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Abstract

We argue that semiclassical gravity is rendered consistent by consid-
ering that quantum systems emit a gravitational field only when they
interact with members of Stable Determination Chains (SDCs). These
are chains of non-gravitational interactions between quantum systems
modeled via decoherence and test functions that obey conditions that
aim to address the measurement problem and allow for a conservative
theory of gravity. It is conservative because it does not need to modify the
fundamental equations of quantum theory, unlike spontaneous and gravity-
induced collapse approaches to semiclassical gravity, and without invoking
relationalism. Furthermore, it does not appeal to nonlocal, retrocausal, or
superdeterministic hidden variables. When systems do not interact with
SDCs, they do not emit a gravitational field, and the expectation value
of their stress-energy tensor does not enter the semiclassical equations
describing the gravitational field in a region. In the absence of SDCs
in a region, spacetime can be flat. This theory holds a version of the
equivalence principle, which establishes that different bodies under the
same gravitational field evolve similarly in the absence of non-gravitational
interactions. It can be tested by experiments investigating the gravitational
field emitted by quasi-isolated systems, and the lack of gravity-mediated
entanglement and certain kinds of collapse in the Bose-Marletto-Vedral
(BMV) experiment. It provides multiple benefits, such as a semiclassical
estimation of the value of the cosmological constant and the prediction of a
time-varying dark energy that weakens with time, in agreement with some
evidence. More broadly, we propose a new testable framework in which
there is a conditional emission of a gravitational field by quantum systems,
which may undermine the main motivations for a theory of quantum
gravity.
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1 Introduction
It is often claimed that a theory of quantum gravity is required, and that
semiclassical gravity must be replaced by this theory to avoid unphysical conse-
quences. In this article, we explore new theoretical and empirical possibilities for
understanding semiclassical gravity via quantum field theory and propose the
beginnings of a theory of semiclassical gravity that avoids well-known limitations.
This theory has empirical consequences that may be tested in the future via
experiments that aim to test the quantum nature of gravity. A striking one is that
a system under sufficient isolation does not emit its own gravitational field. This
contradicts the commonly held view that any system can source a gravitational
field. Furthermore, as we will see, this theory follows a different strategy from
the commonly adopted ones, which either consider gravity as quantum or as a
classical stochastic field that gives rise to outcomes. Our goal is to provide a
theory and framework that we hope will lead to new and productive ways of
understanding gravity, while showing that the main motivations for finding a
quantum theory of gravity may be undercut by rethinking core foundational
assumptions.

The theory we are proposing aims to be both minimalistic and conservative.
It does not modify the fundamental equations of quantum theory and only
minimally modifies those of general relativity by assuming the semiclassical
equations of gravity. More concretely, we will be as conservative as possible in
what we see as some of the most important features of general relativity, namely
general covariance and the equivalence principle. Regarding the latter, we will
seriously consider the idea that a generalization of the equivalence principle,
which is applicable to the quantum regime, should be valid in a theory of
gravity. We will use a recently proposed approach to QT called Environmental
Determinacy-based Quantum Theory (EnDQT) [88] and propose a version that
accounts for gravity. The key idea is that gravity should not be quantized, and
although quantum matter field systems can be affected by gravity, they cannot
act as sources of (classical) gravity unless they interact with quantum matter
field systems that form specific chains of interactions. These interactions are
represented via quantum field theory and modeled via smearing/test functions
widely used in algebraic treatments of QFT, where the origin of what these
functions represent comes from stochastic interactions between systems, which
give rise to a mean field. The strategy here is as follows: because we always
need test functions to solve various conceptual and mathematical problems of
QFT, to avoid adopting extra mathematical baggage to solve the measurement
problem, we will also use these tools to help provide a solution to this problem.
Furthermore, the theory proposed here can use the measurement frameworks
in QFT [37, 92, 93] because it shares common tools. Therefore, in principle, it
allows for measurements and local rules for state updates that are compatible
with relativistic causality [91, 38, 93] in the sense of dealing with issues of the
kind identified in [3, 113], which give rise to a conflict between measurement
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theory and relativity.1
In addition to this theory, we propose a framework to consider gravity in this

context, which involves what we call gravitational conditions — the conditions
under which systems emit a gravitational field. We will adopt a subset of
those conditions. Therefore, we also present a set of underexplored features for
future theoretical and empirical investigations. In addition to arguing that the
semiclassical Einstein equations can be used to provide a consistent account of
gravity, and that this view can circumvent some of the common objections to
the semiclassical approach, we will also defend this theory by demonstrating how
it can provide multiple benefits. For instance, it allows us to derive an estimate
of the value of the cosmological constant from certain principles and provides
an explanation for why the vacuum does not gravitate, potentially addressing
the cosmological constant problem. This value comes from fluctuations in the
stress-energy tensor. Interestingly, this derivation leads to the prediction that
this value changes over time and that it is getting progressively smaller, in
agreement with current observations that indicate that the so-called dark energy
is getting progressively weaker [1]. Other conjectures concerning black holes and
inflation are presented to demonstrate the potential of this theory.

We will start by motivating this theory by explaining two scenarios that can
test it and distinguish it from quantum theories of gravity and theories in which
gravity leads to the collapse of quantum superpositions (Section 2). Then, we
will present the basic features of EnDQT (Section 3). Subsequently, we present
three postulates that constitute the basis for the theory of semiclassical gravity
based on EnDQT (Section 4) and explain how this theory, in a sense, generalizes
the equivalence principle. In Section 6, we show how it may be able to deal
with some of the common objections of the semiclassical approach and examine
some other consequences of this theory, which include a conjecture that the
core of black holes does not have systems that emit a gravitational field, and
thus, a singularity does not arise. Indeed, we postulate that in the absence of a
gravitational field, spacetime can be Minkowski. We argue that this postulate can
be used to address issues regarding singularities in GR. Instead of singularities
occurring within black holes or at the origin of the universe (see Appendix I),
we conjecture that we can have asymptotically flat regions of spacetime, where
these regions concern the progressive decrease in the gravitational field arising
from interacting quantum matter fields. Instead of a gravitational field arising,
we obtain a flat spacetime. In Section 7, we show how this theory allows us to
estimate the value of the cosmological constant and interpret dark energy as
having a time-varying value that gets increasingly smaller. Some calculations
are presented in the appendices, including how this time-varying cosmological
constant value leads to some of the effects that we associate with inflation and
potentially new benefits associated with not having to postulate an inflaton
field (Appendix I). For simplicity, we focus on real scalar fields that obey the
Klein-Gordon equation. However, the approach developed is valid in principle

1We will see how to understand this via particle detector models [92, 86] in Appendix F.
The more abstract algebraic QFT framework will be discussed in future work.
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for other types of fields. Throughout this article, we adopt the metric signature
(−+++). We will also assume mainly natural units (ℏ = c = 1). The context
will make it clear when we do not.2

2 Semiclassical gravity and experiments to test
this theory

The Einstein equations take the form

Gµν =
8πG

c4
Tµν − Λgµν (1)

where Gµν is the Einstein tensor, defined as Gµν = Rµν − 1
2Rgµν , where Rµν is

the Ricci curvature tensor, R is the scalar curvature, gµν is the metric tensor
encoding spacetime geometry and Λ is the cosmological constant, often considered
to represent dark energy. The stress-energy tensor of the matter fields is Tµν ,
which can source the gravitational field.

If matter and radiation fields are quantised, it is unclear what to take for
the material source of the gravitational field. Multiple approaches can be used
to solve this problem. The simplest approach replaces the right-hand side with
the expectation value of the stress-energy operator evaluated in a state that
produces meaningful results like a renormalizable stress-energy tensor (more on
this in the next sections). The dynamics are governed by a modified version of
Einstein’s field equations called the semiclassical equations [74, 101]:

Gµν =
8πG

c4
⟨T̂µν⟩ρ − Λgµν (2)

where ⟨T̂µν⟩ρ is the expectation value of the renormalized quantum energy-
momentum tensor in a given quantum state ρ. Quantum matter fields influence
the curvature of spacetime via the expectation value of the stress-energy tensor,
but the gravitational field itself is not quantized, and we ignore the backaction
of quantum matter fluctuations onto the gravitational dynamics. This is a form
of mean-field theory and leads to well-known problems that we will approach
later [62, 123].

One alternative is to formulate a theory of quantum gravity, which quantizes
geometrical degrees of freedom or makes them emerge from some more fundamen-
tal quantized ones, where eq. (2) is obtained in some limit (E.g., [48, 49, 103]).
Another approach is to find a consistent way to combine quantum and classical
dynamics [27, 80], without making emerge or reduce the latter to the former,
which leads to a gravity-induced collapse process. This can be achieved by
adding a minimum amount of noise to both classical and quantum dynamics.
Adding noise to the classical equations makes gravity stochastic, which can
change in such a way that it does not lead to the collapse of the quantum states,

2Quantum operators will be written with a hat, except in some sections or when the context
makes it clear that is an operator.
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not revealing where the quantum system is. However, under certain conditions
determined by the stress-energy tensor of the target system, such noise is reduced,
and the decoherence of the quantum degrees of freedom is increased, leading to
a collapse of the quantum state of this system and an outcome. Importantly, in
isolated systems in a coherent superposition, a stochastic gravitational field is
always present. Penrose’s theory [84] considers that a superposition of a spatial
mass-density distribution corresponds to a superposition of spacetimes, which
are non-stationary and tend to collapse due to their gravitational self-energy.3
Thus, both theories would consider that an outcome eventually arises, regardless
of the environment of a target system. We refer to this class of theories as
gravity-induced collapse theories.

In the theory that we are proposing, the stochastic gravitational field is not
always present and is not directly implicated in the collapse. In addition, it is
not fundamentally described by some classical state with its Hilbert space and
dynamics, such as hybrid classical-quantum theories [78]. Therefore, we do not
posit a classical degree of freedom with autonomous stochastic dynamics. The
gravitational degrees of freedom are rather described via the semiclassical Einstein
field equations seen above and account for how quantum matter fields give rise
to gravity in certain contexts. More concretely, systems emit a gravitational
field only under certain local decohering interactions between matter fields (even
in the presence of a background stochastic gravitational field). The behavior
predicted by the semiclassical equations occurs only under these interactions. If
these interactions do not occur, quantum systems evolve in flat spacetime (if
this is the default state of spacetime, as discussed in Section 4.3) or under the
gravitational field emitted by other systems, and this evolution is described by
flat or curved spacetime QFT, respectively. In addition, if isolated from these
interactions, systems evolve unitarily indefinitely.

Furthermore, under certain assumptions, fluctuations in the stress-energy
tensor lead to dark-energy effects. Other strategies are presented that show
how we can minimize the fluctuations of the stress-energy tensor by allowing
systems to emit a gravitational field only in contexts in which such fluctuations
are minimized. In this first paper, we will not focus on how to characterize
the stochastic gravitational field more conveniently or solve the semiclassical
equations, although in principle, they can be solved under the circumstances we
know how to solve them. Rather, we focus on the circumstances in which the
gravitational field is emitted and some distinct features of this theory.

To motivate our proposal and show how it could be tested, we will look at the
gravcat experiments and the so-called Bose-Marletto-Vedral (BMV) experiments
[9, 71]. Let us first consider a scenario where a system is placed in a cat state
[8], which is the superposition of distinguishable coherent states,4

|ψcat⟩ = N
(
|α⟩+ | − α⟩

)
, N =

1√
2 + 2e−2|α|2

, (3)

3As it will be clearer, in the approach proposed here, one cannot place spacetimes in a
superposition. If we put masses in a superposition, they do not generate a gravitational field.

4See Section 3.2.2 for a characterization of these states.
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where this cat state is isolated from its environment such that the components of
that superposition can self-interfere under suitable conditions. Now, we place a
detector of the gravitational field generated by this system in a spacetime outside
the location of this system. According to this theory, an isolated system cannot
emit its own gravitational field; thus, the detector cannot detect the hypothetical
gravitational field sourced by this target system. The target system could be
subject to the gravitational field from other systems, like all quantum systems
are, in principle, subject to, according to our current evidence from the Colella-
Overhauser-Werner (COW) experiment [81, 19, 124], but not in a classical way as
described by semiclassical gravity, unless it interacts with other members of the
so-called stable determination chains (SDCs). The latter concerns certain chains
of local non-gravitational decoherence-inducing interactions between systems.5
In the absence of these interactions, no stochastic process occurs, which selects
one of the states of systems in a coherent superposition, and they do not emit a
gravitational field. Decoherence applied to open systems is considered by this
theory as an inferential tool for inferring and helping to represent the behavior
of these chains and when the stochastic process occurs.

The above experiment can be performed in principle (see, e.g., [16, 17]).
The absence of a gravitational field emitted by the degrees of freedom in a
coherent superposition of particles would constitute significant evidence favoring
this theory. Furthermore, according to this theory, the rate at which we can
observe a gravitational field emitted by the target system of the experiment
should be exclusively determined by the decoherence rate at which it is decohered
by the matter fields surrounding it, which involves decoherence-inducing non-
gravitational interactions.67 This contrasts with the gravity-induced collapse
theories defined above, in which they postulate mechanisms where mass/energy
density, stress-energy in general, or gravitational self-energy (such as in Penrose’s
theory, see above) is a determining factor.

The assumption that systems do not emit their own gravitational field may
seem quite radical; however, it can be considered as coming from a more abstract
version of the Weak Equivalence Principle (WEP) applicable to quantum systems,
and in a sense, a more general version. A precise and classical statement of the
WEP is due to Clifford Will [125, 66]:

“[I]f an uncharged test body is placed at an initial event in spacetime and given
an initial velocity there, then its subsequent trajectory will be independent of
its internal structure and composition.”

where by an ““uncharged test body” we mean an electrically neutral body that
5Or more generally in the absence of processes that make systems emit a gravitational field,

see below.
6See, e.g., [107] for an expression of the decoherence rate of an object in a spatial superpo-

sition due to air molecules.
7Additionally, some versions of this theory consider that the gravitational field is only

emitted by systems in certain semiclassical states, or some other contexts. However, the most
classical states and accessible by these experiments, e.g., coherent states, will certainly be
considered to gravitate. See Section 4.2.
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has negligible self-gravitational energy (as estimated by Newtonian theory) and
that is small enough in size so that its coupling to inhomogeneities in external
fields can be ignored.” [125] Note that the notion of a body with a negligible
self-gravitational energy is considered an idealization. In principle, a probe with
sufficient resolution could detect the gravitational field emitted by this body.
However, the theory we propose does not consider this as an idealization and
considers that under certain circumstances, a body literally does not emit a
gravitational field. Thus, by taking this feature seriously, it generalizes this
principle in the sense that it generalizes to be applicable to any body, not just
test particles like the bodies above, and quantum phenomena by proposing what
we will call the EnD Equivalence Principle:

Without being affected by other forces, any quantum system under the same
gravitational field exhibits the same behavior due to this field.

The “other forces” are forces that may involve members of SDCs, which
interact non-gravitationally. So, non-interacting systems (with SDCs) do not
give rise to a gravitational field and behave in the same way in free fall, even if
they have very different masses.

Notice that this principle is violated by quantum gravity theories. The
entanglement between gravitational and material degrees of freedom will give
rise to deviations from the geodesic equation, which can violate this principle
[90]. It will also be violated by gravity-induced collapse theories. The collapses,
independently of non-gravitational interactions, in some regime determined by
the stress-energy or the gravitational self-energy of the target systems, will give
rise to violations of this principle.

Now, turning to the BMV experiment, let us consider a scenario involving two
particles [9, 71] that are sufficiently isolated to preserve the coherence of both
their spatial and spin degrees of freedom. Each particle possesses an internal
two-state degree of freedom—its spin along a given axis—which can be placed in
a superposition without affecting its center of mass. Suppose that the particles
are free-falling. We now use a Stern-Gerlach device to subject each particle to a
force that depends on their spin. Let us consider the states |C⟩, |L⟩, and |R⟩,
which concern the center-of-mass degrees of freedom of the particles. If their
spin is | ↓⟩ the particle gets a kick of +∆p, while if the particle is in state | ↑⟩ it
will get a momentum kick of −∆p. Thus, if the particle has spin-up, it will go to
the left; if it has spin-down, it will go to the right, and if it is in a superposition
of spin-up and spin-down, we get

|C⟩j
1√
2
(| ↑⟩j + | ↓⟩j) →

1√
2
(|L, ↑⟩j + |R, ↓⟩j) . (4)

The centres of |L⟩ and |R⟩ are assumed to be separated by a distance ∆x,
where each of the states |L⟩ and |R⟩ are localized Gaussian wavepackets with
widths that are much less than ∆x. Furthermore, the centres of the superpositions
are separated by a distance (Figure 1) so that even for the closest approach
of the masses (d −∆x), we can neglect the short-range Casimir–Polder force.
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Subsequently, the two particles may have their trajectories entangled via a
hypothetical distance-dependent gravitational field, which also depends on their
mass. The estimate of the phases induced by gravity can be derived by assuming
that the effect that dominates can be calculated via a Newtonian interaction.
This approximation also retains its validity for a linearized quantum gravity
model. So, if gravity is quantum, it can in principle mediate the entanglement
between the trajectories of the particles (see Figure 1 for more information). In
this experiment, each particle then goes over a refocusing Stern-Gerlach device
that moves them toward the center, and we would obtain the following state,

|Ψ(t = tEnd)⟩12 =
1√
2

{
| ↑⟩1

1√
2

(
| ↑⟩2 + ei∆ϕLR | ↓⟩2

)
+ | ↓⟩1

1√
2

(
ei∆ϕRL | ↑⟩2 + | ↓⟩2

)}
|C⟩1|C⟩2 (5)

with

ϕRL ∼ Gm1m2τ

ℏ(d−∆x)
, ϕLR ∼ Gm1m2τ

ℏ(d+∆x)
, ϕ ∼ Gm1m2τ

ℏd
(6)

where ∆ϕRL = ϕRL − ϕ, ∆ϕLR = ϕLR − ϕ. Measuring the spins of particles
1 and 2 at the end of the experiment provides a way to certify this so-called
gravity-mediated entanglement, W =

∣∣∣⟨σ(1)
x ⊗ σ

(2)
z ⟩ − ⟨σ(1)

y ⊗ σ
(2)
z ⟩
∣∣∣, where such

entanglement exists if W > 1.
According to gravity-induced collapse theories, at a certain threshold de-

pendent on their stress-energy or gravitational self-energy, we would have a
collapse and not gravity-mediated entanglement. Thus, this class of theories
would consider that, independently of their non-gravitational interactions with
environmental systems, the particles would eventually collapse, and we would
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not be able to unitarily reverse the final collapsed state to its initial state,8

|C⟩1
1√
2

(
| ↑⟩1 + | ↓⟩1

)
⊗ |C⟩2

1√
2

(
| ↑⟩2 + | ↓⟩2

)
(7)

−→ 1√
2

(
|L, ↑⟩1 + |R, ↓⟩1

)
⊗ 1√

2

(
|L, ↑⟩2 + |R, ↓⟩2

)
(8)

−→

{
|L, ↑⟩1 or |R, ↓⟩1,

|L, ↑⟩2 or |C, ↓⟩2,
(9)

−→

{
|C, ↑⟩1 or |C, ↓⟩1,

|C, ↑⟩2 or |C, ↓⟩2.
(10)

We propose an alternative route to these two classes of theories. Contrary
to quantum gravity theories, gravitationally mediated entanglement cannot
occur. In the absence of interactions with members of SDCs, systems maintain a
coherent superposition and no probabilistic process occurs. Thus, systems do not
source a gravitational field, which if sourced, would be classical as described by
semiclassical gravity, and thus incapable of generating entanglement. Moreover,
contrary to gravity-induced collapse theories, the trigger for the stochastic
collapse is independent of their mechanism that depends on the size of the
mass/energy density or gravitational self-energy associated with the particles
in a superposition, but rather whether they have interacted with members of
an SDC, which only involves non-gravitational decohering interactions. Thus,
for particles of any mass sufficiently isolated from their environment, we can,
in principle, reverse their state to their initial state contrary to the above-
mentioned theories. Therefore, according to this theory, in principle, there will
be no classical or quantum gravitational interaction between the particles; they
will remain unentangled as they free-fall, and we can reverse the operation as
follows:

1√
2

(
|L, ↑⟩1 + |R, ↓⟩1

)
⊗ 1√

2

(
|L, ↑⟩2 + |R, ↓⟩2

)
(11)

−→ |C⟩1
1√
2

(
| ↑⟩1 + | ↓⟩1

)
⊗ |C⟩2

1√
2

(
| ↑⟩2 + | ↓⟩2

)
. (12)

8This matter is more subtle as discussed in [55]: “[a]s Bose et al. (2017, p. 1) put it, (...)
[gravitational-induced collapse] theories imply “the breakdown of quantum mechanics itself
at scales macroscopic enough to produce prominent gravitational effects.” The question of
course is what counts as “prominent.” On the one hand, according to Penrose’s estimates, in
the proposed experiment, with gravcats of 10−14 kg separated by 100µm, the gravitational
collapse time should be of the order of a second, which would be fast enough for the classicality
of the field to affect any observed entanglement. Therefore, it seems to be a “prominent” effect:
the quantum state collapses, and no entanglement is observed. However, on the other hand,
should entanglement be observed, the theories do have a tunable parameter, which could be
set to prevent collapse in the currently envisioned GIE experiments, although they would
place a new bound on it. But so doing is to accept that the experiment witnesses a quantum
superposition of the gravitational field, which is at least against the spirit of Penrose’s position,
and quite possibly falls afoul of the very arguments by which he motivates it.”
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So, given the role of decoherence in the theory we propose, the extent to which
we cannot reverse the state of the masses is determined exclusively by the deco-
herence rates and timescales due to non-gravitational interactions with other
particles/matter fields present in the BVM experiment, and not by other factors
present in gravitationally induced collapse theories or gravitationally mediated
entanglement/decoherence. See Table 2 in [98] for a quantification of such
rates and explicit expressions for the BVM experiment, which, for completeness,
we have reproduced in Appendix A. If we find that gravitationally mediated
entanglement, a mechanism dependent on the stress-energy or gravitational
self-energy of the target particles postulated by gravity-induced collapse theo-
ries, or some other mechanism determines the which-path information of the
particles in this experiment, or the decoherence rates and timescales, and not
just non-gravitational environmental-induced decohering interactions, this would
be decisive evidence against the theory we propose.

As we can see, these experiments can provide evidence for this theory and
help distinguish it from quantum gravity and gravity-induced collapse theories.
Moreover, we can also distinguish the theory proposed here from spontaneous or
gravity-induced collapse theories by testing their domain of validity through other
experiments. For instance, experiments have been proposed and conducted to test
the Diósi-Penrose model (e.g., see [40] and references therein). If their domain
of validity becomes problematic and we cannot find a satisfactory quantum
theory of gravity or evidence for it, this is, in principle, evidence supporting this
theory. Furthermore, the theory proposed here violates the decoherence diffusion
trade-off presented in [79], which has been adopted by hybrid classical-quantum
theories. This is because, according to the theory we are proposing, we can have a
system in a coherent superposition without any stochasticity in the gravitational
degrees of freedom, and irrespective of its stress-energy. Thus, violations of this
trade-off [79] can provide evidence to support this theory.

As mentioned, in this article, we propose a series of gravitational conditions,
which involve SDCs and establish when the systems emit a gravitational field.
However, note that this is only one possible set of gravitational conditions. Other
theories could impose different conditions for the emission of a gravitational field.
For instance, one could appeal to SDCs with other rules (see next sections),
or one could have certain modifications of the dynamical equation of quantum
theory, which impose a collapse rule, such as in spontaneous collapse theories, and
trigger a system to emit a gravitational field. One could also have a many-worlds
or many-worlds-like/relational theory that states that under decoherence and
branching or particular interactions, such a classical field arises. Relatedly, one
could have a theory that appeals to an emergent or primitive notion of agents
that trigger the gravitational field. One could even appeal to hidden variables
that account for such triggering. However, many of the above classes of theories
suffer from a lack of experimental evidence or well-known issues; therefore, we
present a theory that also aims to circumvent them.9 Nevertheless, this article

9Regarding the debate about what is the right approach to solve the measurement problem,
one could argue that if this theory ends up being confirmed, it presents important evidence
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Figure 1: If there is a quantum gravitational interaction between the particles,
the interaction distinguishes three paths as there are three distinct particle
separations, dee = dgg = d and deg > d, dge < d. This will entangle the two-
particle center of momentum motion in a way that depends on the mass of each
particle. If we repeat the experiment with two particles of different masses, the
entanglement will be different. Measurements made in a free-falling frame could
thus distinguish the three paths.

could be read as opening up new, so far neglected empirical and theoretical
possibilities concerning how gravity works.

3 Introduction to the framework of EnDQT
Related to gravitational conditions, there are the so-called determination condi-
tions, which are the conditions for measurement outcomes to arise or observables
to have determinate values. Different interpretations or quantum theories pose
different determination conditions. Although these two kinds of conditions are
related, they are distinct. As we will see in Section 4.2, we may consider that a
system has a feature that we associate with a measurement outcome, having a
determinate value, but it still does not emit a gravitational field. The system
may only act as a test system. In this section, we present the main features of
EnDQT in a non-relativistic setting and its QFT version, which adopts a set of
determination conditions for the SDCs that we consider more satisfactory.

The SDCs mentioned above are like von Neumann chains [75], i.e., they
involve a series of intertwined unitary evolutions and stochastic processes, but
occurring in such a way that, in principle, we never lose track of the systems
that belong to those chains. Local interactions modeled using test functions
provide a way to track these systems and chains. In addition, we want SDCs to
be compatible with relativity and with the success of decoherence in representing

against relationalist theories because they are not naturally expressed in this framework. The
latter is based on non-relational determinate values arising from stochastic processes. It would
also present evidence against the above-mentioned collapse theories as we have discussed, as
well as hidden variable theories that do not have a satisfactory theory of gravity or no theory
at all.
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measurement processes, and we will see that these chains obey the key features
of both. Furthermore, we want SDCs to appear in cosmological contexts and not
rely on anthropocentric notions to describe them. Crucially, via the rules that will
be presented, which only appeal to local QFT-based decohering interactions with
a certain structure, we aim to not modify the quantum formalism significantly
to provide the criteria for when an outcome arises (in a single-world and non-
relational way), unlike spontaneous collapse and gravity-induced collapse theories.
Also, we aim to not appeal to non-local, superdeterministic, or retrocausal hidden
variables. Thus, we aim to be conservative and circumvent the issues of these
approaches.10

We will now establish a set of criteria to assign definite or determinate values
to observables based on SDCs. Historically, the criteria for assigning determinate
values to observables in quantum theory have some underappreciated importance
(see [45] for a historical overview), and come in the form of criteria such as the
Eigenstate-Eigenvalue Link. This link states that a system has a determinate
value q of a property or observable represented by a self-adjoint operator O
if and only if it is in an eigenstate of O, which corresponds to the eigenvalue
q. However, as is well known, this criterion is at odds with scientific practice
because we often want to assign determinate values when systems are not in an
eigenstate of some dynamical observable. In addition, for generic Hamiltonians,
systems typically rapidly evolve out of those eigenstates after being measured
[122]. Realistically, being in an eigenstate of a dynamical observable is better
seen as something that occurs for a brief amount of time, and systems typically
evolve quickly out of those states. The determination conditions below aim to
provide more realistic and less problematic criteria.11

For pedagogical reasons, we will initially appeal to non-relativistic quantum
theory,12 but we will see that these features become much more intuitive when
we describe them using QFT. One of the main features of EnDQT comes from
taking seriously the view that systems are never in eigenstates of dynamical
observables, except when they are being measured and shortly after, and it is

10See, e.g., [33, 46, 44, 102, 42, 41, 52], and references therein.
11A potential consequence of the Eigenstate-Eigenvalue Link is that systems have indeter-

minate values of certain observables outside measurement-based contexts. In previous works
[88, 89], we argued that this quantum indeterminacy should be adopted when interpreting
quantum theory, especially when adopting a conservative approach that does not modify this
theory significantly, and when considering current no-go theorems such as Bell’s theorem.
Thus, we should seriously consider this potential consequence of the Eigenstate-Eigenvalue
Link. In a sense, the work presented here extends this argument to the case of the hypothetical
gravitational field emitted by a system outside measurement-based contexts, and by examining
no-go theorems or scenarios involving gravity like we did previously for the quantum case
exclusively.

12In the simplest pure-state-based Hilbert space formalism, a quantum system is represented
by a normalized vector within a complex, complete inner product space Hilbert space. The
observables of a system are described by Hermitian operators acting on these vectors, with
their eigenvalues corresponding to the values of measurable quantities. The probability of
obtaining a specific measurement outcome is determined by the squared magnitude of the inner
product between the state vector and the observable’s eigenstate or associated quantum state
(see above what we mean by this). Additionally, the time evolution of the system is driven by
unitary operators, which ensure that the total probability remains constant over time.
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the following:

Systems have, by default, indeterminate values of any non-dynamical observable,
except due to under certain interactions with systems with the determination
capacity that leaves the systems involved in a certain state, and while they are
in that state.

For example, consider dynamical observables such as spin in multiple direc-
tions, momentum, or energy.13 For EnDQT, systems have indeterminate values
of all of these observables unless the above interactions occur. Moreover:

A system X can only give rise to measurement outcomes or to another system
Y having a determinate value of a dynamical observable of Y when X has the
determination capacity concerning Y , which we denote as DC-Y .

Furthermore, this capacity tends to spread because, under specific conditions
that will be specified below, system Y can acquire this capacity and transmit it to
other systems through interactions. Moreover, as we have mentioned, only under
these interactions, and over the short period that systems are in an eigenstate
of that observable, do systems have determinate values associated with that
observable. Importantly,

it is indeterministic which determinate values of the observables OX and OY
systems X and Y will have under these interactions among the possible ones,
where the possible values are given by the eigenstates or associated quantum
states of OX and OY , which were in a superposition.

We mention “associated quantum states to an observable” because, as we will
see, for example, in the case of observables such as those represented via the
energy-momentum operator, systems could have determinate values of energy-
momentum even if they are not in an eigenstate of that observable. As we will
see, coherent states are not eigenstates of the energy-momentum tensor operator,
although we will consider that systems have a determinate energy-momentum
when in those states under the interactions mentioned above. Furthermore, as
one can see, similar to, for example, the Copenhagen interpretation, EnDQT is
an indeterministic theory in the circumstances where specific interactions are
involved.

One way to infer whether a system X with the determination capacity
concerning a system Y acts locally as a “measurement device” for the observable

13And perhaps even electric charge, if not subject to a superselection rule, and hence
considered as a dynamical observable. Roughly, an observable is subject to superselection
rules when there are certain rules that forbid the preparation of its eigenstates in a coherent
superposition. Electric charge is typically subject to this rule. However, we could allow for the
more radical view that all observables are dynamical, and appeal to decoherence via SDCs
(in a similar way to the so-called Environment-induced superselection) to account for why,
typically, we do not see their eigenstates self-interfering.
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OY of Y is if an eigenstate of OX (or associated quantum state to an observable of
X) contains information of an eigenstate of OY (or associated quantum state to an
observable of Y ), or via the locally induced entanglement of the degrees of freedom
of X with the eigenstates or associated quantum states of the observable OY of
Y . More precisely, it is not just entanglement but entanglement involving many
degrees of freedom that give rise to a quasi-irreversible process (mathematically
speaking, i.e., only in theory),14 which is often called environmental-induced
decoherence [58, 127]. When decoherence occurs and X has the DC-Y , for
EnDQT an indeterministic (and truly irreversible) process arises that makes
both X and Y have a determinate value that can be represented by one of
the eigenvalues of the observables OX and OY whose eigenstates got entangled
(or by the value associated with those states such as in the case of coherent
states). So, we will regard the models of decoherence as inferential tools to infer
when systems that have the determination capacity give rise to others having
determinate values [88].15 Together with test functions (more on this below),
they provide the main inferential tools to infer whether the conditions below are
fulfilled.

More concretely, we consider that decoherence allows us to infer in open envi-
ronments when SDCs act, even in the absence of knowledge about their precise
locations. This is because these are considered to be the typical environments
in which SDCs evolve. In addition, it allows us to infer the conditions required
to shield systems from SDCs via the conditions required to shield systems from
decoherence. Furthermore, if we manage to track precisely where SDCs are, it
allows us to represent their behavior over spacetime. The way we use decoherence
to study which outcomes associated with states S ⊂ HS arise stochastically
from local interactions with members of SDCs is often via the locally established
many records of the environment of S of those states, such that if the system
starts in those states S, at later times it is still well-approximated by another
member of the set S, and the environment contains records of them, having their
states correlated with them,

|α⟩S ⊗ |0⟩⊗N U−→ |α0⟩S ⊗ |ε1(α)⟩1 ⊗ · · · ⊗ |εN (α)⟩N . (13)

On the other hand, if it starts in a superposition of those states, it is driven over
time into a mixture of S, and we can infer that the environment has a record of S,
where this process is quasi-irreversible and the mixture of states has a probabilistic
interpretation in terms of a diagonal mixture in the basis S over time. This can
be easily observed by tracing out the states of the environment. Decoherence
timescales provide an estimate of the duration required for the continuous

14Decoherence is a quasi-irreversible process in the sense that it has very high recurrence
times τD, e.g., timescales much higher than the age of the universe or the heat-death onset
of the universe (i.e., Poincaré recurrence timescales). Note that for EnDQT such recurrence
never occurs. The extremely large recurrence times of decoherence for EnDQT just signal that
decoherence represents a truly irreversible process.

15The determination capacity can be grounded on categorical properties, but we choose to
set that characterization aside here.
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stochastic process that leads to measurement outcomes to end up occurring.16
The term Stable Determination Chain (SDC) comes from the observation that
to analyze whether determinacy arises in the interactions that constitute these
chains, we need to analyze whether there is decoherence, which often involves
a stable quasi-irreversible entanglement between the target system and its
environment.17 So, examining that systems are driven quasi-irreversibly locally
over time into a mixture of states S that have a probabilistic interpretation offers
a way of inferring that they end up in one of the states S.18 Thus, the features
of the dynamics of systems play a large role in the evaluation of how (as we will
sometimes say) SDCs select certain states associated with specific determinate
values. Moreover, we can infer the determinate values that environmental
systems will have by examining the values associated with their states that have
information about the state of the target system, being correlated with the state
of the target system. So, for this theory, the success of models of decoherence that
we use pragmatically in physics to represent measurement-like interactions in
open environments, particularly those involving only matter degrees of freedom
in the case of the theory of gravity that we will present in the next sections,
is justified by the fact that they are modeling the typical environments where
SDCs evolve. Furthermore, models involving local interactions (i.e., strongly
localized interactions modeled via test functions) represent processes that lead
to measurement outcomes more realistically, although such localization is often
disregarded.

System X with the DC-Y can also partially decohere system Y , which is
inferred through the local quasi-irreversible partial decoherence of Y by X. This
process will give rise to outcomes for both Y and X, where the possible values
of X concern the partial information about the value related to the state of Y
that X partially distinguishes. However, for simplicity, in this paper, we focus
on the situations of complete decoherence.19

16So, note that this process is not discontinuous but rather continuous, and it does not occur
at a particular instant. Nothing in the process of decoherence implies that an outcome arises
discontinuously.

17The decoherence timescale typically varies inversely with the size of the bath/environment
that leads to decoherence, and thus the number of members of SDCs interacting with the
system influences how much time it takes for such stochastic process to occur [120].

18Another way involves having a Wigner function that is positive in some interactions
involving Gaussian states.

19In [89] this situation was taken into account. It was considered that the determinacy of
the values of observables of a target system Y of X will come in degrees. This is inferred
through the degree of distinguishability of the states of the environment X concerning the
state of the target system Y in a local quasi-irreversible partial decohering interaction. It can
be assumed or not that under partial decoherence by their environment, a system Y obtains
the DC concerning another system Z, where these systems fulfill the determination conditions
discussed in the next section. As we have said, in this paper, we will not consider these cases
for simplicity.
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3.1 Conditions for the determination capacity to spread
We will now explain the conditions for the determination capacity to spread
through interactions. To build some intuition, we will explain it through a
non-relativistic toy model to see how this works and pretend that entanglement
between two systems is sufficient for determinate values to arise in interactions
(and not entanglement involving a collective of systems that give rise to decoher-
ence). In parallel, we will explain the QFT case. For simplicity, in this article,
we will focus on the case of SDCs that involve interactions between two possibly
composite systems. However, SDCs in principle could have more complicated
structures.

Let us consider the following Hamiltonian involving two continuous CNOT
gates,

ĤABC(t) = fAB(t)
π

2

(1− σ̂zB
2

)
σ̂xA + fBC(t)

π

2

(1− σ̂zC
2

)
σ̂xB , (14)

which describes the interactions between systems A, B, and C. More about
fAB(t) and fBC(t) below.

The initial state of these systems is

|Ψ(0)⟩ = |1⟩A
1√
2
(|0⟩B + |1⟩B)

1√
2
(|0⟩C + |1⟩C), (15)

where the states above are eigenstates of the observable spin-z.
In the QFT case, we could have in the Hamiltonian picture a Hamiltonian

density describing the interactions between scalar fields A and B, and B and C,

Ĥint(t) =

∫
d3x

[
λAB fAB(t,x) ϕ̂A(t,x) ϕ̂B(t,x)+λBC fBC(t,x) ϕ̂B(t,x) ϕ̂C(t,x)

]
.

(16)
λAB and λBC are coupling constants, where x = (t,x), and fAB(t,x) and

fBC(t,x) are smearing/test functions that serve to represent and infer the
localization of quantum fields in a spatiotemporal region in the QFT case, which
can be used to impose energy and momentum cutoffs. fAB(t) and fBC(t) in
the non-relativistic case will just localize the system in time and provide energy
cut-offs.

Test functions play an important role in rigorous treatments of QFT and are
used to handle divergences. However, for EnDQT, they have the additional role
of providing the conditions for when systems have determinate values. More
specifically, test functions provide a way to specify the so-called no-disturbance
condition, as we will see below. Furthermore, test functions should obey the
relativistic constraints of being compatible with general covariance. Note that
in this study, we are concerned with the interaction between quantum fields that
are spatiotemporally localized owing to these interactions. By this, we mean that
they have determinate values in bounded spacetime regions in a local manner
(more on this also below).20 Thus, in the simple case of only two interacting

20 Additionally, to allow that local algebras are independent of the choice of the test function
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fields, we consider a test function fXY (x), which is a function that is compactly
supported within a region, or at least strongly localized around a region that
smears the fields ϕ̂X(x) and ϕ̂Y (x) in that region.

To maintain general covariance, we adopt a test bump function fXY (x)
that localizes the interaction between X and Y around a point xXY inside a
fixed precompact convex normal neighborhood U of xXY , and we set fXY ≡ 0
outside U . Choosing σXY > 0 sufficiently small ensures that the set {x ∈ U :
|σ(x, xXY )| < σXY } is compactly contained in U , so that the support of fXY is
compact.21 So, we have:

fXY (x) =


exp

− 1

1−
(
σ(x, xXY )

σXY

)2

 , x ∈ U and |σ(x, xXY )| < σXY ,

0, otherwise.
(17)

Here σ(x, xXY ) is Synge’s world function [115], which represents one-half of the
squared geodesic interval between point x and center xXY . In Minkowski space-
time, it simplifies to σ(x, xXY ) = 1

2ηαβ(x− xXY )
α(x− xXY )

β , i.e. σ(x, xXY ) =
1
2

(
− (t − tXY )

2 + |x − xXY |2
)
. The use of Synge’s world function in a test

function is advantageous because it is generally covariant, it incorporates the
exact spacetime geometry through geodesic intervals and thus is applicable to
curved spacetimes without the need for specific coordinate systems. As can be
seen, this function is smooth and goes smoothly to zero as |σ(x, xXY )| → σXY .
In Minkowski spacetime, we can write

f(x) =


exp

− 1

1−
(
−(t− tXY )

2 + |x− xXY |2

2σXY

)2

 ,
∣∣−(t− tXY )

2 + |x− xXY |2
∣∣ < 2σXY ,

x ∈ U,

0, otherwise.
(18)

In the non-relativistic case that our simple example is concerned with, we

and depend only locally on the interaction we could also impose that test functions to be equal
to one in the support of interactions. This constraints were initially imposed by perturbative
Algebraic Quantum Field Theory [97] in the context of the so-called algebraic adiabatic limit,
which allows for an unproblematic and rigorous renormalization procedure (more on this in
Section 5). For simplicity, we will set aside this requirement in our examples, but it can always
be imposed.

21Examples of test functions that are not compactly supported (contrary to bump functions)
are other functions that belong to space of Schwartz functions S(Rn), such as Gaussian
functions. Schwartz functions are functions that infinitely differentiable and rapidly decreasing
at infinity, as well as all their derivatives.
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will ignore space and relativistic considerations. Thus, we will consider that

f(t) =


exp

− 1

1−
(
t− tXY
τXY

)2

 , |t− tXY | < τXY ,

0, otherwise,

(19)

where we will have fAB(t) and fBC(t). tXY and τXY allow us to infer the
temporal localization and duration of the interactions between quantum systems
X and Y .

More broadly, fXY (x) allows us to make inferences about a) when systems
X and Y have determinate values of their observables when interacting, and b)
how this interaction-based process of having determinate values influences other
processes of having determinate values if different test functions for different
interactions have some of their support in common. Information a) and b) is
relevant to know where interactions do not disturb other interaction because
a) encodes the timing of the interaction between A and B, and B and C. b)
encodes whether the interaction between A and B is disturbed by the interaction
between B and C. This will be relevant to our discussion below.

Taking into account that the interactions between system X and Y in the
Schrödinger picture (neglecting the self-Hamiltonian) or in the interaction picture
can be given by

Û = T exp

(
−i
∫
dVHint(x)

)
, (20)

where T is the time-ordering, dV =
√
−gd4x with g being the determinant of

gµν , there are four conditions, which constitute the core of our determination
conditions (and we will call them simply determination conditions), for a system
B to obtain the determination capacity concerning a target system C, which we
will denote as DC-C. The determination conditions are the following:

i) if A has the determination capacity concerning B (DC-B), where A can be a
composite system;

ii) if C interacts with B, while B is interacting with A where the interaction
between A and B starts first. This is translated in the centers of the test function
being timelike or lightlike separated,

1

2

[
−(tBC − tAB)

2 + |xBC − xAB |2
]
≤ 0, (21)

but where tBC > tAB ;

iii) if B has a determinate value due to A.
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In the toy example below, this will be inferred by B being entangled with A,
or in realistic cases, A locally decohering B. For instance, if A is a composite
system, such as modes of a field and B is a mode of a field, this could be inferred
by A decohering B;22

iv) if the interactions between B and C are such that C does not disturb the
interaction between A and B in such a way that A probes B and both have
determinate values. Considering ii), another way of expressing this condition
is that A should decohere B before the interaction between B and C ends,
giving rise to A and B having determinate values; and C does not disturb this
process so that the unitary U that describes the interaction between A and
B, and B and C is ÛρX ⊗ ρY ⊗ ρZÛ

† ≈ Û ′ρX ⊗ ρY Û
′† ⊗ ρZ = ρ′ ⊗ ρZ . U ′

is the unitary that describes the local decohering interaction, which typically
entangles the states of X and Y , resulting in the state ρ′. ρZ is the state of
Z, which does not get entangled with X and Y . This is the no-disturbance
condition mentioned above. Considering ÛAB as describing the interaction
between A and B, and ÛBC as describing the interaction between B and C,
we may express this condition as establishing that for successive systems in an
SDC, it is sufficient that the following holds in the common support of the test
functions Ω = supp(fAB) ∩ supp(fBC) of fAB(x) and fBC(x),[

ÛAB(x), ÛBC(x)
]
≪ 1. (22)

Another way to express the above comes from noticing that the commutator of
the two terms in Eq.(14) is proportional to fAB(x), fBC(x) or fAB(t), fBC(t).
Then, one could show that is sufficient that the following should hold,23∫

dV fAB(x)fBC(x) ≪ 1 (23)

in Ω for the non-disturbance condition to be satisfied. Given the form that
test functions should have, if the two test functions fAB(t), fBC(t) have almost
disjoint regions of support, the above is guaranteed to occur.24

Let us then turn to the analysis of the interactions between A, B, and C in a
non-relativistic toy model. Let us assume then that A has the DC-B (condition
i) is fulfilled), that C interacts with B, while B is interacting with A (condition
ii) is fulfilled). Moreover, we will consider that the interaction between A, B,
and C is such that C does not disturb the interaction between A and B where
this non-disturbing interaction is represented by the Hamiltonian in eq. (14).

22See Section 4.2 and Appendix ?? for other ways to infer this through modes of fields that
probe a target system, and the correlation functions of the latter.

23We will see further below other ways that dispense with test functions to some degree, to
fulfill this condition.

24Note that the above could hold just for spatial test functions if we opted to only use them,
or for both temporal and spatial test functions if they were treated separately.
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Figure 2: An SDC with systems A, B, and C in QFT interacting in overlapping
regions of spacetime in agreement with i)− iv).

Thus, A and B get entangled at t = 1 and we can represent this interaction by

|Ψ(1)approx⟩ ≈
1√
2
(|1⟩A|0⟩B − i|0⟩A|1⟩B)

1√
2
(|0⟩C + |1⟩C), (24)

and thus condition iii) is fulfilled.25
Note that according to ii), forB to have the DC-C, C needs to start interacting

with B while A and B are interacting (i.e., between t = 0 and t = 1). Then,
when entanglement between A and B is achieved because A has the DC-B, an
indeterministic process occurs that gives rise to A and B having determinate
values of their spin-z observables. Let us (for example) consider that this
indeterministic process gives rise to A and B having determinate values 1 and 0,
respectively. We then update the state of the system to the new state that will
serve as the initial state for the next interaction,

|Ψ(1)⟩ ≈ |1⟩A|0⟩B
1√
2
(|0⟩C + |1⟩C), (25)

where condition iii) is now fulfilled. Then, since conditions i)-iv) are fulfilled,
when B gets its states entangled with C at t = 2, i.e.,

|Ψ(2)⟩ = |1⟩A
1√
2
(|0⟩B |0⟩C − i|1⟩B |1⟩C), (26)

it can give rise to C having a determinate value (1 or 0) and also to B having
another determinate value (0 or 1), where one of the possible outcomes will again
arise indeterministically.

As mentioned, in the realistic decoherence setting, we would not only have
A but also N systems Ai that could be discretized modes of a field, each one

25In Appendix B, we do a numerical study to show why the above approximation is fulfilled,
given the no-disturbance condition.
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with the the DC-B, or uncountably many if we treat A as a continuum of modes
of a field. These modes will interact locally with B with (in the discretized
case) randomly distributed coupling strengths λAiB (for instance, assuming
uniformly distributed values from 0 to 1) that would also be multiplied by the
above Hamiltonian of interaction. For large N and over time, systems Ai would
decohere system B. This could, for example, be observed by off-diagonal terms
of the reduced density operator of B going quasi-irreversibly to zero over time,
or by the quasi-irreversible loss of purity of this operator. Furthermore, note
that we would not just B but many N ′ systems Bj that interact with Ai. If
this chain continues, they will then interact with many N ′′ systems Ch, each
having the DC − Ch for different h, and so on. Moreover, the timescale in
which interaction Ai gives rise to B having a determinate value should be of
the order of the decoherence timescale. Thus, the test functions modeling this
interaction should allow it to go on for at least this timescale in order for Ai to
give rise to B having a determinate value. Although it might seem like an ad-hoc
condition, the no-disturbance condition can be seen as a necessary condition
for decoherence to occur because we do not want other systems Z to disturb a
decohering process involving arbitrary systems X and Y . Note that, as we have
mentioned, test functions have widespread use in rigorous approaches to QFT,
and EnDQT is an approach to quantum theory that relies on them in a more
diverse way than usual. We will see some examples in Sections 3.2.2 and 5.

Note also that for EnDQT, the quantum formalism (including the Hamil-
tonian) and quantum states primarily have a predictive and inferential role
concerning the local behavior of quantum systems. Therefore, for example, there
is no sense in which there is action at a distance when an agent learns about the
determinate value of its entangled target system in a Bell scenario. There is only
a local state update concerning the outcomes that arose indeterministically at a
wing in the Bell scenario, where this update is in the future light cone of the
measurement event (Appendix F). There is no collapse across hypersurfaces.26
Moreover, as we have mentioned, the theory proposed here can use the measure-
ment frameworks in QFT [37, 92, 93] because it shares common tools (i.e., test
functions and interactions in compact spacetime regions mediated by probes and
involving quantum fields), and this allows for rules for a state update that are
independent of how we foliate spacetime in terms of spacelike hypersurfaces (see
[91, 38, 92, 93] and Appendix F). The probe in these frameworks is a member of
an SDC, and the state updates are formulated as not depending on states asso-
ciated with specific foliations of spacetime through spacelike hypersurfaces. The
latter can cause problems in terms of giving rise to conflicting expectation values
of the total charge of entangled particles, conflicting with charge conservation
[3]. Rather, state updates depend on the future lightcone of the measurement
events involving the probe and the target system, being formulated in such a

26We are adopting the view that EnDQT is a single-world theory, and that does not require
some (emergent) agents. Alternative versions may deny this and consider that SDCs involve
some branching process or that SDCs only tell us about interactions that ultimately require
agents to make measurements to give rise to measurement outcomes. These versions are
problematic and that is why we do not adopt them.
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way that does not give rise to these conflicts.27
So, the above are the conditions for B to act as a “measurement device” for

C; now, if C did not interact with B while B was interacting with A (i.e., if
condition ii) was not fulfilled), B could not act as a measurement device for C.
Therefore, A would merely act as a preparation device for B, and in this way,
we would have a measurement-based preparation. Then, when B interacts with
C, they would only get entangled and evolve unitarily with no indeterministic
process happening. Allowing also for cases of this kind is one of the reasons why
we want the DC to be transmitted via spatiotemporally overlapping interacting
processes. This is because they help establish the conditions under which
systems gain or lose the determination capacity, losing the capacity to constitute
measurement devices for other systems, and only becoming entangled with them
upon interactions without contributing to outcomes arising. More reasons for
our choice of determination conditions will be provided at the end of this section.

As we can see, the determination capacity spreads through interactions,
and the chain that concerns the spread of this capacity is called the stable
determination chain (SDC), where these chains have a structure represented
by diagrams. We can write the structure of this simple chain as A → B → C,
where the arrows represent the transmission of the determination capacity or a
system giving rise to another having determinate values.

One might wonder when SDCs started. One option is to invoke systems that
start SDCs, called initiators. In that case, we would add a new postulate to the
ones above concerning the conditions for a system B to obtain the determination
capacity concerning a target system C, which we will denote as DC-C:

v) If B is an initiator, interacting with C without the need of some other system
that allows it to have the DC − C.

As argued previously [88], to explain why initiators are, in principle, not
currently observable (i.e., a measurement device or a probe seems always to
need other systems that apply it or prepare it, respectively, at least according
to our more direct evidence), it is because they are systems only active in the
early universe such as, for example, the inflaton field. After its activity, this field
sits at the bottom of its potential V (x, t), not being active anymore. However,
there are other possibilities beyond postulating an inflaton field, which we will
discuss.28 Of course, we might assume that SDCs go on indefinitely, and in that
case, we do not need to invoke initiators and could have some kind of cyclic
universe, where the initial members of an SDC in this universe come from SDCs
in a previous universe, for example. What the correct view is might end up
being an empirical question. We will return to the initiators in Sections 5, 7,
and Appendix I.

Notice that according to EnDQT for a system to maintain its quantum
27To be precise, in the framework of [93], which is based on the other two cited frameworks,

the states of the detector and the target field depends on the spacetime foliation but they are
related by an equivalence relation making the slicing choice irrelevant.

28An initiator may be the source of its own test function. See Section 5.
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coherence, it must be isolated from SDCs. The system isolated from SDCs
could be arbitrarily large, and if that isolation was achieved, the system could,
in principle, be maintained for an arbitrary amount of time in a coherent
superposition. This contrasts with spontaneous collapse theories, which consider
that an isolated system would still collapse at some point regardless, or gravity-
induced collapse theories, where a system collapses depending on its mass/energy.
Also, in contrast to these theories, we do not need to modify the fundamental
equations of quantum theory to represent when a system stops being in a coherent
superposition and an outcome arises. This is one of the reasons why this theory
is conservative.

As we will see more clearly in Section 7, the transmission of the DC between
systems can be used to explain how the classical four-volume of our visible
universe (inhabited by matter fields with determinate values) arises from quantum
fields. This will also show what guided our choice of determination conditions. We
do not tend to think of the classical four-volume of the universe as discontinuous
or full of gaps, with regions with no gravitational field followed by regions with a
gravitational field. However, if we only appealed to local decohering interactions
(however vaguely defined) in the determination conditions, without the need
for the acquisition or transmission of the DC via spatiotemporally overlapping
interactions, we would not obtain this unificatory picture of the four-volume
of the universe. If local decoherence sufficed for the systems involved to emit
a gravitational field, it would be perfectly conceivable that we would end up
having constant gaps in the emission of a gravitational field. For instance, a
system could emit a gravitational field without leading other systems in adjacent
spatiotemporal regions to emit such fields or without depending on other systems
that previously emitted them. Thus, we think that the spatiotemporally adjacent
transmission of the DC, which test functions help model, helps unite the classical
four-volume of spacetime through regions occupied by matter fields sourcing
gravity and explains why we do not obtain a fragmented gravitational universe,
explaining the usual features that we attribute to the four-volume of the universe.
Therefore, in our view, the above widely believed attributes of the classical
four-volume supply evidence for the determination conditions postulated by
EnDQT, which involve spatiotemporally overlapping test functions.

3.2 The QFT case
Let us turn to the QFT case. We focus on spacetimes where the classical
dynamics governed by the Klein-Gordon equation have a well-posed initial value
formulation in the sense that it admits a spacelike hypersurface where the initial
data can be specified such that the entire evolution in spacetime is determined
by this data. This hypersurface is a Cauchy surface, and a Lorentzian manifold
is globally hyperbolic if and only if it admits a smooth Cauchy hypersurface.

So, let ϕ be a real scalar field defined in a D = n+ 1-dimensional globally
hyperbolic Lorentzian spacetime (M, gµν), where n is the number of spatial
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dimensions. The field satisfies the Klein-Gordon equation:

Pϕ = 0, P = ∇a∇a +m2 + ξR, (27)

where ξ is the curvature coupling constant, R is the Ricci scalar, and ∇a is the
Levi-Civita connection corresponding to the metric gµν . The condition of global
hyperbolicity guarantees the existence of a smooth foliation by Cauchy surfaces
{Σt}t∈R and a diffeomorphism M ∼= R × Σ. In these spacetimes, the Klein-
Gordon equation admits a well-posed initial value formulation,29 and we can
meaningfully describe constant time slices. For instance, in Minkowski spacetime,
we may identify the Cauchy surfaces Σt ∼= Rn with spacelike hypersurfaces.
Using the global inertial coordinates (t,x), these hypersurfaces correspond to
surfaces with constant t.

Although we will mostly adopt the “physicist” formalism, we also have in the
background the more rigorous algebraic quantum field theoretic (AQFT) account
[37] with its algebra of observables independent of a Hilbert space representation,
and its smeared fields.30 In the previous section, we discussed how the test
function that smears fields over a spacetime region plays an important role for
EnDQT in representing how SDCs propagate, and they also have an important
role in AQFT.

We work on a globally hyperbolic spacetime (M, g) that either contains
a region with a timelike Killing vector Ka (e.g., a static patch), or possesses
a preferred time function t whose asymptotic or adiabatic behavior selects a
“positive-frequency” notion (e.g., conformal time in the Poincaré patch of de
Sitter). With n spatial dimensions the real scalar field admits the Fourier
expansion,

ϕ(x) =

∫
dnk

[
ak uk(x) + a†k u

∗
k(x)

]
, (28)

where the normalization factors were built into the mode functions.31 Promoting
ak, a

†
k to operators gives

ϕ̂(x) =

∫
dnk

(
âk uk(x) + â†k u

∗
k(x)

)
,
[
âk, â

†
k′

]
= δn(k− k′) I. (29)

The vacuum state |0⟩ is defined as the state annihilated by âk|0⟩ = 0 for all
k. By performing quantization on a constant-time foliation R× Σt, where Σt is
a spacelike Cauchy surface, we obtain the equal-time commutation relations:

[ϕ̂(t,x), π̂(t,x′)] = iδnΣ(x,x
′)I, (30)

29An initial value problem consists of a differential equation together with initial data specified
at a point or on an initial hypersurface, sufficient to determine a unique solution—typically
the value of the unknown function and, when needed, its derivatives.

30See Appendix C for some formal details regarding the quantization of the scalar field from
an AQFT perspective.

31For proper normalization in curved space the modes uk, uk′ should be orthonormal
under the Klein–Gordon inner product, i.e.,

(
uk, uk′

)
= δn(k − k′), where (u, v) =

i
∫
Σ dΣ

a
[
u∗ ∇av − (∇au∗) v

]
.
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[ϕ̂(t,x), ϕ̂(t,x′)] = [π̂(t,x), π̂(t,x′)] = 0. (31)

Here,32 the canonical momentum operator is defined in curved spacetime as
π(t,x) =

√
hna∇aϕ(t,x) where h = det(hij) is the determinant of the induced

metric hij on the Cauchy surface Σt, and na is the future-directed unit normal
to Σt. In Minkowski spacetime, with Σt being a constant-t hypersurface, this
reduces to the familiar definition π = ∂tϕ.

3.2.1 Constraints on test functions and systems emitting them

To infer when and how determinate values arise under interactions, the partial
trace is useful. However, it is not technically correct to assign a density matrix
to the restriction of a vacuum state or any physical state of a QFT to any local
subregion. Mathematically, this is because the local algebra of observables on
a finite region of a relativistic QFT is a type III von Neumann algebra. This
algebra does not admit any irreducible representation as an algebra of operators
on a Hilbert space, and does not have any nontrivial faithful operation with
the properties of a trace. Thus, operations like taking a partial trace over a
subregion are unavailable, and the von Neumann entropies of the reduced density
operator of a QFT on a given region are not well-defined. Therefore, we cannot
use them to derive the reduced state of a QFT in a local subregion.

To circumvent this issue, we can focus on a subset of modes of real scalar
fields that participate in the interactions involved in SDCs, where that selection
will be inferred via the test functions. This provides one possible way to go to
a type I von Neumann algebra. We often focus on this subset by quantizing a
sum of discrete solutions to the Klein-Gordon equation in a bounded spacetime
region,

ϕ̂(x) =
∑
α

[
âα uα(x) + â†α u

∗
α(x)

]
. (32)

Different positions can be taken regarding the test functions. One position is
that they are fundamental and offer ways to infer how DC propagate and SDCs
expand without being attached to any particular system. One could develop
determination conditions that assume test functions as not being attached to
systems. However, one might object to this strategy because one might consider
that it renders their origin mysterious. Furthermore, there is a good case to be
made that they arise from a potentials. So, the target systems of test functions
are implicitly open and work can be done on them via these test functions. Thus,
the above position makes it unclear which systems are responsible for the effects
associated with those functions.

Another option is that test functions, among other roles, allow us to infer
the localization features of systems belonging to SDCs, due to some other
systems, which affects with whom they interact, and as we have been seeing,
the transmission of the DC. Ultimately, as we will see, they are related to the
emission of a gravitational field due to localized systems. There are multiple
ways to proceed. Here, we consider that test functions arise from some systems

32δnΣ denotes the covariant delta distribution with respect to the volume element dnx
√
h.
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D in a state ρ̂D, which is a possibly complex-valued function, although we will
focus on real-valued test functions. We restrict our attention to those systems
whose mean field gives rise to a well-defined test function.33 Such mean-field is
emitted by a system D,

f(x, t) = ⟨V̂ (x, t)⟩ = Tr(ρ̂Dϕ̂D(x, t)), (33)

and to be a reliable mean-field, assuming only Gaussian states, we also need
that it has low fluctuations, i.e.,

⟨V̂ (x′, t′)V̂ (x, t)⟩ ≈ ⟨V̂ (x′, t′)⟩ ⟨V̂ (x, t)⟩. (34)

To calculate (33), we will obtain an integral over momentum dk. To choose
the bounds of the integral, we should observe that D is a set of modes of a field
that have determinate values due to interactions with other members of SDCs
(we are labeling the whole field ϕ̂D with all its modes as D, but we are actually
referring to a subset of its modes that belong to an SDC). Thus, these modes
should inform the bounds of this integral.34 Note that we could consider only
some positive or negative momentum component of the field ϕ̂D, if we wanted f
to be complex valued.35 Thus, when we consider the interaction between systems
A and B, we consider a system D that belongs to an SDC that we choose to
ignore, and that sources the test function for A and B, where D are certain
modes of a field that were left in a specific state ρ by SDCs.36 Note that A could
be some modes of the same field as D, and thus they can be regarded as being
subsystems of a larger system. See Appendix D for an example of how coherent
states can be used as the source of test functions.

Thus, the idea is that SDCs also involve systems in certain states that source
the test functions. Another role of the test functions and systems that source
them is, through the cutoffs they give rise to, to help determine the scales of

33While other emission mechanisms may exist, the results we derive apply most directly to
this subclass. However, the results concerning test functions presented below are general.

34We may be inclined to calculate the test function via the expectation value of a continuum
of modes. However, in agreement with the scale dependence of SDCs, in practice, we never
work with all modes of a field. The system that emits the test function will be constituted by
a series of modes, for example, up to some bound kmax in the UV filter case, which will have
determinate values owing to the decoherence and the filtering due to some other systems (note
that typically we also need a IR filter). More concretely, although to calculate a test function,
we may be calculate it by integrating over a continuum of modes dk, from 0 to ∞, in practice,
we can integrate up to a Λ = kmax, and from Λ′ = kmin. Thus, depending on Λ = kmax, we
can view the test function as being emitted by many single modes or even by a single-mode
k ≈ 0 if kmax = Λ ≪ 1 for a UV cutoff. Interestingly, the inequalities (36) and (37) that we
derived below for the test functions to obey the spacetime symmetries guarantee the validity
of these cutoff-based bounded integrals. See at the end of Appendix D.

35The bounds derived below are applicable to this case as well.
36So, given information about D’s previous interaction concerning how the modes of the field

were filtered, we can introduce a cutoff in the integral in eq. (33) by hand. See Appendix D.
Instead of the cutoff, we could introduce in this definition a test function inside the expectation
value value, inherited from D’s previous interaction with members of an SDC. However, given
the bounds derived below, in principle, we do not have to. Note that we can associate the
localization of this system with the test function that it emits.
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systems that source gravity, i.e., what we may call the gravitational scales. It is
often argued that the semiclassical approach breaks at Planck scales, but it is
unclear whether any physical or gravitational phenomena occur at these scales.
We hypothesize that the scales on which SDCs operate, and thus gravity, are
much higher than the Planck scale. So, as we will argue, the semiclassical gravity
equations may be sufficient to represent the behavior of the gravitational field.

One should notice a feature of test functions, test functions are involved in all
tests of special relativity, which respect Poincaré invariance. It is expected that
ignored external environments lead to the violation of some symmetries of target
system. However, since all measurement outcomes for EnDQT involve open-
systems situations, we want at least some test functions emitted by members of
SDCs not to spoil the commutation relations between the generators of Poincaré
transformations, which are required to preserve Poincaré invariance. Otherwise,
it would be difficult for EnDQT to justify why relativity works or how reliable
evidence can be found. This leads to constraints on the test functions for at
least some local Hamiltonians in a (approximately) flat spacetime. Although the
bounds below will be valid for any test function, for definiteness, let us suppose
that we have the following temporal and spatial test Gaussian functions,

Λ(x) = χ(t)F (x) = exp
[
− (t− t0)

2

2T 2

]
exp
[
−|x− L|2

2σ2

]
. (35)

T and σ represent the temporal and spatial standard deviations, and characterize
the region where Λ(x) is effectively nonzero. The parameters t0 and L determine
the central time and position of the support of the test functions. In the case of
spatial variance σ we then get the following constraint (see Appendix D),

σ ≫ 1/kmax (36)

where kmax =
∣∣kmax

∣∣ is the maximum momentum of the physical processes under
study, and Lphys = 1/kmax is the minimal length scale of the modes of the
field involved in the interactions under study. Similarly, we get the following
constraint on the variance T of the temporal test function (see Appendix D),

T ≫ 1/ωmax (37)

where ωmax is the maximum energy of the system in the interaction under study,
and τphys = 1/ωmax is the minimal temporal scale involved in this interaction.
Similar inequalities need to be obeyed by the IR filter, which filters out infrared
modes in flat spacetime.3738 Furthermore, it can be shown that bandpass filters

37Assuming for definiteness the following test function, f(x, t) =
[
x2

σ4 − d
σ2 + t2

T4 −
1
T2

]
exp

(
− x2

2σ2 − t2

2T2

)
, where d is the number of spatial dimensions, whose Fourier trans-

form is f̃(k, ω) = −
(
|k|2 + ω2

)
(2π)

d+1
2 σdT exp

[
−σ2|k|2+T2ω2

2

]
. This filters out the

long–wavelength/low–energy sector, and we can see that we can have an argument iden-
tical to the given in Appendix D; hence kmaxσ ≫ 1 and ωmaxT ≫ 1.

38Notice that this requirement makes test functions approximately constant, which helps
implementing the requirement of being equal to 1 in the support of interactions between fields
discussed in the footnote 20.
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also obey these bounds.39
Not only test functions concerning Poincaré symmetric spacetime can obey

bounds. Test functions concerning some symmetric spacetimes can also obey
certain bounds. For instance, we will also analyze the case of de Sitter spacetime
with only a temporal test function,

fℓ(t,x) = exp
[
− (t− t0)

2

2ℓ2t

]
, (38)

we obtain a similar inequality ωmax ≫ 1/ℓt for local Hamiltonians in these
spacetimes, taking into account the generators of symmetries of a de Sitter
spacetime and their commutation relations.

Therefore, interactions that form some SDCs with the above symmetric
features need to have couplings that obey the above constraints, which depend
on the maximal momentum or energy of the modes involved in these couplings.
We see that the spacetime symmetries impose that there should be emitters of the
test function involving systems that live at much higher scales than the smaller
systems that are subject to those smearings, which impose UV or IR cutoffs on
these systems. Note that many, or perhaps most, spacetimes do not have the
above bounds because they lack symmetries. Thus, relativistic symmetries are
the exception rather than the rule. Moreover, they are idealizations and never
hold exactly. So, small violations in the commutation relations between the
generators of these symmetries are also expected when considering less idealized
situations.

A feature worth noticing is that with the mean-field definition that we have
adopted, not all states ρ̂ can emit a test function; they have to be states such
that αk := Tr

(
ρ̂âk
)
≠ 0, for at least some modes k. Thus, for instance, coherent

states with αk ̸= 0 can in principle emit it, as well as squeezed coherent states
and field amplitude eigenstates approximated by a Gaussian function. Number
states, thermal states, parity symmetric, and antisymmetric cat states cannot.
Note that states still need to be selected via decoherence to be able to lead a
system to emit a test function.

Due to the role of the emitters of test functions in the transmission of the DC,
we add a new condition to Postulate 2. As a reminder, this postulate concerns
the conditions for a system B to obtain the determination capacity concerning a
target system C, which we denote as DC-C (see introduction to Section 3):

vi) If B is interacting with the emitters S of a test function for its interaction
with system A and C. A system S is an emitter of a test function if and only if it
is in a state that can give rise to a valid test function and has the DC concerning
the systems it interacts with, while having determinate values in the spacetime
region where it emits such a function. So, it will emit a test function while it is
in that state, where, if the system is not an initiator, it needs to be left in that

39An example of that filter is f(t,x) = C e
− t2

2T2 − |x|2

2σ2

(
1
T2 − t2

T4 + d
σ2 − |x|2

σ4

)
where d is

the number of spatial dimensions and C is some constant.
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state by other members of the SDCs. Given that S’s is well-localized due to
its state, giving rise to a non-zero mean-field with low fluctuations, we can use
S’s emitted test function to infer its own localization. Test functions can obey
conditions that satisfy relativistic symmetries or constraints.

Thus, the modes that constitute S, which are responsible for emitting the test
function, are ones that were left having a determinate value due to members of
SDCs. By a valid test function, we mean a function that is smooth and strongly
localized, such as Schwartz functions. Note that emitters of the test functions S
are necessary but not sufficient to lead to the filtering out of modes of a system
S′. We also need that systems S′′ interact with S′, have the DC-S′ and decohere
the modes that are not filtered out.40 Test functions can obey conditions that
satisfy relativistic symmetries or constraints in the sense that they may obey the
bounds above, or they should meet conditions imposed via other frameworks.41
We have included these features in a postulate because it seems to be a brute
fact about SDCs.42 In the next section, we will see that the emitters of the test
function can acquire the DC concerning other systems without a third system
localizing their interactions with these systems.

As we can see, SDCs have scale-dependent features. An example that supports
the scale-dependence of SDCs is that decoherence in curved spacetime may occur
only at certain scales, such as super-Horizon scales in the case of de Sitter
spacetime, as we will see in Section 5. Another example that supports the
scale-dependence perspective is based on how detector resolution determines
whether a more massive system influences the decoherence of a less massive
system. More concretely, it can also be shown that test functions determine
whether a more massive system S′ in the same spacetime region as S decoheres
S or decouples from S, not decohering it. This will depend on how massive
is S′ compared with the temporal cutoff represented by the variance of the
temporal test function. If its mass M is much larger, it will be UV filtered out
(See Appendix E for more details). We will see that this case is related to the
previous example because the system that emits a gravitational field in the de
Sitter case is also considered to be the system that emits a test function. So, the
point is that test functions emitted by systems that belong to SDCs account for
a massive system decohering or not a target system, and hence it accounts for
whether such a higher energetic system emits a gravitational field or not. This

40Notice that with the determination conditions that we have assumed for EnDQT, states
help defining test functions because they arise from mean fields. However, one might worry
that these determination conditions are in conflict with AQFT. In the algebraic approach, the
generators of algebras can involve smeared fields ϕ̂(f), which presuppose test functions (see
Appendix C). States are assumed to come after the definition of an algebra of observables and
not be implicit in the definition of the generators of this algebra. We see this relation between
states and observables as a self-consistent mathematical relation to represent SDCs and make
inferences about them. So, we do not think that these determination conditions are in conflict
with AQFT, as one might initially suspect.

41Such as the algebraic adiabatic conditions. See 20.
42We could impose the obedience of the above bounds as a condition for systems to emit a

test functions, but that seems too demanding.
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supports the view advanced above that SDCs select systems at certain scales to
emit a gravitational field. Therefore, as we have hypothesized, by adopting this
theory, we can consider that it is not necessarily the case that the gravitational
field is emitted at all scales, including the Planck scale.43 This will depend on
the structure and elements of the SDCs. We will return to this topic at the end
of the next section after examining a more concrete example.

Finally, as we will discuss in Section 5, test functions and SDCs at different
scales are related by renormalization group transformations. More concretely,
the features of SDCs vary with energy scales, where this is described by certain
laws with specific masses, couplings, etc. Systems at these energy scales have
the DC concerning other systems at those scales. So, it will provide ways of
understanding the scale-dependence of SDCs.

3.2.2 SDCs in flat spacetime

We now provide an example of an SDC in flat spacetime involving systems in an
inertial frame by appealing to the well-known models of decoherence. This will
also clarify how systems in a coherent state are selected, which we will appeal to.

Let us consider A, B, C, and D. We consider A to be a large collection of N
modes of a field in a Gibbs state:

ρ̂A =

∫ ∏
i

d2αi
π

[∏
i

(
1− e−βωi

)
e−(1−e−βωi )|αi|2

] ∣∣{αi}〉〈{αi}∣∣, (39)

and we consider that B could be a number N ′ of modes, each in some arbitrary
state. We will focus on a single mode of B, where modes of B are in a state
|ψ⟩B . Furthermore, D is a field that emits the test function, and which we will
assume is in a coherent state |α⟩D due to its interactions with other members of
an SDC that we chose to ignore (we will come back on how D might have ended
up in that state).44 Moreover, D is a system (composed of multiple modes)
that is interacting with multiple modes that constitute A and B, while they
interact, and that can also interact with B and C, if they interact, emitting the
test function for these interactions. We assume that the modes of C are in an
arbitrary quantum state |ψ⟩C .

We will consider that the multiple modes that constitute field A interact
with a single mode of B, where the Hamiltonian of interaction is given by

Ĥint =
∑

k̸=kB

Ck X̂ q̂k, (40)

where X̂ and q̂k are the field quadratures for the single mode of B and for the
multiple modes Ai of A, respectively, and Ck are coupling constants. Assuming

43Thus, we leave open the existence of systems at lower scales that cannot source a gravita-
tional field.

44Such coherent state has αk = exp
[
− 1

2

(
σ2
r |k|2 + σ2

t ω
2
k

)]
exp

[
i(ωkt0 − k · x0)

]
, where the

test function associated with this state is centered at (t0,x0).
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the non-disturbance condition, we choose to ignore the interaction between Bi
and the rest of the systems that constitute C.

To arrive at the above Hint, starting from flat spacetime QFT we consider
the following smeared linear interaction Hamiltonian,

Ĥint(t) = λ

∫
d3x dt f(x, t) ϕ̂B(x, t) ϕ̂A(x, t), (41)

select one of the modes of B for simplicity and insert the plane-wave decomposi-
tions in SI units,

ϕ̂B(x, t) =
1√
V

√
ℏ
2Ω

[
âB e

i(kB ·x−Ωt) + â†B e
−i(kB ·x−Ωt)

]
, (42)

ϕ̂A(x, t) =
1√
V

∑
k̸=kB

√
ℏ

2ωk

[
âk e

i(k·x−ωkt) + â†k e
−i(k·x−ωkt)

]
, (43)

together with the Gaussian test function

f(x, t) = fr(x) ft(t), fr(x) =
e−x2/(2σ2

r)

(2π)3/2 σ3
r

, ft(t) =
e−t

2/(2σ2
t )

(2π)1/2 σt
. (44)

We end up with four exponentials,

I1(k) = exp
[
− 1

2

(
σ2
r |kB + k|2 + σ2

t (Ω + ωk)
2
)]
,

I2(k) = exp
[
− 1

2

(
σ2
r |kB − k|2 + σ2

t (Ω− ωk)
2
)]
,

I3(k) = I2(k), I4(k) = I1(k).

Given relativistic symmetries-inducing bounds derived in the previous section,|k|σr ≫
1, ω σt ≫ 1, and thus

σ2
r |kB + k|2 ≫ 1, σ2

t (Ω + ωk)
2 ≫ 1, (45)

so we have that I1 ≃ I4 ≪ 1.
Furthermore, assuming that the emitter of the test function D filters out every

mode except those that are quasi-resonant with the environmental probes, or
assuming that it operates in narrow band, we get

∣∣k−kB
∣∣ ≲ σ−1

r ,
∣∣ωk−Ω

∣∣ ≲ σ−1
t .

Thus,
σ2
r |kB − k|2 ≪ 1, σ2

t (Ω− ωk)
2 ≪ 1, (46)

and therefore I2 = I3 ≈ 1. So, I1(k) = I4(k) −→ 0, I2(k) = I3(k) −→ 1. We
thus obtain,

Ĥint =
λℏ

V
√
2Ω

∑
k̸=kB

|k|≤kmax

1√
2ωk

(
âB â

†
k + â†B âk

)
, (47)
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which can be rewritten as

Ĥint =
∑

k̸=kB

Ck X̂ q̂k (48)

with Ck = λℏ/[V
√
2Ω 2ωk], X̂ =

√
ℏ/(2Ω)(âB + â†B), and q̂k =

√
ℏ/(2ωk)(âk +

â†k).

Figure 3: Multiple systems A1, ..., AN belonging to SDCs, and interacting
with system B, giving rise to B having a determinate values and emitting a
gravitational field. The inference regarding how these interactions occur is made
using decoherence models. We omit systems C and D in this diagram.

It was shown that an arbitrary state |ψ⟩ decohering into a statistical mixture
of coherent states is a generic feature of free quantum systems that are linearly
coupled to an environment in a Gibbs state. This environment can have a
nonzero temperature and involve ohmic, subohmic, and supraohmic damping,
and the interactions can have arbitrary coupling strengths [30]. Moreover, this
Hamiltonian of interaction, depending on the specifics of the model [117], also
allows for interactions that lead to systems in a Gibbs state. Multiple situations
can occur. For instance, we can have a situation where modes of a system A
leave multiple modes of a system B in a Gibbs state, where these modes then
leave multiple modes of system C in a coherent state and possibly other modes
of C in another Gibbs state, and so on. Moreover, these mixtures of coherent
states stochastically give rise to single coherent states, which can then emit test
functions. Thus, we have a mechanism in which systems in a coherent state arise
via SDCs.

As we can see, to give rise to a system with determinate values, a source of a
test function is needed, as well as some system that decoheres or whose state
correlates with the state of another system. Let us call spreading of the DC
by control the spreading of the DC between systems S due to systems S′, where
S′ emits the test functions that make systems S interact with each other, obey
the no-disturbance condition, and transmit the DC between each other. This is

33



the kind of spread of the DC that we have been observing.45
Additionally, we can consider that the emitters S′ of the test function interact

with all the modes of systems S up to kmax, which they do not filter out in case
they emit a UV filter, or which they filter out in case they emit an IR filter. So,
filtering is performed via the interaction of the emitter of the test function with
certain modes. Then, the modes that were not filtered out can participate in a
process that gives rise to determinate values. The modes that were filtered out
cannot. It is in this sense that SDCs only exist at certain scales. As we have
mentioned, renormalization group will also help make these inferences (Section
5).

Note that, as mentioned in the previous section, sometimes certain systems
have certain features that allow them to emit test functions for their own
interactions and localization. More concretely, due to the features of the state they
are in, which involves giving rise to a non-zero mean-field with low fluctuations,
emitters of test functions can emit the test function for their own interaction
with other systems. So, we can consider that modes that constitute system D,
in the example above, are emitting a test function that concerns its interaction
with A and B, and with B and C. There is no need for a fifth system that
localizes D.

The spread of the DC by control is not the only way to spread the DC. To
see this, first notice the interesting fact that, given some Hamiltonian, there
may be interactions between systems where we do not know how the way
they will give rise to determinate values is going to precisely occur. This is
the case where we have emitters of the test function, as mentioned earlier.
Consider A interacting with B via certain modes where λABfABϕ̂Aϕ̂B (where
we disregard which modes will interact with each other). Moreover, B might
develop self-interactions through certain modes via a cubic interaction Ĥint(t) =∫
d3x g3!

(
ϕ̂B,k=0(t) + δϕ̂B,k ̸=0(x, t)

)3
(omitting the sum over the rest of the

modes |k| ≠ 0, which are inside δϕ̂B,k ̸=0), for g ≪ 1, which in momentum space
involves terms such as one proportional to ϕ̂B,k=0(t)

∑
k̸=0 ϕ̂B,k(x, t) ϕ̂B,−k(x, t).

ϕB,k=0 is the k = 0 mode of B, which if it is decohered by A (let us suppose that
it will), could act as an emitter of a temporal test function f(t) = ⟨ϕ̂B,k=0(t)⟩ρ
for interactions involving other modes |k| > 0 of B. However, we do not know
in which state ρ, ϕ̂B,k=0 will end up, while A and B are interacting, where this
state will determine the features of f(t).

Now, notice that in this case, the k ̸= 0 modes of B that are interacting
with k = 0 of B (but are not interacting with modes of A), while the k = 0
of B is interacting with A, fulfill the no-disturbance condition because they
do not disturb the interactions between k = 0 of B and A. So, given the

45The features above open up the possibility of an alternative determination condition that
posits that the only systems that have the DC are the emitters of the test functions, not the
systems S that decohere others. However, this condition, insofar it is consistent, neglects
the role of decoherence in giving rise to measurement outcomes. Intuitively, it seems that
measurement instruments, modeled via decoherence, need to have some importance when
measuring target systems, not only the systems that localize their interactions.
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determination conditions, k = 0 of B will obtain the DC concerning k ̸= 0 of
B. This non-disturbance is trivially fulfilled because there does not need to
exist a test function that makes k ̸= 0 of B interact with k = 0 of B. Let us
call transmission of the DC by osmosis these interactions that involve systems
obtaining the DC concerning some other systems without the intermediaries
that involve emitters of the test functions. Importantly, A will leave ϕB,k=0 in a
state ρ, and ϕB,k=0 will emit a test function while it does not evolve away from
ρ.46

Given these determination conditions, the picture that emerges from this
theory is of a tower of scale-dependent emitters of test functions and systems
that are subject to such emissions, which may end up emitting the test function
to other systems, and so on.

Finally, we note that systems that have the DC can be treated as probe/particle
detectors, and particle detector models or measurement theory in QFT (devel-
oped in algebraic QFT) can be used to update the state of the systems. In
Appendix G, we do that for particle detector models.47

4 The theory of gravity
We now present the semiclassical gravity theory based on EnDQT. It will involve
three postulates, which are added to the other features of EnDQT mentioned
above and its determination conditions. Although some of these postulates may
seem radical, the theory we propose is actually very conservative. String theory
is not being appealed to, spacetime or gravity will not be quantized, but we also
do not need to view the metric and conjugate momentum as some stochastic
classical system. Therefore, it will not be a gravity-induced collapse theory, such
as hybrid classical-quantum theories and the Diosi and Penrose models [26, 84].
We will also show in more detail how this theory agrees with and generalizes the
equivalence principle, one of the basic principles of relativity.

4.1 Postulate 1
We have clarified above what our QFT setting is; now we need to ensure that
we clarify what we can consider to be the fundamental systems studied by this
theory of gravity and what affects their evolution in the absence of interactions
with members of SDCs. This is the goal of the first postulate.

Postulate 1 Quantum systems involve sets of modes of quantum fields
(henceforth quantum fields) that occupy localizable spacetime regions, and have
quantum properties, which are properties represented by observables, such as
certain field amplitude operators and energy-momentum operators, and quantum
states in agreement with QFT. In the absence of interactions with SDCs and the

46Note that there might exist other mechanisms for the transmission of the DC beyond those
presented here, and consistent with our desiderata.

47See [83] for a review of these models.
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determinate values that arise from them, quantum fields in spacetime region R
have indeterminate values for any of their dynamical observables in R. Quantum
fields S in R that are not interacting with members of an SDC in such a way
that decoherence occurs, evolve only under the dynamical equations of QFT that
quantum fields obey, such as the Klein-Gordon equation, but no determinate
values arise. The above equations are partially determined by the gravitational
field in R, or by a flat spacetime metric in the absence of a gravitational field.
However, this field is not emitted by S because S cannot emit a gravitational field.

Therefore, we are interested in studying quantum systems that occupy
bounded regions of spacetime and establish local interactions with other systems.
In the previous sections, we have seen how we can represent their interactions
via test functions f(x, t). Furthermore, quantum fields in R are affected by the
gravitational field in that region emitted by the sources of that field. However,
they are not affected classically by the gravitational field in the sense of being
test quantum fields that have determinate values or test particles obeying the
geodesic equation and its deviations (we will return to this and justify it with
Postulate 2). The way they are affected is described by the equations that con-
cern the evolution of the quantum fields in that region, such as the Klein-Gordon
equation or the Dirac equation for flat and curved spacetimes. However, they do
not emit any gravitational field of their own. In the following sections, we will
see how this postulate allows us to address some issues with the semiclassical
approach.

To understand one of the consequences of Postulate 1, let us consider two
scalar fields isolated from SDCs and other systems in a spacetime region R, and
that these scalar fields evolve under the same gravitational field in R (e.g., the
gravitational field of Earth), determined via the metric gµν and its derivatives.
In addition, let us assume that under hypothetical interactions with SDCs, these
systems would give rise to a very different determinate energy-momentum each
(which could be arbitrarily different). However, their dynamics are the same,
which depends on the Klein-Gordon equation for curved spacetimes that depends
on the metric gµν and possibly its derivatives. Thus, this implies that systems
with very different energy-momentum in the same region of spacetime R will
evolve similarly under the same gravitational field. Therefore, according to this
theory, it is possible that a feather and a very massive quantum object (such
as a black hole), both in a coherent superposition of macroscopic states, evolve
under the same gravitational field without affecting their spacetime, provided
that these objects are not interacting with SDCs and other systems (because
of their macroscopicity and decoherence, this phenomenon should be physically
very unlikely). More precisely, objects in a coherent superposition behave in the
same way under the influence of the same gravitational field, assuming that no
other forces intervene, which includes interacting with members of SDCs.

As we have said, this principle is violated by quantum gravity theories if
there is entanglement between gravitational degrees of freedom, which gives
rise to violations of this principle owing to the behavior of bodies under this
entanglement. It will also be violated by gravity-induced collapse theories
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because systems emit a gravitational field or, in some regime independent of the
environment, collapse, which will give rise to violations of this principle.

Although at first sight, the consequences of this principle seem quite radical
and their features counterintuitive, we think they are not because, as we have
mentioned (see Section 2 for more details), they can be regarded as a generaliza-
tion of the Weak Equivalence Principle (WEP). Thus, we have the following the
following EnD Equivalence Principle,

Without being affected by other forces, any quantum system under the same
gravitational field exhibits the same behavior due to this field.

So, if these systems do not interact non-gravitationally with other objects,
including SDCs, they will evolve similarly under the same gravitational field.
Furthermore, this theory can be seen as a generalization of the so-called strong
equivalence principle (SEP) of standard QFT, which does not study the back-
reaction from gravity (i.e., standard curved spacetime QFT). In its simplest
formulation, the SEP states that [66]:

Locally, special relativity is at least approximately valid.

This theory states the following, which we will call the Special EnD Equiva-
lence Principle:

If a system S does not interact with SDCs, curved spacetime QFT, which con-
siders that systems do not give rise to a gravitational field that influences their
evolution, is valid to describe the behavior of S.

The idea is that curved spacetime QFT, where a system does not give rise to
a gravitational field that influences its evolution (which is the standard idealiza-
tion), is valid in certain circumstances (not only approximately). Given special
relativity, a special case of the above principle concerns the evolution in a local
region of spacetime. This special case connects this theory with the SEP and is
as follows:

If systems do not interact with SDCs, locally flat spacetime QFT and, hence,
special relativity are at least approximately valid to describe their behavior.

Thus, we can see that the SEP is a special case of the Special EnD Equivalence
Principle. Let us now turn to the second postulate, which concerns how SDCs
give rise to the gravitational field.

4.2 Postulate 2 and probing the metric through SDCs
We will now explain how a system can emit a gravitational field due to systems
belonging to SDCs that probe it. We begin by showing an intuitive way of
understanding how multiple systems probe a target system and give rise to that
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system emitting a gravitational field in a spacetime region. Then, we present
Postulate 2, which establishes the conditions under which systems can emit a
gravitational field.

A model to understand how multiple systems belonging to SDCs that con-
stitute probes (see Appendix F) give rise to a target system emitting or being
subject classically to a gravitational field is based on the work of [85], which was
based on [104, 60, 61]. What we mean by being subject classically is behaving
like a test field, being subject to a certain metric like a field in classical physics.
In this work, the authors showed how we can infer the metric that a quantum real
scalar field is subject to from local measurements by particle detectors coupled to
that field, where the target system is, for simplicity, in a Gaussian state fulfilling
the Hadamard condition. Essentially, states that fulfill this condition allow for a
finite renormalized stress-energy tensor, as we will discuss further below.48 In
Appendix F we show how the reduced state of a detector contains information
about a target system via two-point correlation functions. Using this feature, the
inference of the metric through particle detectors involves probes that measure
two-point correlation functions, represented by the Feynman propagator and
Wightman function, and extract geometric information from them. The central
goal is to express the spacetime metric gµν in terms of these correlators.

More concretely, the starting point is the Feynman propagator, GF (x, x′) =
⟨0|T ϕ̂(x)ϕ̂(x′)|0⟩, and the Wightman function, where ϕ̂(x) is the operator of the
target quantum field at spacetime point x, and T represents the time-ordering
operator. Assuming that the target system is in a vacuum state |0⟩, we can
express the metric gµν in D spatiotemporal dimensions as follows:

gµν = −1

2

(
Γ

(
D

2
− 1

)
1

4πD/2

) 2
D−2

∂µ∂ν

(
Wρϕ(x, x

′)
2

2−D

)
, (49)

where the above equation is calculated by taking the limit x′ → x, and where Γ
is a Gamma function. This equation holds for any normalized Hadamard state
ρϕ.

These detectors can be understood as modes of a field under certain conditions
(Appendix F). We will consider that these systems give rise to a field emitting
a gravitational field, or being subject classically to it, not just probing it. The
detectors probe the system in separate spatiotemporal regions, forming an array
that illustrates how the metric/gravitational field with its distances arises from
these interactions. However, instead of just an array of detectors, we will consider
what we fundamentally have is an array of systems belonging to SDCs in space,
interacting with a target quantum field over time. Note that models mentioned
above ignore any backreaction of the probes or the target quantum field on the
background spacetime. However, it shows how both the field and probes have
determinate values in this interactive process, and how this is associated with a
metric. But, for the theory we are proposing, this metric (and the associated
gravitational field) arises due to these interactions. See Appendix G for further
details.

48See Appendix C for an introduction to states fulfilling the Hadamard condition.
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Figure 4: Two-dimensional spatial hypersurface of members of an SDC probing a
scalar field at separate points of what can be illustrated as an array of detectors,
giving rise to that field emitting a gravitational field in a certain region. A
realistic picture would not involve points, but regions.

We will consider that settings like this one constitute environments that
give rise to the target system emitting a gravitational field. Furthermore, the
persistence of these interactions gives rise to systems emitting a gravitational
field and are classically subjected to it in a region R. Note that this target
quantum field can then probe other systems, and so on, being part of an SDC.
Thus, these interactions will give rise to a set of values, correlation functions,
and an associated metric. In a sense, SDCs act as rods and clocks that produce
a non-flat metric, and allow gravity to spread under interactions.

Above, we established the determination conditions, and now we will establish
the gravitational conditions, which, as a reminder, are the conditions for a system
to emit a gravitational field. Postulate 2 establishes the gravitational conditions
that we will adopt. As there are various possible determination conditions (see
[89] for a discussion), there are multiple possible gravitational conditions. We
will go over some of them and explain why we adopt the ones that we will
adopt. The first point of division is whether systems in all states, as long as
they yield a finite renormalized stress-energy tensor, such as Hadamard states
or C4 states, emit a gravitational field [72]. SDCs would leave systems in these
states. Another option is that only systems in more specific states can emit a
gravitational field. A possible criterion for selecting these kinds of states could
be supported by Kuo and Ford criterion [64]. Some states whose second and
higher moments of the energy-momentum tensor can be neglected are coherent
states. These states provide trustworthy inputs to semiclassical equations for
calculating the expectation value of the energy-momentum tensor. This was
argued in the paper from Chung-I Kuo and L. H. Ford [64] for the case of flat
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spacetime and by [6] for the more general case of globally hyperbolic spacetimes:

∆µνλρ(x, x
′) =

∣∣∣∣∣ ⟨: T̂µν(x)T̂λρ(x′) :⟩ − ⟨: T̂µν(x) :⟩⟨: T̂λρ(x′) :⟩
⟨: T̂µν(x)T̂λρ(x′) :⟩

∣∣∣∣∣ . (50)

This estimator is understood as the ratio between the covariance of the
normal-ordered energy-momentum tensor and and its two-point function. If this
estimator is ∆µνλρ(x, x

′) ≪ 1 for all x and x′, then we are inside the regime of
validity of semiclassical gravity. It was found that this condition is fulfilled by
coherent states.49

Note that this estimator is useful for the specific case of Gaussian states
(coherent states are Gaussian states) because, in this case, all statistical mo-
ments of quadratic observables are functions of the second and first moments,
guaranteeing that the satisfaction of the Kuo-Ford criterion ensures that the
system in this state gravitates semiclassically. However, there are other states,
such as cat states, i.e., superpositions of distinguishable coherent states, where
other moments are relevant, and thus the above criterion fails. It was shown in
[6] that cat states also deliver trustworthy expectation values of the stress-energy
tensor in globally hyperbolic spacetimes.50

Therefore, according to this gravitational condition, only in certain contexts,
such as those where a system ends up in minimum uncertainty states, such as
coherent states and/or cat states, we would have systems in those states emitting
a gravitational field and being subjected to it. We will return to this point below.

The second point of division is whether a system can have determinate values
(give rise to measurement outcomes) in interactions with or without emitting
a gravitational field. One option considers that we might have circumstances
involving the fulfillment of the determination conditions, where systems can
have determinate values but without emitting a gravitational field, where, for
example, these systems are in states that are not coherent states. Another option
considers that at least one of the systems involved in the interactions fulfilling the
determination conditions must emit the gravitational field under the interactions,
but the others do not. For instance, a system emitting a gravitational field would
be in a coherent state, whereas the others would not necessarily be so.

Another option is that all systems involved in the interactions, which fulfill
the determination conditions, must emit a gravitational field, and SDCs select
unproblematic states, such as Hadamard states and C4 states, that emit such a

49Besides what is mentioned below, note that this criterion is informative in the case the
expectation value of the stress-energy tensor is non-zero, which does not happen in the case of
the Minkowski spacetime. This deficiency is not problematic to this theory because according
to it and Postulate 3 (see the next section), the Minkowski metric can be considered the default
metric and not a metric that arises from the application of the semiclassical or Einstein Field
Equations.

50More specifically it was shown that the cat state fulfills the above criterion when the
coherent amplitude of the state becomes sufficiently large so that the overlap between the two
superposed components becomes negligible, and for any cat state where the coefficients of
the superposition are chosen such that the relative phase difference between the two coherent
states equals π/2.
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field. We will favor the adoption of the latter option via the Postulate 2 (see
below) because we believe that it is the most conservative and open to many
possible states. Furthermore, it may be the most fruitful option. As we will
see, we will further hypothesize that the uncertainties in the stress-energy tensor
involved in states that give rise to the gravitational field can be absorbed by
a negative stress-energy, giving rise to a balance, which allows us to provide
an account of dark energy and derive its value. However, we will be open-
minded and consider another perspective via Postulate 2’ below. Despite the
plurality of options seen above that this theory allows for, one should see that
as unproblematic because it gives us interesting new hypotheses to study, which
may be testable with gravcats experiments (more on this below).51

Before stating Postulate 2, let us see one way to understand the conservation
of the expectation value of the stress-energy tensor and determinate trajectories
in spacetime, according to this theory.

Let us consider a system that is left in a coherent state. Via the covariant
conservation equation, where we consider that

∇µ⟨T̂µν⟩ren ≈ ∇µTµν(x) = 0, (51)

where ⟨Tµν⟩ren denotes the renormalized expectation value of the energy-momentum
tensor operator of this system in that state; the strengthened dominant energy
condition,52 and the support of the stress-energy tensor in an open neighborhood
O, we can parametrize a smooth curve embedded in spacetime in a neighborhood
O as a geodesic [43, 70]. Then, we can consider that the target system follows a
determinate trajectory at least briefly for one interaction with a member of an
SDC.

Note that the semiclassical covariant conservation equation and geodesic
equations are only applicable once an outcome arises via the decohering inter-
actions that constitute SDCs. Before that, the systems have an indeterminate
value of their stress-energy tensor in agreement with the determination condi-
tions (Section 3.1). Hence, the notion of a determinate trajectory given by the
geodesic equations is not applicable to model the behavior of systems. Similarly,
we will consider that the equations that describe deviations from the geodesic
equations are only applicable when systems have determinate values due to
SDCs, which also lead to certain trajectories. More generally, any behavior that
follows from the Einstein Field Equations53 will only be applicable when systems

51These gravitational conditions may involve assuming one of three possibilities regarding
how gravity and determinate values relate, although here we just focus on the first one because
it is the most conservative: a) Gravitational imperialism: all systems belonging to SDCs, when
having determinate values, need also to emit a gravitational field; b) Gravitational necessitism:
gravity is needed at least for one of the systems involved in interactions involved in SDCs for
systems to have determinate values; and c) Gravitational dispensabilism: gravity is not needed
for systems to have determinate values; we can have determinate values in a flat spacetime
with systems fulfilling the determination conditions, with none of these systems emitting a
gravitational field.

52This condition says [70] that for all points p in the manifold M , and all unit timelike
vectors ξa at p, Tab ξaξb ≥ 0 and, if Tab ̸= 0, then Ta

b ξ
b is timelike.

53Except the metric and gravitational fields that follows from the default state of spacetime.
More on this in the next section.
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are decohered by members of SDCs.
So, Postulate 2 is the following,

Postulate 2 A system S only emits a gravitational field, has determinate
values of some of its observables, and evolves classically under a gravitational
field, which can involve a determinate trajectory, when it interacts with systems
that belong to SDCs and while they have determinate values due to them. SDCs
lead to the selection of quantum states of systems that are favorable to their
emission of a gravitational field, such as Hadamard and C4 adiabatic states. The
gravitational field sourced by S and that classically affects S is given by the
semiclassical Einstein field equation with the energy-momentum tensor properly
renormalized:

Rµν −
1

2
gµνR+ gµνΛ =

8πG

c4
⟨T̂µν⟩. (52)

Thus, this equation is only valid to describe how the gravitational field affects or
is affected by S when S interacts with members of an SDC.

Therefore, SDCs select certain states that are unproblematic to emit a gravi-
tational field, but Postulate 2 leaves which states these are more open than the
alternatives, as we will see. One possible alternative to Postulate 2 establishes
restricted contexts C in which systems gravitate:

Postulate 2’ A system S only emits a gravitational field, has determinate
values of its observables, and evolves classically under a gravitational field, which
can involve a determinate trajectory, when i) it interacts with systems that belong
to SDCs, and ii) when these interactions between a target quantum matter field
S and other quantum matter fields belonging to SDCs that probe the field in
a region R lead S to have values that correspond to a quantum state whose
second and higher moments of the energy-momentum can be neglected in the
spacetime regions R where it is probed, or possibly lead to other contexts C that
guarantee that the expectation value of the stress-energy tensor of S provides
reliable results. The gravitational field sourced by S and that affects classically S
is given by the semiclassical Einstein field equation with the energy-momentum
tensor properly renormalized:

Rµν −
1

2
gµνR+ gµνΛ =

8πG

c4
⟨T̂µν⟩, (53)

and thus this equation is only valid to describe how the gravitational field affects
or is affected by S when S is left in a state due to interaction with members of
an SDC.

The hypothesis behind this postulate is that coherent states and/or other
states whose second and higher moments can be neglected are responsible for the
emission of the gravitational field, or only certain contexts where the stress-energy
tensor gives trustworthy results gravitation arises. We will be neutral about
which states, or more broadly contexts C, should give rise to a gravitational field.
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The advantage of this hypothesis is that it automatically considers that the
only systems that emit a gravitational field have always a stress-energy tensor
with low fluctuations, which guarantees that the semiclassical equation yields
trustworthy results. Note that test functions, via spatial and time averaging
over finite intervals of spacetime, can reduce the probability of large quantum
fluctuations of the stress-energy tensor [36]. Thus, this approach allows SDCs to
reduce the fluctuations of these quantities, given that we consider that SDCs
give rise to systems that emit test functions. Therefore, postulate 2′ could
allow gravity to be emitted in these cases if they are included in the context
set C. The disadvantage of Postulate 2’ is that it might restrict the domain
of relativity excessively and in a problematic way. There might be states with
high fluctuations, where no context can reduce them.54 Despite the potential
advantages of Postulate 2’ in terms of dealing with fluctuating stress-energy
tensors, we will see in Section 7 that we have other ways of dealing with these
fluctuations via dark energy, which can complement Postulate 2’ or be adopted
by those who adopt Postulate 2.

Nevertheless, it is an empirical question as to which of the gravitational
conditions and associated postulates is the right one, which could be decided by
experiments involving preparing gravcat systems in specific states or contexts
and then measuring their potential gravitational field to see if they emit it or
not. These experiments would confirm or rule out different states or contexts.

4.3 Postulate 3: The default state of spacetime and dark
energy

We will turn to the postulate that concerns the default state of spacetime in the
absence of systems sourcing a gravitational field via the SDCs. It also concerns
the potential source of dark energy, which we relate to the cosmological constant
appearing in the Einstein field equations. Because we are dealing with very
open questions and a much more speculative domain, we will consider different
versions of Postulate 3. The third version of this postulate is presented in Section
7.

Postulate 3 (version 1) The effects of the cosmological constant Λ are
sourced by SDCs when they emit a gravitational field. Therefore, the accelerat-
ing effects of dark energy due to this constant are the result of SDCs. In the
absence of SDCs, spacetime is flat, and there is no accelerated expansion of the
universe.

According to this postulate, sourceless gravitational fields do not exist because
54There are also other possibilities such as systems having determinate values, but not

emitting a gravitational field of their own. We refrain from elaborating postulates regarding
this because they may be too radical. The most plausible possibility is in the case of observables,
such as the spin projection. Although radical, this is still conceivable. A contextualist postulate
would claim that systems that have determinate values of those observables, may evolve under
a gravitational field as quantum systems, but do not emit a gravitational field.
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every gravitational field is sourced by some quantum matter field. Furthermore,
quantum matter fields sourced by SDCs not only give rise to a gravitational field
but also to dark energy. In the absence of these sources, spacetime is flat in the
sense of being described exactly by the Minkowski metric η with the derivatives
of this metric being zero. For instance, when a cosmological constant Λ ̸= 0 is
present, the vacuum (Tµν = 0) exterior solution around a spherically symmetric
mass M is the Schwarzschild–de Sitter metric:

ds2 = −
(
1− 2GM

r
− Λr2

3

)
dt2 +

(
1− 2GM

r
− Λr2

3

)−1

dr2 + r2dΩ2. (54)

This solution includes both parameters: M (the “mass”) and Λ. They appear
as separate ingredients in the metric. From this perspective, the sourcing of a
gravitational field by a system with mass M would always be accompanied by
dark energy. When there is no matter sourcing that field, Λ = 0. The appearance
of the Λ independently of a source in the Einstein Field Equations would be an
idealization. Arguably, there are always some SDCs somewhere giving rise to a
gravitational field and dark energy, and the persistence of Λ would be justified
in this way. Furthermore, the value of Λ would be simply a brute fact (i.e.,
unexplainable).55

Note that, in this view, dark energy does not originate from vacuum fluctu-
ations. It only comes from quantum matter fields connected to SDCs in such
a way that they emit a gravitational field. An alternative view to this one,
which has given rise to many problems (leading to the so-called cosmological
constant problem), is that the vacuum just happens to have an inherent energy-
momentum that gravitates, and thus, the vacuum energy should explain this
constant. However, given the above postulate, this theory can reject this view

55Briefly, Postulate 3 (version 1) and, as we will see, version 3, can be read as establishing
that the dynamics of matter fields in the absence of a gravitational field, obey the Poincaré
symmetries. In this sense, these postulates can be used to help explain the following “two
miracles” of general relativity [95, 96]:

“MR1: All non-gravitational interactions are locally governed by Poincaré-invariant dynam-
ical laws.

MR2: The Poincaré symmetries of the dynamical laws governing non-gravitational fields in
the neighbourhood of any point p ∈ M coincide (in the regime in which terms representing
‘tidal gravitational forces’ can be ignored) with the symmetries of the metric field in that
neighbourhood.”

MR1 is the case because (given the postulates above) by default, the dynamics of matter
fields in the absence of a gravitational field is given by Poincaré invariant laws, and all non-
gravitational interactions locally are governed by laws that approximate this universal feature,
i.e., laws that are at least approximately Poincaré invariant. This universal feature should
be the case for all fields, where these fields in interactions give rise to a gravitational field,
and this process is represented via the semiclassical equations. It should be unsurprising
that the dynamical laws of these fields in the neighborhood of any point p ∈M coincide (in
the regime in which terms representing ‘tidal gravitational forces’ can be ignored) with the
symmetries of the metric field in that neighborhood because of this emergentist process, leading
to gravity, due to quantum systems. This helps justify MR2. So, adopting this theory allows
for philosophical positions concerning spacetime where these miracles do not arise.
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by considering that systems in the vacuum are not interacting with SDCs. We
will explain in Section 7 this idea in more detail. There is another version of
Postulate 3,

Postulate 3 (version 2) Dark energy is the default gravitational field of
the universe in the absence of matter.

In this view, the gravitational field determined by the cosmological constant
is the default gravitational field in the universe and not flat spacetime, contrary
to version 1 of Postulate 3. Thus, in the absence of matter, we would have

Rµν −
1

2
gµνR = −gµνΛ, (55)

or equivalently in 4D, Rµν = Λgµν , R = 4Λ. (56)

Note that in this view, similar to the first version of this postulate, dark
energy also does not originate from vacuum field fluctuations. The gravitational
field is a self-standing entity with default gravitational field values that are
independent of quantum fields. Similar to the previous version, the value of Λ
would also be a brute fact, contrary to the alternative postulate in Section 7.

Both postulates are, at least in principle, testable via the study of the
gravitational field emitted by members of SDCs. If the gravitational field emitted
by SDCs involves dark energy effects, this would be evidence for Postulate 3
(version 1). However, in our view, these postulates are not completely satisfactory
because they leave the precise nature of dark energy unanswered. Postulate 3
(version 3) in Section 7 provides an answer with further consequences. Owing to
its simplicity, which may help explain the origin of the cosmological constant, in
this paper, we will favor Postulate 3 (version 1) and, as we will see, the related
version 3.

5 SDCs in curved spacetime
To see how SDCs work in a simple curved spacetime, we will consider an example
of SDCs in a flat de Sitter spacetime, which is defined by the metric,

ds2 = −dt2 + a2(t) dx2 = a2(η)
(
−dη2 + dx2

)
, (57)

where H is constant and a(t) = eHt, t is the cosmological time, and η is the
conformal time, which satisfies dt = a dη with η = −H−1e−Ht = −1/(aH),
where −∞ < η < 0 when −∞ < t <∞. So, the scale factor in conformal time
is a(η) = −1/(Hη) and we have that late times correspond to η → 0.

The action for scalar fields in a de Sitter spacetime is given by

S = −
∫
d4x

√
−g

[
M2
p

2
R+ Vm + 1

2 g
µν∂µσ ∂νσ + 1

2 g
µν∂µϕ∂νϕ+ V (σ, ϕ)

]
,

(58)
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In the expression above,56 Vm represents the system or systems whose en-
ergy–momentum dominates the spacetime region under study, drives its back-
ground geometry, and belongs to SDCs. We may take Vm to be a cosmological
constant, but that is sourced by some system. This system could be the inflaton
field; however, this does not necessarily have to be the case, and it could be
some other form of radiation or matter as well. As we will see, these other fields
can give rise to an inflation-like effect by sourcing a kind of time-varying dark
energy that is dominant in the early universe (see Section 7 and Appendix I).

For simplicity, we assume that the same system Vm is both sourcing the
test function and gravity, via a mode k = 0 that is in a coherent state, which
is a homogeneous and isotropic state (see Section 3.2.1 for more details). We
could further interpret Vm as a field whose k = 0 mode, and other modes, are
interacting with SDCs through another field that we ignore for simplicity, or
k = 0 is one of the modes of the initiator mentioned in Section 3.1, which
is the first system starting the SDCs with no predecessor. Multiple modes of
this initiator system would exist at different scales.57 In this perspective, the
inflaton would be the first system starting the SDCs, transmitting the DC to
other systems, and being active for a short amount of time, until it reaches
the bottom of its potential V (x, t). In the typical way of understanding this
scenario, a system S would be the homogeneous part ϕ(t) of the inflaton field,
and ϕ(x, t) could be a non-homogeneous part of the inflaton δϕ̂(x, t), where the
inflaton field would be split between the homogeneous and the non-homogeneous
part, ϕ̂(x, t) = ϕ(t) + δϕ̂(x, t). Then, ϕ has the DC concerning σ (not part of the
inflaton field), and then σ could continue propagating the DC to other systems.
These fluctuations have ultimately important empirical consequences, explaining
the temperature anisotropies in the CMB and the seeds for structure formation
(galaxies, clusters, etc.).

However, we will consider instead a more abstract case where the background
gravitational field is due to a k = 0 mode of another real scalar field ψ in a
coherent state, which we can consider to be in a high occupation number so
that it is a reliable semiclassical state. It is also due to some k ̸= 0 in a Bunch-
Davies vacuum state approximately with a small backreaction that we choose
to ignore. We assume that the timescale over which the modes of ψ change is
much slower than that of the other fields under analysis, such that we can treat
the field emitted by ψ as approximately constant. We assume that this field will
source the de Sitter spacetime at least effectively. In de Sitter spacetime, the
Hamiltonian corresponding to the real scalar fields ϕ and σ, whose interactions

56In the expression above, we have also omitted the multiplication of the Lagrangian by
a test function to obtain a generalized Lagrangian. In a more rigorous approach based on
perturbative Algebraic Quantum Field Theory, we would need to consider this object. More
on this below.

57As we have said, we will consider that SDCs, and thus gravity, do not operate at the
Planck scale. Thus, initiators at these scales will not exist.
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will be localized in time by ψ, is given by

H =

∫
d3x

√
γ

[
1

2
π2
σ +

1

2
γij ∂iσ ∂jσ +

1

2
π2
ϕ +

1

2
γij ∂iϕ∂jϕ

+
1

2

(
m2

env + ξϕR
)
ϕ2 +

1

2

(
m2

sys + ξσ R
)
σ2 +Hint(σ, ϕ)

]
,

(59)

where we have the spatial volume element √
γ = a3, ξ is the scalar curvature

coupling constant, and m is the mass. The conjugate momenta are defined as
πσ := σ̇ and πϕ := ϕ̇, with the dot representing differentiation with respect to
cosmic time.

We consider the following potential and interaction terms:

V =
1

2
m2

envϕ
2 +

1

2
m2

sysσ
2 +Hint(σ, ϕ), (60)

where the interaction Hamiltonian that we focus on is of the form

Hint(t,x) = O(t,x)σ(t,x), (61)

and where σ(t,x) is the operator that acts on the system’s Hilbert space and
ϕ(t,x) acts on the environment’s Hilbert space. We consider both quadratic
Omix = µ2f(t)ϕ(t,x) and cubic interactions Oc = g f(t)ϕ(t,x)2, where f(t) is a
Gaussian temporal test function emitted by the k = 0 mode of the background
field ψ, which is in a homogeneous and isotropic state.

Within the interaction picture, the evolution of the density operator ρI(t)
for the scalar fields is governed by the Liouville equation,

∂tρI = −i [Hint(t), ρI ] , (62)

where Hint(t) denotes the interaction picture Hamilton. We are interested in the
reduced density matrix ϱ(t) obtained by tracing out the environmental degrees
of freedom,

ϱ(t) := Trϕ[ρI(t)]. (63)

The analysis of decoherence is given by the purity, γ(t), defined as

γ(t) := Trσ[ϱ
2(t)], (64)

where 0 ≤ γ ≤ 1, and a state is pure if and only if γ = 1. Decoherence
occurs when we end up quasi-irreversibly with a state with minimal purity under
interactions (Section 3.1). To analyze the decoherence in de Sitter spacetime, we
need to analyze decoherence at late times, which is when complete decoherence
occurs, and systems σ and ϕ are left in a state where they emit a gravitational
field.

More concretely, before exiting the horizon, the system’s mode functions
oscillate rapidly; thus, when we integrate them over past times when performing
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perturbation theory to calculate the purity of the target system, those oscillations
largely cancel, giving a small, bounded decoherence rate. After the horizon exit,
these oscillations approach a nearly constant “frozen” real value. This leads
to the decoherence of the super-Horizon (IR) modes of the system. Late-time
calculations based on perturbation theory encounter the so-called problem of
secular growth. Every extra interaction vertex in the perturbative expansion
adds an integral over the past cosmic time and, once a mode has crossed the
Hubble radius, its mode functions stop oscillating and start growing in such a
way that invalidates the perturbative assumptions. Regardless of the strength of
the coupling, waiting sufficiently long makes contributions from all perturbative
orders comparable; thus, the truncated expansion loses predictability.

Open Effective Field Theory (EFT) methods address this by starting with
the so-called Nakajima–Zwanzig Equation. More concretely, one starts from
the Liouville equation for the system and environment and projects it onto
the system. Because the Liouville equation is linear, the environmental part
can be integrated, leading to a master equation for the reduced state. If the
environmental correlator decays on the Hubble timescale, this equation leads to
a local Lindblad equation that describes the evolution of the reduced density
matrix. For Gaussian states, the Lindblad evolution leads to two simple first-
order differential equations whose solutions remain accurate at arbitrarily late
times, thereby providing reliable information on quantities such as purity long
after the standard perturbation theory method has broken down (see Appendix
H for some mathematical details of the calculations).58

We analyze a linear σϕ and a cubic interaction σϕ2, where the system σ
and the environment ϕ start in the Bunch-Davies vacuum. We again treat the
target system as a collection of discrete modes, but to make inferences about
the continuum of modes of the system, and we focus on a single mode of the
system to make those inferences. On the other hand, the environment is treated
as a large/continuous collection of modes. This environment [12] decoheres the
mode of σ at the super-horizon scales, leading the target system mode k to be
in a mixture of field amplitude states |σ⟩,

ϱk(t) =
1

π

∫
C
d2σ

(
Ak(t) +A∗

k(t)−Bk(t)−B∗
k(t)

)
× exp

[
−
(
Ak(t) +A∗

k(t)−Bk(t)−B∗
k(t)

)
|σ|2

]
|σ⟩⟨σ|,

(65)

where Ak +A∗
k −Bk −B∗

k is a fixed point of the late-time evolution. However,
given that the environment with its continuum of modes can be considered as a
large reservoir that is not disturbed significantly by the single-mode system and

58Consider a family of linear maps {E(t1, t2)}, valid for t2 ≥ t1 ≥ t0, that are trace-preserving
and describe the time evolution of a system’s state ρ̂S such that ρ̂S(t2) = E(t1, t2)ρ̂S(t1).
This collection of maps is considered Markovian if it satisfies the semigroup composition rule
E(t0, t2) = E(t1, t2)E(t0, t1) for all t2 ≥ t1 ≥ t0, and if each map E(t1, t2) is completely
positive, meaning it transforms positive density operators into other positive density operators
for all t2 ≥ t1. Although determining whether an evolution is Markovian is generally challenging,
for Gaussian states, which we are examining, this task becomes tractable.
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the Born approximation, we assume that the environment stays in the vacuum
approximately, where, given the determination conditions, at late times, both
systems and the environment have determinate values. Only then do they emit
a gravitational field.59 It can be shown (see Appendix H) that, at least in the
linear and cubic Hamiltonians, this leads the target system with its different
modes at late times to be in a Hadamard state ρ(t) = ρIR(t)⊗ ρBD

UV(t) at least
approximately, where ρBD

UV(t) are the UV modes that will be in the Bunch-Davies
vacuum and the different modes in the ρIR(t) that are in the state (214), which
should then be represented as a continuum of modes. Thus, because it is a
Hadamard state, the target system has a finite renormalizable stress-energy
tensor, which can then be fed into the semiclassical equations to yield a solution
to those equations. The stress-energy tensor of the environment is also fed into
the semiclassical equations, and its state is assumed to remain approximately
in the vacuum. It is also fed into these equations the one of the system that
initially emits the background gravitational field. As mentioned previously, the
latter system is in a coherent state by assumption. So, all of these states are
Hadamard. Furthermore, the states involved are all homogeneous and isotropic
states.60 Note that here we are treating the target system of decoherence as
being an ensemble of systems (more on this below).

Therefore, the states of the systems involved being Hadamard, and the fact
that we are working in a maximally symmetric spacetime, i.e., a de Sitter space-
time, allows the semiclassical equations to be solved more easily. Indeed, it
was shown in [73] that for homogeneous and isotropic quasi-free fourth-order
adiabatic states (which include Hadamard states) and instantaneous vacuum
states, the semiclassical Einstein equation in flat cosmological spacetimes involv-
ing a massive scalar field with arbitrary coupling to the scalar curvature has
unique solutions. This can involve multiple fields sourcing the gravitational field.
Importantly, given the shape of test functions (which tend to have small tails)
and the stochastic decohering process that affects the interacting systems, we can
treat these systems, when the stochastic process occurs, as free/non-interacting
fields, as well as the emitter of the test function.61 Note that we see here an
important role of SDCs, which is to lead to states and conditions that one can
use to solve the semiclassical equations, i.e., via Hadamard, homogeneous, and
isotropic quasi-free states in the case of this scenario, which in principle allow one
to solve this equation (see Postulate 2 in Section 4.2). Note again that above we
have assumed each mode of σ is decohered by a continuum of modes of ψ, where
there are so many decohered modes of σ that we can treat them as a continuum
of decohered modes, modeled by decoherence models. Then, we can use the
states obtained via the (decohered) modes to solve the semiclassical equations
for a flat cosmological spacetime and find the gravitational field emitted by these
members of SDCs.

59Note that ϕ could have had some determinate values before this interaction, which allow
it to have the DC concerning modes of σ.

60See Appendix H for a proof concerning the state (214) leading to an homogeneous and
isotropic for the whole system involving multiple modes.

61See Section 3.2.1 for more on this.
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As we have been arguing, SDCs involve scale-dependent phenomena; here
the system emitting a gravitational field, besides localizing interactions in time
and filtering out some modes, allows for the scale-dependent phenomenon of
decoherence at super-Horizon scales. To solve the semiclassical equation, we will
need to renormalize the stress-energy tensor. Among other goals, in this view,
renormalization aims to establish the scales that SDCs probe in a physically
unproblematic way, dealing with UV divergences and other problematic issues.
Furthermore, it allows us to infer how the couplings, masses, etc. change with
the scales of SDCs (i.e., the scaling phenomenon). Indeed, in the renormaliza-
tion techniques of perturbative Algebraic Quantum Field Theory and Causal
Perturbation Theory (see [32], [97, 10] and references therein), test functions
and operator-valued distributions play a crucial role in implementing cutoffs
and in the process of renormalization. In this approach, renormalization is
required to deal with ambiguities arising from the distributional features of
expressions involving quantum fields. The scaling behavior that we observe
in more standard renormalization group approaches such as Wilson’s, where
the values of couplings, masses, etc. change with scale, can also be observed
here.62 According to the theory that we are proposing, the above ambiguities
represent how SDCs change with scales. Since this theory is so far the only
approach to quantum theory that makes these functions its core feature, we see
the important role of these objects in dealing with both UV and IR divergences
in a rigorous way as evidence for it. Note that we do not get rid of test functions
in the process of renormalization according to perturbative AQFT, contrary to
other approaches to renormalization.63 Future work should further connect this
framework with the one proposed here.64

So, taking into account ψ, ϕ and σ, through renormalization we focus on the
stress-energy tensor for certain modes/scales of ϕ and σ. Note that we consider
that the cutoff in the modes of ψ, which emits the test function obeying the
appropriate bounds, comes as a primitive fact if ψ is an initiator (given by some
initial conditions of the universe), or comes from the previous interactions of ψ

62Contrary to Wilson’s, regularization, the problematic substraction of infinity quantities,
and the complicated process of coarse-gaining is unnecessary.

63Rather, we impose the algebraic adiabatic limit [10, 97], which assigns an unproblematic
role to these functions. This is also important to deal with IR divergences. So, it shows that
test functions are an integral part of theory. Moreover, note that to deal with divergences that
arise from sharp cutoffs, we need smooth test functions f . For this theory, this smoothness
gains an extra role of helping propagate the determination capacity.

64Test functions are prevalent in other aspects of QFT. The use of test functions is closely
related to the point-splitting technique. To the best of our knowledge, this was first observed
by deWitt [25]. Furthermore, instead of adiabatic states, we can use the feature that the
renormalized energy density, when smeared along a time-like curve using a point-splitting
procedure, is bounded from below as a function of the state. We can then find a state that
minimizes this quantity [34]. Adapting this result for a test function supported on the worldline
of an isotropic observer, and which minimizes each mode’s contribution to the smeared energy
density, the so-called low-energy states [77] were found. It was also found that they are
Hadamard, and that they end up converging to the Bunch-Davies vacuum in an appropriate
limit involving the support for the test function. These states make manifest the role of test
functions and SDCs to establish the (Hadamard) states that we adopt, and how they are
implicitly present in the semiclassical equation.
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with members of an SDC (see Sections 3.2.1, 3.2.2, and Appendix E). Thus, we
would have the following renormalized stress-energy tensors,

Gab + Λgab = 8πG(⟨Tab⟩ρψ + ⟨Tab⟩ρψ′ + ⟨Tab⟩ρσ + ⟨Tab⟩ρϕ). (66)

To solve the semiclassical equation and renormalize it, we also need to solve
the Klein-Gordon equations for the two-point correlation ⟨ϕ(f(x))ϕ(g(x′))⟩ of
the systems involved in emitting the gravitational field while they emit that
field.65 Also, to renormalize the stress-energy tensor, we will need to perform an
adiabatic subtraction, which is going to depend on the Hadamard parametrix
for the Klein–Gordon equation at length scale ℓ.66 Note that the dependence of
the semiclassical equation on two spacetime points may appear to be nonlocal.
However, these are effectively very close points, which can be considered to
represent a single spacetime region. Even rejecting this, as in the Bell scenario
case, this non-locality does not imply action at a distance between these spacetime
regions.

So, in this section, we have provided an example of the beginning of an SDC
in curved spacetime, where this SDC could further develop (ϕ and σ could be
interacting with other fields while they interact with each other), propagating
the DC. Furthermore, even if systems decohere outside the horizon, they can
still reenter the horizon, interact with other systems, and also propagate the
DC. Note, however, that the state (214) represents an ensemble of systems that
give rise to a homogeneous and isotropic spacetime. It does not represent the
state of a single system right after the stochastic process. Such a state could be
represented as a Gaussian state around a field amplitude value σ0 and with a
low variance,

ϱ
σ0,k

k (t) =
1

π

∫
C
d2σ

(
Ak(t) +A∗

k(t)−Bk(t)−B∗
k(t)

)
× exp

[
−
(
Ak(t) +A∗

k(t)−Bk(t)−B∗
k(t)

)
|σ − σ0,k|2

]
|σ⟩k⟨σ| .

(67)

This state is Hadamard (Appendix H), but is not a homogeneous and isotropic
state, or leads to one.67

In a more complicated model than the one above, if we assumed that the
fields involved belong to the inflaton field, we could assume that their influence
as initiators weakens owing to reaching the bottom of their potential V (x) (see
above). However, as we have mentioned we do not have to consider that they

65We have added another field ψ′ to source g(x′).
66This is given by Hℓ(x, x

′) := 1
8π2

[
∆1/2(x,x′)
σϵ(x,x′) + v(x, x′) ln

(
σϵ(x,x

′)
ℓ2

)]
. ∆ is the van

Vleck–Morette determinant; v is a symmetric, smooth coefficient that is determined by
the Hadamard recursion relations. The subindex ϵ in σϵ is an appropriate distributional
regularization for the Synge world-function.

67Future work should look at whether these states can help account for the inhomogeneities
that explain the origin of cosmic structure, as well as the empirical signatures that arise from
them. This could be done along the lines of what has been done with spontaneous collapse
theories [87].
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are initiators; SDCs may not have an initiator, and we can alternatively have
SDCs that continue indefinitely. Even the field that is initially emitting the
gravitational field could be interacting with other systems in that spacetime
region, which we chose to ignore, and not be simply the initiator. We will come
back to how we can dispense with the inflaton field further below in Section 7
and Appendix I.68

One important aspect of the above model, and the approach we are proposing,
is that the system that emits the test function, the background gravitational field,
and decohering interactions drives or controls systems (that are not emitting
a gravitational field) towards states that in principle can be used to solve the
semiclassical equations at times t, when decoherence happens. Whether this
quantum control approach, captured by Postulate 2 (Section 5) can be used in all
situations of interest where gravity is manifested to help solve the semiclassical
equations is a matter for future studies, but we conjecture that this will be the
case.

6 Answering objections to the semiclassical ap-
proach

We will start by showing how this theory answers some of the main objections to
the semiclassical theory of gravity. We will then explore some of its consequences.
In the next section, we address another objection.

As we can see, according to this view, the gravitational field does not induce
the collapse of the system’s wavefunction. Only systems belonging to SDCs can
do it. However, it has been argued that if gravity is not quantized and does
not collapse the wavefunction, it can give rise to superluminal signaling, which
contradicts relativity.

This argument was posed by Eppley and Hannah [31] and explained succinctly
by Callender and Huggett [14]. Suppose the gravitational field is classical
and adheres to relativistic principles. In this context, it is neither quantized
nor subject to uncertainty principles, and does not permit superpositions of
gravitational states that would introduce a quantum indeterminacy into the
gravitational field.

For the sake of this discussion, we temporarily adopt the standard interpre-
tation of quantum mechanics, where measurement interactions instantaneously
collapse the wavefunction into an eigenstate of the measured observable. Next,
let us investigate how this classical gravitational field interacts with a quantum
system. According to Eppley and Hannah, there are only two possibilities: either
gravitational interactions trigger quantum state collapse, or they do not.

According to the first horn of this dilemma, if gravitational interactions do
not induce wavefunction collapse, then quantum states can transmit signals

68Furthermore, note that given the theory that we are proposing, it is possible that system
ψ is emitting a gravitational field in a subregion of the whole universe, where we assume that
the rest of the universe, since it is not subject to SDCs, it is not at least yet participating in
the emission of a gravitational field.
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faster than the speed of light, going against the principles of relativity. Eppley
and Hannah, propose multiple examples to highlight this issue. One of them
involves a variant of Einstein’s thought experiment.

The key claim is that if gravitational interactions fail to collapse quantum
states, then the interaction dynamics inherently depend on the wavefunction’s
shape. For instance, the way a gravitational wave scatters off a quantum particle
depends on its spatial distribution, akin to its interaction with a classical mass
distribution. Scattering experiments with gravitational waves thus become a tool
for probing the wavefunction’s properties, though they do not induce collapse.
According to the authors, this assumption, along with the standard collapse
postulate, leads to superluminal signaling.

To see this more concretely, suppose that we have a rectangular box containing
a single quantum particle such as an electron. The particle is in a quantum
state where it is equally probable to be found in either half of the box. A
barrier divides the box, leading to a superposition of states where the particle is
simultaneously localized in both left and right halves. The wavefunction in this
case is given by

ψ(x) =
1√
2

(
ψL(x) + ψR(x)

)
, (68)

where ψL(x) and ψR(x) represent the wavefunctions confined to the left and
right regions, respectively.

Now, we distribute the boxes, carrying them to spatially separated locations
without observing their contents and giving them to Alice and Bob. Assuming
an instantaneous collapse interpretation, when Alice opens her box and finds it
empty, this can immediately influence Bob’s box—even though the two boxes
are spacelike separated. Assuming the collapse postulate, the wavefunction
undergoes a stochastic transition upon measurement:

1√
2

(
ψL(x) + ψR(x)

)
→ ψR(x). (69)

Now, let us consider the case where Bob employs a non-collapsing gravitational
wave probe capable of interacting with the wavefunction in his box. Bob can
do that by (idealizing) setting up apertures that permit gravitational waves to
enter and exit the box and be detected.

Because the scattering depends on the form of the wave function in the box,
any changes in the wave function will appear as changes in the scattering pattern
registered by the detectors. Therefore, when Bob measures his system, a change
in the gravitational wave will signal whether the particle is in the box or not,
and this will instantaneously affect Alice’s box interior, enabling superluminal
communication.

There are multiple issues with this experiment. Let us set aside the fact
that, according to EnDQT, there would be no action at a distance in more
realistic Bell scenario versions of this experiment [88]. Now, what sustains the
idea that gravitational waves react to the wavefunction in the box? A way
of modeling gravity classically, yet coupling it to quantum matter, is via the
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weak-field (Newtonian) limit, where we derive the Poisson equation through the
semiclassical equation,

∇2Φ(r, t) = 4πGρ(r, t). (70)

Φ(r, t) is the classical gravitational potential, and ρ(r, t) is the mass density, but
now matter is described by a quantum wavefunction ψ(r, t) with

ρ(r, t) = m |ψ(r, t)|2 . (71)

This means that the classical field Φ depends on the full spatial distribution
of |ψ|2. The potential and wavefunction in the Schrödinger–Newton equation
obey the Poisson equation for Eppley and Hannah. Therefore, if there is a
perturbation in the gravitational field, it should originate from the wavefunction.
However, given Postulate 2, the semiclassical equation is only applicable if the
target system interacts with SDCs. However, this is not the case in the scenario
just described, as well as in the Bell scenario version of the experiment. We want
to maintain the quantum coherence of the degrees of freedom of the systems
under analysis, before interacting with the measurement devices of Alice and
Bob, which involve matter degrees of freedom and SDCs; thus, we want to isolate
them from SDCs.

In the case of this second horn, we suppose that gravitational interactions
can collapse quantum states of matter, similar to gravitational collapse theories.
More concretely, the idea is that if a gravitational wave of arbitrarily small
momentum can be used to make a position measurement on a quantum particle
(which “collapses” the wave function into a quantum state that concerns its
position), the uncertainty principle is violated. This is because the momentum
imparted to the particle by the wave would violate the uncertainty principle
since it could be made arbitrarily small. We reject this horn as well because
gravitational waves are not quantum matter field degrees of freedom and are not
connected with SDCs (more on gravitational waves below). More concretely, to
fundamentally justify the influence of gravitational waves on the particles as a
probe, we would need to use the semiclassical equations, introducing the term
for gravitational waves on the left-hand side of this equation. However, given
Postulate 2, we can only apply these equations if the particle interacts with
members of SDCs, which it does not before interacting with the measurement
devices of Alice and Bob. Thus, we escape the difficulties concerning the violation
of the Heisenberg uncertainty principle that arise from adopting the second horn.
Therefore, the theory we propose does not require the adoption of the second
horn of the dilemma.

It should by now be clear how this theory responds to Feynman and Aharonov’s
thought experiment [39, 39, 4]. This thought experiment aims to show that grav-
ity must be quantized; otherwise, the gravitational field emitted by a particle can
be measured with arbitrary precision to determine the position of a particle in a
double-slit experiment. Typically, the way around this scenario is to introduce
some stochasticity in the coupling between the quantum degrees of freedom
and the classical ones so that we do not gain information about the quantum
system (and it does not collapse). However, there is another way to proceed,
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which is the one adopted here. The idea is that because the quantum system
that goes through the double slit does not interact with systems that belong to
SDCs (because we want to maintain the system in a coherent superposition), it
does not emit any gravitational field, and we cannot know where the particle is.
Therefore, the response to this thought experiment is similar to that given to
the above dilemma.

Other objections to the semiclassical approach were proposed by Page and
Geilker [82]. The first one concerns the violation of the Bianchi identities (or
more precisely the contracted second Bianchi identity) during the stochastic
process (or quantum state collapse), where this identity is ∇µG

µν = 0, which
implies ∇µ⟨Tµν⟩ = 0. The formulation of this problem presupposes a literal-
istic view of the quantum state in which there is a dynamical state reduction
during a measurement, which leads to this violation. However, in line with our
non-literalistic (and more epistemic) view of the quantum state, a strategy to
circumvent this is to hold that the semiclassical equations do not apply during
the stochastic process that leads to outcomes. In other words, we are using
the semiclassical equations to make inferences about the gravitational field of
systems, and such inferences should not be made during this stochastic process.
So, this is similar to the strategy that we are adopting, which many physicists
also adopt, that considers that the Schrödinger equation is not applicable to
describe the stochastic process and state update involved in measurements.69
However, assuming this semiclassical theory, we will see in Section 7 that it is
possible that ∇µG

µν = 0 and ∇µ⟨Tµν⟩ = 0 hold during the stochastic process
that gives rise to measurement outcomes. This will be due to fluctuations in
the stress-energy tensor, which can be assumed to be maintained during this
process.

The second objection is as follows: consider a mass that emits a gravitational
field that exists in a superposition of two different localized states. If the
gravitational field is classical but depends on the quantum wave function, the
gravitational attraction generated by this system would be expected to be directed
toward an intermediate, “averaged” position. Furthermore, the experimental
work of Page and Geilker has shown that this predicted behavior does not occur.
However, note that this view is based on the idea that an object in such a
superposition would emit a gravitational field to an intermediate location. This
is not what is expected by the theory we are proposing. Rather, what would be
expected is that macroscopic systems that would form such superpositions would
tend to collapse to one of the values typically associated with coherent states,
and such states would serve as sources of a gravitational field, which would not
be to an intermediate location.

A related objection is that semiclassical gravity and this theory are not
capable of describing the Planck scale, where quantum gravity effects become
strong. However, note that this assumes the quantum nature of gravity, which
we deny. Also, it assumes that quantum gravity occurs at the Planck scale

69Note that in our case, the state update would involve inserting new stress-energy tensors
and states into the right hand-side of the semiclassical equations.
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based on a dimensional analysis and assumptions regarding the fundamental
constants, which are speculative and one can be skeptical about.70 We have seen
how this theory can address that scale dependence, which establishes in which
scales gravity can occur via the scales in which SDCs evolve. Thus, this theory
can clearly deny that gravity occurs at the Planck scale. It is an experimental
matter whether this is the case.

Another objection is that semiclassical gravity cannot describe the interior
of black holes and deal with the spacetime singularities appearing in GR, which
should be the task of any theory of gravity. However, given that whatever is
going on behind the event horizon is causally disconnected from the rest of
spacetime, it is possible that the gravitational field emitted by systems decreases
as we move towards the core of the black hole, i.e., there are no SDCs at its core
to emit this field. More concretely, we would hypothetically have a rapid decrease
in systems that would be decohered/distinguished by the black hole environment
as we move closer to the core of a black hole, and this would be proportional to
the decrease in the (determinate) mass m(r) or energy density as we move closer
to the core of the black hole. This would avoid a singularity, and we conjecture
that it would lead to an asymptotically flat core or an asymptotically de Sitter
core if the default state of spacetime is flat or de Sitter, respectively. So, to
describe such black holes, we would use regular black holes (i.e., black holes
devoid of singularities) with an asymptotically de Sitter [65] or Minkowski core
(see, e.g., [112]) whose geometries (in our interpretation) are associated with the
progressive absence of systems that emit a gravitational field. The decrease in
the (determinate) mass that appears in the metrics of these black holes as we
move towards their core would be interpreted in the above manner.

Models of decoherence involving black holes,71 have found that the rate
of decoherence of charged systems in a coherent superposition increases the
closer we are to the Killing horizon coming from outside the black hole.72 So,
they suggest that there are regions where the activity of SDCs is at its peak
towards and in the horizon of black holes, and regions where it decreases away
from it. Note that just because we could have more decoherence at the event
horizon, it does not mean that the gravitational field is stronger there; it also
depends on the energy-momentum of the systems involved in the process of
decoherence. However, for this theory, the absence of decoherence is directly
related to the absence of a gravitational field. One now would have to investigate
decoherence in the interior of the black holes above with appropriate matter

70See [56] for further responses related to this objection.
71See, e.g., [22, 23]
72This decoherence is due to very low frequency Hawking radiation [23]. The idea is to

consider Alice’s lab, where Alice conducts an experiment with a target system. The decoherence
of this target system, which is a charged particle in a coherent superposition, is determined
by ⟨N⟩ ∼ M3q2d2

D6 T . ⟨N⟩ is the expected number of entangling photons, which leads to the
decoherence of Alice’s target system, where if ⟨N⟩ ≫ 1 this system will be completely decohered.
M is the black hole mass, D is the proper distance of Alice’s lab from the horizon, and T is
the time in which Alice’s target system is maintained in a superposition. The authors also
found decoherence induced via gravitons in the perturbative quantum gravitational regimes,
but according to this theory, gravitons do not exist.
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fields. Furthermore, one may conjecture a lower bound in the four-volume that
members of SDCs could form, similar to the following: ∆V ∼ R4

s

c , where Rs is
the Schwarzschild radius [68]. Below a four-volume like this one, inevitably, there
is a gravitational collapse, and a black hole forms.7374 So, given this theory, it
might be the case that the gravitational field in the interior of black holes is
smooth, with much less gravitational fields being emitted as we move to its core.
Therefore, it is unclear whether we need to appeal to quantum gravity theories
to solve the black hole singularity problem. The semiclassical conservative theory
proposed here potentially offers alternative solutions.

Related to the above objection, it is often claimed that the semiclassical
approach has trouble describing black hole evaporation when the Schwarzschild
radius is not large compared to the Planck scale [121]. However, it is not even
clear that black holes evaporate when we examine the assumptions that go
into these arguments regarding the global energy conservation of the energy-
momentum tensor [18]. Thus, it is not necessarily the case that this is a real
problem for the semiclassical approach. Even if black holes evaporate, given our
current lack of understanding of these objects, more research is needed to see if
it constitutes a problem for this semiclassical approach.75

We will now examine some of the consequences of these postulates. One
consequence is gravitational energy-momentum, as something that emits a
gravitational field per se and affects systems independently of anything, does
not exist because pure gravitational degrees of freedom do not source gravity
according to this theory. Also, they do not affect systems unless they are
interacting with members of SDCs. Thus, gravitational waves do not carry any
energy-momentum. One can rather regard the pseudo-tensor or the radiative
energy that appears in the equations representing gravitational waves as the
maximal amount of work they can do via tidal effects [108]. However, these tidal
effects are only classically felt by systems interacting with members of SDCs.

This consequence also supports the claim that, according to this theory,
gravitons do not exist. Note that the above hypothesis does not imply that
gravitational waves do not exist. Rather, it implies that they do not carry actual
energy-momentum (or the kind of energy-momentum associated with gravity and
matter fields via the Einstein Field Equations). This consequence of this theory
should not be problematic because of the notorious issues involved in formulating
a gravitational energy-momentum tensor, including the one for gravitational
waves. The latter is rather a pseudo-tensor. See [51, 28] for a more complete

73These conjectures were advanced in collaboration with Gerard Milburn, and future work
will develop it.

74Regular black holes suffer from mass inflation instabilities, but there are ways to circumvent
them, e.g., [15].

75Another alleged limitation of the semiclassical approach is that it is not able to describe the
quantum fluctuations in the inflaton field [123]. However, these models are highly speculative
and have their own problems. Furthermore, it is unclear whether this view cannot account
for these fluctuations. Besides, we have seen in Section 5 and we will see in Appendix I
that perhaps we can provide an alternative picture of inflation that does not appeal to such
fluctuations, or that gets rid of the inflaton as traditionally conceived altogether.
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defense of these positions.76
Another consequence is that according to this theory there may be no default

and autonomous gravitational field, and the gravitational field fully depends on
matter fields. Without necessarily endorsing all the features of relationalism, this
consequence can be further supported by a kind of relationalist view that would
defend that matter degrees of freedom fully determine the gravitational field.
Vacuum solutions to the Einstein Field Equations are regarded as idealizations;
they do not exist in nature. For instance, the Schwarzschild external solution
should be regarded as a solution taking into account the gravitational field
sourced by a system that we idealize as a point mass.77

7 The time-varying Λ

An issue that one might have with semiclassical gravity is that it is a mean-field
theory, and therefore, it may not account for deviations in the expectation value
of the stress-energy that may naturally occur. One option is to consider that
these fluctuations do not gravitate. For some reason, the expectation value of
the stress-energy tensor of systems is sufficient to determine the gravitational
field sourced by them. Another way is to still defend the mean-field theory but
additionally argue that systems only emit a gravitational field in certain states
or contexts that minimize the values of the second and higher-order moments
of the stress-energy tensor. However, even if one imposes this via the more
contextual and restrictive Postulate 2 (version 2) one may argue that it does
not completely eliminate the fluctuations of the stress-energy tensor. It turns
out that a potential solution to this also potential problem is connected to
dark energy and the cosmological constant problem. The idea is that those
fluctuations that could contribute to gravitation are annihilated or balanced out
in a sense to be specified below, and at least at some scales tend to give rise
instead to a dark energy phenomenon. Another possible solution is to adopt a
stochastic gravity approach [54], but such approach might not be needed as we
will see.

Let us start by explaining the cosmological constant problem. We then show
how this problem can be addressed in principle. The cosmological constant is

76The interpretation of what is a gravitational wave and field gives rise to at least two distinct
positions considering the ontology of this theory: a) the gravitational field emitted by SDCs
affects how quantum matter fields evolve in spacetime. However, this influence of SDCs travels
through spacetime via quantum matter fields because quantum matter fields are everywhere,
and no determinate energy-momentum needs to be carried via gravitational waves. This view
assumes that quantum systems are more fundamental than the gravitational field, assuming a
kind of emergentist perspective in which matter fields give rise to spacetime and gravity. This
can also support a kind of relationalism. More on this below. b) A different philosophical
perspective on the ontology of this theory considers that the mathematical objects of general
relativity also describe a classical gravitational field. In cases such as the propagation of
gravitational waves, it amounts to changes in the values of the gravitational field throughout
spacetime. Thus, this view considers that the gravitational field is as fundamental as quantum
matter fields, assuming a kind of substantivalist perspective.

77See [109] for a recent nuanced relationalist account regarding the idealizations present in
vacuum solutions.
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used to describe the accelerated expansion of the universe. The cosmological
constant problem appears when we work within a semiclassical framework,
replacing the classical stress–energy tensor Tµν with its quantum-field-theoretic
vacuum expectation value ⟨Tµν⟩. Each field’s vacuum energy density then takes
the form of a cosmological-constant term—a constant times the metric gµν—and
it is claimed that it should contribute directly to the observed value of the
cosmological constant. But, the standard QFT “prediction” for the combined
vacuum energies overshoots the measured cosmological constant Λ by many
dozens of orders of magnitude [123]. This problem can be framed as a reductio
ad absurdum that arises when we treat General Relativity as a low-energy EFT
[63].

However, according to the theory proposed here, general relativity arises from
QFT under specific circumstances, but it is not a low-energy QFT. Thus, we
should look elsewhere for a solution to this problem. Moreover, treating systems
that are in a vacuum and in flat spacetime as gravitating according to the theory
adopted here cannot be done because if such systems gravitated, it would not
be in the vacuum.78 More generally, one should not indiscriminately include
systems in a given state in the stress-energy tensor of the semiclassical equation
in any curved spacetime. One should only do that if we have good reasons to
consider that those systems were locally decohered in some open environment
(i.e., that those systems interacted with members of SDCs) and we have a realistic
decoherence model that represents that process. There is a good case to be
made that no realistic decoherence model favors a vacuum state. For instance,
in flat spacetime, given the results from [30], we have observed that non-zero
temperature environments, irrespective of the initial state, lead systems to a
mixture of coherent states, which are not vacuum states. Furthermore, in realistic
environments, there is not only decoherence but also diffusion, which drives
the system out of the vacuum (e.g., [13, 53, 127, 105]). Even in cosmological
contexts, as in the model in Section 5, the target system starts in the vacuum
and then evolves into a mixed state, which, upon decohering interactions, causes
the system to leave the vacuum. The environment is treated as staying in the
vacuum, but this is an idealization because of its size and weak interactions. To
date, there is no indication that this phenomenon of making the system leave
the vacuum, represented via decoherence models, will change in future realistic
models of decoherence. Considering decoherence models as good models to infer
what we measure, we can hypothesize that what we realistically measure directly
(when we infer the effects of the vacuum) are not quantum fields in the vacuum
but rather quantum systems that were in the vacuum or that are very close to it
upon measurements.

Thus, by adopting Postulate 2, we can deny that the vacuum emits a gravi-
tational field based on models of decoherence. Therefore, the hypothesis above
can be understood as showing that if there is something that the cosmological

78Indeed, in Wald’s fourth axiom [121] (where this axiom belongs to a set of axioms that
gives us a finite, well-defined, covariant, conserved, renormalizable stress-energy tensor) this
tensor is set to zero in the Minkowski vacuum. Setting it to zero is equivalent to not gravitating.
This is motivated by the equivalence principle.
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constant problem points to, it is that we need to take into account whether
systems are interacting with members of SDCs, being decohered by them, to
consider whether they give rise to a gravitational field or not. Assuming the
above hypothesis, we do not include the energy density of the vacuum in the
semiclassical equations, and we can choose the value of the cosmological constant
based on other features. Furthermore, if we consider that the cosmological
constant is behind dark energy and assume the theory that we are proposing, the
explanation for dark energy should only involve systems that belong to SDCs.
Thus, we now pose an alternative Postulate 3 that we will justify further below:

Postulate 3 (version 3) When systems are not interacting with SDCs, they
do not give rise to the relativistic four-volume, and furthermore, spacetime is flat
in spacetime regions without SDCs. The relativistic four-volume is estimated
by the number of events in a spacetime region involving quantum systems with
determinate values of observables and emitting a gravitational field, which we
will call relativistic events, and which constitutes what we will call relativistic
spacetime. We estimate the volume by counting the number of these events
because the four-volume of relativity arises from the interactions between systems
that constitute SDCs.

The intuition behind Postulate 3 (version 3) is that, given Postulate 2 and
its consequences, the full-blown notion of trajectories and four-volume from our
familiar relativistic world requires systems with determinate values of observables.
So, when we do not have SDCs in a spacetime region, we still have a spacetime
given by a metric and a manifold. However, systems do not have determinate
values or classical trajectories, and thus, the above notion of a determinate
four-volume from relativity does not make sense. We crucially need matter
fields with a determinate energy-momentum. A four-volume will only make
sense in this emergent relativistic spacetime, where it depends on the number of
relativistic events that occur.79

To estimate the value of the cosmological constant (without invoking the
vacuum energy), let us start by assuming that in a universe where SDCs had
not yet formed, there were no systems with determinate energy-momentum and
determinate values of any other dynamical observables. When SDCs began
to form or develop in our early universe, systems with determinate energy-
momentum arose, and relativistic spacetime began to expand.

The strong energy condition roughly says that gravity must be attractive.80
Although sufficiently negative pressure violates the strong energy condition,
negative energy densities of a certain magnitude over bounded spacetime regions
are allowed by quantum theory, e.g., the Casimir effect (see the quantum energy
inequalities in [35]). Furthermore, the cosmological constant, which we are

79Notice that, like causal set theory, this theory assumes that the four-volume of spacetime
depends on the number of events. More on this below.

80More precisely, the strong energy condition postulates that for every timelike unit vector
field vµ, the trace of the stress-energy tensor (T = Ta

b ) measured by observers is always
non-negative:

(
Tµν − 1

2
Tgµν

)
vµvν ≥ 0.
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deriving, violates the strong energy condition [21]. As we have seen, according
to this theory, the gravitational field is determined by quantum matter fields
that belong to SDCs. Given this, let us consider that, in addition to the positive
energy associated with gravitational attraction, SDCs produce negative energy
and pressure, which could, for example, be measured in the comoving reference
frame associated with cosmic time, i.e., the reference frame associated with
hypothetical observers who are at rest relative to the expanding universe, which
we will assume to be homogeneous and isotropic. Moreover, let us assume
that there is a balance of energy density, pressure, and other quantities arising
from the interactions that produce the gravitational field. The result of this
balance is what we associate with dark energy and the expectation value of the
stress-tensor.81

More concretely, if the cosmological constant has a quantum origin, it could
arise as an expectation value of some observable, and it can be written as a
stress-energy tensor as

〈
TΛ
µν

〉
= − c4

8πG

〈
Λ
〉
gµν . (72)

Now, instead of this quantity, let us consider that on the right-hand side of this
equation, we get a balance between positive and negative stress-energy tensors
produced by systems and their respective uncertainties,

Gµν =
8πG

c4

((
⟨T (matt′)
µν

〉
±∆t(matt′)

µν ) + (
〈
TΛ′

µν

〉
±∆tΛ

′

µν)
)

(73)

where ⟨T (matt′)
µν

〉
can involve the stress-energy tensor of other, let us assume,

non-interacting fields,

⟨T (matt′)
µν

〉
= ⟨T (matt1)

µν

〉
+ ⟨T (matt2)

µν

〉
+ ... (74)

Note that by positive/negative stress-energy tensor, we mean that all the pres-
sures and energy densities of ⟨Tmatt

′/Λ′

µν

〉
±∆t

matt′/Λ′

µν measured in the comoving
frame are positive/negative. Note also that ∆t

(matt′)
µν and ∆tΛ

′

µν encapsulate all
possible second and higher moments of these stress-energy tensors.82

Now, let us hypothesize that, at least at a certain spatiotemporal scale, the
balance between these quantities results in the following,

Gµν =
8πG

c4

(〈
T (matt)
µν

〉
− tΛµν

)
(75)

81See [7] for another model that makes dark energy emerge from decohering interactions,
and which may be related to this one.

82Let us consider the simplest case of a perfect fluid in a comoving frame where hµν =
gµν+uµuν , where uµ is the unit four-velocity. A perfect fluid has no flux or anisotropic stress in
this frame; therefore, p±,1 = p±,2 = p±,3 ≡ p±. So, we have that T tot

µν = (ρtot±∆ρtot)uµuν +
(ptot ±∆ptot)hµν , with ρtot = ρ+ + ρ−, ptot = p+ + p−, and ∆ρtot = ∆ρ+ +∆ρ−,∆ptot =
∆p+ +∆p−.
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where ⟨T (matt)
µν

〉
is the ordinary stress-energy tensor of semiclassical gravity, and

tΛµν is an uncertainty as we will see more clearly below.83 We assume that we
can write (75) as

Gµν =
8πG

c4

(〈
T (matt)
µν

〉
− ∆Λc4

8πG
gµν

)
, (76)

Note that above we consider by convention that the expectation value associated
with tΛµν is

〈
TΛ
µν

〉
= 0, where ∆Λ > 0. The idea underlying this relation is that

semiclassical gravity, as a mean field theory, holds its validity, not requiring us
to consider the second and higher moments of the stress-energy tensor, via this
balance that results in the emission of what we call a cosmological constant or
dark energy. Dark energy is a manifestation of stress-energy fluctuations as we
will see.84

We hypothesize that (75) and (76) holds for all scales probed by the SDCs,
which are all scales where observables have determinate values. We can also
assume a weaker hypothesis that it only holds at the cosmological scales due to
systems involved in local interactions. In either case, we can use the assumptions
about the above scales or regimes to estimate the value Λ. If the first case is true,
we can use the second case to estimate the value of Λ, which would hold at all
scales (but would still evolve in time as we will see). Note that these assumptions
may be unrealistic, and we need to change these hypotheses, making them more
complex. For instance, ∆Λ could be scale-dependent or dependent on other
features (e.g., features of the test functions, etc.), but we will simplify for now
and assume this relation.

At this stage of research, there is some arbitrariness in what we consider to
be (73), and how we go from the initial stress-energy tensors (73) to those in
(76). What the initial ansätze (73) offers us is a way of justifying how the energy
conditions emerge from a quantum balance that considers all possibilities of stress-
energy tensors. The tuning of the sum (⟨T (matt′)

µν

〉
±∆t

(matt′)
µν ) + (

〈
TΛ′

µν

〉
±∆tΛ

′

µν)
can yield quantities that satisfy or violate different energy conditions, and the
changes in some postulated parameter or parameters wi, which may be equal
to a ratio involving the pressures and the energy densities, over the evolution
of SDCs would influence this change. Instead of the above complex ansatz, we
could also consider the simpler ansatz where ⟨T (matt′)

µν

〉
= ⟨T (matt)

µν

〉
would obey

the energy conditions for ordinary matter throughout the process of going from
(73) to (76). The main point of these ansätze is that any possible fluctuations
∆t

(matt)
µν in ⟨T (matt)

µν

〉
, will be canceled by cµν , which is a quantity coming from

this balance, where the remainder will be −tΛµν , and thus −tΛµν = cµν +∆t
(matt)
µν .

Furthermore, another assumption is that we can estimate t(matt)
µν via ∆Λc4

8πG gµν .
More on this below.

83We may consider this quantity as being an uncertainty because it arises from other
uncertainties. See below.

84Our derivation of Λ could have started directly with (75) and (76) but this would be less
explanatory.
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As we shall see further below, these ansätze are, as far as we noticed, physically
valid and open for experimental investigation because they yield predictions.
Furthermore, they show how a semiclassical approach can answer the objections
mentioned in the beginning of this section and in the last section. In addition,
they can provide a potential solution to the cosmological constant problem
without invoking other fields like other theories.

Coming back to the estimation of the value of Λ, given our interests and
assumptions, the most plausible way to do it is by considering the effects
of systems involved in local interactions to phenomena at the cosmological
scales measured in the current epoch, and by considering a perfect fluid at the
cosmological scales.

Notice that we are working with many systems that will give rise to effects
visible at cosmological scales. These systems develop local interactions and belong
to SDCs, giving rise to a large number of relativistic events. It is estimated that
the baryon-to-photon ratio η is approximately 6× 10−10 [2]. Given the much
larger number of photons compared to baryons, a conservative assumption is
to consider that the majority of the number of spacetime events throughout
relativistic spacetime that arise via SDCs involves photons, or more broadly
bosons, assuming that there is no other influential matter that we have not
detected so far.

It is reasonable to consider that many modes of bosons that constitute bosonic
fields, which give rise to effects visible at cosmological scales, are typically in
a coherent state |α⟩. This is because models of decoherence, which represent
interactions between systems that belong to SDCs, consistently consider that
such states are the ones selected by interactions between bosons and a wide
range of kinds of environments (see Section 3.2.2, also see e.g., [126] and [30]).
Furthermore, given the large number of events that give rise to effects at the
cosmological scales, it is reasonable to consider that modes of these fields are in
a high mean occupation number coherent state. In addition, a Bose-Einstein
condensate at high occupation numbers can be approximated as being in a coher-
ent state. Moreover, these states minimize the fluctuations of the stress-energy
tensor (see [64] and Section 4.2), showing more clearly how the semiclassical
equations, approximates the classical regime that we observe at cosmological
scales.

Now, estimating the value of the cosmological constant will involve relating
the uncertainty of the four-volume of spacetime that SDCs give rise to in a past
lightcone in the current epoch with the uncertainty ∆Λ. Let us consider that V̂
is an observable that represents the total relativistic four-volume that systems
that belong to SDCs gave rise to, where this four-volume is in the past light cone
of a spacetime point along the cosmic time. The possible determinate values of
V̂ are the different possible four-volumes that could be generated by the SDCs
in the past light cone of one of its events. Then, let us consider the following
uncertainty relation inspired by unimodular gravity [29, 128], and assumed in
causal set theory [24, 5],

∆Λ

8πG
∆V ≥ ℏ

2
. (77)
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Since we want to estimate the above uncertainty and we are working with systems
in a coherent state, we can saturate it to estimate this value, and so

∆Λ ≈ 4πGℏ
∆V

. (78)

Given (78), let us then estimate the uncertainty of the four-volume ∆V of
the relativistic spacetime, which SDCs give rise to, in the past light cone of
the current cosmic time. It might seem a bit odd to estimate the uncertainty
of something that already happened (i.e., retrodict the past four-volume of
the universe), but note that it becomes more plausible if we consider that the
dynamics are often fundamentally indeterministic and could be otherwise, and
therefore, the four-volume could be otherwise. Furthermore, we can use this
to make certain predictions, as we will see. To estimate ∆V , we use Postulate
3 (version 3), which considers that the four-volume of relativistic spacetime
depends on the number of relativistic events in that volume.

Relativistic spacetime and classical physics are typically concerned with
particles occupying a determinate position and velocity in spacetime. However,
particle number observable (i.e., the number of particles occupying a certain
mode) seems to be a more appropriate observable to analyze how classicality
arises from quantum field theory, and to help estimate the number of events
that arise in relativistic spacetime, since position is not an observable in QFT.
Thus, we assumed this. Another way to argue for this is that, fundamentally, our
classical relativistic world seems to be constituted by particle-like systems; thus,
particle number observables seem to be the most appropriate observables for
the task of counting events. Therefore, counting particles in spacetime regions
appears to play a relatively more fundamental role. A system in a coherent
state has a specific quantum uncertainty in its particle number. Such a system,
in interaction with other systems that probe its particle number, gives rise to
particle numbers that are Poisson distributed. More precisely, the probability of
the number n of particles in a single mode is

P (n) = |⟨n|α⟩|2 = e−⟨n⟩ ⟨n⟩n

n!
, (79)

which obeys the Poisson distribution, where the average number of bosons
occupying a single mode and their variance are equal to each other,

⟨n⟩ = ⟨â†â⟩ = Var(n) = (∆n)2. (80)

Moreover, even for fermions, the sum of many independent modes leads to a
standard deviation of the occupation number for a mode of approximately

√
⟨n⟩.

This further justifies the use of the Poisson distribution to estimate the number
of events that arise in the relativistic four-volume.

Because our past–light-cone four-volume is the union of many subvolumes,
it is reasonable to assume that event correlations between this subvolumes are
negligible beyond short distances. Moreover, let us also make the plausible
assumption that in the context under study, which involves phenomena visible at
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cosmological scales, we have many events, and modes in a coherent state with a
high occupation number, such that quantum fluctuations are small enough that
we can consider the density of events (i.e., the number of events per four-volume)
ρ arising from SDCs to be approximately constant. The constancy in space of ρ
can also be justified because we are reconstructing a homogeneous and isotropic
spacetime via SDCs.

Given the constancy of ρ, Postulate 3, our previous assumptions, and that the
sum of independent Poisson processes (occurring across the different subvolumes
of V ) is another Poisson process we consider that ρ = ⟨N⟩/V with ⟨N⟩ being
the expectation value of the number of spacetime events in region V and the
Poisson-distributed standard deviation ∆N =

√
V ρ, where ⟨N⟩ =

∑
i⟨ni⟩ with

⟨ni⟩ being the expectation values of the particle number of modes across the
different four-subvolumes of the universe in the past lightcone of an event.

In the limit of large ⟨N⟩, we have N = ρV ±
√
⟨N⟩. To estimate the

volume V that SDCs give rise to, we invert the above formula to consider
V = 1

ρ (⟨N⟩ ±
√

⟨N⟩). Therefore, we can estimate the uncertainty of the four-
volume that SDCs give rise to as being equal to

∆V =

√
⟨N⟩
ρ

. (81)

Given (78), we obtain

∆Λ ≈
ℏ4πG√ρ

√
V

. (82)

Then, we can estimate the value of the cosmological constant by performing
a dimensional analysis, assuming Planck units ℏ = G = c = 1, and observing
that in an FLRW cosmology, V should be of the order H−4 where H is the
Hubble parameter at the current epoch. We then obtain ∆Λ = 4π

√
ρH2, where

H2 = 10−122 is the magnitude of the cosmological constant in Planck units.85
Thus, we have derived the value of the cosmological constant via a semi-

classical approach, without falling into the cosmological constant problem and
invoking speculative notions from quantum gravity. Note that we may use the
observed value of the cosmological constant to help estimate ρ. We should
clarify that the four-volume of the relativistic spacetime has nothing to do with
a fundamental discretization of spacetime. That is why we distinguish between
spacetime and relativistic spacetime. The fundamental spacetime is endowed
with a metric and is continuous; the relativistic spacetime emerges from this
spacetime via SDCs.

The picture that emerges from this theory is that, while the universe is always
expanding, there are some extra quantum effects that accelerate its expansion.

85The justification for ∆Λ being an uncertainty that can be estimated via a second-moment
can in principle be done in multiple ways. Depending on the nature of the cancellation that
leads to tΛµν , we might assume that tΛµν is a second-moment quantity regardless of the state of
the systems. Or we can justify it being a second-moment by associating it to the state of the
system that is in a coherent state, and so only its second moments needed to be canceled and
thus tΛµν can be understood as a second-moment. Alternatively, we might consider that this
just follows from the features of how SDCs give rise to ∆V through Poisson processes.
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Notice the different contributions of the energy-momentum tensor. When SDCs
are expanding via interactions, leading relativistic spacetime to expand, there is
an energy-momentum ⟨Tµν⟩ that gives rise to a gravitational field, influencing
quantum systems in spacetime. This energy-momentum leads to an attractive
force that we commonly call gravity. However, the energy-momentum also
produces an extra pressure that leads to an accelerated expansion of the universe.
As we can see, it is not vacuum energy that drives this accelerated expansion;
it is how SDCs constituted by matter fields expand and affect the evolution of
spacetime.

In summary, we estimated the value of the cosmological constant via a
heuristic and simple method and provided an explanation for its origin. This
method superficially resembles that of Sorkin and other workers in the causal
set traditions [114] and [24] (and references therein) because they also used the
above uncertainty relations and Poisson distribution methods to estimate the
number of events and the associated four-volume of spacetime. So, they used the
relationship between the number of events and the volume of spacetime. Indeed,
with or without assuming the third version of Postulate 3, one could consider
that the ordered way SDCs give rise to observables with determinate values,
leading to a local effective causal-set-resembling dynamics and diagrams, but
one that arises from quantum field theory. SDCs give rise not to a succession
of spacetime points but to a succession of classical relativistic events based on
interacting quantum matter fields. So, there is no pretense to provide a quantum
theory of gravity, or a discrete theory of how spacetime arises. We would then
get a causal-set-like diagram with the following structure in the simplest case,

(A→ B) → (B → C) → (D → E) → ..., (83)

where A→ B are the events in which A and B have determinate values due to
their local decoherence-based interactions, which give rise to (or allow for) the
events B → C. The latter involves B and C having determinate values, and so
on. Future work should model these structures and dynamics to gain further
insight into how the four-volume arises from SDCs and dark energy changes (see
also Appendix I).

So, although there is a superficial similarity between these approaches in
some circumstances, they are very different. The causal set approach is mostly
supported by classical dynamics and does not have a clear quantum dynamics.
In addition, it is based on a yet-to-be-completed theory of quantum gravity,
which is clearly not the goal of this theory. Furthermore, it remains unclear how
causal sets can address the measurement problem. Also, for this theory, causal
set-like structures would just provide an effective description of SDCs.

One may wonder where the uncertainty relations (77) between V and Λ
in (84) come from. They could perhaps arise from the following commutation
relations (in Planck units) [114, 24],

[Λ̂, V̂ ] ∼ i. (84)

However, to date, there is no proof of (84) via a canonical approach. The
unimodular version of general relativity [29, 128] considers in a sense that Λ and
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V are conjugate to each other in a similar way to energy and time in quantum
theory. We can also see that this relation is plausible by looking at the integral
of the action of GR, where we find a −ΛV term (see also [24]). However, it
is unclear whether we have to assume unimodular gravity here, some other
theory, or rather just postulate this uncertainty relation and interpret it as
representing something fundamental regarding how SDCs give rise to spacetime
volumes and the gravitational field. If we think further about its meaning,
it can be understood as a combination of the time and energy and position
and momentum uncertainty relations. Furthermore, the reason why we do not
have a commutation relation associated with this uncertainty relation might be
related to the same reason we do not have well-defined quantum mechanically
commutation relations for the time-energy uncertainty relation. Future work
should investigate this from the perspective of the semiclassical approach adopted
here. One may object that we are using the particle number observable to count
the number of events, which is not well-defined globally without giving rise to
other issues [69, 50]. However, in the macroscopic limit that we are assuming,
we can consider that a global notion of particle number observable arises [20].

We will now explore some of the consequences of the prediction of Λ via
our semiclassical approach. First, via ∆Λ, this theory provides a potential way
to circumvent the postulation of an inflaton field. This is because the value
of ∆Λ will change with the evolution of the universe, as it depends on the
four-volume of the universe/relativistic spacetime, and the four-volume of the
universe changes with time. According to the Big Bang model, the four-volume
of the relativistic spacetime was extremely small at the beginning of the universe.
Thus, keeping all assumptions used to derive ∆Λ, ∆V will also be very small,
which implies that ∆Λ will be very large. Therefore, this means that there was
a very accelerated expansion in the early universe. Given the issues surrounding
the inflaton-based inflationary models, this is another benefit of this view. See
Appendix I for more details on this topic.

Second, according to this theory, the introduction of Λ in the Einstein
equation is interpreted as a correction to account for the consequences of SDCs.
In addition, it points to the idea that the validity of semiclassical equations
arises from a balance between positive and negative energy-momentum, which
explains why using the expectation value of the stress-energy tensor is sufficient
for predictive purposes. Perhaps a more general semiclassical equation should
explicitly consider the dynamics of SDCs that lead to varying values of the
cosmological constant. Note that this varying value and the associated energy
density provide plausible results. For example, the smaller the four-volume of
the relativistic spacetime that SDCs give rise to, the higher the energy density
associated with the cosmological constant. Note also that ∆Λ

8πG and hence ∆V
(the four-volume in a past light cone), are determined via local interactions
throughout the history of SDCs. Thus, the value of the cosmological constant
changes due to local processes.

Third, in the previous section, we conjectured that the emission of a gravi-
tational field decreases as we move to the core of black holes. This hypothesis,
together with the volume-number correspondence, might also provide a different
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perspective on how the Bekenstein-Hawking formula for the entropy of black
holes relates with its microscopic degrees of freedom. Underlying decoherence is
the maximal von Neumann entropy of the reduced state of the target systems,
which then gives rise locally to systems with determinate values, according to
this theory. Relatedly, we hypothesize that black hole entropy is a quasi-classical
concept involving counting the number of events involving systems having de-
terminate values (due to interactions with SDCs, which involve a maximal von
Neumann entropy); and that there is an area-number of events correspondence
that allows us to count these events, similar to how the volume-number cor-
respondence allowed us to count events. Hence, we postulate the following
modification of the Bekenstein-Hawking formula: S = A

4G = ρ′⟨N ′⟩
4G , where ρ′ is

the number of these events per unit area, which is given by ρ′ = ⟨N ′⟩/A, where
A is the area of event horizon and ⟨N ′⟩ is the expectation value of the number of
systems having determinate values at the event horizon due to SDCs. Note that
we assume again that we have many events such that quantum fluctuations are
small enough that we can consider that ρ′ arising from SDCs as approximately
constant at this surface.86

This hypothesis might give insights about why the area of the horizon is so
crucial to determining the area of black holes, and can be supported by noticing
that the rate of decoherence of systems in a coherent superposition due to
black holes is maximal at the event horizon, when taking into account the other
possible rates of decoherence outside black holes [23] (see the previous section for
more details on this result). We conjecture that the rate of decoherence at the
event horizon is maximal in comparison with the rates in the interior of black
holes, and is much bigger than the ones in the interior, in the regimes where
the Bekenstein-Hawking formula is valid. Arguably, this decoherence, as a von
Neumann entropy maximizing process, in principle could influence the entropy
of black holes at the horizon. Given our assumptions, in the regime where the
Bekenstein-Hawking formula is valid to describe the entropy of a black hole, it
might well be that the entropy of black holes is determined by the maximum
rate of decoherence due to SDCs, which occurs at the event horizon, and which
involve discrete events that form the area of that horizon given the number-
area correspondence. Of course, this is just a heuristic argument and what we
want is a derivation of the above entropy formula from SDCs. Nevertheless,
a semiclassical approach might help in understanding other puzzles regarding
black holes, giving rise to new paths for research.8788

86If we follow the logic of this section explained above, we would consider that the above
relation is based on the expectation value of the particle number when the modes of fields are
in a coherent state. For this to be valid, we would have to assume that systems are left in a
coherent state at the event horizon. However, that might not be the case, and this is not an
issue because we do not have to assume a Poisson distributed number of events here.

87This might also help explain why the area of the horizon is proportional to the surface of
the black hole because the SDCs at the surface may help accounting for the total mass of the
black hole that is rendered determinate.

88Notice that gravity arising from interactions is associated with an increase in entropy of the
systems involved, but that does not mean that gravity is just an entropic force [57, 119]. We
need determination and gravitational conditions, which might serve as a basis to also address
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Fourth, in the previous section, we have mentioned the objection from Page
and Geilker [82] to the semiclassical approach, which leads to the violation
or inapplicability of the Bianchi identities during the measurement process or
state update. However, this version of Postulate 3 provides a potential way of
circumventing this objection and with testable predictions. Given the Bianchi
identities and eq. (76),

∇µGµν =
8πG

c4
∇µ
(〈
T (matt)
µν

〉
− tΛµν

)
= 0. (85)

Therefore,
∇µ
〈
T (matt)
µν ⟩ = ∇µtΛµν . (86)

According to this theory, it is possible to hold that during the stochastic process,
the Bianchi identities and (85) still hold because a change in the stress energy
during the process of measurement, would be accompanied by a change in tΛµν in
such a way that the Bianchi identities are obeyed during measurement. So, the
local change in energy–momentum should be equal to the local changes in dark
energy, and therefore, local changes in the acceleration of the expansion of the
universe should be observed during a measurement process. Thus, assuming that
(85) is maintained during the process in which SDCs give rise to determinate
values, the local change in the acceleration of the expansion of the universe
upon measurements may be another prediction by this theory, which would
support the third version of Postulate 3. A better understanding of the quantity
tΛµν , its effects, and how the process maintaining (86) actually behaves under
measurements is a topic for future work. Note that even if we cannot find a
sensible way of maintaining (85) and (86) during the stochastic process involved in
measurements, we can still maintain the third version of Postulate 3 by assuming
that the semiclassical equation and the Bianchi identities are inapplicable to
describe this process as we have defended in the last section.

One may ask whether other theories of gravity can derive the approximate
value of the cosmological constant as we did here. Certainly, causal set theory
can derive this value, but as we have explained, their approach has its limitations.
It is unclear whether loop quantum gravity and string theory can make the
assumption concerning discrete classical events that generate a gravitational field
that we made above. This is because their gravitational degrees of freedom are
quantum, and they should contribute to the value of dark energy, irrespective of
classicality. On the other hand, the assumption that we have made here is that
only the “semi-classical” physical states (i.e., the ones involving systems with
determinate values) that arise via SDCs contribute to determining the value
of the cosmological constant. Furthermore, it is unclear how quantum gravity
theories and gravity-induced collapse theories can justify, in a principled way,
why the vacuum does not gravitate.

We believe that the explanation of how the cosmological constant arises,
providing a potential solution to the cosmological constant problem, shows the

the foundational issues associated with entropy. If in the future we derive the semiclassical
gravity equation from entropic considerations, while assuming the core features of this theory,
this might not invalidate it, but show in more detail how gravity emerges from certain SDCs.
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potential usefulness of the theory we are proposing. In addition, recent data
suggests a varying value of the cosmological constant across the history of the
universe [1], as predicted by this theory. Note that arguments similar to the
above argument regarding why the vacuum does not gravitate may help solve
other problems in physics that are not directly related to semiclassical gravity
because SDCs determine whether a system has determinate values of observables,
and when we should consider those values in certain explanations.89

The goal of this section and the previous one, to some extent, was to show
that there are multiple promising strategies that we may adopt if we want to use
this semiclassical approach to understand the relation between quantum theory
and gravity when it comes to understanding dark energy, quantum fluctuations,
and black holes.90 Thus, we might not need to opt for more speculative theories,
such as quantum gravity theories or more radical mathematically speaking
semiclassical theories.

8 Conclusion and future directions
We have proposed a conservative theory that connects general relativity with
quantum theory in a coherent way by appealing to semiclassical gravity, and
explained how it can be empirically supported, and distinguished experimentally
from quantum gravity and other semiclassical gravity theories. We have also
shown multiple promising ways in which this theory can be further developed to
explain different phenomena. Thus, we believe that we have proposed a theory
that provides a series of interesting theoretical and empirical possibilities, which
should be further explored.

We will now discuss some of the challenges or shortcomings of this approach,
in addition to those mentioned in the previous sections and appendices. First,
although we have focused on situations and states (e.g., Hadamard states) where
the semiclassical equation can be solved in principle, solving the semiclassical
equations is typically a difficult problem and is outside the scope of this article.
Various methods have been developed to solve it.91 In Section 5 we conjectured
that the system that emits the test function, the background gravitational field,
and decohering interactions drive or control systems (that are not emitting a
gravitational field) towards states that can, in principle, be used to solve the
semiclassical equations at times t, when decoherence occurs. Future work will

89For instance, the framework of EFT points towards new physics happening at the scale
not far above the Higgs boson, but we have no evidence of new physics above the TeV. This,
in a nutshell, is the Higgs hierarchy problem, which involves a fine-tuning problem to obtain
the renormalized Higgs mass from the predictions of EFT, which predicts that the Higgs mass
should receive corrections owing to its interactions. If SDCs cannot probe such scales and/or if
we do not have a model of decoherence for such interactions, we should not infer the existence
of such large terms that need to be canceled to account for the Higgs mass. This is because
there is no mechanism that renders what these terms represent determinate. This points
towards the need for an integration of the theory proposed here with the tools of EFTs and
renormalization theory to make such inferences.

90See Appendix I for the inflation case.
91See [116, 59, 47] and references therein.

70



explore how this approach may help solve this equation through this suggestion.
Relatedly, an array of SDCs can give rise to an array of systems emitting
test functions that, in principle, could lead to a lattice. Future work should
investigate whether this provides a new perspective on lattice QFT and useful
non-perturbative methods.

Second, future work should explore the applicability of this theory to multiple
spacetimes. Essentially, one needs to explore models of decoherence in such
spacetimes. Furthermore, we developed our proposal in the context of globally
hyperbolic spacetimes. One may argue that these are the only realistic spacetimes,
but future work could investigate this theory in the context of non-globally
hyperbolic spacetimes.

Third, in this first paper, we have not provided models representing the
stochasticity of the gravitational field and how it feeds into the dynamics of
the matter fields. Here, using tools from hybrid classical-quantum theories,
might be promising as an effective description of such stochastic gravitational
fields sourced by SDCs, which in turn influences the dynamics of the systems.
However, contrary to this approach, the classical stochastic gravitational field
does not need to be fundamental for describing gravity. It primarily arises
from the interactions between quantum fields. As mentioned, classical states,
along with quantum states, where the former have stochastic behavior, do not
fundamentally exist for this theory.

Fourth, future work should develop a more detailed description of the dy-
namics of the time-varying dark energy. Furthermore, one should explore the
cosmological consequences of this theory, including for black holes (see Sections
6 and 7 for conjectures regarding these objects) and inflation (see Appendix I).
As mentioned in Section 1, the strategy proposed to deal with these cosmological
issues is to substitute the singularities in general relativity that arise in these
contexts with the absence of a gravitational field generated by SDCs given by flat
spacetime (or an asymptotically flat spacetime), or even by an asymptotically
de Sitter spacetime.

Fifth, SDCs with their structural features bring about a more complex way
in which quantum and classical interact than the usual simple decoherence, spon-
taneous, or gravity-induced collapse-based story. This may have repercussions
for our understanding of how quantum features influence chemical and biological
features. In these later domains, chains of interactions are more common. It
is difficult to see how the above simpler quantum-to-classical transitions could
be integrated with these classically described chemical or biological chains of
interactions or give rise to a similar level of complexity. Therefore, we hypothe-
size that SDCs bring about potentially complex chains of interactions, which
might be integrated with chemical and biological chains, explaining some of
their features, and how quantum effects may persist or be suppressed over time.
This SDC-biochemical hypothesis is an interesting possibility regarding how the
quantum and the classical relate, and deserves further exploration.

Finally, we have proposed a particular set of gravitational conditions and
associated determination conditions. Future work should explore other possibili-
ties to determine whether they are also viable and propose experiments to test
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which one is correct. Note that despite the conjectures proposed, as explained
in Section 1, the theory we are presenting at its core is very conservative and
testable in the short term.
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A Decoherence in the BVM experiment
Here we reproduce the expressions calculated in [99]. According to the theory
advanced here, assuming that the environment presented is a complete description
of the environments in the BMV experiment [9, 71], the extent to which we cannot
reverse the state in this experiment to its initial state should only be determined
by these non-gravitational decohering interactions in their appropriate domain
of validity.

The master equation to describe this process of decoherence is

dρ(x, x′, t)

dt
= − i

ℏ
〈
x
∣∣[Ĥ, ρ̂(t)]∣∣x′〉 − Γ(|x− x′|) ρ(x, x′, t), (87)

in the position representation ρ(x, x′, t) = ⟨x|ρ̂(t)|x′⟩, where Ĥ is the free
Hamiltonian, and we have the following typical ansatz,

Γ(∆x) = Γ0

(
1− exp

[
−∆x2

4a2

])
. (88)

This master equation (87) leads to an exponential suppression in time of
the off–diagonal terms of the density matrix in the position representation.
Furthermore, given (88), decoherence depends on the localization strength Γ0

and the localization distance a. Their explicit forms are found in Table 1.92 In
the BVM scenario, there are only four possible position configurations, thus the
problem is simplified to a discrete description. Moreover, it is assumed that
decoherence acts independently on the two particles.

B No-disturbance condition approximation
To understand why the approximation in Eq. (24) is valid and the no-disturbance
condition is fulfilled, let us assume that [tstartAB , tend

AB] is the support interval for
fAB(t), and [tstartBC , tend

BC ] is the support interval for fBC(t). The overlapping
interval [ts, te] is then ts = max(tstartAB , tstartBC ), te = min(tend

AB , t
end
BC).

92Work in preparation will compare these different rates and timescales with the ones from
alternative theories.

72



Table 1: Below, we find the exoressions for a and Γ0 that enter in (88). They
quantify the effects of decoherence due to collisions with air molecules (Air), as
well as scattering (Sc), absorption (Ab) and emission (Em) of thermal photons
on a sphere of radius R, with a dielectric constant ϵ and bulk temperature
Ti [106, 100]. Here, mair concerns the mass of the molecules of the residual
air, T and P are the temperature and the pressure at which the experiment
is performed, and ζ(n) is the Riemann zeta function. To quantify the effects,
we have ϵ = 5.7 + i× 10−4 for the diamond used in the BMV experiment. For
simplicity, Ti = T and mair ≃ 6.6× 10−27 kg, which corresponds to an atom of
helium.

Source ai Γi0

Air
πℏ√

2πmairkBT

16π
√
2π

3

P R2

√
mairkBT

Sc
π2/3ℏc
2kBT

8!
8π1/3

9
R6c

(
kBT

ℏc

)7

ζ(9) Re

[
ϵ− 1

ϵ+ 2

]2
Ab

π2/3ℏc
2kBT

16π19/3

189
R3c

(
kBT

ℏc

)4

Im

(
ϵ− 1

ϵ+ 2

)
Em

π2/3ℏc
2kBTi

16π19/3

189
R3c

(
kBTi
ℏc

)4

Im

(
ϵ− 1

ϵ+ 2

)

The quantity overlap quantifies the magnitude of the overlap between the
interaction B-C and A-B within the overlapping region:

Overlap =

∫ te

ts

fAB(t) · fBC(t) dt. (89)

Relatedly, the quantity strength quantifies the relative influence of fBC(t)
compared to fAB(t) within the overlapping region. It is defined as the ratio of
the integrals:

Strength =

∫ te
ts
fBC(t) dt∫ te

ts
fAB(t) dt

. (90)

So, let us consider the fidelity between the above approximate state and the
state |ψ(1)Num⟩ of the system calculated numerically, F = |⟨ψ(1)approx|ψ(1)Num⟩|2.93
The plots in Figure 5 show that the fidelity decreases with strength and the
amount of overlap, i.e., it decreases with the increase in the size of the common
support between fAB and fBC . Thus, we will consider that there is a small
overlap between the test functions concerning the interactions A−B and B −C
because this is sufficient to fulfill the no-disturbance condition.

93The simulations were made using the function NDSolve in Mathematica and the method
ExplicitRungeKutta.
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Figure 5: Strength and Overlap obtained by numerical simulations for a tAB = 0.5
and σAB = 0.13, and for multiple values of tBC and σBC within the interval [0, 3]
and within the common support of fAB and fBC . To calculate these quantities,
the Schrodinger equation with the Hamiltonian in (14) was solved to yield the
state |ψ(1)Num⟩.

Figure 6: Fidelity as a function of σBC , assuming values between 0.5 and 1.2,
and for tAB = 0.5, σAB = 0.13, and tBC = 1.5. We can see that the fidelity
decreases as σBC increases and the size of the common support of fAB and fBC
increases.

C Quantization of scalar fields and other defini-
tions

For completeness, we briefly explain the quantization of the scalar field from the
perspective of algebraic quantum field theory (AQFT) and explain other concepts
that we will use. In addition, we will often invoke AQFT in our exposition, so it
is important to be clear about that.

Let f ∈ C∞
0 (M) denote a smooth test function with compact support on
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the spacetime manifold M. The advanced and retarded Green’s functions,
E± = E±(x, y), correspond to the propagators associated with the Klein-Gordon
operator P̂ , where P̂ ϕ = 0, P̂ = ∇a∇a +m2 + ξR. Using these, we define
the smeared advanced and retarded propagators, also called Green operators
E± : C∞

0 (M) → C∞(M), as follows:

E±f ≡ (E±f)(x) :=

∫
dV ′E±(x, x′)f(x′), (91)

where the measure dV ′ = dDx′
√
−g′ represents the invariant volume element,

with g′ ≡ det gµν(x
′) < 0. These propagators solve the inhomogeneous wave

equation P̂ (E±f) = f . The causal propagator is then defined as the difference
between the advanced and retarded propagators: E = E− − E+, where we have
the smeared causal propagator defined as E(f, g) :=

∫
dV f(x)(Eg)(x).

In AQFT, the quantization of the real scalar field ϕ on M involves a complex
linear map from the space of smooth, compactly supported test functions to
a unital ∗-algebra94 A(M) given by ϕ̂ : C∞

0 (M) → A(M), f 7→ ϕ̂(f), that
fulfills the conditions of i) Hermiticity: ϕ̂(f)† = ϕ̂(f̄) with f ∈ C∞

0 (O) and f̄ is
the complex conjugate of f (if f is real valued ϕ̂(f)† = ϕ̂(f)); ii) the equation
for the field: ϕ̂(Pf) = 0 for all f ∈ C∞

0 (M); iii) the Canonical Commutation
Relations (CCR): defining the commutator [a, b] = ab− ba for a, b ∈ A(M), we
have that [ϕ̂(f), ϕ̂(g)] = iE(f, g)I, ∀f, g ∈ C∞

0 (O). The ∗-algebra A(M) is
referred to as the algebra of observables for the field on M. The smeared field
operator ϕ̂(f) can be expressed as

ϕ̂(f) =

∫
dV ϕ̂(x)f(x). (92)

Let us associate to each O of a globally hyperbolic spacetime a subalgebra
A(O) ⊂ A(M), generated by ϕ̂(f), then it can be shown that for O ⊂ O′ we
have A(O) ⊂ A(O′) (isotony); algebras associated with spacelike separated
regions commute (Einstein causality); and the algebra of a neighborhood of a
Cauchy surface of a given region coincides with the algebra of the full region
(time slice axiom). This feature corresponds to the well-posedness of the initial
value problem. The algebras assumed in the measurement theory for QFT, [37]
and in AQFT, [97] often share the above three features as axioms coming from
the Haag–Kastler axioms for a net of C∗-algebras O 7→ A(O) associated with
spacetime regions O.

The dynamics of the field are encoded in the symplectic structure. The space
of solutions SolR(M) to the Klein-Gordon equation (27) comes with a symplectic
form Ω : SolR(M)× SolR(M) → R, defined as

Ω(ϕ1, ϕ2) :=

∫
Σt

dΣa (ϕ1∇aϕ2 − ϕ2∇aϕ1) , (93)

94I.e., a complex algebra equipped with involution or also known as Hermitian adjoint, and
that is unital because it has the identity.
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where dΣa = −tadΣ, −ta is the inward-directed unit normal to the Cauchy
surface Σt, and dΣ =

√
hdD−1x is the induced volume form on Σt. This definition

is independent of the choice of Cauchy surface used in Eq. (93). The field
operator ϕ̂(f) can then be expressed as a symplectically smeared field operator
ϕ̂(f) = Ω(Ef, ϕ̂). The CCR algebra is reformulated as [Ω(Ef, ϕ̂),Ω(Eg, ϕ̂)] =
iΩ(Ef,Eg)I, where Ω(Ef,Eg) = E(f, g), as discussed above.

The Klein-Gordon inner product is given by95

(ϕ1, ϕ2)KG := i

∫
Σt

dΣa (ϕ∗1∇aϕ2 − ϕ2∇aϕ
∗
1) . (94)

where the element dΣa is given by −tadΣ, where −ta represents the inward-
pointing unit normal vector to the Cauchy surface Σt. Moreover, dΣ =

√
h dnx

denotes the volume form induced on the hypersurface Σt. We require that the
modes are normalized according to the Klein-Gordon inner product:

(uk, uk′)KG = δn(k−k′), (uk, u
∗
k′)KG = 0, (u∗k, u

∗
k′)KG = −δn(k−k′). (95)

Note that the equal-time CCRs are not manifestly covariant because they
inherently single out a preferred time direction.96 The way to do this more
covariantly and arguably more satisfactorily is by using the algebraic approach.

Turning now to the Hadamard states, which we will rely on, for any such
state, one can define a finite, locally covariant, renormalized expectation value
of the stress-energy tensor. The two-point function for a Hadamard state of a
Klein-Gordon field has to take the following form:

Wω(x, y) = lim
ϵ→0+

U(x, y)

σϵ(x, y)
+ V (x, y) ln(σϵ(x, y)) +Hω(x, y), (96)

which is written as a function of spacetime points x and y. σϵ(x, y) concerns
the squared geodesic distance between x and y (the Synge’s world function),
together with an appropriate regularization, U and V are C∞ functions that are
determined by the spacetime metric and the Klein-Gordon equation. Hω(x, x

′)
is a C∞ function that concerns the state-dependent contributions.

D Coherent states examples and bounds on test
functions

Let us consider a simple example of how a system in a coherent state can source
a test function. Coherent states in the context of QFT are analogous to those of

95Note that this is defined in terms of the complex form with (·, ·)KG : SolC(M)×SolC(M) →
C where (ϕ1, ϕ2)KG := iΩ(ϕ∗1, ϕ2), but where the symplectic form Ω is expanded to the space
of solutions SolC(M) of the Klein-Gordon equation, which are complexified.

96A related drawback of canonical quantization is that it does not inherently show the
presence of multiple unitarily inequivalent representations of the CCR algebra, which is a
well-known feature of quantum field theory. As previously mentioned, a more manifestly
covariant approach involves first considering the entire complexified solution space of the
Klein-Gordon equation [121]. However, for simplicity, we will not pursue that approach here.
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the harmonic oscillator and are defined as states |α(k)⟩ that satisfy the equation

âk|α(k)⟩ = α(k)|α(k)⟩, (97)

where α(k) is a complex-valued function, which characterizes the state |α(k)⟩.
Furthermore, for a coherent state, the uncertainty relations are minimized for the
canonical quadrature pairs of a single mode. The vacuum state |0⟩ is a coherent
state with a zero amplitude. Nevertheless, they typically have a nonzero mean
field, which makes them ideal sources of test functions. As we have seen (Section
3.2.2), coherent states tend to be selected by SDCs, being the “most-classical”
states.

We can write a multimode coherent state, which depends on the complex-
valued function α(k), as a displaced vacuum:

|α⟩ = D̂[α] |0⟩ = exp
(∫

dnk
[
α(k) â†k − α∗(k) âk

])
|0⟩, (98)

where D̂[α] is the unitary displacement operator for the field.
Let us examine an example. We consider that upon decoherence in flat

spacetime, a stochastic process that transitions the system to one of the terms of
its reduced state (together with the environment that monitors the system), and
given the shape of the test function with its tails, the interaction quickly weakens,
and the system (and its environment) evolve freely approximately, where its
evolution is given by the free Klein-Gordon equation. From regarding ϕD as
approximately evolving under the free Klein-Gordon equation (□+m2)ϕ̂D(x) = 0,
it follows that for a test function f , the following also holds (□ + m2)f =

Tr
(
ρ̂D (□+m2) ϕ̂D

)
= 0, where f(x, t) = Tr

(
ρ̂D ϕ̂D(x, t)

)
. Thus, if we consider

test functions as arising from mean fields of free scalar fields, it is plausible that
they should be solutions to the Klein-Gordon equation.

An ideal test function is a bump function because it is compactly supported.
However, the Fourier transform of this function does not have a closed analytical
form. Non-compact functions, such as the Gaussian (eq. 35), provide a closed
form. But this function is not a perfect solution to the free Klein-Gordon
equation. A non-compact function that is a solution to the free Klein-Gordon
equation is the following,

Φ(t, r) =
A
4 r

a−
5
4 Γ
(

5
4

)[
(r + t′) 1F1

(
5
4 ;

3
2 ; −

(r+t′)2

4a

)
+ (r − t′) 1F1

(
5
4 ;

3
2 ; −

(r−t′)2
4a

)]
,

(99)

with

A =
4
√
2πN

(2π)3/2
, a =

σ2

4
, (100)

where N is an optional normalization constant, and the spatial and temporal
variances are proportional to σ2. It is C∞, rapidly decaying in all directions,
even in t′ = t− t0, and spherically symmetric about x0.
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We want to find the coherent state that gives rise to this test function. Let us
obtain the result for the case of a massless scalar field that involves a continuum
of modes, where the mean-field arises from

⟨α|ϕ̂(t,x)|α⟩ =
∫

d3k

(2π)3/2
1√
2k

[α(k) e−ikt+ik·x + α∗(k) eikt−ik·x]. (101)

If we consider
α(k) = N e−ak

2

ei
(
kt0−k·x0

)
, (102)

with a = σ2

4 > 0, the expectation value

Φ(t,x) = ⟨α|ϕ̂(t,x)|α⟩ (103)

equals the test function (99).97 In the limit where |r|, |t′| ≪ ∆x,∆x = σ
2 ,98

the above test function reduces to a Gaussian,

Φa(t, r) ≃ N exp
[
− r2

2λ2
− (t− t0)

2

2λ2/3

]
, λ2 =

12a

5
=

3σ2

5
. (104)

Now, turning to the bounds on the test functions, consider the following
single-time Poincaré algebra:

[H,P i] = 0, [Ki, P j ] = iδijH, [Ki, H] = iP i, [Ki,Kj ] = −iεijkJk. (105)

Given, for example,

Hint =

∫
d3x f(x, t) Ô1(x, t) Ô2(x, t), f(x, t) = exp

[
− x2

2σ2 − t2

2T 2

]
. (106)

Then, we get

[Hint, P
i] = i

∫
d3x (∂if) Ô1Ô2, (107)

[Ki, Hint] = i

∫
d3x (t∂if − xi∂tf) Ô1Ô2, (108)

[Ki, P j ] = i

∫
d3x δij ∂tf Ô1Ô2, (109)

[Ki,Kj ] = i

∫
d3x (xit− xjt) ∂tf Ô1Ô2. (110)

97As one can see, whether the system ends up emitting a temporal, a spatial, or a spatiotem-
poral test function depends on the state it ends up in due to decoherence by members of
SDCs.

98As we will see, considering |r|, |t′| ≪ ∆x,∆x = σ
2
, if we consider |r| ≈ 1/k and |t| ≈ 1/ω,

will coincide with conditions for systems to emit a test function discussed in Section 3.2.1. k
and ω concern the maximum momentum and energy, respectively, of the systems subject to
that test function.
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The terms that spoil the Poincaré algebra commutation relations are those in
which a derivative acts on the test function. Because

∂if = − xi
σ2
f, ∂tf = − t

T 2
f, (111)

every anomalous contribution carries either a factor t/T or x/σ. Fourier trans-
forming gives

f̃(k, ω) = exp
[
− 1

2

(
σ2k2 + T 2ω2

)]
< ε, (112)

where we will consider ε ≪ 1. Thus, given a physical process of spatial width
Lphys and temporal width τphys (so kmax ∼ 1/Lphys, ωmax ∼ 1/τphys), one finds

kmax ≫ Λk =
1

σ
, ωmax ≫ Λω =

1

T
. (113)

One can see that these conditions apply to any physically reasonable test function
and Hamiltonian.

Now, let us show via a simple case how the inequalities (36) and (37) that we
have derived for the test functions to obey the spacetime symmetries guarantee
the validity of the cutoff-based bounded integrals. To show this, for simplicity,
let us assume that D is a massless scalar field, where we have

⟨ϕ̂⟩ =
∫ ∞

0

dk ρ(k) e−
1
2Σ

2k2 2 cos
(
k·x− kt

)
, (114)

ρ0 ≡ 4π
(2π)3/2

, Σ2 ≡ σ2
r +σ

2
t , ρ(k) ≡ ρ0 k

2. Then we obtain the difference between
the full and truncated integrals

∆(x, t) ≡ ⟨ϕ̂⟩ − ⟨ϕ̂⟩Λ

=

∫ ∞

0

dk ρ(k) e−
1
2Σ

2k2 2 cos(. . .) −
∫ Λ

0

dk ρ(k) e−
1
2Σ

2k2 2 cos(. . .)

=

∫ ∞

Λ

dk ρ(k) e−
1
2Σ

2k2 2 cos(. . .) .

(115)

Note also that∣∣∆(x, t)
∣∣ ≤ 2

∫ ∞

Λ

dk ρ(k) e−
1
2Σ

2k2 =
8π

(2π)3/2

∫ ∞

Λ

dk k2e−
1
2Σ

2k2 , (116)

where ∫ ∞

Λ

dk k2e−ak
2

=

√
π

4a3/2
erfc
(√
aΛ
)
+

Λ

2a
e−aΛ

2

. (117)

For large arguments (z ≫ 1), erfc(z) ≃ e−z
2

√
π z

, so that, keeping only the leading
term we get ∫ ∞

Λ

dk k2e−
1
2Σ

2k2 ≲
Λe−

1
2Σ

2Λ2

Σ2
. (118)
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We then obtain

∣∣∆(x, t)
∣∣ ≲ 8π

(2π)3/2
Λe−aΛ

2

2a
=

4π

(2π)3/2
Λe−

1
2Σ

2Λ2

( 12Σ
2)

. (119)

Because the exponential dominates any power of kmax = Λ, we have∣∣∆(x, t)
∣∣ ≲ exp

[
− 1

2Σ
2Λ2

]
= exp

[
− 1

2 (σ
2
r + σ2

t )Λ
2
]
. (120)

Thus, whenever this cutoff satisfies (36) and (37), i.e. kmax ≫ 1/σr, 1/σt, the
error made by truncating the k–integral is exponentially small. This is in
agreement with the bounds derived above; therefore, instead of integrating from
0 to ∞, we only need to integrate from 0 to kmax.

E Filtering out systems at lower scales
Consider the projection operator onto the low-energy modes PΛ, defined for each
energy eigenstate Ĥ|E⟩ = E|E⟩ as follows:{

PΛ|E⟩ = 0 if E > Λ
PΛ|E⟩ = |E⟩ if E < Λ,

(121)

which satisfies P 2
Λ = PΛ, where Λ is a UV cutoff for the theory.

Burgess et al. [11] have shown via the “decoupling theorem” that integrating
out heavy systems always leads to an evolution that cannot change a pure state
into a mixed state. More concretely, acting with PΛ on the heavy states |E⟩
does not lead to a non-unitary evolution afterward.

However, recent models in flat and curved spacetimes seem to imply that
the purity of states depends on the mass M of heavy states of order O

(
1/M).

Consider the following Lagrangian valid to both flat and curved spacetimes,

L = −
[
1

2
(∂ϕ)2 +

1

2
(∂σ)2 +

1

2
M2ϕ2 +

1

2
m2σ2

]
+ Lint, (122)

although we will focus on flat spacetime in this example for simplicity. Now,
consider the quantity purity, which measures the degree of decoherence with
γ = 1 corresponding to maximal purity and no decoherence,

γ(t) := Trσ
[
ϱ2(t)

]
. (123)

In the case of
Lint = −g2 ϕσ, (124)

in the large mass limit, i.e., the limiting case where M ≫ k,m, g it can be
shown that when the Hamiltonian of interaction is turned on instantaneously at
a certain time, for a mode k of a field σ decohered by ϕ we have

γk(t) ≃ 1− 2µ4

ωσM3
sin2

[
1

2
M(t− t0)

]
, (125)
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or when the interaction is turned on adiabatically in the remote past,

γ̄ak(t) ≃ 1− g4

2ωσM3
. (126)

In the case of
Lint = −g ϕ2σ, (127)

it can be shown that under the above-mentioned adiabatic interaction,

γk ≃ 1− g2

16π2ωσM

∫ ∞

1

du

u3
√
u2 − 1

= 1− g2

64πωσM
. (128)

We see above that the purity depends on the heavy mass M of the environment,
and we need to clarify how we discard heavy degrees of freedom. The correct
energy selection required when discarding such degrees of freedom is automatically
enforced by the so-called iϵ prescription applied to the Wightman function. We
begin by specifying precisely which iϵ prescription is intended, which is closely
related to the prescriptions that appear in particle physics, cosmology, condensed-
matter physics, and quantum optics. The prescription relevant here demands
that the Wightman function, W (x, t; x′, t′), be evaluated with time differences
t− t0 possessing a small negative imaginary component. This imaginary shift
ensures convergence of the sum over intermediate states in

⟨0|ϕ(x)ϕ(x′)|0⟩ =
∫
d3p ⟨0|ϕ(0)|p⟩ ⟨p|ϕ(0)|0⟩ e i p·(x−x

′) (129)

in purity calculations, where p·(x−x′) = pµ (x−x′)µ = −ω(p) (t− t′)+p·(x−x′)

and ω(p) =
√
p2 +M2 is the dispersion relation of the field. The inclusion of

a small negative imaginary part in t− t′ guarantees convergence for large |p|.
Therefore, note that t− t′ −→ (t− t′)− i ϵ, ϵ > 0 and then

e ip·(x−x
′) = exp

[
− i ωp

(
(t−t′)−i ϵ

)
+ ip·(x−x′)

]
= e−ϵ ωp e− i ωp(t−t′) e+ ip·(x−x′).

(130)
This role of iϵ is analogous to that in quantum optics, where it regulates

the finite response time of a detector, with the limit ϵ → 0 corresponding to
the removal of any unresolved short-distance physics. In this ultraviolet (UV)
interpretation, ϵ effectively acts as a temporal cutoff Λ−1 or energy cutoff Λ.

Therefore, an important function of iϵ is to serve as a UV regulator in the
Wightman function, since it suppresses contributions from energy eigenstates
according to their eigenvalues—precisely what is needed when projecting out
heavy modes in a decoupled basis. Furthermore, as explained in [11], the limits
ϵ→ 0 and M → ∞ do not commute, and this non-commutativity is essential for
making decoupling manifest. In the calculation of purity, if one first expands in
powers of 1/M (for large M) and only afterward sends ϵ→ 0, the system’s state
remains nearly pure up to exponentially suppressed corrections. This agrees with
the expectation when using the exact (decoupled) energy eigenbasis, expressed
via the “decoupling theorem” above. On the other hand, if one first takes ϵ→ 0
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and then performs a 1/M expansion, the resulting state appears mixed by an
amount of order O(1/M). This matches the calculations of the purity that we
have briefly seen through the above examples.

The above makes sense physically because (in the standard interpretation)
ϵ ∼ 1/Λ sets the shortest temporal resolution that the Wightman function can
resolve. Heavy physics with M > Λ produces effects that are too rapid for
a low-energy detector to observe. Therefore, when estimating the impact of
these modes, it is incorrect to take ϵ → 0 before expanding in 1/M . In the
decoupling limit, characterized by M ≫ Λ, a nonzero ϵ automatically ensures
that projecting out the heavy sector is equivalent to discriminating against high-
energy eigenstates. On the other hand, if M < Λ, then the effects of order 1/M
can, in principle, be discerned by low-energy experiments. In that scenario, one
can safely set ϵ→ 0 first and only later expand in powers of 1/M . In doing so,
significant contributions to purity arise, in agreement with the decohered-basis
computations, which lead to the calculation of purity, as discussed above. Both
approaches, working in the decoupled basis and working in the decohered basis,
are valid within their own domains, and they yield different answers because
they address different physical questions. Which approach applies depends on
the relative size of M and Λ.

We now show that the shift (t−t′) → (t−t′)− iε can be replaced by smearing
each field with a temporal test function whose temporal profile encodes the same
iε information. One then recovers exactly the factor e− εωp (or its square), which
tames the ultraviolet behavior in the momentum integral. Thus, we can consider
the existence of the emission of a test function by another system that controls
whether a system is decohered by a more massive system.

To begin, we introduce two smooth, rapidly–decreasing temporal test func-
tions fε(t) and gε′(t′), together with spatial test functions F (x) and G(x′). Then,
we define the smeared field operators by

Φf =

∫
dt d3x

√
−g fε(t)F (x)ϕ(t,x), Φg =

∫
dt′ d3x′

√
−g gε′(t′)G(x′)ϕ(t′,x′).

(131)
Their vacuum expectation value is

Wf,g = ⟨0
∣∣ Φf Φg ∣∣ 0⟩ = ∫ d4x

√
−g

∫
d4x′

√
−g′ fε(t)F (x) gε′(t′)G(x′)W+(x, x′),

(132)
where W+(x, x′) is the unsmeared Wightman function of a free, massive scalar
field. We choose both temporal smearings to be Lorentzian with widths ε and
ε′, respectively:

fε(t) =
ε

π
(
t2 + ε2

) , gε′(t
′) =

ε′

π
(
t′2 + ε′2

) , (133)

with Fourier transforms

f̃ε(ω) =

∫ ∞

−∞
dt fε(t) e

iωt = e− ε |ω|, g̃ε′(ω) = e− ε′ |ω|. (134)
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Let us consider the Wightman function,

W+(x, x′) =

∫
d3p

(2π)3 2ωp
e− i ωp (t−t′) e ip·(x−x′), ωp =

√
p2 +M2, (135)

and let us smear spatiotemporally this correlator, and perform the spatial
integrals first, which yield∫

d3x
√
−gF (x) e ip·x = F̃ (p),

∫
d3x′

√
−g′ G(x′) e− ip·x′

= G̃∗(p).

(136)
The remaining time integrals yield∫ ∞

−∞
dt fε(t) e

− i ωp t = f̃ε(−ωp) = e− ε ωp ,

∫ ∞

−∞
dt′ gε′(t

′) e+ i ωp t
′
= g̃ε′(ωp) = e− ε′ ωp .

(137)
Consequently, the smeared two–point function becomes

Wf,g =

∫
d3p

(2π)3 2ωp
F̃ (p) G̃∗(p) e−(ε+ε′)ωp . (138)

If the same spatiotemporal smearing is used on both F and G, then Wf,f reduces
to

Wf,f =

∫
d3p

(2π)3 2ωp

∣∣F̃ (p)∣∣2 e− 2 ε ωp . (139)

In the case of no spatial smearing
(
F (x) = G(x) = δ(3)(x)

)
, one recovers exactly

the factor e− 2 ε ωp that arises from imposing the iε prescription directly on the
time difference. Thus, the Lorentzian temporal smearing allows us to rederive the
exponential damping without the above trick of shifting times into the complex
plane.

Now, test functions are emitted by a mean-field of some other field. Thus, we
need to find a state ρ of a real scalar field ϕ such that we obtain the temporal
smearing

fϵ(t) =
〈
ϕ(t)

〉
ρ

= Tr
[
ρ ϕ(t)

]
=

ϵ

π
(
t2 + ϵ2

) . (140)

For simplicity, we work in 1+1D, set the spatial point x = 0, and take ϕ massless(
ωk = |k|

)
. The coherent state |α⟩ = exp

[∫∞
0
dk
(
αk a

†
k − α∗

k ak
)]

|0⟩ has the

classical expectation value

〈
ϕ(t)

〉
α

=

∫ ∞

0

dk√
4π k

[
αk e

− i k t + α∗
k e

i k t
]
. (141)

To match the iϵ prescription we need

αk =

√
k

π
f̃ϵ(k) =

√
k

π
e−ϵ k . (142)
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Plugging this into the expression for coherent states gives〈
ϕ(t)

〉
α
=

∫ ∞

0

dk
[
e−ϵ k e− i k t + e−ϵ k e i k t

]
=

ϵ

π
(
t2 + ϵ2

) , (143)

which yields the Lorentzian. Hence, the system in the state

ρ = |α⟩⟨α| with αk =

√
k

π
e−ϵ k (144)

generates a test function that yields the iϵ prescription.
Following the same logic applied in 3 + 1 D, it can be shown that a single

coherent state of a massless real scalar can be tuned such that its time-dependent
expectation value at the spatial origin reproduces the Lorentzian test function
that encodes the iϵ-prescription.

We expand the free, massless field at x = 0 in the usual basis:

ϕ(t) ≡ ϕ(t,0) =

∫
d3k

(2π)3/2
√
2 k

[
ak e

− i k t + a†k e
i k t
]
, k ≡ |k|. (145)

Now, we choose a real coherent profile αk = α(k) = α∗(k) and define

|α⟩ = exp
[∫ ∞

0

dkk2 α(k)

∫
dΩk̂

(2π)3/2
(
a†k − ak

)]
|0⟩. (146)

Because ak|α⟩ = α(k)|α⟩, the one–point function at the spatial origin is〈
ϕ(t)

〉
α
=

∫
d3k

(2π)3/2
√
2k

2α(k) cos(kt). (147)

Using d3k = k2 dk dΩ and
∫
dΩ = 4π, this becomes〈

ϕ(t)
〉
α
=

8π

(2π)3/2
√
2

∫ ∞

0

dk k3/2 α(k) cos(kt) =
2√
π

∫ ∞

0

dk k3/2 α(k) cos(kt).

(148)
We wish to obtain the Lorentzian temporal profile〈

ϕ(t)
〉
α
=

ε

π
(
t2 + ε2

) , ε > 0. (149)

This is achieved by choosing

α(k) =
1

2
√
π

e−εk

k3/2
. (150)

Indeed, 〈
ϕ(t)

〉
α
=

2√
π

1

2
√
π

∫ ∞

0

dk e−εk cos(kt) (151)

=
1

π

ε

ε2 + t2
, (152)
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because ∫ ∞

0

dk e−εk cos(kt) =
ε

ε2 + t2
. (153)

Gaussian states can also be used to source test functions. Let ρ be a Gaussian
density operator—for example, the thermal state

ρ = Z−1 exp
[
−β

∫
d3k ωk a

†
kak

]
. (154)

Applying the displacement operator D[α] = exp
[∫

d3k
(
αka

†
k − α∗

kak
)]

with
the same coherent profile

αk =
1

2
√
π

e−ε k

k3/2
, k = |k|, (155)

then, we define the mixed state ρ = D[α]ρGD
†[α]. Because D† akD = ak + αk,

the mean field is shifted, and we obtain〈
ϕ(t,0)

〉
ρ

=
〈
ϕ(t,0)

〉
D[α]|0⟩ =

ε

π (t2 + ε2)
. (156)

The above Lorentzian function does not have a rapid decay; thus, it is not what
we often associate with a test function, such as a Schwartz function. However,
we can achieve this by replacing these Lorentzians with order-n super-Lorentzian
functions

fn,γ(t) =
Cn[

t2 + (γ/2)2
]n , gn′,γ′(t) =

Cn′[
t2 + (γ′/2)2

]n′ , (157)

where

Cn =
Γ(n)

√
π Γ
(
n− 1

2

) (γ
2

)2n−1

, Cn′ =
Γ(n′)

√
π Γ
(
n′ − 1

2

) (γ′

2

)2n′−1

. (158)

Their Fourier transforms (for ω ̸= 0) are given by

f̃n,γ(ω) = e−
γ
2 |ω| Pn−1

(
γ
2 |ω|

)
, g̃n′,γ′(ω) = e−

γ′

2 |ω| Pn′−1

(
γ′

2 |ω|
)
, (159)

where Pm(z) is a finite polynomial of degree m with Pm(0) = 1.
Proceeding exactly as in the original calculation, one finds that the smeared

two-point function becomes

Wf,g =

∫
d3p

(2π)3 2ωp
F̃ (p) G̃∗(p) e−

γ+γ′

2 ωp Pn−1

(
γ
2 ωp

)
Pn′−1

(
γ′

2 ωp

)
, (160)

so the exponential damping that codifies the iε can be seen here. With identical
smearings (n = n′, γ = γ′, F = G), this reduces to

Wf,f =

∫
d3p

(2π)3 2ωp

∣∣F̃ (p)∣∣2 e−γ ωp [Pn−1

(
γ
2 ωp

)]2
. (161)
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For n = 1 (so that P0 ≡ 1, with γ = 2ε), one recovers the factor e−2ε ωp . For
n > 1, the same exponential is multiplied by a finite polynomial of degree 2n− 2
in ωp yielding a stronger ultraviolet cutoff.

In the limit n→ ∞ with
γn =

2σ√
n
, (162)

we obtain the following temporal gaussian,

fn,γn(t) =
Cn[

t2 + (γn/2)2
]n −→ 1√

4π σ2
e− t2/4σ2

(163)

where σ is a temporal variance associated with γ and thus with the cutoff Λ
mentioned above, while the corresponding momentum-space function tends to
exp
(
−σ |ω|2

)
. Thus, a super-Lorentzian not only reproduces the iε prescription

but also allows us to recover in the limit of large n the Schwartz test functions.

F Measurement theory in QFT given SDCs
We will briefly show in this section how this theory fits with measurement theory
in QFT, in particular, particle detector models.99 We will focus on two real
scalar fields A and B, where A is decomposed into modes. We will assume that
the modes of A belong to an SDC and already have the DC −B in agreement
with the determination conditions explained in Section 3.

We will assume that the target system B and its modes are initially in
a zero-mean Gaussian state, as well as A. Gaussian states are completely
characterized by their first and second moments (i.e., mean values and covariance
matrices). Examples of these states include thermal, coherent, and squeezed
states. Furthermore, we assume that the vacuum of the states under study fulfills
the Hadamard condition. As is well known, in QFT, there are many unitary
inequivalent Hilbert space representations. However, the consensus is to select a
subclass of states known as Hadamard states that fulfill the idea that all states
should look similar locally and be as close to flat space QFT as possible.

In the covariant picture, the interaction between system A and system B is
described by the following Lagrangian density,

L =
1

2
(∇µϕA)(∇µϕA) +

1

2
(∇µϕB)(∇µϕB)− λABfϕAϕB (164)

where λAB is the coupling constant with dimensions of energy squared and f is
a dimensionless smooth, real-valued test function with support in some compact
coupling spacetime region R.100 The above Lagrangian omits the systems that
give rise to the background gravitational field.

We adopt the canonical picture in 3+1 globally hyperbolic spacetime, where
we regard a (3 + 1)-dimensional spacetime M as foliated by a family of spacelike

99We will follow closely the calculations and results obtained in [86] with some appropriate
adaptations.
100We thus express the test function for each mode A and B in terms of this function.
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3-dimensional hypersurfaces Σt, labeling the hypersurfaces by a time parameter
t, and assume the following split of the metric,

ds2 = −N2dt2 + hij(dx
i +N idt)(dxj +N jdt), (165)

where hij is the spatial metric, N is the lapse function that describes the amount
of proper time that elapses between two hypersurfaces along the direction normal
to the spatial slice, and N i is the shift vector that describes how the spatial
coordinates change when moving from one hypersurface to another.

So, we have the following evolution,

Û = T exp

(
−i
∫
dtĤint(t)

)
, (166)

where T exp denotes a time-ordered exponential concerning any time parameter
and

Hint(t) = λAB

∫
Σt

d3x
√
hχ(t)F (x)ϕA(t,x)ϕB(t,x). (167)

with λAB being a coupling constant, and χ(t) and F (x) being the temporal and
spatial test functions, respectively, over the spacelike hypersurfaces Σt. Further-
more, they fulfill the no-disturbance conditions jointly with other temporal and
spatial test functions concerning other interactions in this SDC.

Assuming that λAB is sufficiently small we can have the following Dyson
expansion,

Û = 1 + Û (1) + Û (2) +O(λ3), (168)

where
Û (1) = −i

∫
dtĤint(t), (169)

and
Û (2) = −

∫
dtdt′ Ĥint(t)Ĥint(t

′)θ(t− t′), (170)

where θ(t) is the Heaviside theta function.
Now, let us consider the initial state of the systems, where we focus on the

interaction of one of the modes of A, which was previously decomposed into
finite modes,

ρ̂0 = |0A⟩⟨0A| ⊗ ρ̂B . (171)

The interaction between other N modes of A with the DC-B are omitted. We
could also consider A as a series of modes, which we idealize as a simple system,
and which will decohere B. On the other hand, B could be a single mode or
a whole continuum of modes that we choose not to decompose for simplicity.
In Sections 5 and Appendix H, we saw a model in de Sitter spacetime where A
decoheres a single mode of B in a more complex situation.

Taking into account that
ρ̂f = Û ρ̂0Û

†, (172)
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we get that the final states of the fields are represented by

ρ̂f = ρ̂0 + ρ̂(1) + ρ̂(2) +O(λ3), (173)

where
ρ̂(1) = Û (1)ρ̂0 + ρ̂0Û

(1)†,

and ρ̂(2) = Û (2)ρ̂0 + Û (1)ρ̂0Û
(1)† + ρ̂0Û

(2)†.
(174)

More concretely,

ρ̂(2) = λ2AB

∫
dV dV ′

[
M̂(t,x)ϕ̂B(t,x)ρ̂0ϕ̂B(t

′,x′)M̂(t′,x′)

− M̂(t,x)M̂(t′,x′)ϕ̂B(t,x)ϕ̂B(t
′,x′)ρ̂0θ(t− t′)

− ρ̂0M̂(t,x)ϕ̂B(t
′,x′)ϕ̂B(t,x)M̂(t′,x′)θ(t′ − t)

]
.

(175)

with M̂(t,x) = χ(t)F (x)ϕA(t,x).
We will now partial trace the final state over the degrees of freedom of B,

focusing only on A, i.e., ρ̂A = TrB ρ̂f , to see how system A probes the field B.
Since B starts as a zero-mean Gaussian, we have that trB

(
ϕ̂B(t,x)ρ̂B

)
=

⟨ϕ̂(t,x)⟩ρB = 0. Moreover, given that W (x, x′) = ⟨ϕ̂(x)ϕ̂(x′)⟩ρB we have that

trB
(
ρ̂(2)

)
= λ2AB

∫
dt dt′W (x, x′)

[
M̂(t′, x′)|0A⟩⟨0A|M̂(t, x)

− M̂(t, x)M̂(t′, x′)|0A⟩⟨0A|θ(t− t′)

− |0A⟩⟨0A|M̂(t, x)M̂(t′, x′)θ(t′ − t)

]
.

Thus, we have

ρ̂A = |0A⟩⟨0A|+ λ2AB

∫
dV dV ′W (x, x′)

[
M̂(t′,x′)|0A⟩⟨0A|M̂(t,x)

− M̂(t,x)M̂(t′,x′)|0A⟩⟨0A|θ(t− t′)

− |0A⟩⟨0A|M̂(t,x)M̂(t′,x′)θ(t′ − t)

]
+O(λ4).

(176)
As we can see, A’s final state contains information of the values of B through

the correlation function of B. Assuming that the modes of A decohere B (note
that this model does not analyze this process), we infer that it gives rise to
B having determinate values, which the state ρ̂B represents, over a spacetime
region represented via the test functions.

A closer comparison with particle detector models becomes possible if space-
time is static and the metric is such that there is a separation between space and
time. This also allows us to clarify how the systems probe each other. So, in
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this case, the solutions uk(x) decompose as uk(x) = e−iωktΦk(x). Then, writing
ζ(x) = χ(t)F (x)Φk(x), the interaction Hamiltonian becomes

Ĥstatic(x) = λAB

(
ζ(x)e−iωktâk + ζ∗(x)eiωktâ†k

)
ϕ̂B(x). (177)

To obtain the expression of a particle detector evolving in a given “trajectory,”
let us consider x0 as the spatial coordinate that concerns the center of Φk(x).
More concretely, let us consider a particle detector whose center of mass has a
trajectory given by the Fermi normal coordinates z(τ) = (γτ, x0), where τ is the
proper time and γ is the redshift factor relative to t. Then, the proper energy
gap is defined as Ω = γωk, so the effective interaction Hamiltonian becomes

Ĥeff(x) = λAB

(
ζ(x)e−iΩτ âk + ζ∗(x)eiΩτ â†k

)
ϕ̂B(x). (178)

This corresponds to the interaction Hamiltonian of a harmonic oscillator
detector with an energy gap Ω that is interacting with a scalar field ϕ̂(x). By
appropriately balancing the units of F (x), the switching function, and the
coupling strength, one can match this model to the harmonic-oscillator Unruh-
DeWitt detector (UdW) detector model. Note that UdWs are idealized quantum
two-level systems that couple locally to the quantum field, evolving with respect
to their proper time. For “one-particle” excitations in mode k, the Hamiltonian
can be restricted to a two-level system spanned by {|0k⟩, |1k⟩}, reducing to the
leading-order interaction of a two-level detector A with a scalar field.

It can be shown [92] that quantum field theories, which assume the prin-
ciple of microcausality (where observables commute at spacelike-separated
points) will generate time-evolution operators that remain independent of
the specific time parameter used for time ordering. However, in the above
approximation using smeared operators, this is not what happens. To see
this, let us first observe that the algebra of creation and annihilation op-
erators restricted to act on a two-dimensional space is isomorphic to the
ladder operators σ̂+ and σ̂− also acting on such a space. Given that the
monopole moment operator is µ̂(τ) = eiΩτ σ̂+ + e−iΩτ σ̂−, it can be shown that
[Ĥeff (x), Ĥeff (x

′)] = λ2Λ(x)Λ(x′)[µ̂(τ(x)), µ̂(τ(x′))]ϕ̂(x)ϕ̂(x′) for spacelike sep-
arated regions x and x′ due to [µ̂(τ), µ̂(τ ′)] = 2i sin(Ω(τ − τ ′))σ̂z just vanishes
for certain times. However, in cases where covariance violation occurs at the
leading order, this is due to the spatial smearing of the detector. To see this
more intuitively, note that Ĥeff couples non-locally a single quantum degree of
freedom of the detector to multiple spacelike-separated points. Consequently,
the effect is suppressed as the smearing decays with time. Furthermore, when
we have point-like detectors (which arise as a limit of very sharply localized test
functions), we also obtain full covariance in the above sense.

Given this, [92] smeared particle detector models lead to a quantifiable break-
ing of covariance because, in a covariant formalism, the time evolution operator
concerning the same Hamiltonian should yield the same results regardless of the
reference frame used, i.e., Ûτ = Ût. Particle detector models provide a measure-
ment theory for QFT with a series of update rules for different measurements,
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which can be used in this framework. Nevertheless, because the theory presented
here starts fundamentally from quantum fields and particle detectors arise from
it, we consider that this breaking of covariance is merely an emergent feature,
not present in the fundamental theory, and is under control.

Given the above formalism, we can formulate an update rule that takes
into account the state update for the individual observers (or observers with
probes that belong to SDCs) as well as their jointly correlated state. To remain
both fully predictive and causal, these update rules treat in different ways the
observables that can be measured locally and those whose statistics are only
jointly accessible. These update rules were proposed in [91], and are covariant by
construction in the sense of being defined only in terms of the causal structure
of spacetime and in the sense of being frame independent. This was called the
polyperspective formalism, involving polystates.101

In this framework, we introduce an extended Hilbert space

H̃AB := HA ⊕ HB ⊕ (HA ⊗HB), (179)

whose sub-spaces accommodate, respectively, Alice-only, Bob-only, and joint
observables, where the space of physical operators is given by

L(H̃AB)phys := L(HA) ⊕ L(HB) ⊕ L(HA ⊗HB). (180)

The complete quantum state is a polystate

ρ̃AB := ρ̂A ⊕ ρ̂B ⊕ ρ̂AB ∈ L(H̃AB)phys, (181)

where ρ̂A and ρ̂B reproduce all expectation values of individual observables
while ρ̂AB reproduces the joint ones. Furthermore, in this framework, in general
ρ̂A ̸= TrB ρ̂AB and ρ̂B ̸= TrA ρ̂AB. To see this, note that in this framework
because Alice and Bob carry their own proper clocks, the state may depend on
two time parameters:

ρ̃(τA, τB) = ρ̂A(τA) ⊕ ρ̂B(τB) ⊕ ρ̂AB(τA, τB). (182)

Then, the local sectors evolve only due to the physics inside their individual
causal pasts,

ρ̂A(τA) ∝ TrB ΨJ−(xA(τA))

(
ρ̂AB

)
, (183)

ρ̂B(τB) ∝ TrA ΨJ−(xB(τB))

(
ρ̂AB

)
, (184)

where J−(x) is the causal past of x∈M and ΨS : L(HA⊗HB) → L(HA⊗HB)
is a completely positive map that replays every unitary evolution and every
actually realized measurement in the region S ⊂ M. The joint sector must then
take into account the past of both parties,

ρ̂AB(τA, τB) ∝ ΨJ−(xA(τA))∪J−(xB(τB))

(
ρ̂AB

)
. (185)

101These rules aim to deal with the issues presented in [3] concerning the absence of a
relativistic covariant postulate on a Cauchy surface in relativistic quantum mechanics, which
was mentioned in the main text. See the citations above to see how this framework and the
algebraic one deal with it.
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The proportionality factors in Eqs. (183)–(185) are fixed by normalization.
Now, let us consider an example involving a Bell scenario. Suppose the qubits

start in the Bell state |Φ+⟩ = (|↑A↑B⟩+ |↓A↓B⟩)/
√
2 and Alice measures σ̂z,A

at proper time τ∗A, obtaining the outcome +1. The map then reduces to

ΨS(ρ̂) =

ρ̂, xA(τ
∗
A) /∈ S,

|↑A⟩⟨↑A | ρ̂ |↑A⟩⟨↑A |, xA(τ
∗
A) ∈ S,

(186)

where xA
(
τ∗A
)

∈ S means that we have a region S containing Alice’s measure-
ment event. Then, the polystate becomes

ρ̃(τA, τB) =



1

2
IA ⊕ 1

2
IB ⊕ |Φ+⟩⟨Φ+|, τA < τ∗A, τB < τ∗B ,

|↑A⟩⟨↑A | ⊕ 1

2
IB ⊕ |↑A↑B⟩⟨↑A↑B |, τA ≥ τ∗A, τB < τ∗B ,

1

2
IA ⊕ |↑B⟩⟨↑B | ⊕ |↑A↑B⟩⟨↑A↑B |, τA < τ∗A, τB ≥ τ∗B ,

|↑A⟩⟨↑A | ⊕ |↑B⟩⟨↑B | ⊕ |↑A↑B⟩⟨↑A↑B |, τA ≥ τ∗A, τB ≥ τ∗B .

(187)
This construction is valid for whichever outcome and eigenstate is realised. For

instance, if Alice obtained the outcome −1, we would swap ↑ by ↓. If she made a
measurement of σ̂x we would replace ↑, ↓ with +/−. Furthermore, this framework
works for multipartite correlations, and as we can see, it can accommodate the
freedom of choice of the observers. Note that the above quantum states assigned
to systems to predict the outcomes are built exclusively from physical operations
in the causal pasts of observers. Because different observers have different
causal pasts, they may legitimately assign different density operators to the
same underlying physical system. However, the outcomes are absolute and not
perspectival or relational. The observers will agree on the outcomes that arise.
Notice that the assigned states are not foliation-dependent but rather depend
on the past light cone of the local observers. Other frameworks (e.g., [38, 93])
offer other local update rules. In principle, the theory we are proposing also
accommodates these frameworks because they share common tools.

G How SDCs allow us to infer a gravitational
field and give rise to it

In this section, we provide an intuition about how a classical metric may arise via
how probes interact and decohere a quantum field (49). First, it is assumed that
particle detectors interact with the quantum field at specific spacetime points,
giving rise to detection events. By analyzing the probabilities associated with
the detection events, we can extract both the real and imaginary parts of the
Wightman function. Second, as we have mentioned, the scenario below ignores
any backreaction of the probes or the target quantum field on the background
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spacetime. However, it shows how both the field and probes have determinate
values in this interactive process, and how we can associate this with a classical
metric that systems emit or are subjected classically to, which for the theory
that we are advocating, can only arise due to these interactions.

Assuming an interaction between the detector and the field that quickly turns
on and off, represented by a delta coupling, which occurs at two distinct times
τi = t1 and τi = t2, and for timelike separated events, the two-point correlation
function between detectors at points x1 and x2 is expressed through measurable
quantities as:

cos(Ω∆t)ℜ⟨ϕ̂(x1)ϕ̂(x2)⟩+sin(Ω∆t)ℑ⟨ϕ̂(x1)ϕ̂(x2)⟩ = Lii−Pi(x1)−Pi(x2), (188)

where Ω is the energy gap of the detector, ∆t is the time difference between
events, and Pi(x1) and Pi(x2) are the individual detection probabilities at
points x1 and x2, respectively, Lii is the probability that the detectors at two
different spacetime points x1 and x2 fire together due to their interaction with
the quantum field. Assuming point-like detectors again, the correlation function
between detectors i and k that are spacelike separated can be given by the
expression

C(i, k) = 4λ2 sin(Ω(ti + τ0)) sin(Ω(tk + τ0))⟨ϕ̂(xi)ϕ̂(xk)⟩, (189)

where τ0 =
τ0
i +τ

0
k

2 , and the proper time at which each detector interacts is labeled
τi = τ(xi), leading to z(τi) = xi. So, we have a way of inferring the correlators
from the probabilities of the detectors having determinate values. Note that
pointlike interactions are unphysical and this is only an approximation to the
more realistic smeared interaction in spacetime.102103

Now, to obtain the above first- and second-order derivatives of the correlator,
and hence the metric, the key is to place an array of probes throughout space.
This grid allows the measurement of field correlations across multiple points
over time, providing a detailed map of the behavior of the quantum field. More
concretely, in this setup, each detector interacts with the quantum field at
specific spacetime points, which are labeled by multi-indices corresponding to
the coordinates in spacetime. Let us break it down further with an emphasis on
the labeling of detectors and their corresponding spacetime positions. The set of
102We should regard the delta coupling as a mathematical tool that represents very rapid

interactions. This coupling leads to divergences in the models as prior work has investigated
[94, 110, 111]. However, these divergences are restricted to the local terms related to each
individual interaction and have no impact on the correlations between detectors, which are
the primary focus of reconstructing the metric. For instance, if one replaces Dirac deltas
with sharply peaked Gaussians, the results for the detector correlations would remain largely
unchanged. This approach avoids divergences in the system but increases the complexity of
the calculations, which is beyond the scope of this work.
103While a perfect delta-coupling interaction is unrealistic (see previous footnote), it serves

as an approximation for small systems that can interact with the quantum field over times
comparable to the light-crossing time. To model this fast interaction, the delta-coupling
assumption leads to the following spacetime test function: Λi(x) =

δ(x−zi(t1))√
−g

+
δ(x−zi(t2))√

−g
.

Note that the authors also consider temporal smearing.
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detectors is parameterized by j := (j0, j1, ..., jn), where each index corresponds to
the detector’s position in spacetime. The index j0 represents the time coordinate,
whereas the remaining j1, j2, . . . , jn represent the spatial coordinates. In total,
there are Nn detectors, where N is the number of detectors along each spatial
direction, and n is the spatial dimension.

The spacetime location of a detector is denoted by its coordinates xµj =

(x0j0 , x
1
j1
, . . . , xnjn). Each detector interacts with the quantum field at specific

times x0j0 and spatial positions (x1j1 , . . . , x
n
jn
).

Once interactions between the quantum field and detectors occur, the Wight-
man function W (x, x′), which encodes the two-point correlation between space-
time points, can be computed from the detector readings. The derivative of this
function at the positions corresponding to the two detectors labeled j and l is
discretized as

∂

∂xµ
∂

∂x′ν
W

2
2−D (x, x′)

∣∣∣∣
x=xj ,x′=xl

≈ W
2

2−D (xj+1ν , xl+1µ)−W
2

2−D (xj , xl+1µ)

(x
µ+1µ
j − xµj )(x

ν+1ν
l − xνl )

− W
2

2−D (xj+1ν , xl)−W
2

2−D (xj , xl)

(x
µ+1µ
j − xµj )(x

ν+1ν
l − xνl )

.

(190)
Here, the spacetime positions xµi+1µ

and xνl+1ν
refer to the locations of the

detectors separated by a small coordinate distance L in the µ- and ν-directions,
respectively. Parameter L represents the coordinate separation between the
detectors in each direction, including time. This means that the detectors are
spaced at regular intervals in both the spatial and temporal directions, allowing
for a systematic sampling of the quantum field at different spacetime points. The
coordinates of the nearby detectors can then be written as xµi+1µ

= xµi + L1µ.
This arrangement of detectors allows us to approximate the derivative of the

Wightman function, which is required to recover the spacetime metric. Thus,
by measuring the Wightman function at the positions of the detectors, we can
obtain the metric tensor in eq. (49). More concretely, by refining the detector
grid and taking the limit where L→ 0, we can infer the metric via Eq. (49). The
precision of the metric recovery depends on the detector spacing and resolution
of the measurements.

For instance, in the hyperbolic static Friedmann-Lemaître-Robertson-Walker
(FLRW) spacetime example, the metric is expressed in terms of comoving
coordinates. Detectors are placed at spacetime intervals L in the η-direction
(conformal time) and spatial directions such as χ. The Wightman function for
this spacetime was calculated explicitly as follows:

W (x, x′) =
iµ(χ− χ′)H

(2)
1 (µ[(η − η′)2 − (χ− χ′)2])

8πa2 sinh(χ− χ′)[(η − η′)2 − (χ− χ′)2]
, (191)

and its derivatives were used to recover the metric components by employing
a discrete approximation of the Wightman function through detector readings.
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The precision of the recovery of this metric depends on the detector spacing
and resolution of the measurements, where a lower spacing results in a more
accurate recovery.

Finally, it was proposed [85] the following setup to recover the spacetime
metric using local measurements of a quantum field at different spacetime points:
couple local detectors to the target quantum field, measure the correlations
between detectors that are located at different spacetime points, and use these
correlations to calculate the two-point function of the quantum field concern-
ing the different events and determine the spacetime metric by applying the
coincidence limit described in Eq. (49).

Note that it was assumed that the probes were fixed in space and evolved
over time, but this is an idealization. Rather, what we consider that occurs are
interactions with SDCs give rise to values in an extended region of spacetime.
However, systems belonging to SDCs can be approximated as evolving particle
detectors in a fixed spatial region (see Section F).

H Decoherence in a de Sitter spacetime; symmet-
ric and Hadamard states

We will adopt the following Gaussian test function emitted by Vm,

f(t) = N exp

[
− (t− tc)

2

2σ2
t

]
, (192)

obeying the bound in Section 3.2.1, i.e., ωmaxσt ≫ 1, where ωmax is the maximum
energy of the mode involved in these interactions between fields. This test
function arises from a field in a k = 0 coherent state, which is a homogeneous
and isotropic state. Being a homogeneous and isotropic state is relevant because
the system can emit a gravitational field in agreement with the symmetries of
the de Sitter spacetime.

The interaction Hamiltonian that we will analyze will be of the form

Hint(t,x) = O(t,x)σ(t,x), (193)

where σ(t,x) is the operator that acts on the system’s Hilbert space and ϕ(t,x)
acts on the environment Hilbert space. We consider both quadratic Omix =
µ2f(t)ϕ(t,x) and cubic interactions Oc = gf(t)ϕ(t,x)2. Using Open EFT
techniques summarized in Section 5, under the Born approximation, to the
second-order in perturbation theory, this yields the following non-Markovian
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equation that we want to use to infer the behavior of the system at late times,

∂tϱ(t) = − i

∫
d3x a3(t)

[
σ(t,x), ρ(t)

] 〈
⟨O(t,x)

〉
⟩

− (i)2
∫
d3x a3(t)

∫
d3y a3(s)

∫ t

t0

ds
{[
σ(t,x), σ(s,y) ρ(s)

]
W (t,x; s,y)

−
[
σ(t,x) ρ(s), σ(s,y)

]
W ∗(t,x; s,y)

}
+O

(
V 3
int

)
,

(194)
where

W (t,x; s,y) =
〈〈
δO(t,x) δO(s,y)

〉〉
, δO = O − ⟨⟨O⟩⟩, (195)

and ⟨⟨X⟩⟩ = Trenv[X ρenv] is the vacuum expectation value. The first-order
term merely generates unitary evolution under the Hamiltonian of interaction
Veff = ⟨⟨Vint⟩⟩ and therefore cannot produce decoherence. Thus, our attention is
directed to the second-order contribution, which yields the dominant decoherence
effect.

This expression can be simplified into a Lindblad equation depending on how
sharply peaked in time the environmental correlator, which depending on the
Hamiltonian of interaction can be expressed as

⟨⟨δO(t, x) δO(s, y)⟩⟩ = W(t, x; s, y) =

µ
4W (t, x; s, y)

2 g2
[
W (t, x; s, y)

]2
.

(196)

with W (t,x; s,y) =
〈〈
δO(t,x) δO(s,y)

〉〉
.

An alternative to the expression above requires more than simply expanding in
Vint using perturbation theory. What is additionally needed is a clear separation
of scales, or the so-called hierarchy of scales, which allows us to consider that
the bath changes much faster than the system changes (where this change is
related with the decoherence timescale τ), and which allows us to implement
the Markovian approximation. That separation is provided by the ratio of the
Hubble scale (which determines the size of environmental correlations) to the
decoherence timescale τ (which depends on µ≪ H or g ≪ H). If the correlator
⟨⟨δO(t, x) δO(s, y)⟩⟩ decays rapidly for H|t − s| ≫ 1, the evolution for time
intervals exceeding H−1 allows the remainder of the integrand of eq. (194) to be
expanded as a Taylor series around s = t. Successive terms are suppressed given
that (H∂t)

n ≪ 1 when acting on what remains of the integrand. This leads to
an overall contribution diminished by the powers of (Hτ)−1, corresponding to
H−1 ≪ τ . Thus, if the correlators in (196) are sharply peaked, we can expand
them, drop the subdominating terms, neglect the memory effects and treat the
evolution as Markovian [12],

∂tϱ(t) ≈ − i
[
Veff(t), ϱ(t)

]
−
∫
d3x d3y a6(t)κ(t,x,y)

[{
σ(t,x)σ(t,y), ϱ(t)

}
− 2σ(t,y) ϱ(t)σ(t,x)

]
,

(197)
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with
Veff(t) =

∫
d3x a3(t)σ(t,x)

〈
⟨O(t,x)

〉
⟩

+

∫
d3x d3y a6(t)h(t,x,y)σ(t,x)σ(t,y),

(198)

where we have the expression for the Lamb-shift and dissipator kernels,

κ(t,x,y) =
1

2
[C(t,x,y) + C∗(t,y,x)] and h(t,x,y) = − i

2
[C(t,x,y)− C∗(t,y,x)]

(199)
and

C(t,x,y) :=

∫ t

t0

ds ⟨⟨δO(t,x) δO(s,y)⟩⟩, (200)

We consider H−1, τ ≪ σt. Given this and the expansion around s = t, f(s) ≈
f(t), and we also have an approximately constant temporal envelope that we
can treat as a constant.

We will not focus on that, but we can have another simplification if the
correlation function as a function of position also decreases sufficiently quickly
as a function of position. If the falloff is sufficiently steep, the spatial integrals
are well-approximated by expanding any fields evaluated at position y in powers
of |y − x| and the leading-order evolution equation becomes local in space. In a
sense, besides Markovianity (or a notion of “temporal locality”), “spatial locality”
can also arise upon decoherence in this picture.

We now express the equation (197) in the k-space.104 First, note that
translation invariance leads to the following expression for the field operator

ϕ(t,x) =

∫
d3k

(2π)3/2
[
vk(t) ck + v∗k(t) c

∗
−k

]
eik·x , (201)

and similarly for σ(t,x) in terms of ak, a∗−k and the mode functions uk(t). As
usual, the ladder operators satisfy

[ap, a
†
q] = δ3(p− q) and [cp, c

†
q] = δ3(p− q). (202)

104We should distinguish between the comoving wavelength and momentum, where the
comoving momentum is k = |k| and the corresponding comoving wavelength is λcom = 2π

k
, from

the physical wavelength and momentum, which are time-dependent: λphys(t) = 2π
p(t)

=
2π a(t)

k
,

with p(t) = k
a(t)

. The comoving momentum k is most convenient for solving the field equations
on an expanding background because each Fourier mode decouples and k remains constant in
time. The physical momentum p(t), on the other hand, redshifts with the expansion and is
what we compare to physical scales such as the Hubble radius. Hubble crossing occurs when
the physical wavelength equals the Hubble radius at the Hubble crossing time t∗ (see also the
main text below), i.e., λphys(t∗) = 1

H
⇐⇒ 2π a(t∗)

k
= 1

H
⇐⇒ k = 2π a(t∗)H . Equivalently, in

terms of physical momentum, this crossing condition is: p(t∗) = k
a(t∗)

= 2πH.
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Now, we have

∂tϱ(t) = −i
[
Veff(t), ϱ(t)

]
− a6(t)

∫
d3kκk(t)

[
{σk(t)σ−k(t), ϱ(t)}

− σk(t)ϱ(t)σ−k(t)− σ−k(t)ϱ(t)σk(t)

]
(203)

with
σk(t) = σ∗

−k(t) = uk(t) ak + u∗k(t) a
†
−k, (204)

κk(t) =

∫ t

t0

ds ℜ
[
Wk(t, s)

]
, (205)

with

Veff(t) = (2π)3/2a3(t) ⟨⟨O(t,x)
〉
⟩σk=0(t)+

∫
d3k a6(t)hk(t)σk(t)σ−k(t) , (206)

and

hk(t) =

∫ t

t0

ds ℑ
[
Wk(t, s)

]
. (207)

Having the right-hand sides of (206) and (198) be quadratic in σk ensures that
there is no mode mixing, so that the state for each momentum mode k remains
uncorrelated as time evolves, provided that this was true of the initial conditions.
In particular, if one starts with ϱ(t0) =

⊗
k ϱk(t0), then the factorized form is

preserved, ϱ(t) =
⊗

k ϱk(t), and thus (197) can be written as a separate evolution
equation for each mode’s density matrix:

∂tϱk(t) = −i
[
Veff(t), ϱk(t)

]
− a6(t)κk(t)

[
{σk(t)σ−k(t), ϱk(t)}

− σk(t)ϱk(t)σ−k(t)− σ−k(t)ϱk(t)σk(t)

]
.

(208)
A consequence of (203) and (204), which is quadratic in σk is that if the

system starts as a Gaussian, it remains a Gaussian. Thus, we can solve the
evolution of (208) through the following Gaussian ansatz written in the field
amplitude basis {|σ⟩, |σ̃⟩},

⟨σ|ϱk(t)|σ̃⟩ = Zk(t) exp
[
−Ak(t)σ

∗σ−A∗
k(t) σ̃

∗σ̃+Bk(t)σσ̃+B
∗
k(t)σ

∗σ̃∗], (209)

with the following evolution that is equivalent to the evolution in eq. (208),

∂tAk = − i

a3
(
A2

k − |Bk|2
)
+ a3

[
i
(
m2 + k2

a2

)
+ a3hk

]
+ a6 κk(t),

∂tBk = − i

a3
(
Ak −A∗

k

)
B∗

k + a6 κk(t),

(210)
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where Ak(t0) = Ak0 and Bk(t0) = Bk0 with Ak0 + A∗
k0 = 1

|uk|2 and Bk0 = 0,
whose exact solution yields the expression for purity at late times,

γk(t) := Tr
[
ρ2k(t)

]
=

∫
dσ dσ∗ ⟨σ | ρ2k(t) |σ⟩ =

1−Rk

1 +Rk
, Rk :=

Bk + B∗
k

Ak +A∗
k

.

(211)
The evolution of purity at late times is given by

∂tγk = 2
(Bk +B∗

k) ∂t(Ak +A∗
k)− (Ak +A∗

k) ∂t(Bk +B∗
k)

(Ak +A∗
k +Bk +B∗

k)
2

= − 4 a6 κk γk
Ak +A∗

k +Bk +B∗
k

.

(212)

Through the above equations, it can be shown [12] that at late times (−kη ≪ 1
or in cosmic time, t ≫ t∗ + 1

H with t∗ being the Hubble crossing time with
t∗ = 1

H ln( k
2πH )), given the system initially in a Bunch-Davies vacuum, the purity

becomes minimal, and the system decoheres. Furthermore, upon decoherence,
we get that ϱk becomes a mixture of field amplitude states whose diagonal terms
are given by,

⟨σ|ϱk|σ⟩ = Zk exp[−(Ak(t) +A∗
k(t)−Bk(t)−B∗

k(t))|σ|2], (213)

with |σ⟩ being the field amplitude basis, and where properly normalized, we have

ϱk =
1

π

∫
C
d2σ

(
Ak(t) +A∗

k(t)−Bk(t)−B∗
k(t)

)
× exp

[
−
(
Ak(t) +A∗

k(t)−Bk(t)−B∗
k(t)

)
|σ|2

]
|σ⟩⟨σ|.

(214)

Note that Ak +A∗
k −Bk −B∗

k is a fixed point of the late-time evolution, which
is obtained by solving equations (210), and yields a finite value. This leads
to a stochastic process that probabilistically selects one of the terms of this
mixture.105

We can use the above state to calculate the purity at late times for diverse
fields. For example, we end up with the following expression for the purity of
the target field for the case of a massless environment,

γk(η) ≃

[
1 +

g2

32π2H2νsys

∣∣ 2νsysΓ(νsys)∣∣2 (−kη)−2νsys

]−1

. (215)

We will now show that the state ϱ(t) for the entire system under analysis
is homogeneous and isotropic. First, the state of the modes below a certain
cutoff, as we have seen above, is the initial state of the entire system under
analysis, and is the Bunch-Davies state, and it is a homogeneous and isotropic
state. We will not consider the states above the UV cutoff. Now, let us analyze
105As we have discussed, notice that when we have decoherence, we have approximately

Markovian dynamics.
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the homogeneity and isotropy of states that involve the state (214) where for
this state, αk(t) = Ak(t) +A∗

k(t)−Bk(t)−B∗
k(t) is a positive real function that

depends only on the magnitude k = |k|. The field–amplitude operator has as an
eigenvector the field amplitude state |σ⟩k,

σk(t) |σ⟩k = σ |σ⟩k, (216)

which obeys the resolution of the identity∫
C

d2σ

π
|σ⟩k⟨σ| = Ik. (217)

To check translation invariance, let T (a) = e−ia·P. It acts on the ladder
operators as

T (a) ak T
†(a) = e−ik·a ak, T (a) a†k T

†(a) = e+ik·a a†k, (218)

Similarly, in the case of −k, and hence on the field amplitude operator

T (a)σk(t)T
†(a) = e−ik·a uk ak + e+ik·a u∗k a

†
−k. (219)

Acting with T (a) on ϱk(t) amounts to replacing each projector |σ⟩⟨σ| by∣∣e−ik·aσ〉〈e−ik·aσ∣∣. Changing variables σ′ = e−ik·aσ, with |σ′| = |σ| and unit
Jacobian, shows that

T (a) ϱk(t)T
†(a) = ϱk(t), (220)

for every a. Thus the full state satisfies

T (a) ϱ T †(a) = ϱ, (221)

which shows that this state is homogeneous.
To check rotation invariance, let R(Λ) implement k 7→ Λk. Then

R(Λ)σk(t)R
†(Λ) = σΛk(t), (222)

and acting on each mode’s density operator gives

R(Λ) ϱk(t)R
†(Λ) =

αk
π

∫
d2σ e−αk|σ|

2

|σ⟩Λk⟨σ|Λk. (223)

Relabeling k′ = Λk, doing something similar for the case of −k, and noticing
that this Gaussian state depends only on k = |k| we have that

R(Λ) ϱR†(Λ) = ϱ ∀ Λ ∈ SO(3), (224)

Hence, the state ϱ(t) is isotropic, and the state ϱ(t) is both homogeneous and
isotropic.

We want the interaction between systems, some of which belong to SDCs, to
give rise to them emitting a gravitational field. This interaction is modeled via
decoherence. A key step is to see if the state,

⟨σk(η)|ρ̂k(η)|σ̃k⟩ = Zk(η) exp
[
−Ak(η)|σk|2 −A∗

k(η)|σ̃k|2 +Bk(η)σkσ̃k +B∗
k(η)σ

∗
kσ̃

∗
k

]
(225)
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upon decoherence at late times is Hadamard, where Zk(η) =
Ck(η)
π , Ck(η) =

Ak + A∗
k − Bk − B∗

k, together with its complement valid at higher k. This is
because, to have a renormalizable expectation value of the stress energy tensor
of a system in the state ρ (which can emit a gravitational field), the state of the
system should be Hadamard or at least differ from a Hadamard state by a C4

function at increasingly lower distances. The above state ρ was derived under
the assumption of an approximate Markovian evolution at late times.

To make this analysis, let us consider the adjoint master equation ([12],
Appendix D) for a system operator O at super-Horizon scales, which is related
to Eq. (203),

∂t⟨O⟩(t) = i
〈
[H0(t) + Veff(t),O]

〉
(t)− a6(t)

∫
d3kκk(t)

〈
[σk, [σ−k,O]]

〉
(t),

(226)
where H0 is the free quadratic Hamiltonian of the system, Veff is a renormalized
quadratic potential generated by the environment, σk is the system field operator
in Fourier space, and κk is the noise kernel.

Given the covariance matrix of a single Fourier mode k,

Σk(t, s) :=
1

2

〈
zk(t) z

T
−k(s) + z−k(s) z

T
k (t)

〉
− ⟨zk(t)⟩ ⟨z−k(s)⟩T, (227)

and the phase–space vectors,

zk(t) :=

(
ϕk(t)
πk(t)

)
, πk(t) = a3(t) ϕ̇k(t), (228)

from (226), the transport equation for Σk can be derived,

∂tΣk(t, s) = ΩHk(t) Σk(t, s)− Σk(t, s)H
T
k (s)Ω +Dk(t) δ(t− s), (229)

where Hk(t) is the 2×2 Hamiltonian matrix of the homogeneous system evolution,
Dk is the diffusion matrix, and with the symplectic matrix

Ω =

(
0 1
−1 0

)
. (230)

Equation (229) is solved in terms of the retarded Green matrix Gk of the
homogeneous evolution,

Σk(t, t) = Gk(t, t0) Σk(t0, t0)G
T
k (t, t0) +

∫ t

t0

dt′Gk(t, t
′)Dk(t

′)GT
k (t, t

′), (231)

where

Dk(t) =

(
0 0

0 a6(t)κk(t)

)
, κk(t) =

∫ t

t0

dsReW env
k (t, s), (232)

where we add a superscript to the correlator to emphasize that it concerns one
with the states of the environment. Equivalently, in conformal time η we have

κk(η) =

∫ η

η0

dη′ a(η′)ReW env
k (η, η′). (233)
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The Green’s matrix is expressed in terms of normalized mode functions uk and
πk(t) as

Gk(t, t
′) = 2

(
Im
[
uk(t)π

∗
k(t

′)
]

− Im
[
uk(t)u

∗
k(t

′)
]

Im
[
πk(t)π

∗
k(t

′)
]

− Im
[
πk(t)u

∗
k(t

′)
]) , (234)

and in particular

G12(t, t
′) = −2 Im

[
uk(t)u

∗
k(t

′)
]
= i(uk(t)u

∗
k(t

′)− u∗k(t)uk(t
′)) . (235)

The field two–point function at equal times is the (1, 1) entry of the covariant
matrix,

Wk(t) := ⟨ϕk(t)ϕ−k(t)⟩ =
[
Σk(t)

]
11
. (236)

Using (231)–(234), one obtains the equal–time decomposition

Wk(t) = |uk(t)|2 +∆Wk(t), ∆Wk(t) =

∫ t

t0

dt′ a6(t′)κk(t
′) [G12(t, t

′)]2.

(237)
A commonly used test to determine whether a state is Hadamard involves cal-

culating the unequal time correlation function and comparing the two-point corre-
lation function of the state under analysis with the two-point correlation function
of another Hadamard state (such as the Bunch–Davies vacuum), and determining
whether their difference (i.e., Wψ(t, x; t, x

′)−WBD(t, x; t, x
′)) yields a smooth

function when x→ x′ and t→ t′. However, a Hadamard test that is more conve-
nient to implement in our case rather compares Wψ(t, x; t, x

′)−WBD(t, x; t, x
′) at

a single t. But, to implement this test we should also compare ∂t
(
Wψ(t, x; t

′, x′)−
WBD(t, x; t

′, x′)
)
t=t′

and ∂t∂t′
(
Wψ(t, x; t

′, x′) − WBD(t, x; t
′, x′)

)
t=t′

at some
given time slice, and evaluate whether they are smooth. If this is the case, a
quasi–free state |ψ⟩ is Hadamard since Wψ(t, x; t, x

′)−WBD(t, x; t, x
′) satisfies

the equation of motion in both (t, x) and (t′, x′). This feature is because smooth
initial data for the equation of motion imply a smooth solution.106

|uk(t)|2 already concerns the two-point function of the Bunch-Davies vacuum,
which we aimed to subtract to evaluate whether the state is Hadamard. Thus,
we need to show that ∆Wk(η) in the position space is a C∞ at low distances,
and adopting a strategy explained above for the linear and cubic coupling, which
corresponds to the different ways the two-point function can evolve considered
in this paper. Since ρ concerns super-Horizon scales, we will focus on the case
where |kη| ≪ 1 first.

To evaluate whether ∆Wk(η) is smooth at lower distances, let us then find
the expressions for G12 and κk at super-Horizon scales. Given these expressions,
we will evaluate whether ∆Wk(η) and its derivatives in order of r are bounded
106A slight subtlety here is that in a general spacetime, the singular behavior of equal–time

correlation functions of Hadamard states does depend on the geometry in a neighborhood of
such an equal–time surface (for instance via time derivatives of the metric), and for this reason,
checking that a state is Hadamard from its equal–time correlation functions is not always
convenient. However, if we already know the correlation functions of a reference Hadamard
state (as we do), this subtlety is already taken care of.
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by smooth functions to verify the smoothness of ∆Wk(η) at lower distances
r. We will also want to do the same to the following temporal derivatives of
∆Wk(η),

∂η∆Wk(η) = 2

∫ η

η0

dη′′ a7(η′′)κk(η
′′)G12(η, η

′′) ∂ηG12(η, η
′′). (238)

∂η′∂η∆Wk(η, η
′)
∣∣∣
η′=η

=

∫ η

η0

dη′′ a7(η′′)κk(η
′′)
[
∂ηG12(η, η

′′)
] [
∂η′G12(η

′, η′′)
]
η′=η

.

(239)
The mode function for a free scalar in de Sitter spacetime is uk(η) =

√
π
2 H

ei(ν+
1
2 )π/2 (−η)3/2H(1)

ν (−kη) where ν ≡
√

9
4 − m2

H2 − 12(ξ − 1
6 ), H is the Hubble

constant, m is the mass, and ξ is the curvature coupling. The parameter ν
may correspond to either the system or the environment. On the super–horizon
scales, given z = −kη with |z| ≪ 1, the expansion of the Hankel function for the
system s yields

H(1)
νs (z) = As z

−νs
(
1 + a1z

2 +O(z4)
)
+Bs z

νs
(
1 + b1z

2 +O(z4)
)
, (240)

with coefficients
As = − i

π
2νs Γ(νs),

Bs =
1 + i cot(πνs)

Γ(νs + 1)
2−νs .

(241)

and with a1 = − 1
4(1−νs) and b1 = − 1

4(νs+1) and we keep the first and second-order
terms of the expansion above.

Hence the system’s mode functions can be approximated as

uk(η) = Cs|η|3/2
[
Asz

−νs+Bsz
νs
]
+ Cs|η|3/2O

(
z−νs+2, zνs+2

)
, Cs =

√
π

2
H ei(νs+

1
2 )π/2.

(242)
Moreover, given (235),

G12(η, η
′) = −2ℑ

[
uk(η)u

∗
k(η

′)
]
,

∂ηG12(η, η
′) = −2ℑ

[
u′k(η)u

∗
k(η

′)
]
,

∂η∂η′G12(η, η
′) = −2ℑ

[
u′k(η)u

′∗
k (η

′)
]
.

(243)

Differentiating (242) and using z = −kη with dz/dη = −k gives

u′k(η) = Cs
3

2
|η|1/2

[
Asz

−νs +Bsz
νs
]
+ Cs|η|3/2(−k)

[
As(−νs)z−νs−1 +Bs(νs)z

νs−1
]

+ Cs|η|3/2O
(
z−νs+1, zνs+1

)
(−k),

(244)
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Thus, by differentiating the mode functions, and using (243) it can be seen that

G12(η, η
′) = Csys(η, η′) +O

(
(kη)2, (kη′)2

)
,

∂ηG12(η, η
′) = C(1)

sys(η, η
′) +O

(
(kη)2, (kη′)2

)
,

∂η∂η′G12(η, η
′) = C(2)

sys(η, η
′) +O

(
(kη)2, (kη′)2

)
.

(245)

for some smooth functions Csys(η, η′), C(1)
sys(η, η′), and C(2)

sys(η, η′). Thus,

|G12(η, η
′)| ≤ Csys(η, η′), (246)

is bounded by a k-independent function, and similarly for its derivatives.
Let us turn to κk. For the linear coupling O(χ) = µ2χ [12],

W env
k (η, η′) = uenvk (η)uenv ∗

k (η′) =
πH2

4
(ηη′)3/2H(1)

νenv(−kη)
[
H(1)
νenv(−kη

′)
]∗
.

(247)
Writing α := ℜνenv, for α > 0, we obtain

ReW env
k (η, η′) = C(νenv)H

2 k−2α |η| 32−α |η′| 32−α +O
(
k−2α+2

)
(248)

with a(η′) = −1/(Hη′) and where C(νenv) is a function that depends on νenv,
which leads to

κlink (η) =

∫ η

η0

dη′ a(η′)ReW env
k (η, η′)

= C(νenv)H k−2α |η| 32−α
∫ η

η0

dη′ |η′| 12−α +O
(
k−2α+2

)
, (249)

and where the η′–integral is

∫ η

η0

dη′ |η′| 12−α =


|η| 32−α − |η0|

3
2−α

3
2 − α

, α ̸= 3
2 ,

log
(
|η|/|η0|

)
, α = 3

2 .

(250)

Hence, for |kη| ≪ 1 and α > 0,

|κlink (η)| ≤ C lin(η) k−2α. (251)

For α = 0, we have νenv = iµ, and we obtain

κlink (η) =

∫ η

η0

a(η′)ℜW env
k (η, η′) dη′ = H |η|3/2

∫ η

η0

|η′|1/2 B(ln(kη), ln(kη′)) dη′+O(k2).

(252)
Here B(·, ·) denotes a bounded oscillatory function. So, for νenv = iµ∣∣κlink (η)

∣∣ ≤ C lin(η). (253)
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For the cubic coupling O(χ) = g χ2,107

W env
k (η, η′) = 2g2

∫
d3p

(2π)3
W env

|k−p|(η, η
′)W env

p (η, η′). (254)

Given the asymptotic form of the Hankel function for |kη| ≪ 1,108 considering
the dominant term, and Rescaling p = kq isolates the k scaling inside W env

|k−p|
for α > 0: ∫

d3p

(2π)3
1

p2α|k− p|2α
= k3−4α

∫
d3q

(2π)3
1

q2α|1̂− q|2α
, (255)

which is finite for 3
4 < α < 3

2 , IR divergent at α = 3
2 , which can be regularized,

and UV–divergent for α = 3
4 , which can be renormalized. Given also the

equations above,109 we obtain the following dependence

∣∣∣∆Wk(η)
∣∣∣ ≲



C lin
∗ (η)×

{
k−2α, µ = 0, α > 0,

1, α = 0, µ > 0,

Ccub
∗ (η)×



k 3−4α, µ = 0, 0 < α < 3
2 , α ̸= 3

4 ,∣∣ ln(k2/µ̄2)
∣∣, µ = 0, α = 3

4 ,

k−3
[
1 +

∣∣ ln(Λ/k)∣∣] , µ = 0, α = 3
2 ,

k3, α = 0, µ > 0,

(256)
where Λ is a cutoff and µ̄ is the renormalization scale.

We will now prove that ∆Wk in the position space and its first and second
η-derivatives are smooth as r → 0. Let r := x − x′, at fixed η, we have the
following Fourier transform of the IR part of the correlation function,

∆W (η;x, x′) =

∫
|k|≤K∗

d3k

(2π)3
eik·r∆Wk(η), (|kη| ≪ 1). (257)

As we will see below, the complementary UV piece of this integral is the two-point
function concerning the Bunch-Davies vacuum, which does not pose problems.
To prove that ∆W (η;x, x′) and its first and second η-derivatives are C∞ in r, it
suffices to justify that for every index β ∈ N, the integral

∂βr∆W (η;x, x′) =

∫
|k|≤K∗

d3k

(2π)3
eik·r (ik)β ∆Wk(η), (258)

107See eq. (A.17) in [12].
108The asymptotic forms of the Hankel function are given for small z by H

(1)
ν (z) ≃(

z
2

)−ν
[
− iΓ(ν)

π
+O(z2)

]
+

(
z
2

)ν [
1+i cot(πν)

Γ(ν+1)
+O(z2)

]
, where z = kη (eq. C.12 in [12]).

109And the mathematical identity:∫
ddp

(2π)d
(p2)−α[(k− p)2]−β =

(k2)
d
2
−α−β

(4π)d/2

Γ
(

d
2
− α

)
Γ
(

d
2
− β

)
Γ
(
α+ β − d

2

)
Γ(α)Γ(β)Γ(d− α− β)

.
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is absolutely convergent. Furthermore, we want to evaluate the case where r → 0,
and thus

lim
r→0

∫
|k|≤K∗

d3k

(2π)3
eik·r (ik)β ∆Wk(η) =

∫
|k|≤K∗

d3k

(2π)3
(ik)β ∆Wk(η). (259)

Thus a sufficient condition for (258) as r → 0 is∫
|k|≤K∗

d3k |k||β|
∣∣∆Wk(η)

∣∣ <∞ for all β ∈ N. (260)

Given the spherical coordinates and (256), (260) reduces to

4π

∫ K∗

0

k2+mB(k) dk <∞, m := |β|, (261)

where B(k) denotes the scalings that bound |∆Wk(η)| derived above. We now
evaluate (261).

In the case of the linear coupling, from (256) we have that the integrands are
k2+m−2α or k2+m. In the µ = 0, α > 0, the integral

∫K∗
0

k2+m−2α dk converges
iff

2 +m− 2α > −1 ⇐⇒ α <
3 +m

2
. (262)

For α = 0, µ > 0 the integral is obviously finite: 4πC lin
∗ (η)K3+m

∗ /(3 +m).
In the case of the cubic coupling, from (256) we have that multiplying by

k2+m gives:

(i) k5+m−4α is integrable iff 5 +m− 4α > −1, i.e. α <
6 +m

4
;

(ii) k2+m
∣∣ln(k2/µ̄2

)∣∣ is integrable for every m ≥ 0;

(iii) km−1
[
1 +

∣∣ln(Λ/k)∣∣] diverges for m = 0 and is finite for m ≥ 1;

(iv) k5+m is integrable for all m ≥ 0.

Therefore (261) holds for all m in every cubic case except α = 3
2 , where it already

fails at m = 0. However, this case already has IR pathologies that could be
solved via regularization.

Thus, under the above conditions ∆W (η;x, x′) is C∞ in r as r → 0. The
same argument applies to ∂η∆Wk(η) and ∂η∂η′∆Wk(η, η

′)
∣∣
η′=η

because their
super–horizon k–scalings coincide with that of ∆Wk. Therefore ∂η∆W (η;x, x′)
and ∂η∂η′∆W (η, η′;x, x′)

∣∣
η′=η

are also C∞ in r.
Given the super-Horizon scales, the Gaussian state above concerns kphys

up until kphys ≤ K⋆/a(η⋆) where η⋆ is some late time. Regarding the case
where kphys > K⋆/a(η⋆) (i.e., the UV tail that goes up until a cutoff that we
choose to omit), this concerns the sub-Horizon scales with at least approximately
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ρBD
UV = |ΩBD⟩⟨ΩBD|. Thus, at least approximately we will consider that the

overall state,
ρ(t) ≈ ρIR(t)⊗ ρBD

UV(t) (263)

is one whose UV tail coincides with the Bunch-Davies vacuum (which has the
singularity structure that characterizes a Hadamard state), with TrUV ρ(t) =
ρIR(t),TrIR ρ(t) = ρBD

UV(t), and the different modes in the ρIR(t) are equal to
the state in (214), which should then be represented as continuum of modes.
Therefore, the Gaussian state (225) and its complement valid at the UV scale,
form a state ρ(t) that is a Hadamard state.

I Accounting for the universe’s accelerated ex-
pansion and inflation simultaneously via a time-
varying dark energy

We will now present briefly a toy model to explain how this theory may account
for the accelerated expansion of the universe and inflation simultaneously via a
time-varying dark energy. The goal is to provide further arguments in favor of
this theory, and our derivation of the cosmological constant with its time-varying
features and dependence on the four-volume of the universe in a past light
cone.110

Consider the following FLRW metric,

ds2 = −c2dt2 + a2(t)

[
dr2

1− kr2
+ r2

(
dθ2 + sin2 θ dϕ2

)]
, (264)

where t is the cosmic time, a(t) is the scale factor, k is the spatial curvature
constant, where k = 0 (flat), k = +1 (closed), k = −1 (open). (r, θ, ϕ) are the
comoving spatial coordinates.

According to this theory, we can assume that at t = 0, no quantum systems
that belong to SDCs interacted, and because the gravitational field arises from
these interactions, the FLRW metric is not applicable. Since there are no
interactions and we are modeling the whole universe, no metric except the flat
metric is applicable,

ds2 = −c2dt2 + dx2 + dy2 + dz2, (265)

or more realistically a small perturbation around it as we will see.
For simplicity, we can assume that at t = 0, we have only a target real

scalar field ϕ1 and a set of probes that have the DC concerning ϕ1 (DC-ϕ1).
Additionally, since interactions need to be localized by some other field, we can
assume that at t=0 we have a system that is in a state that emits a test function to
110We will be assuming that the dark energy-like effects of Λ still hold in the early universe

given by the equation (76), and that most systems with determinate values in the early universe
are in a coherent state so that we can implement the assumptions in Section 7 to estimate ∆Λ.
More on this at the end of this section.
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the interactions between ϕ1 and the other probes, and emits a gravitational that
is extremely weak while in that state. Such a gravitational field generates only a
small perturbation around the Minkowski spacetime. At this point, we have at
least two options. One of them assumes the cosmological constant as a brute
fact still arising from SDCs. Once the systems start interacting, the cosmological
constant kicks in as well (sourced by these systems), and the description of
this scenario would be given via the Einstein Field Equations effectively or the
semiclassical equations in agreement with the standard cosmological models.
One of the issues with this option is that we would also need to assume the
inflaton field or some other field that explains the accelerated early expansion of
the universe, and the usual inflationary story has issues.111

A second option does not require postulating an additional field to explain
the expansion of the universe. It rather postulates a time-varying cosmological
constant, as explained in Section 7. We will focus on this option, which is as
follows: once we have the first interaction between the ϕ1 and the probes, a
small four-volume will arise. Given that, in Planck units and given Λ := ∆Λ,

Λ ∼ 1

∆V
, (266)

we will obtain a high value of the cosmological constant, and therefore, a
rapid expansion of the universe. We suppose that when ϕ1, or its mode, in a
homogeneous and isotropic state has a determinate energy-momentum tensor, it
gives rise to a perfect fluid that leads to the FLRW metric (see Sections 5 and
Appendix H), possibly together with the probes. Then, we can run the story
presented in Sections 5 and 7 by assuming some initial systems that have the
DC concerning some other systems.

Note that posing such special initial conditions at the beginning of the
universe that we have postulated above is common in cosmology. However, we
think that we may end up, under a more realistic and detailed model, having
an advantage compared with these other theories because we do not have to
postulate dark energy as a primitive or the inflaton field. So, the prospects of
this proposal are positive in terms of in the future providing similar benefits to
inflation without its issues. To understand why we think this is the case, let us
consider the two main problems that inflation claims to solve: the flatness and
horizon problems.

The flatness problem arises from the observation that the current universe
appears very close to being spatially flat (i.e., having zero curvature). Consider
the Friedmann equation that governs the expansion of the universe, which can be
derived from the FLRW metric and the Einstein Field Equations with a perfect
fluid as a source:

H2 =
( ȧ(t)
a(t)

)2
=

8πG

3
(ρM + ρR)−

κc2

a(t)2
(267)

111Another option is that de Sitter spacetime is the default geometry of spacetime and is not
sourced by any systems. See Section 4.3.
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where H is the Hubble parameter, which measures the expansion rate of the
universe. The terms ρM and ρR represent the energy densities of the matter
and radiation, respectively. The parameter κ represents the curvature of the
universe, with κ = 0 for a flat universe, κ > 0 for a closed universe, and κ < 0 for
an open universe. The scale factor, a, roughly describes the size of the universe
at a given time.

The curvature term −κc2/a(t)2 falls off as a−2, while the energy densities
of matter and radiation decay more rapidly with the scale factor. Specifically,
ρM ∝ a−3 for matter and ρR ∝ a−4 for radiation. This seems to imply that as
the universe expands and the scale factor a increases, the relative contribution
of the curvature term becomes increasingly dominant over the energy densities
of matter and radiation. Thus, the fact that we observe the universe to be so
close to flat today suggests that the universe must have been very finely tuned
to be near flat in the early universe. This is because any small deviation from
flatness would have grown over time, making the universe today either highly
curved or very open.

The horizon problem is roughly the following: if we observe two widely
separated parts of the Cosmic Microwave Background (CMB), we will see
that we have distinct patches of the CMB that were causally disconnected at
recombination (i.e., the period when protons and electrons combined to become
atoms of hydrogen). However, we observe with high precision that they have
a similar temperature. The problem is to explain how they have the same
temperature if they were never in causal contact.

Now, let us turn to the Friedmann equation with the cosmological constant,(
ȧ(t)

a(t)

)2

=
8πG

3
ρmatter/radiation − κc2

a(t)2
+

Λc2

3
, (268)

Let us consider that in the beginning of the universe, Λ ≫ 1 because of the
small four-volume, and that we can treat Λ approximately as a constant in this
short period, and so this model is effective. In the early universe, due to its
small volume and the (determinate) energy density of matter/radiation being
low (because not many systems with determinate values are arising), it is thus
plausible that

Λc2

3
≫ 8πG

3
ρ, κc2. (269)

Then, we obtain that

a(t) ≈ Ae

√
Λc2

3 t. (270)

where A is a constant of integration.112
This exponential expansion is similar to the exponential expansion predicted

by inflation. This expansion, in principle, will allow this theory to address the
horizon problem. The explanation is as follows: before the onset of inflation,
the universe was much smaller and denser. During this phase, the entire region
112Note that the scale factor can be very small in the early universe, but the cosmological

constant can be arbitrarily very large in such a way that it compensates for that.
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that would later become the observable universe was contained within a single
causally connected patch. This implies that any two points within this region
could influence each other and reach thermal equilibrium. Exponential expansion
stretched these regions beyond the current particle horizon. The particle horizon
is the maximum distance from which particles can travel to an observer in the age
of the universe. This means that regions that were once close enough to interact
and equilibrate went far apart, beyond each other’s ability to communicate. In
the case of this theory, this exponential expansion is due to the SDCs.

We now turn to a sketch of the potential resolution of the flatness problem.
To see how this theory might be able to deal with this problem, let us rewrite
the Friedmann equation in the way below,

Ωtotal − 1 =
kc2

a(t)2H2
(271)

where Ω(t) = ρ(t)
ρcrit(t)

with ρcrit(t) being the critical density defined as 3m̃2
PH

2(t),
and we consider ρ to include the dark energy density. When the actual and
critical densities are equal, the geometry of the universe is flat. Thus, we consider
that Ω = Ωradiation +Ωmatter +ΩΛ (note that following the standard approach,
we are including dark energy as part of the energy density of the universe).
As we can see, in order for the universe to be flat (k = 0), Ωtotal = 1. Since

a(t) ≈ e

√
Λc2

3 t, with enough e-folds, the early Friedmann universe, in principle,
can become flat regardless of the initial densities of matter/energy.

Another problem that we will not go into deeply here, which inflation ad-
dresses, is the following: inflation is typically considered to have been driven by a
scalar field ϕ which is the inflaton. It is hypothesized that the zero-point fluctua-
tions of the quantized inflaton scalar field in some regions (i.e., fluctuations of the
field in the vacuum state) and the associated energy-momentum fluctuations and
gravitational field, amplified by the rapid expansion of inflation, attracted more
matter than in other regions. Then, it is hypothesized that this phenomenon gave
rise to the unevenly distributed cosmic structure in our universe (e.g., galaxies,
galaxy clusters, etc.) [67]. This explanation can, in principle, also be given via
the above picture if we take into account that SDCs involve quantum fields that
are subject to quantum fluctuations, which, upon stochastic processes, give rise
to inhomogeneous states, as we have seen in Section 5 with eq. (67).

Furthermore, note that the inflaton field is often treated classically, and the
effects of these fluctuations are observed via slight temperature anisotropies in the
Cosmic Microwave Background. There is also the problem of explaining how these
quantum fluctuations became classical during the early stages of the evolution
of the universe. Adopting this theory helps address this problem, given that
SDCs involve indeterministic processes that give rise to classicality. Furthermore,
although this theory proposes a time-varying cosmological constant, current
evidence points towards a time-varying dark energy, as mentioned previously.

Whether this approach to the early universe cosmology may end up being
better than competing approaches will need to be settled via a more physically
realistic and detailed model; however, we believe that it is a promising one.
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Several models impose a varying cosmological constant, such as quintessence
models [118], and attempt to unify inflation and dark energy, such as inflationary
quintessence models. However, to our knowledge, none have predicted the precise
value of the cosmological constant based on quantum theory and a conservative
approach. For example, quintessence models add a new quantum field and
hence a new particle (so far unobserved). This theory just starts from the basic
principles of quantum theory. Moreover, it addresses the measurement problem,
including the measurement problem that occurs right at the beginning of the
universe. More concretely, note that in models based on the inflaton or some
other field, one must explain why (loosely speaking) there was a collapse of the
quantum state at the beginning of the universe to account for the inhomogeneities
of matter distribution that gave rise to cosmic structures. Otherwise, all inflation
gives us is a superposition of quantum states that does not lead to a single
cosmic structure. Decoherence per se, which many appeal to in order to solve
this problem, does not solve the problem because it is a vaguely defined physical
process. This theory, in principle, does not fall into this problem because it
establishes clear criteria for when determinate values arise. Furthermore, if we
adopt this approach, we do not need to fall into the issues of eternal inflation
and the multiverse problem that plagues inflation.

Future work should develop a more accurate cosmological model that can
address the cosmological singularity problem. Our toy model above already
indicates how this might be done. We would assume an asymptotically flat
spacetime in the early universe, where the activity of SDCs would slow down
towards the beginning of the universe in terms of giving rise to a gravitational
field. Indeed, some alternative inflationary cosmological models exist in which
the universe starts expanding from Minkowski spacetime (see [76] and references
therein). Furthermore, future work should develop empirical signatures of this
theory in the Cosmic Microwave Background. Finally, note that our dark energy
cancellation hypothesis (Section 5) allows for significant fluctuations in the stress-
energy tensor in the early universe because the early universe has a very small
past four-volume and a large ∆Λ, balancing and canceling these fluctuations.
Future work should examine the size of the fluctuations in the stress-energy
tensor that could be canceled.
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