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Abstract 

Baroque questions of set-theoretic foundations are widely assumed to be irrelevant to physics. In 
this article, I demonstrate that this assumption is incorrect. I show that the fundamental physical 
question of whether a theory is deterministic—whether it fixes a unique future given the 
present—can depend on one's choice of set-theoretic axiom candidates over which there is 
intractable disagreement. This dependence is not confined to hypothetical examples. It reaches 
into mainstream, foundational, and frontier physics, including full discrete systems, the preferred 
basis problem in quantum mechanics, and the dynamics of Kerr-like black hole interiors. 

I argue that beyond the familiar analytic notion of well‑posedness, a theory’s determinism profile 
depends on a regularity layer, on whether the definable sets that carry our ensemble and 
canonicalization talk are measurable, have the Baire property, and admit measurable selectors. 
Competing axiom candidates extending ZFC—Gödel’s Axiom of Constructibility (V=L) and 
large cardinal (LC) assumptions strong enough to imply Projective Determinacy 
(PD)—diverge on these regularity facts. The divergence has three faces. First, coherence: weak 
formulations presuppose measurability of coefficients and under V=L one can arrange definable 
pathologies that collapse the statement of the weak problem, while under PD all projective sets 
are regular. Second, uniqueness: many determinism results are ensemble claims—“for almost all 
initial data there is a unique continuation”—whose sense depends on measurability or Baire 
category at projective complexity.  PD secures this, while V=L may not. Third, identity: when 
multiple admissible continuations remain, physical practice demands a canonical, 
representation‑independent choice. That demand is a measurable uniformization problem.  PD 
supports measurable, symmetry‑constrained selectors at the Π¹₂ level, while V=L guarantees at 
most Δ¹₂ (hence possibly non‑measurable) tie‑breaks. I develop a number of live cases, showing 
how the regularity properties toggle with the metatheory. The upshot is that which extension of 
standard ZFC we adopt changes what our best‑supported theories say. I close by sketching a 
research program, reverse physics, on analogy with Friedman’s and Simpson’s reverse 
mathematics, whose aim is to map a theory’s physical content against the foundational axioms 
that make its ensemble and canonical claims intelligible.  I conclude that, given the entanglement 

1  Thanks to Avner Ash for catching a mistake in my treatment of PDEs, Will Cavendish for pressing me to consider 
the discrete case, Gabriel Goldberg for helpful discussion of complexity classes and projective uniformization in L, 
Joel David Hamkins for general exchanges about the relevance of incompleteness to determinism, John Norton for 
feedback on a talk I gave on the same topic, and students in my Undecidability in Physics Fall 2025 graduate 
seminar at Columbia for probing questions about the project. This article is an experiment for me. Claude 
(Anthropic) and GPT 5 (OpenAI) provided important support, similar to that of research assistants, including 
efficient references to known results and constructions, to fit my argument template. The argument template, and of 
course all errors, are my own. See Berry 2023, Forthcoming; Colyvan 1998; Clarke‐Doane 2022, 2024; Farah & 
Magidor 2012; Jonas 2024; and Pour‐El & Richards 1989 and the references to follow for cognate discussions. 
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of set-theoretic metatheory and physics, either physical theories must be relativized to set 
theories (in which case physics itself becomes relative), or, as Quine (1951, 1990) 
controversially argued, the search for new axioms to settle undecidables may admit of empirical 
input. 

1. Introduction: Set Theory Meets Physical Content 

Physical theories are formulated with mathematics, yet the choice of set-theoretic background is 
almost never considered. This paper shows that even choice of extensions of standard set theory 
can have profound physical consequences. I focus on determinism in the standard Hadamard 
sense (Hadamard 1923): for admissible initial data there exists a solution, it is unique, and it 
depends continuously on the data (Evans 2010, §2.1, §6.4; Brezis 2011, Ch. 9). These verdicts 
turn on background analytic hypotheses—such as the measurability of coefficients, regularity of 
domains, compactness of admissible sets, and the availability of measurable selectors—and those 
hypotheses can, I show, depend on speculative extensions of standard set theory. 

Let ZFC denote Zermelo-Fraenkel set theory with Choice (Jech 2003). Like any recursively 
axiomatized theory, it must be incomplete if consistent (Gödel 1931). The statements which it 
fails to settle reach well into ordinary mathematics (Cohen 1963, 1966; Solovay 1970). Two 
opposed extensions of ZFC have been proposed to mitigate incompleteness. Large cardinals 
(LC) strong enough to imply Projective Determinacy (PD) —for instance, ω many Woodin 
cardinals (Kanamori 2009, Ch. 6; Martin & Steel 1989)—guarantee that all projective sets are 
Lebesgue measurable and have the Baire and perfect-set properties (Kechris 1995, §28, §38–39; 
Moschovakis 2009, Ch. 6). Alternatively, Gödel's Axiom of Constructibility (V = L) (Gödel 
1940; Jech 2003, Ch. 13) yields a minimal universe in which simply definable projective sets 
have pathological regularity properties. The two outlooks "embody radically different 
conceptions of the universe of sets" (Jensen 1995, 401).2 

We will see that such simply definable sets can occur inside textbook physical models—as 
coefficients in weak formulations (Evans 2010, §5.8, §6.2), as "thin" barriers whose capacity 
determines uniqueness (Ma & Röckner 1992; Fukushima, Oshima & Takeda 2011, Ch. 2), or as 
admissible sets or global tie-breaking rules. When this is the case, V=L and LC disagree about 
what I call the determinism profile of the system—the coherence, uniqueness and identity of 
solutions to the system's equations. The equations do not change; only the metatheory does. 

2  For discussion of other “restrictive” axioms, besides V=L, see Fraenkel, Bar‐Hillel & Levy (1973, §6.4).  A 
common narrative among set theorists is that V = L is false, and “clearly” so. Maddy (1997, Pt II, § 4) contains a 
nice explication of the reasons advocates of this narrative supply. But, as we will see, this view is “not unanimously 
shared” (Fontanella 2019, 32)  Devlin writes, “What is my own view?...Currently I tend to favour [V=L]....At the 
moment I think I am in the majority of informed mathematicians, but the minority of set theorists...”[1981, 205].  
Arrigoni says, “I believe it perfectly in order to characterize . . . ZFC + V=L as intuitively plausible . . . ” [2011, 
355]. And Pinter writes, “[T]here is a strong intuitive basis for considering L to be the class of all sets. By definition, 
L contains all the sets that are describable by a formula in the language of set theory. And there is no practical reason 
to admit sets which lack any description, for we would never make use of such sets. They would merely sit there and 
muddy the waters.  Thus, from this point onward we shall assume the following important axiom: Axiom of 
Constructibility: Every set is constructible, that is, every set is in L.  This axiom is usually denoted by the symbol V 
= L.” (2014, 227). 
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Before turning to specific cases, it is helpful to state explicitly what, in the ensuing examples, 
depends on the metatheory and what does not. Some features of mathematical structure are 
invariant across all transitive models of ZFC containing the same reals. Others are exquisitely 
sensitive to whether one works within V=L or under large cardinals sufficient to imply Projective 
Determinacy (PD). Membership in any lightface Δ¹₂ set of reals is absolute, as are the truth 
values of Σ¹₂ and Π¹₂ formulas with real parameters—facts guaranteed by Shoenfield’s 
absoluteness theorem. By contrast, the regularity properties of such sets—whether they are 
measurable, possess the Baire property, or admit perfect subsets—depend on the set-theoretic 
background. Under V=L, there exist lightface Δ¹₂ sets that are non-measurable and nonmeager; 
under PD, every projective set is measurable, has the Baire property, and contains a perfect 
subset if uncountable. The same contrast determines whether standard “genericity” 
idioms—phrases like “for almost all” or “for a comeager set of initial data”—have any 
well-defined sense at all. Finally, many uniformization and selection results that guarantee 
measurable or Borel choice functions for definable relations are valid at the projective level only 
under determinacy assumptions.  They can fail in V=L. The analytic core of the physics 
examples—the local PDEs, variational arguments, and energy estimates—remains within ZFC. 
What toggles is not the existence of equations or the validity of pointwise theorems, but the 
status of ensemble-level statements that presuppose regularity (i.e., with respect to 
Lebesgue-complete – or at least Borel – probability measures or Baire category; these 
presuppose measurability/Baire regularity). Whenever the subsequent discussion invokes 
“almost every,” “typical,” or “generic,” that presupposition will be noted explicitly.3 

The moral I will press throughout is modest in form but not in effect. I will not argue that the 
analytic layer of our best theories rests on exotic axioms. I will argue that when we elevate 
pointwise analytic facts into ensemble or canonical claims indispensable for science, and when 
we enforce the scientific ideal that such claims be robust across every admissible way of probing 
or encoding the same underlying situation, we thereby adopt a Π¹₂‑shaped robustness clause: 

  UT(x,y) :⇔ ∀ρ ∈ 𝒫 ⊆ ℕ^ℕ ∃q ∈ ℚ⁺ Good(x,y,ρ,q), 

where 𝒫 is a Borel family of admissible sampling/refinement policies. That idealization is not an 
optional flourish. It is how we make precise what physicists have always meant by 
“independence of the mesh,” “discretization‑invariance,” “basis‑insensitivity,” and so on. 
Set‑theoretic metatheory starts to matter at that Π¹₂ level.  Under large cardinals strong enough 
for Projective Determinacy, the projective regularity needed to read our ensemble idioms is 
guaranteed, while under V=L it can fail even for simply definable sets. What follows tracks this 
divide in concrete cases and shows that talk of “almost all,” “typical,” and “canonical” is either 
well‑posed or contentless depending only on whether we assume V=L or LC in the metatheory. 

2. Three Regularity Hinges at Δ¹₂ 

Physicists speak comfortably about what holds for almost all initial data, or typically across a 
class of configurations. Those phrases read as harmless English, but they presuppose something 
precise: that the underlying definable sets of reals are measurable or have the Baire property. 
Whether that presupposition is warranted turns out to depend on the set-theoretic background. 

3 The metatheoretic sensitivity of determinism is not limited to ensembles, though they are my focus.  See Section 
7.3. 
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This section isolates the exact places where the background matters and explains why those 
places—what I will call the regularity hinges—are routine in physics. 

The contrast begins with a simple construction. Within V = L there is a parameter-free 
(lightface) Δ¹₂ well-order ≺ of the reals. From ≺ one can define sets with pathological regularity. 
Let W ⊆ [0,1]² be given by W = {(x,y) : x ≺ y}; then χ_W is also lightface Δ¹₂. In V = L one can 
arrange that horizontal sections of W have outer measure 1 while vertical sections have measure 
0, a definable Sierpiński–Fubini pathology. By contrast, under large cardinals strong enough for 
Projective Determinacy (PD), every projective set is Lebesgue measurable and has the Baire and 
perfect-set properties. Thus, the very same Δ¹₂ definition denotes very different kinds of sets 
depending on whether one works in V = L or assumes large cardinals sufficient for PD (Devlin 
1984; Jech 2003; Sierpiński 1924; Martin & Steel 1989; Kechris 1995; Moschovakis 2009). 

From this starting point, three regularity hinges for determinism fall out naturally: 

(1) Coherence (does the weak formulation make sense?)​
​
In weak PDE formulations, coefficients must be measurable for Lebesgue integrals to exist. If a 
coefficient is of the form ν(x) = ν₀ + α·χ_W(x), then under PD measurability is secured and the 
weak problem is meaningful.  But under V = L one may choose W non-measurable so that the 
integral in the bilinear form fails to be defined, collapsing the weak formulation. (Evans 2010; 
Brezis 2011 corroborate the analytic side; the toggle is purely in regularity.) 

(2) Uniqueness-as-genericity (may we say “for almost all” or “comeager”?).​
​
Many results assert uniqueness not pointwise but for almost every datum or on a comeager set of 
parameters. Those ensemble claims are meaningful iff the relevant definable sets are measurable 
or Baire. PD guarantees these properties for projective sets.  V = L may fail them, so the very 
grammar of “almost all” can break down at the projective level used by the argument (Kechris 
1995; Moschovakis 2009). 

(3) Identity (representation-independence / canonical selection)​
​
Often the equations admit many admissible solutions, and practice demands a canonical choice 
that is invariant under admissible recodings (changes of units, gauges, coding conventions). 
Canonicalization is a measurable selection / uniformization problem for a definable 
multifunction. At low complexity (analytic graphs) ZFC already secures measurable selectors 
(Kuratowski–Ryll-Nardzewski; Castaing–Valadier). But once the construction genuinely reaches 
the projective level (as it will when we formalize “robustness across all admissible procedures”), 
PD is needed for measurable uniformization.  Under V=L only definable but possibly 
non-measurable selections are guaranteed. The equations do not change.  What changes is 
whether a representation-independent selection with ensemble meaning can be made. 

Two clarifications are in order. First, none of this denies that much of analysis remains absolute 
across transitive models with the same reals. Σ¹₂/Π¹₂ truths with real parameters and membership 
in lightface Δ¹₂ sets are Shoenfield-absolute.  The regularity (measurability/Baire) of certain 
projective sets diverges between PD and V=L. Second, I do not claim that genericity idioms are 
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globally senseless in V=L.  The point is that for the specific projective sets generated later by 
stability/UT predicates, measure and category can lack determinacy in V = L, while PD restores 
the regularity that those idioms presuppose. (Shoenfield 1961; Jech 2003, Thm. 25.20.) 

With these hinges made explicit, the later sections will simply track which hinge is being 
touched in each example—coherence in weak formulations, uniqueness-as-genericity in 
ensemble claims, and identity in canonicalization—so the reader can see exactly where the 
set-theoretic background enters and why it matters. 

3 Three Toy Schemata 

The three regularity hinges introduced above—coherence, uniqueness-as-genericity, and 
identity—can be displayed most transparently in simplified, self-contained models. These “toy 
schemata” are not meant as new physical systems but as clean illustrations of how the same 
formal setup can yield distinct determinism profiles depending on whether one works in V=L or 
under large cardinals sufficient for PD.  Each model isolates one hinge while keeping the others 
fixed, making the logical source of the metatheoretic toggle explicit. 

The first, concerning coherence, shows how even the meaningfulness of a weak formulation can 
depend on regularity. Let Ω ⊆ [0, 1]² be a bounded Lipschitz domain, and consider the bilinear 
form​
​
 a(u,v) = ∫₍Ω₎ ν(x) ⟨∇u(x), ∇v(x)⟩ dx,​
​
with ν(x) = ν₀ + α · χ_W(x), where ν₀ > 0, α ≠ 0, and W ⊆ [0, 1]² is lightface Δ¹₂. Under large 
cardinals implying PD, χ_W is measurable, so ν ∈ L^∞(Ω) and the Lax–Milgram conditions are 
met; the weak form is coherent and yields a unique solution u ∈ H₀¹(Ω). Under V=L, however, 
one can choose W to be non-measurable, and then the Lebesgue integral defining a(u,v) is 
undefined in the ordinary sense.  The statement of the equations fails. The same operator −∇·(ν 
∇·) with the same boundary data thus makes or fails to make analytic sense according to the 
metatheory (Evans 2010, §§ 5.8, 6.2; Brezis 2011, Ch. 9). Although none of the later, more 
physical examples—inverse problems, Markov uniqueness, Ising dynamics, decoherence, or 
Kerr interiors—produces non-measurable coefficients for any fixed instance, this toy example 
clarifies what a coherence failure means.  The equations themselves become ill-defined in V=L. 
Unlike other toy examples, like Norton’s Dome (Norton 2008; Malament 2008), whose 
indeterminism arises from the dynamics, the failure here emerges from the interaction between 
physical laws and set-theory.  (For further discussion of the concept of determinism and what 
theories count as such, see Earman 1986, 2007, 2009; Fletcher 2012; Wilson 2009; Ismael 2016; 
Loewer 2001, 2020; Chen 2022; Butterfield 2007; Halvorson, Manchak & Weatherall 2025). 

The second model, the uniqueness schema, keeps coherence secure but asks whether a law can 
single out a unique outcome “for almost all” admissible data. Under LC (sufficient for PD), 
projective relations arising from arg-min schemes admit measurable selectors. A map s : H → X 
can then be defined with s(u) ∈ Γ★(u) for μ-almost every u, so ensemble statements like “for 
almost all u the continuation is unique” are meaningful. Yet measurability alone does not 
guarantee invariance.  A measurable selector may still depend on the chosen coding. Invariance 
obtains only when the minimizer is structurally unique (through strict convexity or lower 
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semicontinuity) or when the tie-break is explicitly restricted to respect the recoding group. In V = 
L, by contrast, measurable uniformization can fail at this projective complexity. Δ¹₂ selectors still 
exist by appeal to the lightface well-order of ℝ, but they need not be measurable, and then 
ensemble idioms such as “almost all,” “typically,” and “comeager” lose determinate content. 
What shifts is the status of the measurable law that assembles the solutions into an ensemble. 

Finally, the identity schema adds one further layer. Even when the equations are well-posed and 
a measurable selector chooses an outcome for almost every case, we may still ask whether that 
choice is representation-independent—insensitive to any relabeling or recoding that carries no 
physical content. Let X be a Polish space of admissible states and Γ ⊆ X × X a definable 
relation whose fibers Γ(x) are non-empty, compact, and convex. A Borel “secondary cost” Φ : X 
× X → ℝ ∪ {+∞} breaks ties among solutions, and a selector s satisfies s(x) ∈ Γ(x). If 𝒯 
denotes the group of admissible recodings T : X → X, then s is 𝒯-invariant iff s(Tx) = T(s(x)) 
and T(s(x)) ∈ Γ(Tx) for all T and x. Within ZFC, measurable selectors exist whenever the 
graph(Γ) is analytic (Kuratowski & Ryll-Nardzewski 1965; Castaing & Valadier 1977), but 
measurability alone does not ensure 𝒯-invariance.  True identity arises only through structural 
uniqueness or explicit symmetry requirements (Appendix C). When the graph of Γ reaches 
projective complexity (as it does once we impose the Π¹₂ “universal tameness” constraint UT 
introduced below) PD guarantees projective regularity and measurable uniformization (Kechris 
1995, § 38.B; Moschovakis 2009, Ch. 6; Martin & Steel 1989). This restores the ensemble 
reading of “for μ-almost all x, the canonical continuation minimizes Φ.” But PD alone does not 
force full invariance when multiple minimizers exist.  Symmetry or structure does. To sum up: 
coherence makes the law intelligible, uniqueness makes the ensemble verdict meaningful, and 
identity makes the verdict representation-independent. LC implying PD secures the measurable 
scaffolding needed for the last two.  Symmetry and geometry does the rest (Appendix C). 

4. Inverse problems and imaging 

Inverse problems make vivid the difference between the analytic layer, which ZFC secures, and 
the regularity layer, which is where metatheory enters. To keep things concrete, let us stay with 
the total‑variation (TV) Tikhonov family, 

  J_λ(u; d) = ‖A u − d‖² + λ · TV(u), 

with A linear and TV the usual anisotropic total‑variation norm. For each fixed λ > 0, strict 
convexity (optionally reinforced by a tiny quadratic term) yields a unique minimizer u_λ(d) that 
depends continuously on the data d. All of this is secure in ZFC and independent of any 
set‑theoretic speculation. But the choice of λ pushes beyond this. The discrepancy principle 
chooses 

  λ(d) = min { λ ∈ ℚ⁺ : ‖A u_λ(d) − d‖ ≤ τ · ε }. 

Because the acceptance set for each λ is closed and we minimize over a countable set, the map d 
↦ u_{λ(d)}(d) is Borel. Therefore, ensemble statements such as “for μ‑almost all d, the 
reconstruction has property P” have determinate sense in ZFC. The subtlety emerges when we 
enforce the methodological ideal that a reconstruction rule be robust across all admissible 
refinements—across discretizations, interpolation schemes, iteration schedules, and file formats 
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that carry no physical content. Let us code each admissible refinement policy by a real number, ρ 
∈ ℕ^ℕ (this is the standard coding move used throughout numerical analysis: a single real 
names an entire infinite refinement schedule). Now say that R(d, λ) holds just in case 

  for every ρ there exists m such that for all n ≥ m,​
  the refined reconstruction u^{(ρ,n)}_λ(d) meets the tolerance ‖A u^{(ρ,n)}_λ(d) − d‖ ≤ τ · ε,​
  and no smaller rational λ has that property. 

The logical form of the stability clause—“∀ρ ∈ ℕ^ℕ ∃m ∀n ≥ m …”—is Π¹₂ with an 
arithmetical matrix. Minimality over ℚ⁺ is a bounded quantifier and does not raise the 
complexity. Thus, the predicate “R(d, λ) and λ is least” is Π¹₂ in d and λ. This is the first point 
where the metatheory matters.  At Π¹₂, V=L and large‑cardinal frameworks diverge on regularity. 
Under PD (secured by strong large cardinals), all projective sets are Lebesgue measurable and 
have the Baire property.  Projective uniformization and measurable selection hold at this level. 
Under V=L, by contrast, we may still define a selection by appealing to the Δ¹₂ well‑order of ℝ 
(take the ≺‑least λ with R(d, λ)).  But such a selection need not be measurable. Hence, the 
grammar of “for almost all d” can lose determinate sense even though, for each individual d, the 
analytic reconstruction u_{λ}(d) exists and is unique for every fixed λ. 

If we now define the “universally stable” choice λ^†(d) to be the least rational λ with R(d, λ) and 
set the reconstruction to be u_{λ^†(d)}(d), V=L and LC sufficient for PD induce divergence. 
Under PD, the graph of the admissible‑pair relation is projective and admits a measurable 
uniformization.  Ensemble clauses such as “for μ‑almost all d, the reconstruction by the 
universally stable rule has property P” are meaningful. By contrast, under a constructible 
background, only definable (indeed, lightface) selections are guaranteed and measurability may 
fail at precisely this Π¹₂ level. The analytic problem has not changed. What varies is whether the 
ensemble‑level claim (the law‑like generalization across all admissible refinements) has a 
determinate truth value. That is the uniqueness‑as‑genericity hinge in situ.4 

5. Thin‑barrier capacity, Markov uniqueness, and physically natural projective families 

A second, more geometric arena in which the metatheoretic hinges surface is in the analysis of 
diffusions through “thin” barriers. Physically, these problems model the passage of heat, charge, 
or mass through a medium whose microscopic structure may include nearly insulating interfaces. 
Mathematically, they are governed by the Dirichlet form 

  𝔈(u) = ∫_{Ω∖S} ⟨a∇u, ∇u⟩ dx, 

where Ω ⊆ ℝⁿ is bounded and Lipschitz, a(x) is measurable and uniformly elliptic, and S ⊆ Ω̄ is 
a closed barrier. The associated operator L u = −∇·(a∇u) is said to be Markov unique if it 
admits exactly one closed, Markovian extension on L²(Ω) (Ma & Röckner 1992; Fukushima, 
Oshima & Takeda 2011). The operator is Markov unique just in case cap₁,₂(S) = 0, and a standard 

4  Formally, with ρ ∈ ℕ^ℕ coding an admissible policy and ϕ arithmetical, the stability clause has the form ∀ρ ∈ 
ℕ^ℕ ∃m ∈ ℕ ∀n ≥ m ϕ(d, λ, ρ, n), which is Π¹₂ in (d, λ). Minimality over λ ∈ ℚ⁺ is a bounded quantifier and does 
not raise the complexity. Thus the set S = { (d, λ) : R(d, λ) & λ minimal } is Π¹₂, and its projection A = { d : ∃λ R(d, 
λ) & λ minimal } is Σ¹₂. Shoenfield absoluteness applies pointwise.  The measurability of A and the existence of 
measurable uniformizations of S are where PD and V=L diverge. 
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certificate shows that cap₁,₂(S) = 0 iff ∃(u_k) (rationally coded) with u_k ≥ 1 near S and 𝔈(u_k) 
≤ 2⁻ᵏ. Hence, the index set 

  U = { A : cap₁,₂(S_A) = 0 } 

is analytic (Σ¹₁) for any reasonable coding A ↦ S_A. Ensemble statements like “for almost all A, 
Markov uniqueness holds” are, by themselves, unproblematic in ZFC. The regularity layer 
appears once we align the model with laboratory practice. In controlled deposition or filtered 
percolation, one tunes a threshold θ so that the blocked fraction converges to a target φ★ in the 
limit, and one expects this calibration to be robust across all admissible filtering/refinement 
policies. Let us code each policy by ρ ∈ ℕ^ℕ. For a given micro‑environment code A, define 
θ_A to be the least rational θ such that 

for every ρ there exists m with the coarse‑grained coverage within 2⁻ᵐ of φ★ for all 
later stages. 

Set S_A = { x : ϕ_A(x; θ_A) ≥ θ_A }. The quantifier structure in A ↦ θ_A is, again, Π¹₂ 
(universal over reals, then existential over naturals), and so A ↦ S_A sits at that projective level. 
For each fixed A, the event cap₁,₂(S_A) = 0 is analytic in the code for S_A, but the ensemble we 
care about ranges over a Π¹₂‑defined family of barriers. Under PD, all such projective sets are 
measurable, and projective uniformization yields measurable selections wherever we need them.  
The phrase “for almost all A” has determinate sense when applied to this Π¹₂ family. Under V=L, 
we still have definable (indeed lightface) ways to choose θ_A and hence S_A by appealing to the 
Δ¹₂ well‑order.  The problem is that measurability is not guaranteed at the Π¹₂ level. The upshot is 
the same hinge as in inverse problems.  The PDE and the analytic proof of Markov uniqueness 
are unchanged.  But the ensemble‑level uniqueness claim toggles with V=L and LC.  

6 Zero-temperature Ising: natural tie-breakers and definable versus measurable selection 

It is natural to wonder if the dependence of determinism on set-theoretic background is confined 
to continuum systems. But it actually, even more accessibly, in a completely discrete model: the 
ferromagnetic Ising lattice at zero temperature under synchronous (parallel) updates. This case 
shows how the identity hinge can arise even when every object in play (the lattice, the 
configuration space, and the update rule) is Borel and unproblematic in ordinary analysis. 

Fix d ≥ 2, finite‑range ferromagnetic couplings J_{ij} ≥ 0 on ℤᵈ, and external field h ∈ ℝ. 
Configurations are σ ∈ {−1, +1}^{ℤᵈ} with local field 

  ℓᵢ(σ) = ∑{j∼i} J{ij} σ_j + h. 

The parallel zero‑temperature update is 

  (U_b(σ))ᵢ = +1 if ℓᵢ(σ) > 0; (U_b(σ))ᵢ = −1 if ℓᵢ(σ) < 0; (U_b(σ))ᵢ = bᵢ(σ) if ℓᵢ(σ) = 0, 

with b a local tie‑break. For any local measurable b, U_b : 𝔛 → 𝔛 is Borel on 𝔛 = {−1, +1}^{ℤᵈ}, 
so analytic questions about existence and “μ‑almost sure” properties are clear in ZFC. 
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Identity (in the sense of Section 2) is where the metatheory enters. Suppose we insist, as we 
should, that the tie‑break be invariant under admissible recodings—lattice symmetries, 
relabelings of sites, and shape conventions for van Hove limits—and that it be stable across 
every admissible refinement policy ρ ∈ ℕ^ℕ that specifies how the limit is taken. Selecting a 
canonical update τ with those invariance and stability properties is naturally formulated as a Π¹₂ 
uniformization problem.  The stability clause has the “∀ρ ∃m ∀n ≥ m …” shape, and the 
invariance clauses are Borel constraints under the recoding group 𝒯. In frameworks with 
projective regularity (like LC sufficient for PD), measurable uniformizations exist at this level, 
and we can say “for product‑measure almost all σ, a canonical, representation‑independent 
update τ(σ) is defined.” What measurable uniformization does not do, by itself, is force 
uniqueness of τ when there are symmetries in the fiber.  For identity in the strong sense we still 
need either structural uniqueness or an explicitly symmetric tie‑break rule. In constructible 
frameworks, on the other hand, one can define a Δ¹₂ tie‑break using the lightface well‑order.  
And, yet, measurability—and hence the literal sense of the ensemble idioms—can fail at this Π¹₂ 
complexity. So, again, the dynamics U_b is the same.  But whether law‑like canonicalization has 
a measurable, representation‑independent realization, wobbles between V=L and LC. 

7 Metatheory in Fundamental Physics: the analytic and regularity layers 

The preceding sections have shown that even ordinary systems (imaging, diffusion, spin 
dynamics) reveal subtle dependence on set-theoretic background once we ask ensemble or 
canonical questions. But one could still wonder whether such dependence touches paradigmatic 
fundamental physics. This section argues that it does. The examples come from the two main 
pillars of modern physical theory: quantum mechanics and general relativity. 

Physicists often assume that determinism is a purely analytic matter. One asks whether the 
relevant equations admit a well-posed initial-value problem (whether a unique solution exists and 
depends continuously on the data). That analytic layer of the theory is indeed captured in ZFC.  
The function spaces, continuity estimates, and energy inequalities that define well-posedness are 
absolute between transitive models sharing the same reals. But physical practice involves more 
than existence and uniqueness. When we speak of generic initial data, typical environments, or 
canonical continuations, we appeal to ensemble or uniformization claims that presuppose 
regularity (measurability, the Baire property, or the existence of measurable selections for 
definable multifunctions). Those assumptions can fail in the constructible universe yet hold 
under large cardinals strong enough for projective determinacy. 

This division marks a boundary between two layers of physical reasoning. The analytic layer 
covers what the equations literally say.  The regularity layer enters when we elevate pointwise 
results to law-like generalizations. The logical form that captures this boundary can be written as 

  UT(x, y) :⇔ ∀ρ ∈ ℕ^ℕ ∃q ∈ ℚ⁺ Good(x, y, ρ, q), 

where UT stands for “universal tameness” or “universal stability,” ρ ranges over a Borel set of 
admissible sampling or refinement procedures, and Good(x, y, ρ, q) is an arithmetical check 
expressing stability within tolerance q. This quantifier pattern—universal over reals followed by 
existential over rationals—has Π¹₂ complexity. Note that this is not an artificial device.  It simply 
formalizes a familiar scientific ideal of robustness, that results remain invariant across all 
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admissible ways of probing or discretizing the system. We have seen, however, that Π¹₂ is the 
level at which large-cardinal and constructible frameworks begin to diverge on regularity. 

7.1 Decoherence and the preferred basis 

Among the most discussed questions in quantum foundations is the preferred-basis problem: 
why do certain bases of a system’s Hilbert space behave classically under environmental 
coupling? Decoherence theory and the program of “quantum Darwinism” (Zurek 1981, 2003; 
Schlosshauer 2007; Ollivier, Poulin & Zurek 2004; Riedel, Zurek & Zwolak 2014) answer that 
question dynamically, treating basis selection as a physical process. Whatever the other problems 
with this view, the present point is that the idiom of the literature—“for almost all 
environments,” “for typical interactions”—is ensemble, and thus falls within the regularity layer. 

Let 𝓗 be a finite-dimensional, finite-energy subspace, so that U(𝓗) is compact. Let ℬ_adm ⊆ 
U(𝓗) be a non-empty compact set of admissible orthonormal bases, such as those compatible 
with measurement resolution. Let 𝒮 be a Polish space of admissible environment states, for 
example thermal or Gaussian mixtures with bounded energy. For each B ∈ ℬ_adm and ρ_E ∈ 
𝒮 define the decoherence functional 

  Φ[B; ρ_E] = ∫₀ᵀ E_{ρ_E}(‖ offdiag_B(U_t ρ_SE U_t†) ‖₁) dt. 

Continuity of t ↦ U_t and of the Schatten-1 norm ensures that B ↦ Φ[B; ρ_E] is continuous, 
hence each arg-min set Γ₀(ρ_E) = argmin_{B∈ℬ_adm} Φ[B; ρ_E] is compact with analytic 
graph. This is all absolute in ZFC. Ensemble statements such as “for μ-almost all ρ_E the 
minimizing basis is unique” have determinate sense within standard mathematics. 

The regularity issue arises when we enforce the routine scientific ideal that the preferred basis be 
robust across all admissible probing procedures. Let 𝒫 ⊆ ℕ^ℕ encode those admissible 
measurement or coarse-graining policies. Say that B is universally stable for ρ_E just when 

  ∀ρ ∈ 𝒫 ∃q ∈ ℚ⁺ upper-density_ρ{ t : ‖offdiag_B(U_t ρ_SE U_t†)‖₁ > q } = 0. 

This requirement that decoherence results stabilize no matter how we sample or coarse-grain 
gives UT(B, ρ_E) the Π¹₂ form above. If we refine the arg-min relation by a secondary Borel cost 
Φ₁ penalizing small residual coherence, we obtain 

  Γ★(ρ_E) = argmin_{B∈Γ₀(ρ_E)} Φ₁[B; ρ_E] subject to UT(B, ρ_E). 

The graph of Γ★ is projective at level Π¹₂. In settings with projective regularity (guaranteed by 
large cardinals) measurable uniformizations exist, providing universally measurable selectors 
ρ_E ↦ B★(ρ_E) and making ensemble statements such as “for almost all ρ_E there exists a 
measurable canonicalization ρ_E ↦ B★(ρ_E), and when the secondary cost plus symmetry 
constraints fix a single B★, the resulting canonical basis is representation‑independent” 
meaningful. In a constructible setting of V=L, however, only definable but not necessarily 
measurable tie-breakers are ensured.  So, rival definable choices can disagree on non-measurable 
Δ¹₂ sets. The physical Hamiltonian and environment are identical in both worlds. What changes, 
as before, is whether the ensemble-level claim about canonical basis selection is well-posed. 
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7.2 Determinism inside Kerr black holes 

An analogous boundary appears in general relativity’s central open problem, the Strong Cosmic 
Censorship conjecture. In subextremal Kerr (0<|a|<M), the Cauchy horizon 𝒞ℋ⁺ is classically 
the place where determinism threatens to fail. Analytic results establish linear estimates 
compatible with finite weighted flux across 𝒞ℋ⁺, together with blue‑shift amplification that can 
drive late‑time instabilities. The analytic layer I need can be stated abstractly as follows. 

Fix a smooth spacelike Σ₀ meeting the event horizon and set 𝔇=H¹(Σ₀)×L²(Σ₀), coded as a Polish 
space. For d∈𝔇, let φ⟨d⟩ solve □_gφ=0 in the interior. Along the ingoing horizon parameter v, 
define the weighted flux 

ℱ(d; v₀, v₁)=∫{v₀}^{v₁} e^{κv} ‖∂ᵥφ⟨d⟩(v,·)‖²{L²_θ} dv, ℱ(d)=liminf_{v₁→∞}ℱ(d; v₀, v₁). 

Let 𝔄={ d: ℱ(d)<∞ }. For d∈𝔄 the traces of φ⟨d⟩ along 𝒞ℋ⁺ exist in L²_loc along sequences 
v₁→∞ with uniformly bounded flux; write Γ(d)⊆L²_loc(𝒞ℋ⁺) for the set of such limit traces. 
Then Γ(d) is non‑empty and sequentially compact in the L²_loc topology; the graph of Γ is 
analytic. Quantify late‑time behaviour by 

𝐄₀(d,x)=∫{v₀}^{∞} e^{κv} ‖∂ᵥx(v,·)‖²{L²_θ} dv, 

and fix a Borel secondary cost Φ₁(d,x) penalizing late‑time leakage. Lower semicontinuity of 
𝐄₀ on Γ(d) yields non‑emptiness of Γ₀(d)=arg min_{x∈Γ(d)} 𝐄₀(d,x); refining by Φ₁ gives 
Γ★(d)=arg min_{x∈Γ₀(d)} Φ₁(d,x). Up to here, everything is analytic and stable in ZFC. 

Where the metatheory enters is the robustness ideal already familiar from earlier sections. Let 
𝒫⊆ℕ^ℕ be a fixed Borel set of admissible sampling policies along 𝒞ℋ⁺ (subsequences, 
coarse‑grainings, windows). Say that x∈Γ(d) is universally tame at d iff 

UT(d,x): ⇔ ∀ρ∈𝒫 ∃q∈ℚ⁺ Good(d,x,ρ,q), 

where Good is an arithmetical check formalizing “late‑time stability within tolerance q” under ρ. 
The admissible‑pair relation 

R(d,x): ⇔ d∈𝔄, x∈Γ★(d), and UT(d,x) 

has Π¹₂ complexity in (d,x). Under projective regularity (e.g., PD), R is Lebesgue‑measurable 
and admits projective (hence universally measurable) uniformizations: there exists a measurable 
selector s with s(d)∈Γ★(d) and UT(d,s(d)) for μ‑almost every d in any physically reasonable 
ensemble μ on 𝔇. Ensemble claims such as “for almost all d there is a canonical continuation 
selected by (𝐄₀,Φ₁,UT)” are then literally meaningful. In a constructible background, by contrast, 
Δ¹₂ uniformizations can be defined via the lightface well‑order but need not be measurable; the 
very grammar of “for almost all d” with respect to R can then lose determinate sense. The wave 
equation and the blue‑shift estimates are identical in both worlds; what toggles is whether the 
canonicalization ideal that SCC presupposes can be realized measurably. 

7.3 Beyond quantum and relativity: a string-theoretic analogue 
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An analogous structure appears in AdS/CFT bulk reconstruction. There one minimizes an 
energy-like functional over a definable admissible set of bulk fields compatible with given 
boundary data, then breaks ties by imposing stability on slices—an analogue of the Φ₁ cost. The 
arg-min graph is again projective. Frameworks with projective regularity provide measurable 
selectors and well-defined ensemble semantics.  But constructible frameworks allow only 
definable ones, and different definable selectors can disagree on Δ¹₂ disagreement sets. The 
metatheoretic hinge thus reappears without contrivance in the logic of holographic dualities. 

7.4 Single-system toggling 

Up to now the examples have concerned ensembles—statements of what happens for “almost 
all” environments or data. But it should not be thought that the dependence is limited to such 
caees.  It can arise even for a single, fully specified system. In the Kerr case, fix one admissible 
datum d ∈ 𝔄 for which Γ₀(d) contains multiple mild continuations. The analytic 
facts—compactness of Γ₀(d), existence of minimizers—are absolute. But when canonicity is 
required to be representation-independent, distinct metatheories may select different canonical 
continuations. Frameworks with projective uniformization allow measurable tie-breakers that 
can be constrained by symmetry.  Constructible frameworks supply only definable ones, which 
need not be measurable or symmetry-respecting. Determinism, understood as the uniqueness of a 
canonical continuation, can thus vary across metatheories even for the same physical data. 

One might object that in practice robustness is checked only across finitely many 
procedures, not all admissible ones. That is correct. The universal-tameness clause 
idealizes the empirical norm of robustness into a demand of invariance under every 
admissible policy. But this idealization is just a reflection of the fact that the world does 
not care about our experimental limitations, not an artificial add on.  This lifts the 
statement to Π¹₂ complexity. The consequence is that if determinism is defined through 
such a robustness ideal, then even the determinism profile of a single physical system can 
differ across set-theoretic backgrounds. Whether the universe inside a black hole has a 
unique canonical future can, accordingly, depend on speculative extensions of ZFC. 

7.5 Summary 

Across this paper’s examples, the pattern is consistent. The analytic layer of physics—the 
equations and their pointwise consequences—lives within ZFC. The regularity layer—the 
assumptions that make ensemble or canonical claims well-defined—does not. When projective 
regularity holds, measurable uniformizations exist and the ensemble language of physics has 
clear sense.  When it fails, those same phrases lose meaning. The content of physical 
determinism depends not only on the equations we write but on the set-theoretic background that 
determines which ensemble and canonical statements they can meaningfully express. 

This division between the analytic and regularity layers also reframes long-standing debates 
about determinism in the philosophy of physics, especially those articulated by Earman and 
Butterfield. Their analyses locate the determinism question at the analytic layer: whether the 
equations governing a theory are well-posed in the Hadamard sense (existence, uniqueness, and 
continuous dependence of solutions on initial data). On that account, determinism fails when the 
analytic problem is ill-posed, as in Norton’s Dome or non-Lipschitz systems, but succeeds 
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whenever the analytic conditions hold. The present analysis shows that this framework is to 
crude. Even when the analytic layer is well-posed, the regularity layer—the measurable, 
ensemble, and canonical structures that allow us to interpret statements like “for almost all 
initial data” or “for the canonical continuation”—can depend on the set-theoretic 
metatheory. The Earman–Butterfield picture thus captures only one axis of determinism, the 
analytic one, while physical practice presupposes another as well, the regularity axis. What 
looks like a deterministic theory under one metatheory (e.g., large cardinals sufficient for 
PD) can, under another (e.g. V=L), lose the measurability or uniformization that gives 
those analytic results their physical meaning. The familiar analytic notion of determinism is 
stable across models of ZFC.  But the physicist’s ensemble and canonical notions are not. 

8. Objections and Replies 

Objection 1: Physicists Don't Use Δ¹₂ Sets 

I have argued that, contrary to widespread belief, the determinism profile of physical systems, 
from routine inverse problems to black hole dynamics, hinges the choice of speculative axiom 
candidates extending standard mathematics.  A natural reaction is that the constructions must be 
artificial.  Physicists never work with Δ¹₂ sets or discuss the projective hierarchy.  

This objection, however, confuses explicit terminology with implicit structure. Consider the 
types of conditions physicists routinely impose: "There exists a sequence of approximations 
converging to a solution such that for every accuracy requirement, all sufficiently late terms meet 
that requirement." This has the logical form (∃f)(∀n)(∃m)(∀k≥m) P(f,n,k), which is a Σ¹₂ 
statement when P is arithmetic.  The mathematical structures that appear in mature physical 
theories naturally involve alternating quantifiers over infinite objects. The Kerr interior 
predicates of C⁰-extendibility, finite flux, and blow-up are core concepts from the general 
relativity literature. These predicates clearly have low projective complexity when spelled out. 

Moreover, it is not clear what this objection would show even if it were true.  Consider the pure 
mathematical case.  Just as the Paris-Harrington and Goodstein theorems reveal that seemingly 
elementary combinatorial statements can be independent of Peano Arithmetic, this paper reveals 
that physical determinism—a basic property we expect theories to either have or lack—can 
be undecidable in ZFC.  The significance of such results lies not in their frequency (which 
depends on what questions we happen to have asked) but in their existence. The constructions 
here are no more 'artificial' than the Ramsey numbers in Paris-Harrington or the specific 
Diophantine equations encoding undecidability in Hilbert's tenth problem. If anything, they are 
more natural.  They spell out questions that physicists have already asked, rather than 
constructing sentences never considered and arguing that these are “relevantly similar” to 
naturally occurring examples (as in Friedman 1998).  The indeterminacy dsicsussed concerns 
discovered features of the physical-mathematical landscape, not pathologies that I have created. 

Objection 2: This Confuses Mathematics with Physics 

Another objection is that I am conflating the mathematical formalism with physical reality, the 
“map with the territory”. Mathematics is merely a “language” for describing physics; changing 
the language does not change the physics itself. 
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But this is exactly what is at issue! A physical theory does not exist independently of its 
mathematical expression. It is partly constituted by that expression. When we say that general 
relativity predicts gravitational waves, we mean that the Einstein field equations, interpreted 
according to standard mathematics, entail the existence of wave solutions. The field equations 
purged of all metatheoretic commitments are just uninterpreted marks.  If different mathematical 
frameworks yield different solutions to the same equations, then the physical theories differ. 

Consider again Strong Cosmic Censorship. This asserts that Einstein's equations typically do not 
admit smooth extensions beyond the Cauchy horizon. Whether this is true depends on what 
"typically" means—a measure-theoretic or category-theoretic notion that requires the regularity 
properties toggled by V=L versus PD. The physical question "Does the universe inside a black 
hole have a unique future?" receives different answers in different set-theoretic contexts. 

Objection 3: Why Not Just Adopt Large Cardinals? 

A pragmatic response might be to just adopt large cardinal axioms, thereby ensuring all 
projective sets are regular and eliminating the ambiguity.5 If LC (sufficient for PD) makes all the 
pathologies disappear, then why not just assume it? 

There are two principal reasons. First, adopting LC would not eliminate the phenomenon.  It 
would push it up the projective hierarchy. At the next level—Σ¹₃ sets—V=L and LC can disagree 
not just about regularity but about membership. (The identity questions we encountered in the 
Ising model (Section 6) already hint at this higher-level divergence.)  Recall that Shoenfield’s 
Absoluteness Theorem does not apply this high up (Appendix B).  So, appeal to regularity 
intuitions is insufficient.  Second, this response amounts to choosing our physics based on 
convenience rather than observation. Whether a fluid flow is turbulent or a black hole interior is 
deterministic certainly seems like a fact about the world, not something we can stipulate.   

Objection 4: This Has No Experimental Consequences 

Perhaps the most obvious “objection” is that these set-theoretic subtleties, while perhaps 
mathematically interesting, have no experimental implications. The problematic sets have 
measure zero or are meager.  The disagreements occur only on negligible sets that we do not 
encounter in practice. 

But this objection is facile. First, for discrete systems like the Ising model, the disagreement sets 
need not be negligible. In V=L, we can in principle arrange the set M where different 
implementations disagree to have positive outer measure with respect to the product measure 
induced by the coding of configurations. In principle, preparing an ensemble of magnetic 
systems and observing their evolution could reveal statistical signatures of such disagreements 
(for more on possible experimental tests of each of the examples, see Appendix F.).  Second, 
even if direct experimental tests are currently infeasible, I have emphasized, following Quine 
(1951), that the content of our physical theories depends on the set-theoretic background.6  There 
is no meaningful parition.  When we ask whether general relativity predicts time dilation near 
massive objects, we are asking whether a theory incorporating substantial set theory does.  The 

6 I do not mean to concede that the notion of “direct” confirmation is clear.   
5 Thanks to Douglas Blue for suggesting this line of response. 
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“corporate body” does the predicting, and contra Sober (1993), there are no God given axioms of 
mathematics. 

Finally, the inaccessibility of black‑hole interiors does not diminish the meaning or importance 
of the question. A lesson of the mid‑century critique of verificationism is that unobservable 
structure can be indispensable to science.  What matters is what our best‑supported theories, 
together with mathematics, say the world would be like. Strong Cosmic Censorship is a 
paradigm. It asks whether generic Cauchy data admit a unique, canonical continuation past the 
inner horizon—i.e., whether the theory is deterministic there. Whether this statement is even 
well‑posed—whether its “generic” and “canonical” clauses have determinate content—depends 
on the set‑theoretic metatheory. Observable or not, there is a fact and we should know it. 

Objection 5: Real Physics Uses Approximations 

A final objection (already aluded to in Section 7) notes that physical measurements invariably 
involve finite precision and ε-approximations. No experiment can distinguish whether a real 
number equals one value or another to infinite precision. Perhaps the set-theoretic subtleties only 
affect an idealized theory that was never physically meaningful. 

This objection mixes up epistemology and metaphysics, much like the last.  One question is what 
the world is like. Another is what we can measure.  Determinism is about what the world is like, 
not what we can measure (or predict).  Indeed, if we must retreat to "deterministic up to ε" for all 
ε > 0, then the idealized theory is not deterministic! The question under investigation is whether 
the theory, not our currently best finite-precision measurements of it, has unique solutions. 

Coincidentally, questions about limits as ε → 0 are themselves mathematical questions that can 
be sensitive to set-theoretic background (see Appendix E). Whether there exists an ε₀ such that 
all solutions agree within ε₀, or whether the minimal divergence shrinks to zero, depends on 
which real numbers exist.  This is the kind of issue over which V=L and LC may disagree. 

9 Directions for future research 

The examples developed here are only the beginning of a new research program investigating 
how physical theories depend on mathematical foundations. In analogy with Friedman’s and 
Simpson’s “reverse mathematics,” we might call it reverse physics. The goal is to map how our 
choice of foundational axioms affects the behaviour of our most trusted physical frameworks 

Several directions deserve immediate exploration. 

Beyond measurability. This paper focused on Lebesgue measurability because it marks the first 
point where large-cardinal and constructible frameworks diverge. But projective determinacy 
also guarantees the Baire and perfect-set properties, and many arguments in stability, bifurcation, 
and ergodic theory tacitly rely on these topological forms of regularity. Identifying physical 
systems whose qualitative behaviour (phase bifurcations, attractor formation, or chaotic 
transitions) depends on these subtler properties would deepen our understanding of how 
mathematics and physics interlock. 
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Higher complexity. Again, at the levels beyond Σ¹₂, the two metatheories can disagree not only 
about regularity but about membership. At the Σ¹₃ level, for example, they can assign different 
truth values to whether a given set of reals exists at all. This opens the possibility of physical 
systems whose discrete outcomes—which particle decays occur, which crystal configuration 
forms—depend on which mathematical universe we inhabit. 

Quantum field theory. Several standard constructions in QFT already live high in the projective 
hierarchy. The Hadamard condition for physically admissible states, the definition of vacua in 
curved spacetime, and the renormalization and subtraction schemes of perturbative QFT all 
involve selection principles over definable function spaces. Understanding how these depend on 
background axioms could clarify deep ambiguities about state-selection and renormalization 
across inequivalent representations. 

Statistical mechanics. The construction of Gibbs measures by thermodynamic limits, the 
existence of phase transitions, and many ergodic and mixing properties rely on limits that climb 
the projective hierarchy. Even the notion of equilibrium—the convergence of ensemble averages 
to time averages—may turn out to be metatheory-dependent. Exploring whether equilibrium 
statements retain determinate sense in different set-theories could reveal a new conceptual layer 
in statistical physics. 

Computational complexity. Beyond questions of existence and uniqueness, one can ask about 
effective computability. Whether a system’s evolution is algorithmically decidable or whether its 
long-term behaviour is recursively enumerable can depend on which sets of reals one takes to 
exist. This connects the study of physical determinism with the growing field of physical 
computation theory, where limits of calculability are tested against the physical resources 
allowed by fundamental laws. 

Alternative foundations. Finally, these phenomena should be compared across other 
foundational settings—constructive mathematics, topos theory, homotopy type theory, and 
alternative set theories such as NF, ZF + AD, or Kripke-Platek. Such comparisons would help 
separate what is genuinely physical from what is an artefact of the particular set-theoretic 
framework we have chosen – or, more likely, in my view, to reveal that there is no distinction 
between the two. 

10. Conclusion: Determinism After Foundations 

Physicists and philosophers of physics commonly assume that disagreements in the foundations 
of mathematics—such as whether there are large cardinals or V=L—have no bearing on physical 
theory. I have argued otherwise. The examples surveyed demonstrate that the Axiom of 
Constructibility (V=L) and large cardinal (LC) axioms strong enough to prove Projective 
Determinacy (PD) can diverge on all the key aspects of determinism. But unlike Norton’s Dome 
and similar thought experiments, they are not just hypothetical.  The examples here include 
routine systems from across mathematical physics, both continuous and discrete. They also 
include frontier questions in the foundations of quantum mechanics and general relativity. 

Note that the point has not been the obvious one that we need to supplement standard axioms in 
order to decide questions that we could not within ZFC alone (as with, say, ZFC + Con(ZFC)). 
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That is an easy application of Gödel's theorems (Gödel 1931), assuming that those axioms are 
consistent (and recursively axiomatizable). V=L and LC are seriously entertained extensions of 
ZFC (Maddy 1997; Steel 2014; Koellner 2009). We have to take a stand on them like the stand 
that pioneers of set theory took with respect to the Axiom of Choice (Jech 2003, Ch. 1; 
Kanamori 2009, §0). The question of which of V=L or LC is true—or whether it even makes 
sense to say that one of them is true—is not a question that admits of proof. As Jensen writes: 

Most proponents of V=L and similar axioms support their belief with a mild version of 
Ockham's razor. L is adequate for all of mathematics; it gives clear answers to deep 
questions; it leads to interesting mathematics. Why should one assume more? ... I do not 
understand ... why a belief in the objective existence of sets obligates one to seek ever 
stronger existence postulates. Why isn't Platonism compatible with the mild form of 
Ockham's razor? ... I doubt that one could, with the sort of evidence I have, convert the 
mathematical world to one or the other point of view. Deeply rooted differences in 
mathematical taste are too strong and would persist (Jensen 1995, 400–401). 

One reaction to this situation is to hold that, despite widespread opinion to the contrary, Quine 
was right, and the search for new axioms is not different in kind from the search for new physical 
laws (Quine 1951, 1990). He writes, "sentences such as the continuum hypothesis...which are 
independent of [standard] axioms, can...be submitted to the considerations of simplicity, 
economy, and naturalness that contribute to the molding of scientific theories generally. Such 
considerations support... [the] Axiom of Constructibility, 'V=L'" (Quine 1990, 95). This position 
raises familiar quandaries. Set theorists are not responsive to experiment even to the extent that 
most theoretical physicists are (Maddy 1997, 155; see also Maddy 2011). But this much is at 
least true: when we say that general relativity predicts X, we mean that X follows from the field 
equations plus boundary conditions, where "follows from" is a relationship of logical entailment 
within a mathematical framework. If that logical entailment depends on which set-theoretic 
axioms we assume then the theory's content is metatheory-sensitive. This is not a defect of our 
measurements or approximations. It is a fact of theorizing. Recognizing this clarifies the 
relationship between mathematical and physical reasoning, showing that they are allied in a way 
that non-Quineans have no sufficiently appreciated (see Resnik 1997, Ch. 10; Colyvan 2001). 

My own view (Clarke-Doane 2020, 2024, 2025) is that no sense can be made of the claim that 
either V=L or LC is “really right”.  Each affords a legitimate arena in which to carry out 
mathematical reasoning—broadly like Euclidean and non-Euclidean geometries (see also 
Balaguer 1998; Hamkins 2012). The heady difference is that all the geometries can live in a 
single set theory. But any set theory takes itself to be maximal, to govern everything. This raises 
unresolved questions about how to formulate the "monism–pluralism" debate (Clarke-Doane 
2025, §1), and whether it is even factual (cf. Carnap 1950).7 But if one is a set-theoretic pluralist, 

7 Here is a brief argument that there can be no factual question in dispute under the heading the “monism-pluralism” 
debate.  Any precise statement of either view must be made within some background theory that fixes what counts 
as a universe of sets. Inside that framework, “V” denotes everything the framework recognizes, so the monist’s 
claim that there is one true V is trivially true by that framework’s own lights. But taken independently of any 
background the claim cannot be formulated without choosing another theory to interpret its quantifiers, and different 
choices yield different contents. The same holds for pluralism.  Its “many universes” are sets or proper classes in one 
background, not an external plurality that both sides could recognize. Because truth and reference for statements 
about V shift with the metatheory, the alleged disagreement’s truth value changes with background moves that 
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then, by the arguments given here, one must be a pluralist about core physical concepts too. 
("Concepts" rather than "concept" because if determinism is relative to set-theoretic foundations, 
then so too presumably is physical necessity, prediction, explanation, causation and more.)  As 
Quine writes in a different context, "Carnap has maintained that [the question of which axioms 
hold] is a question not of matters of fact but of choosing a convenient language form, a 
convenient conceptual scheme or framework for science. With this I agree, but only on the 
proviso that the same be conceded regarding scientific hypotheses generally (1951, XX)”  The 
question of whether a theory is deterministic along a given dimension is, on the present view, 
either misconceived or practical—whether to assume V=L or LC for the purpose at hand. Of 
course, this position should not be taken lightly. But it must be reckoned with given the 
independent plausibility of set-theoretic pluralism, and the entanglement of math and physics. 

Quantum-gravity theorists sometimes remark that we may need "new math" to formulate a final 
theory (Ashtekar & Lewandowski 2004; Polchinski 1998). I have argued that this "new math" 
may go much deeper than anticipated—not just new tools within a familiar framework, but new 
foundational frameworks. Future progress in physics may therefore depend on novel interactions 
between physics and the foundations of mathematics. 

Appendix A. The Projective Hierarchy and PD  

For sets of naturals, Σ⁰�/Π⁰�/Δ⁰� alternate first‑order quantifiers (Rogers 1987). For sets of 
reals, Σ¹₁ (analytic) are projections of Borel sets; Π¹₁ (coanalytic) have analytic complements; 
Δ¹� = Σ¹�∩Π¹�. PD (from strong large cardinals) implies every projective set is Lebesgue 
measurable, has the Baire and perfect‑set properties (Martin & Steel 1989; Kechris 1995, 
§38.B; Moschovakis 2009, Ch. 6). Analytic sets are regular already in ZFC; coanalytic need not 
be. 

Appendix B. Absoluteness and Regularity 

Shoenfield absoluteness: Σ¹₂/Π¹₂ truths with real parameters are absolute between transitive 
models of ZFC with the same reals (Shoenfield 1961; Jech 2003, Thm. 25.20). Membership in 
lightface Δ¹₂ sets is absolute; regularity (measurability/Baire) can diverge in V=L vs PD. 

Appendix C. Coding invariance  

This appendix gathers modest but essential facts about coding invariance that the main text 
presupposes. The guiding idea is that a single physical “data class” or “state class” can be 
represented in many mathematically equivalent ways—by different rational Cauchy‑name 
schemes, file formats, grids, or enumerations. The content of claims about definability, 
measurability, “almost all,” and canonical selection should not depend on which such coding we 
choose. What follows records the assumptions we make about recodings and proves that, under 
these assumptions, the definability and ensemble‑level claims in §§ 2–7 are invariant across 
choices. At the same time we do not claim that measurability itself implies coding‑invariance of 
the particular selector. Identity in the strong, representation‑independent sense still requires 
symmetry or structural uniqueness in the selection rule. 

should not matter if a single factual issue were in play. What remains is, if not a verbal question about what we 
happen to mean by “set”, a pragmatic question—which framework to use—not a factual one about what exists. 
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C.1. Setting and standing assumptions 

Fix two standard Borel spaces of codes 𝔛 and 𝔜 for the same underlying mathematical objects 
(e.g., two rational Cauchy‑name schemes for L²‑data, two ways of coding orthonormal bases, 
two encodings of spin configurations). A recoding is a bijection T: 𝔛 → 𝔜 whose graph and 
inverse graph are Borel.  Such T are Borel isomorphisms. When we treat the state space (e.g., 
reconstructed images, continuations, bases) as coded, we write 𝔖 and 𝔖′ for two standard Borel 
code spaces and U: 𝔖 → 𝔖′ for a Borel isomorphism. Call (T,U) an admissible recoding when: 

(i) T and U are Borel isomorphisms;​
(ii) for any fixed σ‑finite Borel measure μ on 𝔛 representing a physical probability law 
or ensemble (noise models, product measures, Gaussian/Gibbs states), the push‑forward 
T_*μ is the measure used on 𝔜;​
(iii) when the body of the paper uses Baire category rather than measure (e.g., 
“comeager”), we require T to be a Baire isomorphism for the chosen Polish topologies: 
there are dense G_δ sets C⊆𝔛 and C′⊆𝔜 such that T: C→C′ is a homeomorphism and 
maps meager sets to meager sets and comeager sets to comeager sets;​
(iv) if passing between codings requires fixed calibration parameters a (gauge choices, 
discretization furniture), we treat all pointclasses relative to a, i.e., Δ¹₂(a), Σ¹�(a), 
Π¹�(a). 

These assumptions are satisfied in the applications.  Rational Cauchy codings, dyadic‑grid file 
formats, and basis‑codes are standard Borel.  Natural “regrid,” “reencode,” and “rename” maps 
are Borel and measure‑class preserving.  Where “comeager” is used, the recodings are 
homeomorphisms on dense G_δ cores (as in the usual passage between equivalent Cauchy‑name 
systems). Nothing here presumes effectivity.  Names can code non‑computable reals, as they do 
in the main text’s examples. 

C.2. Pointclass and regularity robustness under recoding 

The first and most basic claim is that definability does not depend on coding. Let S⊆𝔛 be 
defined by a formula at some projective complexity (possibly relative to parameters a). Because 
Borel isomorphisms preserve projective pointclasses (pullbacks and push‑forwards of projective 
sets remain projective at the same level, uniformly in parameters), the image T[S]⊆𝔜 has the 
same pointclass as S, and conversely. In particular, lightface Δ¹₂ sets and relations, as used 
throughout § 2 and in the toy schemata of § 3, remain Δ¹₂ when transported across codings. 

Two corollaries matter in the paper. First, Shoenfield absoluteness is unaffected by recoding. 
Σ¹₂/Π¹₂ truths with real parameters (hence Δ¹₂ membership) remain absolute between transitive 
models of ZFC with the same reals regardless of which code space we use. Second, when PD is 
assumed, the regularity of projective sets (Lebesgue measurability, Baire property, perfect‑set 
property) is invariant under recoding, because these are properties of the underlying sets of reals 
and of their projective definitions, not of any particular naming convention. So, wherever the text 
invokes projective regularity under PD, or highlights its failure under V=L, this is code‑robust. 

C.3. “Almost all” and “comeager” are code‑invariant  
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Ensemble statements have the schematic form: “for μ‑almost all d∈𝔛, property P(d) holds.” 
Under an admissible recoding T, the truth value of such a statement is unchanged when we pass 
to 𝔜 and the push‑forward measure T_μ. Indeed, A⊆𝔛 is μ‑null iff T[A]⊆𝔜 is T_μ‑null.  
Likewise, a function f: 𝔛→ℝ is μ‑measurable just in case f∘T⁻¹ is T_μ‑measurable. Hence “P 
holds μ‑almost everywhere” is equivalent to “P∘T⁻¹ holds T_μ‑almost everywhere.” 

When the main text instead uses Baire category (e.g., “for a comeager set of data”), assumption 
(iii) guarantees that comeager/meager status is preserved by T, because T is a homeomorphism 
on a dense G_δ core and maps meager sets to meager sets. Hence, all ensemble‑level claims in 
§§ 4–7 retain their meaning and truth value across codings, provided we transport the measure 
(or the topology) in the canonical way. 

C.4. Transport of measurable uniformizations and selectors 

Let R⊆𝔛×𝔖 be a definable admissible‑pair relation (data → admissible states), and suppose s: 
𝔛→𝔖 is a measurable selector with graph(s)⊆R (e.g., the output of an arg‑min rule). Given an 
admissible recoding (T,U), define R′ = (T×U)[R] ⊆ 𝔜×𝔖′ and s′ = U∘s∘T⁻¹: 𝔜→𝔖′. Then s′ is 
measurable for T_*μ whenever s is measurable for μ, and graph(s′)⊆R′. In particular, if under 
PD a projective multifunction admits a measurable uniformization in one coding, the transported 
multifunction admits a measurable uniformization in any other coding. This justifies using 
whichever coding is convenient without jeopardizing the existence or measurability of selectors 
that the paper requires. (Conversely, if only Δ¹₂, merely definable uniformizations exist—as 
under V= L at higher projective levels—transport preserves definability but not measurability.) 

C.5. Equivariance, symmetry, and the strong notion of identity 

The identity notion in § 3.3 requires more than measurability.  It also requires that the same 
outcome be selected under all physically admissible recodings. Formally, let a (countable) group 
𝒯 of admissible recodings act on the data and state code spaces via (T,U)↦(T,U). Let Γ(x) be the 
admissible‑fiber multifunction and Φ a Borel secondary cost used to break ties, both 𝒯‑invariant 
in the sense that Γ(Tx)=U[Γ(x)] and Φ(Tx,Uy)=Φ(x,y). Consider the arg‑min fibers 
Γ★(x)=arg min_{y∈Γ(x)}Φ(x,y). 

(1) Structural uniqueness. If for μ‑almost every x the fiber Γ★(x) is a singleton {yₓ}, then the 
selector s(x)=yₓ is Borel whenever graph(Γ) is Borel, and it is 𝒯‑invariant in the strong sense 
s(Tx)=U(s(x)) for all (T,U)∈𝒯. Identity is automatic. 

(2) Genuine multiplicity. If Γ★(x) contains multiple elements related by the 𝒯‑action, then 
measurability alone does not enforce identity. Under PD one still obtains measurable selectors s 
with s(x)∈Γ★(x) for μ‑almost every x, but a 𝒯‑invariant selector exists only if there is a 
canonical 𝒯‑fixed choice in each fiber (for example, because additional physically mandated 
symmetry constraints or secondary costs pick out a unique representative). In the absence of such 
structure, identity can fail even though measurable selection holds. Under V=L, where only 
definable Δ¹₂ tie‑breakers may be available, both measurability and 𝒯‑invariance may fail. 

This dichotomy is exactly what § 3.3 exploits.  PD restores ensemble measurability at the 
projective level.  Identity still requires either structural uniqueness or an explicitly symmetric 
tie‑break. Nothing in the Appendix claims more than this, and nothing in the text needs more. 
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C.6. Relative parameters and gauges 

Occasionally, passing between codings requires fixed external parameters a (calibrations, gauge 
choices, discretization furniture). All definitions and results above lift uniformly relative to a: 
one simply works with Δ¹₂(a), Σ¹�(a), Π¹�(a), and with measures/Polish topologies coded 
relative to a. Shoenfield absoluteness (for Σ¹₂/Π¹₂(a)) and PD‑regularity/uniformization (for 
projective(a) sets) hold in the same way. So, every “relative” use of coding invariance in the 
paper is  secure. 

C.7. Application check (how the pieces are used in §§ 4–7) 

In inverse problems (§ 4), 𝔛 codes data d, 𝔖 codes reconstructions u, and R encodes the arg‑min 
relation for J_λ. Recodings T are regriddings/format changes; U is the corresponding state 
recoding. Ensemble claims (“for μ‑almost all d, …”) are transported by push‑forward; 
measurable uniformizations under PD carry over by § C.4; identity relies on structural 
uniqueness or symmetric tie‑breaks as in § C.5. 

In thin‑barrier capacity / Markov uniqueness (§ 5), A↦S_A is Δ¹₂ and the index set U={A : 
cap₁,₂(S_A)=0} is analytic. Changing how A and S_A are coded preserves pointclass and the 
truth of ensemble statements; the uniqueness hinge is therefore code‑robust. 

For zero‑temperature Ising (§ 6), σ∈{−1,+1}^{ℤᵈ} and the one‑step update U(σ) are coded in 
standard Borel spaces; “shape changes” of finite boxes induce Borel recodings. The “almost 
sure” claims are invariant by § C.3; measurable uniformizations at the projective level transport 
by § C.4; identity again hinges on symmetry/uniqueness, not on measurability alone (§ C.5). 

In decoherence / preferred basis (§ 7.1), ℬ_adm and the arg‑min graph are projective; 
admissible recodings T on environment‑states and U on bases are Borel and measure‑class 
preserving. Under PD, measurable selectors exist and transport; whether a single selector is 
𝒯‑invariant depends on symmetry/uniqueness (the group 𝒯 captures “mere renamings” of bases). 
Under V=L, definable but non‑measurable tie‑breakers may exist, and ensemble talk may be 
ill‑posed; both conclusions are code‑robust. 

For Kerr interiors (§§ 7.2–7.3), the data space 𝔇 and horizon‑trace space are coded in Polish 
spaces; recodings are the standard ones from discretization and representation changes. The 
analytic facts (existence of Γ(d), l.s.c. of 𝐄₀, Borel nature of 𝐄₁) are unaffected by recoding; 
ensemble claims transport by § C.3; the canonicalization step behaves as in § C.5. 

C.8. Summary 

Across the board, definability and regularity (the projective pointclasses that drive the 
metatheoretic toggles) are preserved across admissible codings; “almost all” and “comeager” 
claims are invariant once we transport measures and, where relevant, work with Baire 
isomorphisms; and measurable selectors transport along Borel isomorphisms. These three facts 
underwrite the main text’s ensemble‑level claims. What they do not say—by design—is that 
measurability alone forces identity. Identity, as argued in § 3.3, is secured either by structural 
uniqueness or by an explicit symmetry requirement. Otherwise it may fail even under PD.  
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Appendix D. Energy estimates used in §7  

Let 𝑇_{ab} = ∂_a φ ∂_b φ − ½ 𝑔_{ab}(∂φ)² be the energy‑momentum tensor and take the Killing 
field K = ∂_𝑣 in the near‑horizon region. The weighted current 𝐽_a = e^{κ𝑣} 𝑇_{ab} 𝐾^b 
satisfies 

∇·𝐽 = κ e^{κ𝑣} |∂_𝑣 φ|² + O(e^{−𝑣}). 

Integrating on slabs bounded by v = v₁,v₂ quantifies the blue‑shift amplification and controls the 
horizon flux in the first term, with boundary terms subordinate. These standard computations 
underwrite continuity of the trace map and lower‑semicontinuity of the flux part of ℰ (Wald 
1984; O’Neill 1995; Dafermos & Luk 2017). 

Appendix E. Finite precision, ε‑determinism, and why the toggle survives  

Finite precision does not wash out the metatheoretic dependence. First, the horizon‑flux 
component of ℰ is continuous where finite, and ℰ as a whole is lower‑semicontinuous in natural 
weak topologies.  Small data perturbations change costs only slightly.  Second, ε‑determinism 
for an observable 𝒪 on a data domain D amounts to the existence of ε₀ > 0 and a Borel map S 
with outputs within ε whenever inputs lie within ε₀. Under LC, the measurable projective 
uniformization in §7 yields measurable selectors (and Borel representatives μ‑a.e.) so that 
ε‑determinism makes sense for projectively defined domains D. Under V=L, the same D may be 
non‑measurable, so ensemble‑level ε‑determinism statements (“for almost every d”) are ill‑posed 
and rival Δ¹₂ selectors can disagree on a Δ¹₂, non‑measurable set regardless of ε. The analytic 
layer (continuity/l.s.c.) is again ZFC‑robust; the regularity layer that ensemble talk presupposes 
is where LC vs V=L continues to matter. 

Appendix F. Cumulative protocols for testing the determinism profile 

This appendix sketches a way in which one might actually look for the metatheoretic effects 
described in the paper. The goal is to ask whether ordinary physical systems behave as if the 
measurable, coding-invariant selections required by the large-cardinal (LC) picture are realized 
in nature. Each of the following protocols adapts an example already discussed—imaging, 
diffusion, spin dynamics, decoherence, and black-hole interiors—to an experimentally or 
computationally testable form. The idea is cumulative rather than one-off.  Repeated refinements 
and cross-checks probe whether observable quantities stabilize as they should if the underlying 
selections are measurable. When the LC profile holds, convergence and invariance emerge 
naturally. When only definable, non-measurable selections are available (as under V=L) the same 
procedures fail to settle down in reproducible, law-of-large-numbers, fashion. 

(1) Imaging and inverse problems (identity → uniqueness) 

In medical or geophysical imaging, one reconstructs a signal u from data d by minimizing a 
total-variation–Tikhonov functional 

  Jₗ(u; d) = ‖Au − d‖² + λ · TV(u), 
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with λ chosen by the usual discrepancy principle: pick the smallest λ such that the reconstruction 
fits within the noise tolerance τ ε. To test whether the reconstruction rule is measurably 
well-defined, one can process identical raw data under several admissible encodings (different 
interpolation schemes, file formats, or sampling grids) and track how the reconstructions 
converge as resolution increases. If the LC regularity obtains, the reconstructions approach one 
another.  The “reconstruct-then-recode” and “recode-then-reconstruct” procedures eventually 
agree. Under V=L, the gap between them should persist, revealing a failure of measurable, 
coding-invariant canonization. 

(2) Markov uniqueness and thin barriers (uniqueness) 

Porous or granular materials provide a way to test ensemble-level uniqueness. One can fabricate 
samples in which the insulating barrier S is generated by a single calibration rule, e.g., adjusting 
a threshold θ so that the blocked fraction equals a target φ*. Measuring diffusion or the 
Dirichlet-to-Neumann map then tells us whether the associated operator L = −∇·(a∇·) has a 
unique Markovian extension. If LC regularity governs the system, the fraction of “unique” 
versus “non-unique” samples stabilizes and remains the same across equivalent coarse-grainings. 
If V=L were the right backdrop, the frequencies could drift with the coarse-graining scheme, 
betraying the loss of measurable uniformization. 

(3) Zero-temperature Ising dynamics (identity, discrete) 

A more discrete test arises in spin-system arrays. In a two- or three-dimensional ferromagnet, let 
us define the one-step update U that flips precisely those spins whose flip lowers the limiting 
energy density along van Hove sequences. Approximating the thermodynamic limit with finite 
boxes of different shapes (cubes, slabs, nearly square regions) one can compare how the updates 
behave across shapes. If the underlying selection is measurable (the LC case), the updates 
coincide almost surely as the volume grows. If not, distinct shapes can yield distinct outcomes 
for a fixed initial configuration, and that disagreement fails to wash out.  This would indicate 
V=L-style identity failure. 

(4) Decoherence and pointer-basis selection (uniqueness / identity) 

Quantum platforms such as optomechanical resonators or trapped ions allow a parallel test on the 
quantum side. Fix the system Hamiltonian and vary the environment’s initial state ρ_E across a 
family of thermal or Gaussian mixtures. For each run, evaluate a dephasing-rate functional Φ[B; 
ρ_E] over a small menu of physically admissible bases B (position-like, momentum-like, etc.), 
and let the basis minimizing Φ define B*(ρ_E). If the map ρ_E ↦ B*(ρ_E) stabilizes in 
frequency and remains invariant under equivalent ways of encoding ρ_E, the ensemble behaves 
measurably, as LC predicts. Persistent dependence on the encoding—different “preferred bases” 
under equally legitimate parametrizations—would be evidence of the opposite profile. 

(5) Elliptic media and weak-form coherence (coherence) 

In conductivity or heat-flow experiments, one can vary material coefficients ν_A(x) = ν₀ + 
α·χ_{W_A}(x), where each W_A is generated by a uniform calibration or thresholding rule. The 
question is whether the weak formulation 
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  a(u,v) = ∫_Ω ν_A(x) ⟨∇u, ∇v⟩ dx 

remains stable (bounded and coercive) under different admissible codings and refinements of A. 
Empirically, all W_A will of course be Borel, but the experiment tests whether a single physical 
rule yields coding-invariant results (the LC profile) or whether outcomes depend on 
representational choices (a V=L–type incoherence). 

(6) Kerr-interior simulations (identity / ensemble) 

Numerical relativity offers an analogue of the same idea. Evolve the wave equation □_g φ = 0 
inside a sub-extremal Kerr black hole from an ensemble of initial data d ∈ 𝔇. Compute the 
weighted horizon flux ℱ(d) and apply the lexicographic selection described in the main text, first 
minimizing energy mildness E₀, then late-time tameness E₁. Run the full simulation twice under 
distinct but equivalent discretization schemes. If the LC regime applies, the two pipelines 
converge toward the same continuation as resolution increases. If V=L, the divergence between 
them remains bounded away from zero.  This is a reproducible split in what counts as the 
“canonical” continuation. 

Interpreting the outcomes 

If the stability indices and cross-coding discrepancies (quantities such as SSI(n), SC(n), and their 
Kerr analogue) decay toward zero, if ensemble frequencies settle, and if law-of-large-numbers 
behavior appears across representations, the evidence supports the LC-style regularity the 
analysis presupposes. On the other hand, a plateau in these indices, persistent dependence on 
arbitrary codings, or lack of convergence would suggest that only definable, non-measurable 
selections are operative, the V=L profile. Note that none of these experiments involves exotica.  
They just ask whether nature enforces measurable, coding-invariant, and refinement-stable 
behavior. If it does, convergence and invariance will appear on their own.  If it does not, the 
attempt to preserve those scientific virtues will fail in systematic, reproducible ways. 
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