cf. Buckner 2023). Since these four proper'es do not 
discriminate between language-like and non-language-like formats, a for'ori they do not 
discriminate between Classical and Nonclassical LOT.34 The remaining two proper'es require 
more careful treatment. 
 
Predicate-argument structure is described by Quilty-Dunn et al. as “dis'nc'vely LoT-like” (2023, 
3). This may or may not be true depending on what is meant by “predicate-argument structure”. 
Without greater precision, aXribu'ng predicate-argument structure to a representa'onal 
system is consistent with neurocogni've systems possessing one of at least four dis'nct 
algorithmic/architectural features, listed here from least to most specula've: (i) the ability to 
bind representa'ons of proper'es to representa'ons of objects, which does not require a 
language-like format and hence is compa'ble with rejec'ng any LOT hypothesis;35 (ii) the ability 
to combine (possibly non-digital) representa'ons seman'cally equivalent to linguis'c predicates 
with representa'ons equivalent to linguis'c arguments (i.e., roughly, representa'ons of 
senten'al subjects), which is compa'ble with a Nonclassical LOT; (iii) the ability to combine 
digitally-encoded mentalese predicates with digitally-encoded mentalese arguments, which 
requires Weak or Moderate Classical LOT; and (iv) the ability to execute digitally-encoded 
instruc'ons with a predicate-argument structure, which entails Strong Classical LOT. The main 
evidence the authors provide for predicate-argument structure is of two kinds: first, subjects 
can track objects while objects change some of their proper'es (Sect. 4.1.2), which is consistent 
with (i) and, therefore, the denial of LOT; second, the logical structure of linguis'c input can 

 
34 Hafri et al. “advance the case for LoT-like representa,on in percep,on” on the grounds that at least some 
perceptual representa,ons exhibit “LoT proper,es: Discrete cons)tuents, role-filler independence, and abstract 
content” (2023, 45, emphasis original). I agree that some perceptual representa,ons are likely to have those 
proper,es. Pace Hafri et al., this reinforces the conclusion that such proper,es do not discriminate between 
language-like and non-language-like formats. 
35 Denying this trivializes the LOT hypothesis. Consider that Kazanina and Poeppel (2023) point out that 
paradigma,c neural representa,ons such as hippocampal place cells, grid cells, boundary cells, head-direc,on 
cells, object cells, etc. can represent abstract proper,es and exhibit role-filler independence. This suggests that, 
once again, represen,ng abstract proper,es and role-filler independence do not mandate a language-like format 
(cf., e.g., Frankland and Greene 2020; Schwartz and Fresco 2025). In addi,on, Kazanina and Poeppel maintain that 
grid cells and the like func,on as LOT predicates: “the neurobiological mechanisms found in the rodents’ spa,al 
naviga,on system are ontologically sufficient to represent symbols and opera,ons required by the LoT” (p. 1007). If 
so, then ordinary neural representa,ons are LOT predicates. If this were accepted, the result would be a radical and 
thoroughly Nonclassical version of LOT quite distant from LOT’s original analogies with either natural or formal 
languages (cf. Sect. 4.3; van Bree 2024). 
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affect implicit artudes (Sect. 6.2), which is consistent with (ii) and thus with a generic 
(Nonclassical) LOT. In sum, some of their evidence for predicate-argument structure is neutral 
with respect to the LOT hypothesis, while the rest supports a generic (either Classical or 
Nonclassical) LOT. 
 
The last property, logical “operators”, is also ambiguous between four possible 
algorithmic/architectural features, from least to most specula've: (i) the ability to perform 
logical or logic-like opera'ons (e.g., equivalent to Boolean connec'ves or quan'fica'on), which 
even rela'vely simple, Nonclassical neural networks can have and is consistent with the denial 
of LOT; (ii) the ability to use (possibly non-digital) representa'ons equivalent to logical 
connec'ves and quan'fiers, which is compa'ble with a Nonclassical LOT; (iii) the ability to 
combine digitally-encoded logical connec'ves and quan'fiers with digitally-encoded mentalese 
sentences to perform logical inferences on the sentences, which requires a Weak or, more likely, 
Moderate Classical LOT; and (iv) the ability to perform logical opera'ons by execu'ng digitally-
encoded symbolic instruc'ons, which entails Strong Classical LOT. The main evidence they 
provide is that humans can learn concepts that have Boolean or quan'fica'onal structure (Sect. 
3 of their ar'cle; Piantadosi et al. 2016); and that humans and some nonhuman animals, when 
shown first a reward being hidden in one of two cups behind an occluder and then the empty 
cup, select the other cup (which contains the reward) without looking inside first (Sect 5.2 of 
their ar'cle); this suggests that humans and some nonhuman animals can perform inferences 
equivalent to Boolean nega'on and disjunc'on. Such evidence is consistent with (i), which is 
consistent with the denial of LOT. Thus, such evidence does not unambiguously support LOT, let 
alone Classical LOT. 
 
Perhaps because they recognize some of these limita'ons, Quilty-Dunn et al. admit that 
“[m]any, perhaps all, of these proper'es are not necessary for a representa'onal scheme to 
count as an LoT, and some may be shared with other formats” (ibid., 2). I agree and add that the 
main problem is lack of sufficiency: even all six proper'es (as they define them), collec'vely, are 
insufficient for a language-like representa'onal format. Partly due to this, most of the evidence 
they provide does not clearly support any LOT hypothesis, and none supports Classical LOT.36  
 
In conclusion, recent defenses of (Classical?) LOT hypotheses point at behavioral evidence that 
is mostly consistent with cognizers relying on representa'onal formats that are not language-
like, and even the evidence that suggests a language-like representa'onal format is consistent 
with a Nonclassical LOT hypothesis. Thus, no empirical evidence suppor'ng Classical LOT has 
been offered. Nevertheless, we’ve seen that there is compelling evidence for a generic 
Representa'onal LOT in the form of processing outer speech and its neural signature, inner 
speech and its neural signature, and linguis'c determinants of thought. 
 
 

4.2 Evidence for Computa>onal LOT 

 
36 Some of the peer commentaries go partway towards this conclusion in ways that complement my discussion 
(e.g., AQah and Machery 2023; Griffiths et al. 2023; Madva 2023; Pereplyotchik 2023, Roskies and Allen 2023). 
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As I men'oned, computa'on is the only known type of physical process capable of processing 
language-like structures in ways that match the syntac'c, seman'c, pragma'c, and inferen'al 
proper'es of linguis'c structures. Because of this alone, if Representa'onal LOT is true, then 
some form of computa'on is probably the way mentalese is processed. More broadly, there are 
a couple of reasons that at least some core neurocogni've processes are computa'onal (cf. 
Piccinini 2020). Here I briefly present them in outline. 
 
 The Argument from Medium Flexibility 

1. Rule-governed, medium-flexible func'onal mechanisms are computa'onal 
2. Neurocogni've architecture is (at least in part) a rule-governed, medium-flexible 

func'onal mechanism 
---------------------------------------------------------------------------------------------------------- 

 Therefore, neurocogni've architecture is (at least in part) computa'onal 
 
A func'onal mechanism is a mechanism with teleofunc'ons (Garson 2013). A rule-governed 
mechanism is one that does not operate at random but in accordance with a rule, where a rule 
is a mapping from inputs and internal states to outputs. The first premise states that if a rule-
governed mechanism has teleofunc'ons that can be realized in different media, then that is a 
compu'ng mechanism.37 It is a consequence of most accounts of physical computa'on, which 
see computa'on as rule-governed, teleofunc'onal, medium-flexible physical processes (cf. 
Anderson and Piccinini 2024). 
 
The second premise expresses, in dis'lled form, the research program of much computa'onal 
neuroscience (e.g., Dayan and AbboX 2005; MalloX 2024). Neurocogni've processes involve 
hundreds of types of neurons that form myriad structures and send electrical signals that 
release over a hundred types of neurotransmiXers. Some of this complexity of structure and 
func'on is understood and much remains to be understood. Nevertheless, from this same 
complexity, computa'onal neuroscien'sts infer structural and func'onal principles that do not 
depend on all biophysical details. These principles have to do with yielding the values of certain 
higher-level variables, such as output spikes or spike sequences, from the values of certain 
equally higher-level input variables under appropriate condi'ons, where the proper'es of the 
spikes that make a func'onal difference are proper'es such as frequency or 'ming, which are 
defined in ways that are largely independent of the physical media (voltages, ions, 
neurotransmiXers) in which they are realized and, therefore, could be realized in other media. 
The rela'ons between inputs, internal states, and outputs are not random but accord with a 
rule. An example of a rule is performing a rec'fied linear summa'on on inputs. These principles 
and rela'ons can be captured mathema'cally and realized in computa'onal models of 
neurocogni've func'ons.  

 
37 Medium flexibility should not be confused with mul,ple realizability, which pertains to func,ons that can be 
realized by manipula,ng the same medium in different ways. Medium flexibility is some,mes called “medium 
independence” or “substrate neutrality”, terms that have generated some confusion. Seth (2025) uses “medium 
flexibility” in the same sense, while Kirkpatrick (2022) uses it in a related sense.  
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The stunning success of ar'ficial deep neural networks (DNNs) and the AI revolu'on they are 
bringing about (LeCun et al 2015) shows that there is something right about the 
neurocomputa'onal approach to neurocogni've func'ons. Ar'ficial DNNs have been able to 
match and some'mes surpass human cogni've capaci'es. Some DNNs, known as large 
language models, specialize in processing language-like structures, and their competence with 
human language vastly surpasses ar'ficial systems with “symbolic” architectures consistent with 
Classical LOT (Khurana et al. 2023; Fang et al. 2024; Lappin 2024).38 While there are many 
differences between (ar'ficial) DNNs and neurocogni've systems, DNNs exhibit their capaci'es 
by reproducing at least some of the architectural features and computa'onal principles 
discovered by neuroscien'sts (e.g., Cohen et al. 2022; Doerig et al. 2023) while realizing those 
same principles in ar'ficial systems that are physically very different from neural 'ssues. Thus, 
DNNs provide further evidence for the second premise.  
 
To the extent that large language models process language by possessing (sequences of) states 
that mirror linguis'c structure, they also provide direct confirma'on of Representa'onal and 
Computa'onal LOT. At any rate, processing language-like structures is a paradigma'c example 
of the kind of complex process that seems to require a computa'onal architecture. Thus, insofar 
as brains process language-like structures (Representa'onal LOT), it is likely that they do so by 
possessing an appropriate computa'onal architecture (Computa'onal LOT). In conclusion, the 
success of computa'onal neuroscience and DNNs support Computa'onal LOT, although a more 
adequate argument would require a more detailed canvassing of the literature than I have 
space for.  
 
 The Argument from Complex Informa>on Processing 

1. Sufficiently complex informa'on processing requires computa'on 
2. Neurocogni've systems process informa'on in sufficiently complex ways 
------------------------------------------------------------------------------------------------------- 

 Therefore, relevant neurocogni've processes are computa'onal 
 
This argument begins with the observa'on that computa'on is the only known physical process 
capable of processing informa'on-bearing states in ways that match their seman'c proper'es. 
Cogni'on seems to involve the processing of informa'on-bearing states in ways that match 
their seman'c proper'es, and neurocogni've systems process informa'on in ways that are as 
complex as any. Processing language-like structures in ways that match their seman'c 
proper'es is a paradigma'c example of complex informa'on processing, so this argument 
applies to Representa'onal LOT. Variants of this argument can be found in all corners of the 

 
38 Here are four ways in which large language models are Nonclassical: (1) they encode informa,on nondigitally as 
values along mul,dimensional con,nuous scales, (2) they encode language not by encoding their syntac,c 
structure explicitly but by compressing sta,s,cal structure across mul,ple linguis,c scales that go beyond syntax to 
include sub-lexical paQerns, seman,c rela,ons, and discourse and topic structure; (3) since they encode 
informa,on in ways that are mul,dimensional and con,nuous, by necessity they process such informa,on using 
nondigital opera,ons (using matrix mul,plica,on; aQen,on weights; nonlinear ac,va,ons; residual connec,ons); 
(4) they learn by associa,ve learning rather than explicit hypothesis tes,ng. 
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mind sciences. This is one reason that the idea that cogni'on involves computa'on dominates 
the mind sciences (Colombo and Piccinini 2023). 
 
Both arguments make a compelling case that, if neurocogni've systems manipulate language-
like structures, and par'cularly if they do so in ways that match their seman'c proper'es (i.e., 
Representa'onal LOT), then they do so by compu'ng over language-like structures (i.e., 
Computa'onal LOT). Recall, however, that computa'on need not be digital and the 
neurocogni've architecture need not be Classical, so Classical LOT does not follow from any of 
this. If Classical LOT is to hold, it requires independent support. 
 
 

4.3 Evidence for and against Classical LOT 
 
I will now argue that empirical evidence accumulated over the past several decades is so 
overwhelmingly against Classical LOT that Classical LOT is no longer a viable hypothesis.  
 
For starters, recall that Weak Classical LOT simply states that language-like neural 
representa'ons are digitally encoded and processed by digital compu'ng systems. This does not 
give us a lot of explanatory power without at least the further assump'on that there are digital 
memories, dis'nct from processors, where mentalese data structures can be stored, and this 
yields Moderate Classical LOT. If we add the further assump'on that the processors execute 
programs stored in memory, we reach Strong Classical LOT. 
 
In Sect. 2, I men'oned three kinds of digital compu'ng systems: hardwired, plas'c, and 
program controlled. Program control provides a lot of computa'onal flexibility at the cost of a 
very specific and delicate control structure. Aside from program control, digital circuits can be 
hardwired or plas'c. As I already men'oned, neural circuits are usually plas'c, so let’s set aside 
hardwired circuits. Given that I am allowing digital circuits to be plas'c, the Classical-
Nonclassical dichotomy turns into a spectrum with a grey area in between. It’s worth briefly 
discussing which por'ons of the spectrum we are primarily interested in. 
 
On the Classical end of the spectrum are hardwired digital networks of logic gates like those 
that make up conven'onal digital computers. On the Nonclassical end of the spectrum are 
nondigital, plas'c networks of neurons—that is, networks that encode informa'on nondigitally 
and thus, a for'ori, compute by means of nondigital opera'ons. If we travel along the spectrum 
from the Classical end towards the Nonclassical end, in the middle we find networks that 
encode informa'on digitally and can be trained to develop a digital-step-by-digital-step 
architecture (cf. Turing 1948; Copeland and Proudfood 1996) and then networks that encode 
inputs and outputs digitally but can perform nondigital opera'ons (e.g., because they process 
signals con'nuously, or encode intermediate steps nondigitally, or because their computa'ons 
are holis'c or subsymbolic; cf. Aydede 1997; Smolensky and Legendre 2006; Kleyko et al. 2022, 
2023). 
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Much of the Classicism-Connec'onism debate from the 1980s and 1990s occurred within this 
grey area of networks that encode inputs and outputs (approximately) digitally but are plas'c 
and perform nondigital intermediate opera'ons. Some'mes Classicists argued that such 
networks are either insufficiently Classical or, if they are sufficiently Classical, they are 
implementa'ons of Classical systems (e.g., Fodor and Pylyshyn 1988) while Connec'onists 
argued that such networks are sufficiently Nonclassical to count as alterna'ves to Classical LOT 
(e.g., Smolensky 1988). More recently, Papadimitriou et al. (2020) developed an idealized, 
neurally inspired model—the assembly calculus—showing in principle how networks of spiking 
neurons could manipulate neuronal assemblies to implement Turing-complete computa'ons. 
 
We don’t need to resolve the Classicism-Connec'onism dispute because these “Connec'onist” 
models in the middle of the spectrum are not realis'c neurocomputa'onal models. They are 
mo'vated primarily by engineering, behavioral, or mathema'cal considera'ons. Even where 
they are loosely inspired by neural principles, many of their mechanisms and opera'ons (e.g., 
binding via circular convolu'on, permuta'on, or large-scale connec'vity paXerns) are 
unsupported by current neurophysiology and do not correspond to any known neural processes 
or circuits.39 I am not defending this kind of “Connec'onism”. I am defending the view that the 
computa'onal architecture of the brain can only be discovered by studying brains empirically 
and by building models that, unlike both Classical and many Connec'onist models, are 
constrained by evidence about how brains work. As I will argue presently, brains encode and 
process informa'on nondigitally and lack most of the features of Classical architectures. 
Therefore, whether we choose to classify neural networks that fall in the grey area between the 
Classical and Nonclassical ends of the spectrum as Classical or Nonclassical does not maXer 
much. 
 
Three types of reasons have been given to support Classical LOT: behavioral evidence of certain 
cogni've capaci'es (e.g., language processing, or the evidence reviewed by Dehaene et al. 2022 
and Quilty-Dunn et al. 2023), architectural arguments to the effect that a computa'onal 
architecture that supports at least Moderate Classical LOT is the only possible explana'on of 
such cogni've capaci'es (e.g., Fodor and Pylyshyn 1988; Gallistel and King 2009), and Classical 
computa'onal models of cogni've capaci'es. 
 
In Sects. 4.1 and 4.2, I argued that the available behavioral evidence strongly supports 
Representa'onal LOT and Computa'onal LOT, but it does not support Classical LOT. In Sect. 3, I 
argued that what the architectural arguments support is merely the condi'onal that, if the 
Classical LOT hypothesis holds, then brains must contain the relevant computa'onal 
architecture. So, the ques'on remains, do brains contain the kind of computa'onal architecture 
that is required for Classical LOT to hold? 
 

 
39 A possible excep,on: as I pointed out in Sect. 3, humans can follow any sequence of linguis,c instruc,ons they 
can memorize on any data they can memorize, thereby becoming equivalent to computa,onally universal systems 
un,l they run out of memory. Under such special constraints, perhaps some neural systems operate in ways that 
approximate digital computa,on at a coarse level of organiza,on. 
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Before we look at relevant empirical evidence, I will say a few words about Classical 
computa'onal models of cogni'on. Classical models, which purport to explain cogni've 
capaci'es in terms of symbolic (digital) computa'ons, form a storied tradi'on that includes 
General Problem Solver (Newell and Simon 1972), ACT-R (Anderson 1983), and SOAR (Newell 
1990), among others. The point I made about architectural arguments—that they fail to support 
the Classical LOT hypothesis due to a combina'on of underdetermina'on and computability 
considera'ons—applies to Classical computa'onal models as well. Some coarse-grained 
features of neurocomputa'onal systems can be successfully inferred from some combina'on of 
behavioral capaci'es and models that capture such capaci'es. But the format of neural 
representa'ons and the details of neurocomputa'onal architecture cannot be inferred from 
behavior and behavior-based models alone. 
 
The same func'on can be computed by indefinitely many algorithms, some fully digital and 
Classical (of which some are hardwired, others are based on program execu'on), some in the 
grey area between Classical and Nonclassical, many nondigital (and hence Nonclassical), some 
known, and many unknown. Therefore, in the absence of neuroscien'fic evidence that brains 
have the computa'onal architecture that supports the algorithms and representa'ons posited 
by a model, the mere success of a computa'onal model, no maXer how well it matches 
behavioral evidence (including error rates and reac'on 'mes), cannot by itself support any 
precise hypothesis about computa'onal architecture, representa'ons, and algorithms. 
 
Given the evidence that brains have a Nonclassical architecture (to be reviewed presently), 
many former proponents of Classical models have embraced the cogni've neuroscience 
revolu'on and transi'oned towards Nonclassical models or at least the view that Classical or 
quasi-Classical models are just rough approxima'ons of a Nonclassical brain (Boone and 
Piccinini 2016, 1529-30). Yet Classical models and their successes are s'll some'mes men'oned 
as puta've evidence that the brain itself is Classical. A case in point is the so-called Probabilis'c 
LOT (PLOT) family of models recently developed by Tenenbaum and associates (Griffiths et al. 
2024). The main innova'on of PLOT models is that, unlike typical Classical LOT models, PLOT 
algorithms compute over representa'ons of probabili'es in accordance with Bayes’ theorem. 
  
As PLOT proponents point out, the kind of Bayesian inference they posit is computa'onally 
intractable—that is, it requires more representa'onal and computa'onal resources than brains 
can muster. Therefore, brains cannot literally work in the way described by PLOT models. 
Instead, PLOT proponents suggest that brains approximate PLOT models (e.g., Vul et al. 2014). 
This sugges'on may be interpreted in two very different ways.  
 
One interpreta'on is that brains have a Classical architecture that employs some 
computa'onally tractable heuris'c(s) that some'mes approximate(s) Bayesian inference. This is 
consistent with the Classical LOT hypothesis.40 To make it plausible, there needs to be empirical 

 
40 This interpreta,on is suggested by statements to the effect that cogni,on literally involves mentalese 
representa,ons employed by PLOT models. For instance: 
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evidence that brains have a Classical architecture plus evidence that the hypothesized Classical 
neural computa'ons follow heuris'cs that approximate Bayesian inference. If such evidence 
were found, Classical LOT would be vindicated. On the contrary, we will see shortly that there is 
overwhelming evidence that brains have a Nonclassical architecture.  
 
The other interpreta'on of PLOT models is that brains have a Nonclassical architecture that, in 
relevant cases, computes in ways that approximate Bayesian inference without relying on 
digitally encoded symbols or symbolic structures (Rescorla 2023; cf. Griffiths et al. 2024, Ch. 12). 
This is plausible, can be assessed on a case-by-case basis, and does nothing to vindicate Classical 
LOT, or even LOT simpliciter. Here it’s worth adding that, if neurocogni've systems approximate 
Bayesian inference Nonclassically, cogni'on is beXer explained in terms of the architecture, 
representa'ons, and algorithms by which they do so (cf. van Roij et al. 2012; Craver and Kaplan 
2020; Piccinini 2020a; Griffiths et al. 2023). 
 
We are finally ready to briefly sample some important findings about neurocogni've systems 
that bear on their computa'onal architecture and militate against Classical LOT (cf. any textbook 
on computa'onal neuroscience, such as Dayan and AbboX 2005; or MalloX 2024): 
 
RepresentaDonal format. Some neurons transmit graded poten'als, which bear no resemblance 
to digital signals. In contrast, the most typical signals exchanged between neurons are spikes or 
ac'on poten'als, which are released all at once with a certain probability when excita'on 
within a neuron reaches a threshold. The probability of ac'on poten'als depends on several 
factors including the stochas'city of ion channels and various modulatory and metabolic effects. 
S'll, when they occur, spikes are all-or-none, which led McCulloch and PiXs (1943) to model 
them as if they were digital. McCulloch and PiXs’s model of the brain as a digital compu'ng 
system was probably the biggest historical influence on the origin of the Classical LOT 
hypothesis. Be that as it may, it’s been known for a long 'me that, as McCulloch and PiXs 
themselves realized, ac'on poten'als are not digital in the sense needed to encode informa'on 
digitally. Piccinini and Bahar have defended this point at length elsewhere (Piccinini and Bahar 
2013, revised as Ch. 13 of Piccinini 2020a) and I am not going repeat their full analysis here. In 
brief, here are a few reasons: unlike digital signals, spikes do not occur within well-defined finite 
'me intervals; spikes from dis'nct neurons may be more or less synchronous in a graded way 
that appears to contribute to neurocogni've func'oning but are not synchronized in the precise 
way needed to form a digital code; and the func'onally relevant proper'es of spikes are 

 
According to the theory, our knowledge of the world is organized into concepts that we combine in 
language-like ways. The content of a concept is a func,on or subrou,ne in a probabilis,c programming 
language; when faced with a new situa,on, we draw on a rich library of these concept building blocks to 
compose an appropriate model of the situa,on on the fly, much as a programmer might code up a script 
in Python. The resul,ng model—a program in the probabilis,c language of thought—encodes a 
probability distribu,on over world-states that is sufficiently precise to reason in combinatorial ways. (Lew 
et al. 2020, 1) 

 
These authors’ analogy between concepts and computer programs could be interpreted as a version of Strong 
Classical LOT. 
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frequency and 'ming, both of which are graded rather than digital. In part due to lack of precise 
synchroniza'on and in part because spike frequency and 'ming are the relevant variables, 
spikes are not concatenated into well-defined digital strings; they are too stochas'c in ways that 
cannot be categorized as probabilis'c digital states; and spiking is subject to many graded (and 
hence non-digital) modulatory effects. As I pointed out, higher-level neural representa'ons can 
cluster into discrete categories—but they remain graded and composed of (graded) spike trains, 
and they are not processed via primi've digital opera'ons defined over atomic symbols (as 
Classical LOT requires) but via nondigital neural computa'on that operates on en're hierarchies 
of features that do not resemble seman'cally atomic symbols (more on this below). This lack of 
a digital representa'onal format undermines all versions of Classical LOT. 
 
Encoding scheme. Digital encoding relies on two proper'es of digital vehicles: finitely many digit 
types and posi'oning within a string. For instance, decimal numerical codes require ten types of 
digits (0, 1, … 9) and unambiguous posi'oning of the digits within a string: the rightmost digit 
represents units, the second digit to the leh represents tens, and so forth. Neural systems do 
encode informa'on, in part, based on where vehicles occur within the system, which might 
suggest a similarity with the posi'oning of digits within strings. For instance, adjacent cor'cal 
columns within mammalian visual area V1 encode informa'on from adjacent (visual) recep've 
fields. But this so-called place code is not a digital encoding scheme. For one thing, ac'vity 
within dis'nct cor'cal columns is graded and thus does not fall into finitely many types. Equally 
importantly, cor'cal columns and other components of nervous systems blend into one another 
and so are not sharply demarcated in the way that digital components that carry dis'nct digits 
need to be. Most significantly, neural systems encode informa'on not only by relying on 
physical loca'on but also, and primarily, by using features that include the strength of 
connec'ons between neurons, firing rates and 'ming, paXerns of ac'va'on within neuronal 
popula'ons, and dynamical evolu'on of the ac'va'on paXerns. I’ve already pointed out that 
firing rates and 'ming are graded and hence not digital. Thus, they are not digital codes.41 
Similar points apply to neural connec'on strengths, paXerns of ac'va'on within neuronal 
popula'ons, and dynamical evolu'ons of ac'va'on paXerns. This lack of digital encoding 
schemes undermines all versions of Classical LOT. 
 
Neural computaDon. Since neurons do not encode informa'on digitally, a for'ori they do not 
perform digital opera'ons. Instead, typical neurons combine two main types of computa'onal 
opera'ons: first, their dendrites and soma integrate the many inputs they receive (which are 
typically fairly discrete when received individually but are then integrated with inputs from 
thousands of other synapses received over con'nuous 'me), and then, if a certain ac'va'on 
threshold is reached, the soma and axon generate and transmit ac'on poten'als to other cells. 
As I have pointed out, neither of these opera'ons are strictly digital. Further disanalogies 
between neurons and digital compu'ng components include that neurons can not only excite 

 
41 During the 1990s there was a research program searching for repea,ng triplets or quadruplets of spikes that 
might encode informa,on. In principle, if such precise spike paQerns had been there, nervous systems might have 
used them to construct digital codes. For beQer or worse, they turned out to be sta,s,cal ar,facts (Oram et al. 
1999). 
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but also inhibit one another and that neurocomputa'onal opera'ons are subject to many 
modula'ng factors. In complex neurocomputa'onal systems, which process complex s'muli 
and guide complex behavior, the combina'on of (non-digital) informa'on encoding and (non-
digital) opera'ons results in complex recurrent hierarchies of layers of neuronal popula'ons 
represen'ng and processing features of the relevant targets at many levels of abstrac'on, with 
extensive feedback between the different layers (cf. Ritchie and Piccinini 2024). Another 
disanalogy with digital systems is that, as far as we can tell, all the represented features of a 
target, whether “symbolic” (i.e., analogous to words) or “subsymbolic” (i.e., any other features 
of the target), can be relevant to processing neural representa'ons. While no one knows 
precisely how neurocomputa'onal systems process language-like representa'ons, there is no 
reason to suspect that they do so by anything other than an extension of the same 
representa'onal and computa'onal strategies that they employ everywhere else—that is, by 
hierarchies of recurrent neuronal popula'ons encoding and processing hierarchies of features 
of the relevant targets (in this case, language-like s'muli and responses, whether real or 
imagined) at different levels of abstrac'on without being limited to primi've syntac'c 
opera'ons on words in the way that Classical LOT systems are hypothesized to be. This is just a 
bare sketch of a hypothesis about how neurocogni've systems might process language-like 
representa'ons, and there are plenty of controversial or unknown aspects of neural 
computa'on. But there is no evidence and no need to suppose that when processing language-
like representa'ons, brains suddenly turn to something as different from their usual modus 
operandi as digital representa'ons and computa'ons, especially since our best ar'ficial systems 
for processing language-like representa'ons work in ways that are very different from Classical 
systems.42 
 
At this point, a proponent of Classical LOT might wonder whether neural signals and opera'ons 
that are nondigital at the level of single neurons or small neuronal popula'ons might cons'tute 
digital codes at a higher level of organiza'on. Aher all, all kinds of physical states can be coaxed 
into digital codes, including neuronal assemblies (Papadimitriou et al. 2020). The problem is 
that coaxing physical states into digital codes, and state transi'ons into digital opera'ons, 
requires an enormous amount of careful regimenta'on of the right sort. Ordinary digital 
computers accomplish this by heroic engineering feats that include very precise placement of 
the components, very precise digital clocks to synchronize components, and very sophis'cated 
control systems to coordinate the ac'ons of the components. The result is that only select 
states at select 'mes count as (digital) computa'onal states, while the system ignores all the 
irrelevant states. Because of all this regimenta'on, those select states and transi'ons between 
them bear a physical signature of the digital computa'ons they implement (Anderson and 
Piccinini 2024). Neural representa'ons and opera'ons do compose higher-level representa'ons 
and opera'ons, but the evidence we have suggests that they retain the same sort of graded 
(and hence non-digital), logarithmically scaled proper'es exhibited by spike trains (cf. Buzsáki 
2019, Ch. 12). Worse, there is no evidence of the sort of precise and exact placement, 
synchroniza'on, and control mechanisms that are needed to implement digital encoding 
schemes and opera'ons. On the contrary, nervous systems exhibit an organiza'onal structure 

 
42 Compare footnote 38. 
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known as small-world network (WaXs and Strogatz 1998) that is ohen scale-free (Barabási and 
Albert 1999). A small-world network is a network in which the nodes are neither randomly 
connected nor connected in a highly regular way; they are connected through a mixture of 
randomness and order that results in a high degree of clustering and a rela'vely short path 
between any two nodes. Recent studies show that small-world network proper'es are crucial 
for efficient neural computa'on and are linked to various neurological condi'ons (e.g., Hagan et 
al. 2025; Palma-Espinosa 2025; Wu et al. 2025). In contrast, digital computa'on requires very 
precise (nonrandom) connec'vity paXerns between the nodes. Neurobiological systems exhibit 
many other experimentally established proper'es that are radically different from those needed 
to support digital (and hence Classical) computa'on, but I hope I’ve provided enough examples 
for present purposes. As a final point, note that network science, the formal discipline that has 
been yielding insights into the organiza'on and control structure of neurocomputa'onal 
systems (e.g., Faskowitz et al. 2022), came into existence decades later than the Classical LOT 
hypothesis. 
 
Modularity. The brain is not as modular as needed to support an explanatorily adequate 
Classical architecture. The Weak Classical LOT hypothesis is consistent with brains being one 
giant, undifferen'ated FSA. But this is explanatorily weak. When it comes to Moderate and 
Strong Classical LOT, the posited architectures separate processors from memory components 
and, typically, divide the cogni've labor among many dis'nct modules. Each module has its own 
processor(s) and memory for storing data and, perhaps, programs (if it’s a program-controlled 
module). The separa'on between modules as well as between processors and memory is 
needed for each processor to perform well-defined digital opera'ons on its inputs (of well-
defined size), possibly in response to (well-defined, digital) control signals. Thus, any 
explanatorily adequate Classical LOT architecture requires that compu'ng and memory 
func'ons be localized within appropriately segregated neural structures. For beXer or worse, 
there is increasing evidence that neurocomputa'onal systems are not quite modular in that 
way—or equivalently, that cogni've func'ons are not localized in neural structures in the 
requisite way. The degree of departure from strict modularity is disputed and there are a range 
of op'ons under discussion, and I lack space to do jus'ce to this topic. Suffice it to say that 
neural structures can ohen par'cipate in many cogni've func'ons (neural reuse), many 
structures can perform the same func'ons (degeneracy), and, most relevantly, the 
computa'onal opera'ons performed by neural structures are subject to graded (and hence 
nondigital) modulatory effects that depend on the task the organism is engaged in (cf. 
McCaffrey 2023; Pessoa 2022; Westlin et al. 2023; Zerilli 2021). 
 
Memory. Memory within neurocomputa'onal systems does not store digitally encoded symbols 
and does not func'on in the way required by a Classical architecture. This point requires some 
elabora'on. Neural systems have several means of preserving informa'on—i.e., memories—at 
different spa'otemporal scales. The best-known are (1) keeping neurons or neuronal 
popula'ons ac've for some 'me, possibly in states that are among the dynamical aXractors of a 
neural network that remains in that state un'l a new input nudges it out of it; (2) genera'ng 
and spreading waves of ac'vity through a neural system; (3) altering the strength of exis'ng 
ac've connec'ons (synapses) between neurons within a specific popula'on so that relevant 
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paXerns of neural ac'vity are generated under appropriate condi'ons; (4) deac'va'ng ac've 
synapses or ac'va'ng dormant ones; (5) making new connec'ons (synaptogenesis), and (6) 
genera'ng new neurons (neurogenesis). 
 
These types of memory occur within neuronal popula'ons that play three intertwined roles at 
once: performing ordinary cogni've func'ons (processing sensory informa'on while guiding 
behavior), learning, and memory. Typical neuronal popula'ons cannot store arbitrary 
informa'on—they can only store informa'on for which they specialize in ways that depend on 
their connec'ons with specific sensory systems, motor systems, or other neural systems. There 
is no known type of neuronal memory that func'ons like a digital memory, which is a system of 
dis'nct cell arrays with dis'nct and precise loca'ons (or even beXer, addresses with digitally 
encoded names) that can be called upon as needed to retrieve specific and arbitrary digital 
states and that are wholly dis'nct from processing components. 
 
The dominant view of long-term memory (LTM) is that LTM is stored primarily in paXerns of 
synap'c structures that connect neurons. While synap'c changes along with their support and 
modula'on by glial cells are a huge part of the story (Ortega-de San Luis and Ryan 2022), I 
doubt that synap'c changes are the whole story. I doubt it because there is evidence that 
synap'c structures are not stable for as long as organisms retain their memories, LTM survives 
the disrup'on of synap'c connec'ons (e.g., Chen et al. 2014; Ryan et al. 2015), neurons can 
communicate by transferring proteins and RNA via exosomes (Smalheiser 2007), simple forms of 
memory (habitua'on, sensi'za'on, classical condi'oning) can be transferred from one 
organism to another by transferring RNA molecules (Bédécarrats et al. 2018), some simple 
forms of memory can be transmiXed to offspring epigene'cally (Dias and Ressler 2014), 
Purkinje cells can alter the 'ming of their response (Johansson et al. 2014; Jirenhed et al. 2017), 
and even single, non-neural cells exhibit aspects of memory (Kukushkin et al. 2024). This 
evidence suggests that neurons might encode some informa'on by means of molecular 
structures internal to them, such as RNA molecules or epigene'c changes (e.g., Kyrke-Smith and 
Williams 2018; Griffith et al 2024).  
 
RNA and DNA have digital structure, which could be used to encode informa'on in a digital 
format. If that is the case, it’s important to understand what sort of informa'on neurons might 
encode in this way. The evidence I just listed suggests that molecules within neurons might 
encode informa'on about which genes should be expressed under certain condi'ons or, if 
neurons have molecular signatures that they can communicate, which other neurons a neuron 
should connect and communicate with synap'cally, and perhaps the strength of such 
connec'ons or the type of communica'on. Even if this kind of informa'on is stored molecularly 
inside neurons, LTM will con'nue to involve making, altering, and restoring connec'ons 
between neurons within a popula'on so that relevant paXerns of neural ac'vity are generated 
under appropriate condi'ons; what might be different is the means—molecules inside the cell 
rather than just synap'c structures—by which neurons retain informa'on about such 
connec'ons in the long run. In other words, the roles plausibly played by internal molecules in 
memory are compa'ble with mainstream (Nonclassical) neurocomputa'onal explana'ons (cf. 
Gold and Glanzman 2021; Gershman 2023; Colaço and Najenson 2023). Thus, even if some 
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aspects of LTM involve molecular encoding of informa'on within neurons, this does not suggest 
that the kind of memory needed by the Classical LOT hypothesis exists anywhere in nervous 
systems. 
 
This is an important point because in recent years, some have speculated that a kind of symbolic 
memory might exist within neurons in the form of RNA, and this might be a component of a 
digital nano-computer inside each neuron (Gallistel and King 2009; Gallistel and Balsam 2014; 
Gallistel 2021). Akhlaghpour (2022) has even shown that RNA could be used for universal digital 
computa'on by combining opera'ons similar to those that occur within cells. That’s very cool. 
Just because RNA could be used in this way, however, it doesn’t follow that the brain so uses it. 
Anything with enough degrees of freedom, suitably regimented and organized, could be used 
for digital computa'on; it doesn’t follow that any par'cular physical system is a digital 
compu'ng system (cf. Anderson and Piccinini 2024). Or compare McCulloch and PiXs’s (1943) 
demonstra'on that extremely idealized and simplified neurons could be used to construct 
Boolean circuits and finite state automata (Kleene 1956), which was adopted by von Neumann 
(1945) to describe the design of ar'ficial general-purpose digital computers. Just because 
something somewhat like neurons could be used in this way, it doesn’t follow that the brain 
uses actual biological neurons in this way. In fact, there is no evidence that brains use neurons 
to build digital circuits and, as I argued above, the evidence we have suggests that they don’t. 
RNA is surely involved in cogni'on, if nothing else because gene expression is involved in 
memory consolida'on and gene expression requires RNA. In addi'on, as I said above, RNA or 
some other molecules inside neurons might encode informa'on about which other neurons a 
given neuron should connect and communicate with. That is a far cry from the no'on that 
neurons contain digital nano-computers made of RNA.  
 
Three more points are worth making about hypothe'cal RNA-based digital nano-computers. 
First, to build a func'oning digital computer, it’s not enough to have a digital code such as RNA 
molecules; it takes a lot of careful regimenta'on and control and there is no evidence of that. 
Second, spike trains are the primary signals through which neurons communicate with each 
other and drive muscle contrac'ons. If there were digital nano-computers inside cells, their 
inputs and outputs would have to be transduced from and into spike trains, respec'vely. Third 
and finally, virtually all the empirical evidence we have suggests that the vehicles or our 
thoughts, and the drivers of behavior, are signals (mostly, spike trains) from neuronal 
popula'ons supported and modulated by glial cells. As I’ve said, spike trains are not digital and 
are not computed digitally. Therefore, even if there were digital nano-computers inside neurons, 
this would not really support Classical LOT, because to be used by the brain to drive thought and 
behavior, the outputs of such hypothe'cal digital nano-computers would have to be transduced 
into spike trains, which are not digital and, with the Nonclassical excep'ons I discussed, are not 
language-like. At any rate, there is no evidence of digital nano-computers inside neurons and no 
reason to posit them. 
 
Situated learning. Digital compu'ng systems increase their compu'ng power either by 
increasing the complexity of their control systems or by adding memory storage, within memory 
components that are structurally separate from the processing components. If any learning 
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occurs, it consists of either altering programs stored in memory or, perhaps, altering circuits so 
that they will compute a different func'on in the future. Either way, learning and compu'ng 
func'ons are performed at different 'mes. In contrast, typical neurocomputa'onal systems do 
triple duty as processing devices, memory devices, and learning devices at the same 'me. As 
they process informa'on, neurocomputa'onal systems rely on informa'on stored in the 
connec'ons between their units while also learning how to improve their future informa'on 
processing by altering those same connec'ons between their units in a graded way. This is 
incompa'ble with the sharp separa'on between processors and memory, and between 
informa'on processing and learning, that digital systems require to perform their opera'ons 
correctly. This incompa'bility is a robust cri'que of the analogy between neural and digital 
systems that goes back to von Neumann (1958). In addi'on, the integra'on of processing, 
learning, and memory requires a degree of situatedness within the body and environment that 
is missing at least from conven'onal digital computers. This situated integra'on of processing, 
learning, and memory allows neurocogni've systems to learn to build their own representa'ons 
while learning to process them. This same situatedness of neural computa'on and 
representa'on solves a chronic problem that Classical LOT theorists had been unable to solve: 
how, in the absence of a programmer, do biological computa'ons acquire the ability to process 
representa'ons in accordance with their content? Piccinini (2022, 2024) has argued that 
situated Nonclassical architectures provide a solu'on: neurocogni've systems are inherently 
situated in a sense in which (conven'onal) digital systems are not, and they build their own 
representa'ons via development and learning by both integra'ng processing, learning, and 
memory and by receiving extensive and con'nuous feedback from their body and environment 
in ways that require accoun'ng for their own movements through efferent copies of their motor 
commands (cf. Buzsáki 2019). In fact, the seman'c content of neural representa'ons is itself a 
func'on of the (inherently situated and Nonclassical) way in which they are constructed. Brains’ 
lack of digital memory, of sharp separa'on between memory and processing, and of sharp 
temporal separa'on between learning and processing, along with their situated integra'on of 
processing, learning, and memory undermine both Moderate and Strong Classical LOT. 
 
To sum up, Classical LOT requires a digital code for the language-like data (and programs, in the 
case of Strong Classical LOT) plus the relevant hardware: digital processors, digital memory 
separate from the processors to store data (Moderate and Strong Classical LOT) and instruc'ons 
(Strong Classical LOT), and possibly specialized control systems for decoding and execu'ng 
programs (Strong Classical LOT). Any digital compu'ng system with memory separate from the 
processors needs specialized digital devices to keep track of the memory loca'ons, fetch the 
right data stored in memory, keep track of intermediate results, and store new data in memory. 
If it stores and executes programs, it also needs control structures that decode instruc'ons and 
select the right opera'ons, program counters, and other control structures to track which 
instruc'on needs to be executed next. Needless to say, the compu'ng machinery Classical LOT 
requires goes beyond the simplis'c digital model of neural networks that McCulloch and PiXs 
(1943) proposed, which even at that 'me was a gross simplifica'on and idealiza'on of 
biological neural networks and which no one considers relevant to understanding 
neurocogni've systems. 
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What we have learned since 1943 reinforces the conclusion that virtually none of the core 
architectural features required by Classical LOT are present within nervous systems. There is 
evidence that the specialized neural representa'ons involved in explaining human linguis'c 
cogni'on mirror some aspects of language-like structure at a coarse level of granularity and 
suggest a Nonclassical LOT of rela'vely modest scope, but there is no evidence of a genuinely 
digital code in the brain, or a computer-like programming language being executed within the 
brain, let alone digital processors, digital control structures, and digital memory separate from 
the processors. A for'ori, brains have a Nonclassical computa'onal architecture and, therefore, 
Classical LOT ceased long ago to be an empirically viable hypothesis.43 
 
 

5. Conclusion 
 
I have argued that neuroscien'fic evidence about the computa'onal architecture of the brain 
rules out Classical LOT in favor of a Nonclassical LOT hypothesis. Classical LOT theorists have 
aXempted to defend their hypothesis based on behavioral evidence, without taking seriously 
evidence about neurocomputa'onal architecture. This was a mistake because behavioral 
evidence is compa'ble with both Classical and Nonclassical computa'onal architectures. 
 
I have not defended empiricism, associa'onism, or Connec'onism—views that are ohen 
contrasted with the Classical LOT hypothesis. Those views have merits but the degree to which 
they are correct is irrelevant to our present concerns. What I have argued is that the version of 
LOT that is empirically supported boils down to the following rela'vely modest theses: 
 

(A) Biological brains represent and compute nondigitally, and hence Nonclassically. 
(B) At least the human version of such a Nonclassical architecture has the capacity for 

cogni've processes that support and are supported by the processing of natural 
language. 

(C) Some neural representa'ons involved in the capaci'es men'oned in (B) mirror some of 
the structure of natural language and represent in a language-like way. 

 

 
43 An anonymous reader objected that we may not know enough about neurocomputa,onal architecture to rule 
out the existence of a Classical architecture hidden at some level of organiza,on. They refer to Jonas and Kording 
(2017), who argue that some current neuroscience methods may be too weak to reverse engineer a classical 
cogni,ve architecture from neural data. Their study applies (some) standard neuroscien,fic analyses—such as 
lesion studies, spike analysis, and func,onal connec,vity—to a classical microprocessor (the MOS 6502). The 
processor’s func,onal organiza,on is fully known. Yet these methods failed to recover its hierarchical and modular 
architecture. The experiment builds on earlier work by James et al. (2010), who did reverse engineer the 6502’s 
transistor-level ac,vity by using more fine-grained methods analogous to contemporary connectomics techniques. 
Thus, James et al.’s work shows that with pa,ence and powerful enough methods, we can reverse engineer a 
Classical architecture. At any rate, even if some of the tools of modern neuroscience were inadequate to reveal a 
Classical architecture at some scales, assuming such an architecture requires evidence in the first place. As I have 
argued, behavior can be explained without invoking Classical architectures, and there is plenty of neuroscien,fic 
evidence suppor,ng a Nonclassical architecture. Un,l evidence of a Classical architecture is produced, we have no 
reason to believe a Classical architecture lies hidden in the brain. 
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Importantly, this Nonclassical LOT does not require a mentalese dis'nct from natural language, 
let alone one that is analogous to the formal languages of logic and computer science. All it 
requires is neural representa'ons that have language-like structure at least at a coarse level of 
grain. Such neural representa'ons are categorical, composi'onal, and can represent amodally. 
They encode informa'on nondigitally and are processed by ordinary (nondigital, and hence 
Nonclassical) neural computa'ons that rely not only on syntac'c structure but many other 
features. They, along with neural representa'ons involved in processing other public symbolic 
systems, are the only neural representa'ons that are symbolic in Peirce’s sense. To understand 
the neural representa'ons that subserve language and discursive thought more deeply, we 
need to understand them at a finer level of grain rather than merely by analogy with natural 
language (cf. Coelho Mollo and Vernazzani 2024), and we need to understand how they emerge 
from underlying neural representa'ons and computa'ons. 
 
There are many other considera'ons that militate against Classical LOT: graceful vs briXle 
degrada'on of performance under damage to neural circuits, evolvability through natural 
selec'on, embodiment, embeddedness, enac'on, the entanglement of cogni'on and affect, 
and perhaps the role of consciousness in cogni'on. I purposefully mostly ignored those 
considera'ons in favor of an argument based on computa'onal architecture. I did this because 
computa'onal architecture is where Classical LOT has historically been claimed to have an 
advantage. I have argued that such a puta've advantage was an illusion all along and, in any 
case, brains’ computa'onal architecture is Nonclassical. Anyone who appreciates other reasons 
to reject Classical LOT should be glad to see Classical LOT refuted on its own merits and should 
be reassured that the Nonclassical LOT I have defended is not only compa'ble with the 
situatedness of cogni'on but actually requires it (Piccinini 2022, 2024). It is also compa'ble with 
the evolvability of neurocogni've systems through natural selec'on, the entanglement of 
cogni'on and affect, and a role of consciousness in cogni'on. 
 
As to Classical “symbolic” models of cogni'on, successful ones may s'll play a role as rough 
approxima'ons of some cogni've processes at a coarse level of grain, without any implica'ons 
about the representa'onal formats, algorithms, or computa'onal architecture that carry out 
those processes. Needless to say, this is not what the Classical LOT hypothesis says or how 
typical Classicists have intended their theory to be interpreted. And given the confusion 
Classical models have generated over the years, and the persistent tendency of many to 
overinterpret them as puta've evidence that cogni'on itself is Classical, it would be safer to 
replace Classical models with Nonclassical ones. 
 
In conclusion, Classical LOT is empirically ruled out by ample neuroscien'fic evidence. In 
contrast, Nonclassical LOT is a plausible part of the story of how humans think and acquire, 
process, and have their thinking enhanced by natural language. 
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