
Heraclitus + Einstein = ?
Radical Asymmetry within General Relativity
 
JB Manchak, Professor of Logic and Philosophy of Science at UC Irvine

[Forthcoming at the Institute of Arts and Ideas (iai.tv).]
 
The ancient Greek philosopher Heraclitus is known for his theory of constant flux: 
"It is not possible to step twice into the same river” (Graham 2023). It turns out 
that one can explore this idea within the context of Einstein's general relativity. A 
four-dimensional "Heraclitus spacetime" is a model of the universe in which no 
two events have the same structure. This means that such models exhibit a radical 
type of spacetime asymmetry.
 
In what follows, I will first introduce the notion of Heraclitus spacetime within 
general relativity. To do this, a few basic definitions will be needed as well as a 
related discussion of spacetime symmetries. Next, I will highlight a curious result: 
if a model universe has the Heraclitus property, then its local structure completely 
fixes its global structure as well. In other words, bits of information encoded at 
each event allow one to piece together what the universe is like in its entirely (e.g. 
its shape). Finally, I will sketch a way in which the radical asymmetry present in a 
Heraclitus spacetime can be used to clarify a number of other topics in the 
philosophy of spacetime physics.
 
Let's start with the three basic definitions: spacetimes, spacetime regions, and 
isomorphisms. A four-dimensional spacetime is a model of general relativity that 
represents a possible universe compatible with the theory. One can think of a 
spacetime as a collection of events with some additional structure that specifies 
how the events are related. Your birth is an event. So are any of your birthday 
parties. But your birthday is not an event and neither are you. 
 
Although an event like your birthday party takes place in an extended space over 
an extended time, for our purposes “events” will be highly localized, point-like 
happenings. Experience seems to tell us that any event can be characterized by 
four numbers: one time coordinate t and three spatial coordinates x,y,z. 
Accordingly, the local structure of spacetime resembles a four-dimensional 
Cartesian coordinate system. Diagrams can help us “see” this spacetime 
structure. Consider a spacetime diagram of you stepping into a river twice.
 



 
Following a long tradition, the time axis t is vertical with the up arrow pointing in 
the future direction. Two spatial dimensions x and y are also depicted with the z 
dimension suppressed. At any particular time t, you are located at a particular 
point in space, i.e. the x-y plane in the diagram. As time passes, these “you-
points” create a curve in spacetime: the four-dimensional you depicted in the 
diagram. Similarly, at any particular time, the river is represented as a long strip in 
space. As time passes, these “river-strips” create the four-dimensional river shape 
depicted in the diagram. With the passing of time, you approach the river and then 
meet it at a single spacetime point. This is the “step 1” event. You then briefly 
move away from the river before returning to meet it a second time. This is the 
“step 2” event. After that, you move away from the river for good. 
 
In the neighborhood of each step event, there is a region demarcated within a 
dotted line. For our purposes, a spacetime region is a connected area that counts 
as a model of general relativity in its own right. This means that if all events 
outside the dotted line surrounding step 1 were removed, the resulting spacetime 
structure would represent a possible universe compatible with the theory. The 
same point applies to the spacetime region surrounding step 2. 
 
Next, we need a definition that captures when a pair of spacetimes (or spacetime 



regions) have the same structure. Recall that a spacetime is a collection of events 
with some additional structure that specifies how the events are related. An 
isomorphism between a pair of spacetimes is a map that (i) takes each event in 
one spacetime into exactly one event in the other spacetime and whose inverse 
does the same and (ii) is such that both it and its inverse preserve all relevant 
structure. 
 
An example isomorphism might help to illustrate this notion. Suppose that your 
two steps into the river are separated by a single t unit — say, one year. Suppose 
further that the spacetime regions surrounding the two steps are identical. In the 
diagram, this is represented by the fact that the colors and shapes of you and the 
river are duplicated exactly in both spacetime regions. Under these suppositions, 
the translation map that shifts each event (t, x, y, z) in the spacetime region 
surrounding step 1 up to the event (t+1, x, y, z) in the spacetime region 
surrounding step 2 is an isomorphism between these two spacetime regions. 
 
Now that we have defined spacetimes, spacetime regions, and isomorphisms, we 
are ready to discuss symmetries. A global symmetry of a spacetime is an 
isomorphism from it to itself. Every spacetime has a trivial global symmetry: the 
identity map. This map is defined by taking any event in the spacetime into itself. 
 
Virtually all spacetime models found in general relativity textbooks have other, 
non-trivial global symmetries as well. Consider, for example, the spacetime of 
special relativity which is called “Minkowski spacetime.” Minkowski spacetime is 
completely void of matter and is “flat” in the sense that there is no spacetime 
curvature whatsoever at any event. In the diagram below, this flatness is 
represented by the monotone color choice.
 



 
 
Minkowski spacetime has many different types of global symmetries. Indeed, any 
event can be taken into any other via some translation symmetry. In the diagram, 
imagine shifting the entire spacetime some number of units to the right (along the 
x axis) and then some number of units up (along the t axis) until the event labeled 
“here-now” is mapped into the event labeled “there-then.” This is a translation 
symmetry which shows that the event here-now has the same structure as the 
event there-then. 
 
Rotations are another type of global symmetry. In the diagram, imagine spinning 
the spacetime around the t axis to some degree. This rotation does not map the 
event here-now into the event there-then but remember: those are just labels, all 
of the structure of Minkowski spacetime itself (which doesn’t come with labels) is 
preserved. 
 
Reflections are global symmetries that are easy to define in standard coordinates. 
For example, a reflection across the x=0 plane maps each event (t, x, y, z) to the 
event (t, -x, y, z). Translation, rotation, and reflection symmetries should be very 
familiar to us since they are also found within the context of Euclidean space 
(which is flat like Minkowski spacetime). But Minkowski spacetime also has 



unusual “boost” symmetries that won’t be considered here.
 
A local symmetry of a spacetime is an isomorphism between a pair of its 
spacetime regions. Consider the spacetime regions surrounding the events here-
now and there-then which are demarcated with dotted lines. The global translation 
symmetry mentioned above that shifts the event here-now into the event there-
then can be used to define a local symmetry from the spacetime region 
surrounding here-now to the spacetime region surrounding there-then. 
 
Just as every spacetime has a trivial global symmetry (the identity map), every 
spacetime has an infinite number of trivial local symmetries in the following sense: 
Choose any one of the spacetime’s infinitely many spacetime regions. The identity 
map from this spacetime region to itself counts as a local symmetry of the 
spacetime. 
 
With the notion of trivial local symmetries in hand, defining a Heraclitus 
spacetime is easy. This is just a spacetime in which all local symmetries are 
trivial. In other words, Heraclitus spacetimes exhibit radical asymmetry in the 
sense that they have the fewest possible local symmetries -- only the trivial ones. 
How is this connected to the idea that you can’t step into the same river twice? If a 
spacetime has only trivial local symmetries, then there cannot be a (non-trivial) 
local symmetry taking one event into another: each event is different from every 
other. So the river stepping example fails to be a Heraclitus spacetime since the 
distinct events step 1 and step 2 have spacetime regions surrounding them (those 
demarcated by the dotted lines in the diagram) which are related by local 
symmetry taking step 1 into step 2. 
 
It is a bit tricky to find concrete examples of Heraclitus spacetimes. Models of 
general relativity usually have many types of non-trivial symmetries (local and 
global) to make them simple enough to construct and study. And yet there are 
reasons to think that Heraclitus spacetimes not only exist but that, among all 
models of general relativity, they are generic in some sense. This is difficult to 
prove in general however (see Sunada 1985 and Mounoud 2015 for some related 
partial results). 
 
There do exist simple examples of Heraclitus spacetimes and they can be easily 
visualized — especially in two dimensions. Start with a two-dimensional version of 
Minkowski spacetime. Then smoothly distort the flat spacetime structure so as to 
introduce two types of spacetime curvature — call them Q and R — that are 
carefully chosen to have the following property: although distinct events can share 
either the same Q curvature structure or the same R curvature structure, they 
can’t share both. Since any isomorphisms between any spacetime regions must 
preserve the curvature structure, it follows that the spacetime must be Heraclitus. 
 



In the diagram above, the color hue (a value on the red to violet continuum) 
represents curvature Q and the color shade (a value on the light to dark to 
continuum) represents curvature R. We see that no distinct events have both the 
same color hue and the same color shade. As before, you and a river are depicted 
along with the events step 1 and step 2 and their surrounding spacetime regions. 
But now there can be no local symmetry taking the step 1 into step 2 since these 
events have different curvature structures. The same is true for any distinct 
events. So, the spacetime is Heraclitus. 
 
The radical asymmetry present in a Heraclitus spacetime allows one to show a 
curious result: if a model universe is Heraclitus, then its local structure completely 
fixes its global structure as well (e.g. its shape). Here’s a way to make this claim 
precise. Start with an arbitrary spacetime and consider any collection of 
overlapping spacetime regions that “cover” the entire spacetime. One can think of 
these spacetime regions as pieces to a giant puzzle — the original spacetime. Now 
we can play a game: if I give you all of the pieces but don’t tell you which 
spacetime they came from, can you “glue” them together in exactly one way to 
figure out the puzzle? 

 



If the spacetime has non-trivial local symmetries, this may not be possible. 
Imagine the pieces in the first river stepping example are all the same size and 
sufficiently small (see diagram above). Because there are many duplicate pieces, 
you have a great deal of freedom in how to glue them back together. Of course, 
one solution recovers the original spacetime. To see another, just take the first 
solution and back up one step by removing a single piece located to the left of you 
and the river to make a “hole” in the spacetime (see diagram below). You can now 
glue this piece to a region just below the hole to get a second solution (complete 
overlap with other pieces is permitted). 
 

 
 
 
Now notice that if we play the game and the original spacetime is Heraclitus, then 
it doesn’t matter how small the pieces are — you are always able to figure out the 
puzzle. To see this, consider a collection of small pieces from the second river 
stepping example (see diagram below). 
 

 
The unique color properties of each piece radically constrain your gluing method; 
indeed, there is only one solution. This is because any overlapping pieces can be 
glued together in only way if their color properties are to match up. So piece by 



piece, you are forced to reconstruct the original spacetime. Suppose you tried to 
obtain a second solution by removing a piece like you did in the first river stepping 
example (see diagram below). In order to get the color properties to match up, you 
would then find that the piece must be replaced exactly where it came from. 
 

 
The radical asymmetry present in a Heraclitus spacetime can be used to clarify a 
number of other topics in the philosophy of spacetime physics. For example, 
consider a widely held dogma: the symmetries of a spacetime are a good guide to 
its amount of structure. It is not always clear what philosophers mean by 
“structure” but an example below will help to illustrate the notion. The symmetry-
structure dogma has been expressed in a variety of ways. For example, John 
Earman (1989, p. 36) writes “As the space-time structure becomes richer, the 
symmetries become narrower” and Jill North (2021, p. 50) writes that one of the 
litmus tests for the presence of more structure is that the “associated group of 
structure-preserving transformations becomes narrower.” 
 
Many natural ways of making the dogma precise turn out to be false given the 
existence of Heraclitus spacetimes (Manchak and Barrett 2023). To see this, first 
note that a simple way to add “structure” to a spacetime is to include a privileged 
curve in the model which represents “the center of the universe” (cf. Earman 1989, 
p. 35). Because of this extra structure, any global or local symmetries must 
preserve not just the background spacetime structure but also the privileged 
curve as well. One can verify that for many textbook examples, the effect of this 
extra structure is a narrowing of symmetries in accordance with the dogma. As we 
have seen, spatial translations are global symmetries of Minkowski spacetime. But 
they are not global symmetries of the pair consisting of Minkowski spacetime and 



the privileged curve: a spatial translation shifting the center of the universe three 
feet to the right does not map the center of the universe into itself (see diagram 
below). So the symmetry-structure dogma holds in this case -- adding structure 
decreases the symmetries.
 

 
Now consider any Heraclitus spacetime. Adding extra structure of any kind — 
including a privileged curve representing the center of the universe — does not 
result in a narrowing symmetries. Why?  Since Heraclitus spacetimes already have 
as few symmetries as possible, they cannot be decreased in any way. But although 
symmetries have reached a minimum, one can still add “structure” in the form of a 
privileged curve representing the center of the universe (see diagram below). So 
we have a counterexample to many precise formulations of the symmetry-
structure dogma. 
 



 
Heraclitus spacetimes serve useful in exploring a number of other topics as well. 
Some examples include philosophical debates concerning “privileged coordinates” 
(Barrett and Manchak 2024), “cosmic underdetermination” (Manchak and Barrett 
2024), and “determinism” (Halvorson et al. 2025; Manchak et al. 2025). But there 
are also many open questions concerning Heraclitus spacetimes (these questions 
are listed in the papers just cited). What else can we learn by exploring radical 
asymmetry within the context of general relativity? 
 
*I am grateful to Thomas Barrett and David Malament for helpful comments on a 
previous draft. 
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