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Abstract

Baroque questions of set-theoretic foundations are widely assumed to be irrelevant to physics. In
this article, I demonstrate that this assumption is incorrect. I show that the fundamental physical
question of whether a theory is deterministic—whether it fixes a unique future given the
present—can depend on one's choice of set-theoretic axiom candidates over which there is
intractable disagreement. This dependence is not confined to hypothetical examples. It reaches
into mainstream, foundational, and frontier physics, including full discrete systems, the preferred
basis problem in quantum mechanics, and the dynamics of Kerr-like black hole interiors.

I argue that beyond the familiar analytic notion of well-posedness, a theory’s determinism profile
depends on a regularity layer, on whether the definable sets that carry our ensemble and
canonicalization talk are measurable, have the Baire property, and admit measurable selectors.
Competing axiom candidates extending ZFC—Gddel’s Axiom of Constructibility (V=L) and
large cardinal (LC) assumptions strong enough to imply Projective Determinacy
(PD)—diverge on these regularity facts. The divergence has three faces. First, coherence: weak
formulations presuppose measurability of coefficients and under V=L one can arrange definable
pathologies that collapse the statement of the weak problem, while under PD all projective sets
are regular. Second, uniqueness: many determinism results are ensemble claims—“for almost all
initial data there is a unique continuation”—whose sense depends on measurability or Baire
category at projective complexity. PD secures this, while V=L may not. Third, identity: when
multiple admissible continuations remain, physical practice demands a canonical,
representation-independent choice. That demand is a measurable uniformization problem. PD
supports measurable, symmetry-constrained selectors at the I1': level, while V=L guarantees at
most A'; (hence possibly non-measurable) tie-breaks. I develop a number of live cases, showing
how the regularity properties toggle with the metatheory. The upshot is that which extension of
standard ZFC we adopt changes what our best-supported theories say. I close by sketching a
research program, reverse physics, on analogy with Friedman’s and Simpson’s reverse
mathematics, whose aim is to map a theory’s physical content against the foundational axioms
that make its ensemble and canonical claims intelligible. I conclude that, given the entanglement
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of set-theoretic metatheory and physics, either physical theories must be relativized to set
theories (in which case physics itself becomes relative), or, as Quine (1951, 1990)
controversially argued, the search for new axioms to settle undecidables may admit of empirical
input.

1. Introduction: Set Theory Meets Physical Content

Physical theories are formulated with mathematics, yet the choice of set-theoretic background is
almost never considered. This paper shows that even choice of extensions of standard set theory
can have profound physical consequences. I focus on determinism in the standard Hadamard
sense (Hadamard 1923): for admissible initial data there exists a solution, it is unique, and it
depends continuously on the data (Evans 2010, §2.1, §6.4; Brezis 2011, Ch. 9). These verdicts
turn on background analytic hypotheses—such as the measurability of coefficients, regularity of
domains, compactness of admissible sets, and the availability of measurable selectors—and those
hypotheses can, I show, depend on speculative extensions of standard set theory.

Let ZFC denote Zermelo-Fraenkel set theory with Choice (Jech 2003). Like any recursively
axiomatized theory, it must be incomplete if consistent (Godel 1931). The statements which it
fails to settle reach well into ordinary mathematics (Cohen 1963, 1966; Solovay 1970). Two
opposed extensions of ZFC have been proposed to mitigate incompleteness. Large cardinals
(LC) strong enough to imply Projective Determinacy (PD) —for instance, ® many Woodin
cardinals (Kanamori 2009, Ch. 6; Martin & Steel 1989)—guarantee that all projective sets are
Lebesgue measurable and have the Baire and perfect-set properties (Kechris 1995, §28, §38-39;
Moschovakis 2009, Ch. 6). Alternatively, Godel's Axiom of Constructibility (V = L) (Godel
1940; Jech 2003, Ch. 13) yields a minimal universe in which simply definable projective sets
have pathological regularity properties. The two outlooks "embody radically different
conceptions of the universe of sets" (Jensen 1995, 401).

We will see that such simply definable sets can occur inside textbook physical models—as
coefficients in weak formulations (Evans 2010, §5.8, §6.2), as "thin" barriers whose capacity
determines uniqueness (Ma & Rockner 1992; Fukushima, Oshima & Takeda 2011, Ch. 2), or as
admissible sets or global tie-breaking rules. When this is the case, V=L and LC disagree about
what I call the determinism profile of the system—the coherence, uniqueness and identity of
solutions to the system's equations. The equations do not change; only the metatheory does.

2 For discussion of other “restrictive” axioms, besides V=L, see Fraenkel, Bar-Hillel & Levy (1973, §6.4). A
common narrative among set theorists is that J = L is false, and “clearly” so. Maddy (1997, Pt II, § 4) contains a
nice explication of the reasons advocates of this narrative supply. But, as we will see, this view is “not unanimously
shared” (Fontanella 2019, 32) Devlin writes, “What is my own view?...Currently I tend to favour [V=L]....At the
moment I think I am in the majority of informed mathematicians, but the minority of set theorists...”[1981, 205].
Arrigoni says, “I believe it perfectly in order to characterize . . . ZFC + V=L as intuitively plausible . . . ” [2011,
355]. And Pinter writes, “[TThere is a strong intuitive basis for considering L to be the class of all sets. By definition,
L contains all the sets that are describable by a formula in the language of set theory. And there is no practical reason
to admit sets which lack any description, for we would never make use of such sets. They would merely sit there and
muddy the waters. Thus, from this point onward we shall assume the following important axiom: Axiom of
Constructibility: Every set is constructible, that is, every set is in L. This axiom is usually denoted by the symbol V'
=L1.” (2014, 227).



Before turning to specific cases, it is helpful to state explicitly what, in the ensuing examples,
depends on the metatheory and what does not. Some features of mathematical structure are
invariant across all transitive models of ZFC containing the same reals. Others are exquisitely
sensitive to whether one works within V=L or under large cardinals sufficient to imply Projective
Determinacy (PD). Membership in any lightface A': set of reals is absolute, as are the truth
values of X'; and IT': formulas with real parameters—facts guaranteed by Shoenfield’s
absoluteness theorem. By contrast, the regularity properties of such sets—whether they are
measurable, possess the Baire property, or admit perfect subsets—depend on the set-theoretic
background. Under V=L, there exist lightface A': sets that are non-measurable and nonmeager;
under PD, every projective set is measurable, has the Baire property, and contains a perfect
subset if uncountable. The same contrast determines whether standard “genericity”
idioms—phrases like “for almost all” or “for a comeager set of initial data”—have any
well-defined sense at all. Finally, many uniformization and selection results that guarantee
measurable or Borel choice functions for definable relations are valid at the projective level only
under determinacy assumptions. They can fail in =L. The analytic core of the physics
examples—the local PDEs, variational arguments, and energy estimates—remains within ZFC.
What toggles is not the existence of equations or the validity of pointwise theorems, but the
status of ensemble-level statements that presuppose regularity (i.e., with respect to
Lebesgue-complete — or at least Borel — probability measures or Baire category; these
presuppose measurability/Baire regularity). Whenever the subsequent discussion invokes
“almost every,” “typical,” or “generic,” that presupposition will be noted explicitly.’

The moral I will press throughout is modest in form but not in effect. I will not argue that the
analytic layer of our best theories rests on exotic axioms. I will argue that when we elevate
pointwise analytic facts into ensemble or canonical claims indispensable for science, and when
we enforce the scientific ideal that such claims be robust across every admissible way of probing
or encoding the same underlying situation, we thereby adopt a IT'>-shaped robustness clause:

UT(x,y) :© Vp € < N*N dq € Q@ Good(x,y,p,q),

where #is a Borel family of admissible sampling/refinement policies. That idealization is not an
optional flourish. It is how we make precise what physicists have always meant by
“independence of the mesh,” “discretization-invariance,” “basis-insensitivity,” and so on.
Set-theoretic metatheory starts to matter at that IT'z level. Under large cardinals strong enough
for Projective Determinacy, the projective regularity needed to read our ensemble idioms is
guaranteed, while under V=L it can fail even for simply definable sets. What follows tracks this
divide in concrete cases and shows that talk of “almost all,” “typical,” and “canonical” is either
well-posed or contentless depending only on whether we assume V=L or LC in the metatheory.

2. Three Regularity Hinges at A':

Physicists speak comfortably about what holds for almost all initial data, or typically across a
class of configurations. Those phrases read as harmless English, but they presuppose something
precise: that the underlying definable sets of reals are measurable or have the Baire property.
Whether that presupposition is warranted turns out to depend on the set-theoretic background.

3 The metatheoretic sensitivity of determinism is not limited to ensembles, though they are my focus. See Section
7.3.



This section isolates the exact places where the background matters and explains why those
places—what [ will call the regularity hinges—are routine in physics.

The contrast begins with a simple construction. Within V = L there is a parameter-free
(lightface) A': well-order < of the reals. From < one can define sets with pathological regularity.
Let W € [0,1]* be given by W = {(x,y) : x <y}; then x_W is also lightface A'.. In V=L one can
arrange that horizontal sections of W have outer measure 1 while vertical sections have measure
0, a definable Sierpinski—Fubini pathology. By contrast, under large cardinals strong enough for
Projective Determinacy (PD), every projective set is Lebesgue measurable and has the Baire and
perfect-set properties. Thus, the very same A': definition denotes very different kinds of sets
depending on whether one works in V = L or assumes large cardinals sufficient for PD (Devlin
1984; Jech 2003; Sierpinski 1924; Martin & Steel 1989; Kechris 1995; Moschovakis 2009).

From this starting point, three regularity hinges for determinism fall out naturally:

(1) Coherence (does the weak formulation make sense?)

In weak PDE formulations, coefficients must be measurable for Lebesgue integrals to exist. If a
coefficient is of the form v(x) = vo + a-y_W(x), then under PD measurability is secured and the
weak problem is meaningful. But under V = L one may choose W non-measurable so that the
integral in the bilinear form fails to be defined, collapsing the weak formulation. (Evans 2010;
Brezis 2011 corroborate the analytic side; the toggle is purely in regularity.)

(2) Uniqueness-as-genericity (may we say “for almost all” or “comeager”?).

Many results assert uniqueness not pointwise but for almost every datum or on a comeager set of
parameters. Those ensemble claims are meaningful iff the relevant definable sets are measurable
or Baire. PD guarantees these properties for projective sets. V = L may fail them, so the very
grammar of “almost all” can break down at the projective level used by the argument (Kechris
1995; Moschovakis 2009).

(3) Identity (representation-independence / canonical selection)

Often the equations admit many admissible solutions, and practice demands a canonical choice
that is invariant under admissible recodings (changes of units, gauges, coding conventions).
Canonicalization is a measurable selection / uniformization problem for a definable
multifunction. At low complexity (analytic graphs) ZFC already secures measurable selectors
(Kuratowski—Ryll-Nardzewski; Castaing—Valadier). But once the construction genuinely reaches
the projective level (as it will when we formalize “robustness across all admissible procedures”),
PD is needed for measurable uniformization. Under V=L only definable but possibly
non-measurable selections are guaranteed. The equations do not change. What changes is
whether a representation-independent selection with ensemble meaning can be made.

Two clarifications are in order. First, none of this denies that much of analysis remains absolute
across transitive models with the same reals. X'»/II': truths with real parameters and membership
in lightface A’z sets are Shoenfield-absolute. The regularity (measurability/Baire) of certain
projective sets diverges between PD and V=L. Second, I do not claim that genericity idioms are



globally senseless in V=L. The point is that for the specific projective sets generated later by
stability/UT predicates, measure and category can lack determinacy in V = L, while PD restores
the regularity that those idioms presuppose. (Shoenfield 1961; Jech 2003, Thm. 25.20.)

With these hinges made explicit, the later sections will simply track which hinge is being
touched in each example—coherence in weak formulations, uniqueness-as-genericity in
ensemble claims, and identity in canonicalization—so the reader can see exactly where the
set-theoretic background enters and why it matters.

3 Three Toy Schemata

The three regularity hinges introduced above—coherence, uniqueness-as-genericity, and
identity—can be displayed most transparently in simplified, self-contained models. These “toy
schemata” are not meant as new physical systems but as clean illustrations of how the same
formal setup can yield distinct determinism profiles depending on whether one works in V=L or
under large cardinals sufficient for PD. Each model isolates one hinge while keeping the others
fixed, making the logical source of the metatheoretic toggle explicit.

The first, concerning coherence, shows how even the meaningfulness of a weak formulation can
depend on regularity. Let Q & [0, 1]* be a bounded Lipschitz domain, and consider the bilinear
form

a(u,v) = [ v(x) (Vu(x), Vv(x)) dx,

with v(x) = vo + @ - _W(x), where vo > 0, a # 0, and W & [0, 1]? is lightface A'.. Under large
cardinals implying PD, x_W is measurable, so v & L"0(Q) and the Lax—Milgram conditions are
met; the weak form is coherent and yields a unique solution u € Ho'(QQ). Under V=L, however,
one can choose W to be non-measurable, and then the Lebesgue integral defining a(u,v) is
undefined in the ordinary sense. The statement of the equations fails. The same operator —V - (v
V ) with the same boundary data thus makes or fails to make analytic sense according to the
metatheory (Evans 2010, §§ 5.8, 6.2; Brezis 2011, Ch. 9). Although none of the later, more
physical examples—inverse problems, Markov uniqueness, Ising dynamics, decoherence, or
Kerr interiors—produces non-measurable coefficients for any fixed instance, this toy example
clarifies what a coherence failure means. The equations themselves become ill-defined in V=L.
Unlike other toy examples, like Norton’s Dome (Norton 2008; Malament 2008), whose
indeterminism arises from the dynamics, the failure here emerges from the interaction between
physical laws and set-theory. (For further discussion of the concept of determinism and what
theories count as such, see Earman 1986, 2007, 2009; Fletcher 2012; Wilson 2009; Ismael 2016;
Loewer 2001, 2020; Chen 2022; Butterfield 2007; Halvorson, Manchak & Weatherall 2025).

The second model, the uniqueness schema, keeps coherence secure but asks whether a law can
single out a unique outcome “for almost all” admissible data. Under LC (sufficient for PD),
projective relations arising from arg-min schemes admit measurable selectors. Amaps: H — X
can then be defined with s(u) € ' (u) for p-almost every u, so ensemble statements like “for
almost all u the continuation is unique” are meaningful. Yet measurability alone does not
guarantee invariance. A measurable selector may still depend on the chosen coding. Invariance
obtains only when the minimizer is structurally unique (through strict convexity or lower



semicontinuity) or when the tie-break is explicitly restricted to respect the recoding group. In V =
L, by contrast, measurable uniformization can fail at this projective complexity. A’z selectors still
exist by appeal to the lightface well-order of R, but they need not be measurable, and then
ensemble idioms such as “almost all,” “typically,” and “comeager” lose determinate content.
What shifts is the status of the measurable law that assembles the solutions into an ensemble.

Finally, the identity schema adds one further layer. Even when the equations are well-posed and
a measurable selector chooses an outcome for almost every case, we may still ask whether that
choice is representation-independent—insensitive to any relabeling or recoding that carries no
physical content. Let X be a Polish space of admissible states and I' & X x X a definable
relation whose fibers I'(x) are non-empty, compact, and convex. A Borel “secondary cost” @ : X
x X —>R U {+oo} breaks ties among solutions, and a selector s satisfies s(x) € I'(x). If &
denotes the group of admissible recodings T : X — X, then s is J~invariant iff s(Tx) = T(s(x))
and T(s(x)) € I'(Tx) for all T and x. Within ZFC, measurable selectors exist whenever the
graph(I') is analytic (Kuratowski & Ryll-Nardzewski 1965; Castaing & Valadier 1977), but
measurability alone does not ensure J~invariance. True identity arises only through structural
uniqueness or explicit symmetry requirements (Appendix C). When the graph of I reaches
projective complexity (as it does once we impose the IT': “universal tameness” constraint UT
introduced below) PD guarantees projective regularity and measurable uniformization (Kechris
1995, § 38.B; Moschovakis 2009, Ch. 6; Martin & Steel 1989). This restores the ensemble
reading of “for p-almost all x, the canonical continuation minimizes ®.” But PD alone does not
force full invariance when multiple minimizers exist. Symmetry or structure does. To sum up:
coherence makes the law intelligible, uniqueness makes the ensemble verdict meaningful, and
identity makes the verdict representation-independent. LC implying PD secures the measurable
scaffolding needed for the last two. Symmetry and geometry does the rest (Appendix C).

4. Inverse problems and imaging

Inverse problems make vivid the difference between the analytic layer, which ZFC secures, and
the regularity layer, which is where metatheory enters. To keep things concrete, let us stay with
the total-variation (TV) Tikhonov family,

J Mu; d) = 1A u—dI* + & - TV(u),

with A linear and TV the usual anisotropic total-variation norm. For each fixed A > 0, strict
convexity (optionally reinforced by a tiny quadratic term) yields a unique minimizer u_A(d) that
depends continuously on the data d. All of this is secure in ZFC and independent of any
set-theoretic speculation. But the choice of A pushes beyond this. The discrepancy principle
chooses

Md)=min {LE Q :l1Au Md)—dI<T-g}.

Because the acceptance set for each A is closed and we minimize over a countable set, the map d
= u_{Md)}(d) is Borel. Therefore, ensemble statements such as “for p-almost all d, the
reconstruction has property P” have determinate sense in ZFC. The subtlety emerges when we
enforce the methodological ideal that a reconstruction rule be robust across all admissible
refinements—across discretizations, interpolation schemes, iteration schedules, and file formats



that carry no physical content. Let us code each admissible refinement policy by a real number, p
& N”N (this is the standard coding move used throughout numerical analysis: a single real
names an entire infinite refinement schedule). Now say that R(d, 1) holds just in case

for every p there exists m such that for all n > m,
the refined reconstruction u™{(p,n)} A(d) meets the tolerance IA u"{(p,n)} A(d)—dI <7 -,
and no smaller rational A has that property.

The logical form of the stability clause—“Vp € NN Im Vn>m ...”—is IT'» with an
arithmetical matrix. Minimality over (" is a bounded quantifier and does not raise the
complexity. Thus, the predicate “R(d, A) and A is least” is I1'z in d and A. This is the first point
where the metatheory matters. At IT'2, V=L and large-cardinal frameworks diverge on regularity.
Under PD (secured by strong large cardinals), all projective sets are Lebesgue measurable and
have the Baire property. Projective uniformization and measurable selection hold at this level.
Under V=L, by contrast, we may still define a selection by appealing to the A'> well-order of [®
(take the <-least A with R(d, A)). But such a selection need not be measurable. Hence, the
grammar of “for almost all d” can lose determinate sense even though, for each individual d, the
analytic reconstruction u_{A}(d) exists and is unique for every fixed A.

If we now define the “universally stable” choice A*1(d) to be the least rational A with R(d, 1) and
set the reconstruction to be u_{A"1(d)}(d), V=L and LC sufficient for PD induce divergence.
Under PD, the graph of the admissible-pair relation is projective and admits a measurable
uniformization. Ensemble clauses such as “for p-almost all d, the reconstruction by the
universally stable rule has property P’ are meaningful. By contrast, under a constructible
background, only definable (indeed, lightface) selections are guaranteed and measurability may
fail at precisely this I1': level. The analytic problem has not changed. What varies is whether the
ensemble-level claim (the law-like generalization across all admissible refinements) has a
determinate truth value. That is the uniqueness-as-genericity hinge in situ.*

5. Thin-barrier capacity, Markov uniqueness, and physically natural projective families

A second, more geometric arena in which the metatheoretic hinges surface is in the analysis of
diffusions through “thin” barriers. Physically, these problems model the passage of heat, charge,
or mass through a medium whose microscopic structure may include nearly insulating interfaces.
Mathematically, they are governed by the Dirichlet form

E(u) =] _{Q\S} (aVu, Vu) dx,

where Q & R is bounded and Lipschitz, a(x) is measurable and uniformly elliptic, and S & ('is
a closed barrier. The associated operator L u=—V -(aVu) is said to be Markov unique if it
admits exactly one closed, Markovian extension on L*(Q2) (Ma & Rdckner 1992; Fukushima,
Oshima & Takeda 2011). The operator is Markov unique just in case capi,2(S) = 0, and a standard

4 Formally, with p € N*N coding an admissible policy and ¢ arithmetical, the stability clause has the form Vp €
NN dm € N Vn >m ¢(d, A, p, n), which is IT'z in (d, A). Minimality over A € Q" is a bounded quantifier and does
not raise the complexity. Thus the set S = { (d, A) : R(d, A) & A minimal } is IT's, and its projection A = { d : A R(d,
A) & A minimal } is X'2. Shoenfield absoluteness applies pointwise. The measurability of A and the existence of
measurable uniformizations of S are where PD and V=L diverge.



certificate shows that cap1,2(S) = 0 iff 3 (u_k) (rationally coded) with u_k > 1 near S and €(u_k)
< 27k Hence, the index set

U={A:cap,(S_A)=0}

is analytic (£'1) for any reasonable coding A =~ S A. Ensemble statements like “for almost all A,
Markov uniqueness holds” are, by themselves, unproblematic in ZFC. The regularity layer
appears once we align the model with laboratory practice. In controlled deposition or filtered
percolation, one tunes a threshold 0 so that the blocked fraction converges to a target ¢ % in the
limit, and one expects this calibration to be robust across all admissible filtering/refinement
policies. Let us code each policy by p & N”N. For a given micro-environment code A, define
0_A to be the least rational 6 such that

for every p there exists m with the coarse-grained coverage within 2™ of ¢ % for all
later stages.

SetS A={x:0 A(x;0 A)>6_A }. The quantifier structure in A = 6 _A is, again, [1":
(universal over reals, then existential over naturals), and so A = S_A sits at that projective level.
For each fixed A, the event cap1,2(S_A) = 0 is analytic in the code for S A, but the ensemble we
care about ranges over a [1';-defined family of barriers. Under PD, all such projective sets are
measurable, and projective uniformization yields measurable selections wherever we need them.
The phrase “for almost all A” has determinate sense when applied to this IT': family. Under V=L,
we still have definable (indeed lightface) ways to choose 6 A and hence S A by appealing to the
A': well-order. The problem is that measurability is not guaranteed at the I1': level. The upshot is
the same hinge as in inverse problems. The PDE and the analytic proof of Markov uniqueness
are unchanged. But the ensemble-level uniqueness claim toggles with V=L and LC.

6 Zero-temperature Ising: natural tie-breakers and definable versus measurable selection

It is natural to wonder if the dependence of determinism on set-theoretic background is confined
to continuum systems. But it actually, even more accessibly, in a completely discrete model: the
ferromagnetic Ising lattice at zero temperature under synchronous (parallel) updates. This case
shows how the identity hinge can arise even when every object in play (the lattice, the
configuration space, and the update rule) is Borel and unproblematic in ordinary analysis.

Fix d > 2, finite-range ferromagnetic couplings J {ij} > 0 on Z¢, and external field h € [&.
Configurations are 6 € {—1, +1}"{Z} with local field

ti(o) = .~} J{ij} o_j + h.
The parallel zero-temperature update is
(U_b(o))i=+1if li(c) > 0; (U _b(c))i=-1ifli(c) <0; (U_b(o)) = bi(o) if li(c) =0,

with b a local tie-break. For any local measurable b, U b : X — X is Borel on X = {—1, +1}"{Z¢},
so analytic questions about existence and “p-almost sure” properties are clear in ZFC.



Identity (in the sense of Section 2) is where the metatheory enters. Suppose we insist, as we
should, that the tie-break be invariant under admissible recodings—lattice symmetries,
relabelings of sites, and shape conventions for van Hove limits—and that it be stable across
every admissible refinement policy p € N”N that specifies how the limit is taken. Selecting a
canonical update T with those invariance and stability properties is naturally formulated as a IT':
uniformization problem. The stability clause has the “%Vp Im ¥V n>m ...” shape, and the
invariance clauses are Borel constraints under the recoding group 7. In frameworks with
projective regularity (like LC sufficient for PD), measurable uniformizations exist at this level,
and we can say “for product-measure almost all 6, a canonical, representation-independent
update 1(o) is defined.” What measurable uniformization does not do, by itself, is force
uniqueness of T when there are symmetries in the fiber. For identity in the strong sense we still
need either structural uniqueness or an explicitly symmetric tie-break rule. In constructible
frameworks, on the other hand, one can define a A’: tie-break using the lightface well-order.
And, yet, measurability—and hence the literal sense of the ensemble idioms—can fail at this 1"
complexity. So, again, the dynamics U_b is the same. But whether law-like canonicalization has
a measurable, representation-independent realization, wobbles between V=L and LC.

7 Metatheory in Fundamental Physics: the analytic and regularity layers

The preceding sections have shown that even ordinary systems (imaging, diffusion, spin
dynamics) reveal subtle dependence on set-theoretic background once we ask ensemble or
canonical questions. But one could still wonder whether such dependence touches paradigmatic
fundamental physics. This section argues that it does. The examples come from the two main
pillars of modern physical theory: quantum mechanics and general relativity.

Physicists often assume that determinism is a purely analytic matter. One asks whether the
relevant equations admit a well-posed initial-value problem (whether a unique solution exists and
depends continuously on the data). That analytic layer of the theory is indeed captured in ZFC.
The function spaces, continuity estimates, and energy inequalities that define well-posedness are
absolute between transitive models sharing the same reals. But physical practice involves more
than existence and uniqueness. When we speak of generic initial data, typical environments, or
canonical continuations, we appeal to ensemble or uniformization claims that presuppose
regularity (measurability, the Baire property, or the existence of measurable selections for
definable multifunctions). Those assumptions can fail in the constructible universe yet hold
under large cardinals strong enough for projective determinacy.

This division marks a boundary between two layers of physical reasoning. The analytic layer
covers what the equations literally say. The regularity layer enters when we elevate pointwise
results to law-like generalizations. The logical form that captures this boundary can be written as

UT(x,y) :© Vp € NN Jq € Q" Good(x, Yy, p, q),

where UT stands for “universal tameness” or “universal stability,” p ranges over a Borel set of
admissible sampling or refinement procedures, and Good(x, y, p, q) is an arithmetical check
expressing stability within tolerance q. This quantifier pattern—universal over reals followed by
existential over rationals—has I1'> complexity. Note that this is not an artificial device. It simply
formalizes a familiar scientific ideal of robustness, that results remain invariant across all



admissible ways of probing or discretizing the system. We have seen, however, that I1': is the
level at which large-cardinal and constructible frameworks begin to diverge on regularity.

7.1 Decoherence and the preferred basis

Among the most discussed questions in quantum foundations is the preferred-basis problem:
why do certain bases of a system’s Hilbert space behave classically under environmental
coupling? Decoherence theory and the program of “quantum Darwinism” (Zurek 1981, 2003;
Schlosshauer 2007; Ollivier, Poulin & Zurek 2004; Riedel, Zurek & Zwolak 2014) answer that
question dynamically, treating basis selection as a physical process. Whatever the other problems
with this view, the present point is that the idiom of the literature—*“for almost all
environments,” “for typical interactions”—is ensemble, and thus falls within the regularity layer.

Let H be a finite-dimensional, finite-energy subspace, so that U() is compact. Let B adm &
U(H) be a non-empty compact set of admissible orthonormal bases, such as those compatible
with measurement resolution. Let .#’be a Polish space of admissible environment states, for
example thermal or Gaussian mixtures with bounded energy. ForeachB € B admandp E €
% define the decoherence functional

®[B; p_E] =T E_{p_E}(l offdiag B(U_t p_SE U_t¥) l) dt.

Continuity of t = U _t and of the Schatten-1 norm ensures that B =~ ®[B; p_E] is continuous,
hence each arg-min set ['(p_E) = argmin_{B& 3 adm} ®[B; p_E] is compact with analytic
graph. This is all absolute in ZFC. Ensemble statements such as “for p-almost all p_E the
minimizing basis is unique” have determinate sense within standard mathematics.

The regularity issue arises when we enforce the routine scientific ideal that the preferred basis be
robust across all admissible probing procedures. Let » = NN encode those admissible
measurement or coarse-graining policies. Say that B is universally stable for p_E just when

Vp € # 3q € Q upper-density_p{t: loffdiag B(U tp SE U_tf)l.>q}=0.

This requirement that decoherence results stabilize no matter how we sample or coarse-grain
gives UT(B, p_E) the IT'» form above. If we refine the arg-min relation by a secondary Borel cost
®: penalizing small residual coherence, we obtain

I'*(p_E)=argmin_{BET«(p_E)} ®:[B; p_E] subject to UT(B, p_E).

The graph of I'% is projective at level IT'2. In settings with projective regularity (guaranteed by
large cardinals) measurable uniformizations exist, providing universally measurable selectors
p_E » B (p_E) and making ensemble statements such as “for almost all p_E there exists a
measurable canonicalization p_E - B (p_E), and when the secondary cost plus symmetry
constraints fix a single B¥, the resulting canonical basis is representation-independent”
meaningful. In a constructible setting of V=L, however, only definable but not necessarily
measurable tie-breakers are ensured. So, rival definable choices can disagree on non-measurable
A"z sets. The physical Hamiltonian and environment are identical in both worlds. What changes,
as before, is whether the ensemble-level claim about canonical basis selection is well-posed.
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7.2 Determinism inside Kerr black holes

An analogous boundary appears in general relativity’s central open problem, the Strong Cosmic
Censorship conjecture. In subextremal Kerr (0<|a|<M), the Cauchy horizon ‘€#* is classically
the place where determinism threatens to fail. Analytic results establish linear estimates
compatible with finite weighted flux across ‘€#*, together with blue-shift amplification that can
drive late-time instabilities. The analytic layer I need can be stated abstractly as follows.

Fix a smooth spacelike X0 meeting the event horizon and set D=H'(X,)xL*(Z,), coded as a Polish
space. For dED, let ¢(d) solve o_gp=0 in the interior. Along the ingoing horizon parameter v,
define the weighted flux

F(d; vo, V)=l A v} efievi 10,0(d)(v,)1%L2_0} dv, F(d)=liminf {vi—o}F(d; vo, v1).

Let A={ d: F(d)<wo }. For d= A the traces of ¢(d) along €#* exist in L? loc along sequences
vi—oo with uniformly bounded flux; write I'(d) & L? loc(‘€#*) for the set of such limit traces.
Then I'(d) is non-empty and sequentially compact in the L? loc topology; the graph of I' is
analytic. Quantify late-time behaviour by

Eo(d,X)=]vo} o0} e™wv} 10.x(v,)I{L2 0} dv,

and fix a Borel secondary cost ®:(d,x) penalizing late-time leakage. Lower semicontinuity of
E, on I'(d) yields non-emptiness of I'((d)=arg min_{x =I'(d)} E,(d,x); refining by ®: gives
I'* (d)=arg min_{xETs(d)} ®:(d,x). Up to here, everything is analytic and stable in ZFC.

Where the metatheory enters is the robustness ideal already familiar from earlier sections. Let
JCN”N be a fixed Borel set of admissible sampling policies along @#* (subsequences,
coarse-grainings, windows). Say that x ©I'(d) is universally tame at d iff

UT(dx): © VpeEZ q=Q Good(d,x,p,q),

where Good is an arithmetical check formalizing “late-time stability within tolerance q” under p.
The admissible-pair relation

R(d,x): © dEU, x ET % (d), and UT(d,x)

has IT': complexity in (d,x). Under projective regularity (e.g., PD), R is Lebesgue-measurable
and admits projective (hence universally measurable) uniformizations: there exists a measurable
selector s with s(d) €' (d) and UT(d,s(d)) for p-almost every d in any physically reasonable
ensemble p on ©. Ensemble claims such as “for almost all d there is a canonical continuation
selected by (E,,®,,UT)” are then literally meaningful. In a constructible background, by contrast,
A': uniformizations can be defined via the lightface well-order but need not be measurable; the
very grammar of “for almost all d” with respect to R can then lose determinate sense. The wave
equation and the blue-shift estimates are identical in both worlds; what toggles is whether the
canonicalization ideal that SCC presupposes can be realized measurably.

7.3 Beyond quantum and relativity: a string-theoretic analogue
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An analogous structure appears in AdS/CFT bulk reconstruction. There one minimizes an
energy-like functional over a definable admissible set of bulk fields compatible with given
boundary data, then breaks ties by imposing stability on slices—an analogue of the ®@: cost. The
arg-min graph is again projective. Frameworks with projective regularity provide measurable
selectors and well-defined ensemble semantics. But constructible frameworks allow only
definable ones, and different definable selectors can disagree on A': disagreement sets. The
metatheoretic hinge thus reappears without contrivance in the logic of holographic dualities.

7.4 Single-system toggling

Up to now the examples have concerned ensembles—statements of what happens for “almost
all” environments or data. But it should not be thought that the dependence is limited to such
caees. It can arise even for a single, fully specified system. In the Kerr case, fix one admissible
datum d € U for which I'e(d) contains multiple mild continuations. The analytic
facts—compactness of ['o(d), existence of minimizers—are absolute. But when canonicity is
required to be representation-independent, distinct metatheories may select different canonical
continuations. Frameworks with projective uniformization allow measurable tie-breakers that
can be constrained by symmetry. Constructible frameworks supply only definable ones, which
need not be measurable or symmetry-respecting. Determinism, understood as the uniqueness of a
canonical continuation, can thus vary across metatheories even for the same physical data.

One might object that in practice robustness is checked only across finitely many
procedures, not a// admissible ones. That is correct. The universal-tameness clause
idealizes the empirical norm of robustness into a demand of invariance under every
admissible policy. But this idealization is just a reflection of the fact that the world does
not care about our experimental limitations, not an artificial add on. This lifts the
statement to IT'>= complexity. The consequence is that if determinism is defined through
such a robustness ideal, then even the determinism profile of a single physical system can
differ across set-theoretic backgrounds. Whether the universe inside a black hole has a
unique canonical future can, accordingly, depend on speculative extensions of ZFC.

7.5 Summary

Across this paper’s examples, the pattern is consistent. The analytic layer of physics—the
equations and their pointwise consequences—Ilives within ZFC. The regularity layer—the
assumptions that make ensemble or canonical claims well-defined—does not. When projective
regularity holds, measurable uniformizations exist and the ensemble language of physics has
clear sense. When it fails, those same phrases lose meaning. The content of physical
determinism depends not only on the equations we write but on the set-theoretic background that
determines which ensemble and canonical statements they can meaningfully express.

This division between the analytic and regularity layers also reframes long-standing debates
about determinism in the philosophy of physics, especially those articulated by Earman and
Butterfield. Their analyses locate the determinism question at the analytic layer: whether the
equations governing a theory are well-posed in the Hadamard sense (existence, uniqueness, and
continuous dependence of solutions on initial data). On that account, determinism fails when the
analytic problem is ill-posed, as in Norton’s Dome or non-Lipschitz systems, but succeeds
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whenever the analytic conditions hold. The present analysis shows that this framework is to
crude. Even when the analytic layer is well-posed, the regularity layer—the measurable,
ensemble, and canonical structures that allow us to interpret statements like “for almost all
initial data” or “for the canonical continuation”—can depend on the set-theoretic
metatheory. The Earman—Butterfield picture thus captures only one axis of determinism, the
analytic one, while physical practice presupposes another as well, the regularity axis. What
looks like a deterministic theory under one metatheory (e.g., large cardinals sufficient for
PD) can, under another (e.g. V=L), lose the measurability or uniformization that gives
those analytic results their physical meaning. The familiar analytic notion of determinism is
stable across models of ZFC. But the physicist’s ensemble and canonical notions are not.

8. Objections and Replies
Objection 1: Physicists Don't Use A': Sets

I have argued that, contrary to widespread belief, the determinism profile of physical systems,
from routine inverse problems to black hole dynamics, hinges the choice of speculative axiom
candidates extending standard mathematics. A natural reaction is that the constructions must be
artificial. Physicists never work with A': sets or discuss the projective hierarchy.

This objection, however, confuses explicit terminology with implicit structure. Consider the
types of conditions physicists routinely impose: "There exists a sequence of approximations
converging to a solution such that for every accuracy requirement, all sufficiently late terms meet
that requirement." This has the logical form ( 3£)(V n)( 3 m)(V k>m) P(f,n,k), which is a X'
statement when P is arithmetic. The mathematical structures that appear in mature physical
theories naturally involve alternating quantifiers over infinite objects. The Kerr interior
predicates of C’-extendibility, finite flux, and blow-up are core concepts from the general
relativity literature. These predicates clearly have low projective complexity when spelled out.

Moreover, it is not clear what this objection would show even if it were true. Consider the pure
mathematical case. Just as the Paris-Harrington and Goodstein theorems reveal that seemingly
elementary combinatorial statements can be independent of Peano Arithmetic, this paper reveals
that physical determinism—a basic property we expect theories to either have or lack—can
be undecidable in ZFC. The significance of such results lies not in their frequency (which
depends on what questions we happen to have asked) but in their existence. The constructions
here are no more 'artificial' than the Ramsey numbers in Paris-Harrington or the specific
Diophantine equations encoding undecidability in Hilbert's tenth problem. If anything, they are
more natural. They spell out questions that physicists have already asked, rather than
constructing sentences never considered and arguing that these are “relevantly similar” to
naturally occurring examples (as in Friedman 1998). The indeterminacy dsicsussed concerns
discovered features of the physical-mathematical landscape, not pathologies that I have created.

Objection 2: This Confuses Mathematics with Physics

Another objection is that I am conflating the mathematical formalism with physical reality, the
“map with the territory”. Mathematics is merely a “language” for describing physics; changing
the language does not change the physics itself.
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But this is exactly what is at issue! A physical theory does not exist independently of its
mathematical expression. It is partly constituted by that expression. When we say that general
relativity predicts gravitational waves, we mean that the Einstein field equations, interpreted
according to standard mathematics, entail the existence of wave solutions. The field equations
purged of all metatheoretic commitments are just uninterpreted marks. If different mathematical
frameworks yield different solutions to the same equations, then the physical theories differ.

Consider again Strong Cosmic Censorship. This asserts that Einstein's equations typically do not
admit smooth extensions beyond the Cauchy horizon. Whether this is true depends on what
"typically" means—a measure-theoretic or category-theoretic notion that requires the regularity
properties toggled by V=L versus PD. The physical question "Does the universe inside a black
hole have a unique future?" receives different answers in different set-theoretic contexts.

Objection 3: Why Not Just Adopt Large Cardinals?

A pragmatic response might be to just adopt large cardinal axioms, thereby ensuring all
projective sets are regular and eliminating the ambiguity.” If LC (sufficient for PD) makes all the
pathologies disappear, then why not just assume it?

There are two principal reasons. First, adopting LC would not eliminate the phenomenon. It
would push it up the projective hierarchy. At the next level—X's sets—V=L and LC can disagree
not just about regularity but about membership. (The identity questions we encountered in the
Ising model (Section 6) already hint at this higher-level divergence.) Recall that Shoenfield’s
Absoluteness Theorem does not apply this high up (Appendix B). So, appeal to regularity
intuitions is insufficient. Second, this response amounts to choosing our physics based on
convenience rather than observation. Whether a fluid flow is turbulent or a black hole interior is
deterministic certainly seems like a fact about the world, not something we can stipulate.

Objection 4: This Has No Experimental Consequences

Perhaps the most obvious “objection” is that these set-theoretic subtleties, while perhaps
mathematically interesting, have no experimental implications. The problematic sets have
measure zero or are meager. The disagreements occur only on negligible sets that we do not
encounter in practice.

But this objection is facile. First, for discrete systems like the Ising model, the disagreement sets
need not be negligible. In V=L, we can in principle arrange the set M where different
implementations disagree to have positive outer measure with respect to the product measure
induced by the coding of configurations. In principle, preparing an ensemble of magnetic
systems and observing their evolution could reveal statistical signatures of such disagreements
(for more on possible experimental tests of each of the examples, see Appendix F.). Second,
even if direct experimental tests are currently infeasible, I have emphasized, following Quine
(1951), that the content of our physical theories depends on the set-theoretic background.® There
is no meaningful parition. When we ask whether general relativity predicts time dilation near
massive objects, we are asking whether a theory incorporating substantial set theory does. The

> Thanks to Douglas Blue for suggesting this line of response.
I do not mean to concede that the notion of “direct” confirmation is clear.
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“corporate body” does the predicting, and contra Sober (1993), there are no God given axioms of
mathematics.

Finally, the inaccessibility of black-hole interiors does not diminish the meaning or importance
of the question. A lesson of the mid-century critique of verificationism is that unobservable
structure can be indispensable to science. What matters is what our best-supported theories,
together with mathematics, say the world would be like. Strong Cosmic Censorship is a
paradigm. It asks whether generic Cauchy data admit a unique, canonical continuation past the
inner horizon—i.e., whether the theory is deterministic there. Whether this statement is even
well-posed—whether its “generic” and “canonical” clauses have determinate content—depends
on the set-theoretic metatheory. Observable or not, there is a fact and we should know it.

Objection 5: Real Physics Uses Approximations

A final objection (already aluded to in Section 7) notes that physical measurements invariably
involve finite precision and e-approximations. No experiment can distinguish whether a real
number equals one value or another to infinite precision. Perhaps the set-theoretic subtleties only
affect an idealized theory that was never physically meaningful.

This objection mixes up epistemology and metaphysics, much like the last. One question is what
the world is like. Another is what we can measure. Determinism is about what the world is like,
not what we can measure (or predict). Indeed, if we must retreat to "deterministic up to " for all
€ > 0, then the idealized theory is not deterministic! The question under investigation is whether
the theory, not our currently best finite-precision measurements of it, has unique solutions.

Coincidentally, questions about limits as € — 0 are themselves mathematical questions that can
be sensitive to set-theoretic background (see Appendix E). Whether there exists an € such that
all solutions agree within €o, or whether the minimal divergence shrinks to zero, depends on
which real numbers exist. This is the kind of issue over which V=L and LC may disagree.

9 Directions for future research

The examples developed here are only the beginning of a new research program investigating
how physical theories depend on mathematical foundations. In analogy with Friedman’s and
Simpson’s “reverse mathematics,” we might call it reverse physics. The goal is to map how our
choice of foundational axioms affects the behaviour of our most trusted physical frameworks

Several directions deserve immediate exploration.

Beyond measurability. This paper focused on Lebesgue measurability because it marks the first
point where large-cardinal and constructible frameworks diverge. But projective determinacy
also guarantees the Baire and perfect-set properties, and many arguments in stability, bifurcation,
and ergodic theory tacitly rely on these topological forms of regularity. Identifying physical
systems whose qualitative behaviour (phase bifurcations, attractor formation, or chaotic
transitions) depends on these subtler properties would deepen our understanding of how
mathematics and physics interlock.
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Higher complexity. Again, at the levels beyond X'», the two metatheories can disagree not only
about regularity but about membership. At the X's level, for example, they can assign different
truth values to whether a given set of reals exists at all. This opens the possibility of physical
systems whose discrete outcomes—which particle decays occur, which crystal configuration
forms—depend on which mathematical universe we inhabit.

Quantum field theory. Several standard constructions in QFT already live high in the projective
hierarchy. The Hadamard condition for physically admissible states, the definition of vacua in
curved spacetime, and the renormalization and subtraction schemes of perturbative QFT all
involve selection principles over definable function spaces. Understanding how these depend on
background axioms could clarify deep ambiguities about state-selection and renormalization
across inequivalent representations.

Statistical mechanics. The construction of Gibbs measures by thermodynamic limits, the
existence of phase transitions, and many ergodic and mixing properties rely on limits that climb
the projective hierarchy. Even the notion of equilibrium—the convergence of ensemble averages
to time averages—may turn out to be metatheory-dependent. Exploring whether equilibrium
statements retain determinate sense in different set-theories could reveal a new conceptual layer
in statistical physics.

Computational complexity. Beyond questions of existence and uniqueness, one can ask about
effective computability. Whether a system’s evolution is algorithmically decidable or whether its
long-term behaviour is recursively enumerable can depend on which sets of reals one takes to
exist. This connects the study of physical determinism with the growing field of physical
computation theory, where limits of calculability are tested against the physical resources
allowed by fundamental laws.

Alternative foundations. Finally, these phenomena should be compared across other
foundational settings—constructive mathematics, topos theory, homotopy type theory, and
alternative set theories such as NF, ZF + AD, or Kripke-Platek. Such comparisons would help
separate what is genuinely physical from what is an artefact of the particular set-theoretic
framework we have chosen — or, more likely, in my view, to reveal that there is no distinction
between the two.

10. Conclusion: Determinism After Foundations

Physicists and philosophers of physics commonly assume that disagreements in the foundations
of mathematics—such as whether there are large cardinals or V=L—have no bearing on physical
theory. I have argued otherwise. The examples surveyed demonstrate that the Axiom of
Constructibility (V=L) and large cardinal (LC) axioms strong enough to prove Projective
Determinacy (PD) can diverge on all the key aspects of determinism. But unlike Norton’s Dome
and similar thought experiments, they are not just hypothetical. The examples here include
routine systems from across mathematical physics, both continuous and discrete. They also
include frontier questions in the foundations of quantum mechanics and general relativity.

Note that the point has not been the obvious one that we need to supplement standard axioms in
order to decide questions that we could not within ZFC alone (as with, say, ZFC + Con(ZFC)).
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That is an easy application of Godel's theorems (Godel 1931), assuming that those axioms are
consistent (and recursively axiomatizable). V=L and LC are seriously entertained extensions of
ZFC (Maddy 1997; Steel 2014; Koellner 2009). We have to take a stand on them like the stand
that pioneers of set theory took with respect to the Axiom of Choice (Jech 2003, Ch. 1;
Kanamori 2009, §0). The question of which of V=L or LC is true—or whether it even makes
sense to say that one of them is true—is not a question that admits of proof. As Jensen writes:

Most proponents of V=L and similar axioms support their belief with a mild version of
Ockham's razor. L is adequate for all of mathematics; it gives clear answers to deep
questions; it leads to interesting mathematics. Why should one assume more? ... I do not
understand ... why a belief in the objective existence of sets obligates one to seek ever
stronger existence postulates. Why isn't Platonism compatible with the mild form of
Ockham's razor? ... I doubt that one could, with the sort of evidence I have, convert the
mathematical world to one or the other point of view. Deeply rooted differences in
mathematical taste are too strong and would persist (Jensen 1995, 400-401).

One reaction to this situation is to hold that, despite widespread opinion to the contrary, Quine
was right, and the search for new axioms is not different in kind from the search for new physical
laws (Quine 1951, 1990). He writes, "sentences such as the continuum hypothesis...which are
independent of [standard] axioms, can...be submitted to the considerations of simplicity,
economy, and naturalness that contribute to the molding of scientific theories generally. Such
considerations support... [the] Axiom of Constructibility, 'V=L"" (Quine 1990, 95). This position
raises familiar quandaries. Set theorists are not responsive to experiment even to the extent that
most theoretical physicists are (Maddy 1997, 155; see also Maddy 2011). But this much is at
least true: when we say that general relativity predicts X, we mean that X follows from the field
equations plus boundary conditions, where "follows from" is a relationship of logical entailment
within a mathematical framework. If that logical entailment depends on which set-theoretic
axioms we assume then the theory's content is metatheory-sensitive. This is not a defect of our
measurements or approximations. It is a fact of theorizing. Recognizing this clarifies the
relationship between mathematical and physical reasoning, showing that they are allied in a way
that non-Quineans have no sufficiently appreciated (see Resnik 1997, Ch. 10; Colyvan 2001).

My own view (Clarke-Doane 2020, 2024, 2025) is that no sense can be made of the claim that
either V=L or LC is “really right”. Each affords a legitimate arena in which to carry out
mathematical reasoning—broadly like Euclidean and non-Euclidean geometries (see also
Balaguer 1998; Hamkins 2012). The heady difference is that all the geometries can live in a
single set theory. But any set theory takes itself to be maximal, to govern everything. This raises
unresolved questions about how to formulate the "monism—pluralism" debate (Clarke-Doane
2025, §1), and whether it is even factual (cf. Carnap 1950).” But if one is a set-theoretic pluralist,

" Here is a brief argument that there can be no factual question in dispute under the heading the “monism-pluralism”
debate. Any precise statement of either view must be made within some background theory that fixes what counts
as a universe of sets. Inside that framework, “V”” denotes everything the framework recognizes, so the monist’s
claim that there is one true V is trivially true by that framework's own lights. But taken independently of any
background the claim cannot be formulated without choosing another theory to interpret its quantifiers, and different
choices yield different contents. The same holds for pluralism. Its “many universes” are sets or proper classes in one
background, not an external plurality that both sides could recognize. Because truth and reference for statements
about V shift with the metatheory, the alleged disagreement’s truth value changes with background moves that
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then, by the arguments given here, one must be a pluralist about core physical concepts too.
("Concepts" rather than "concept" because if determinism is relative to set-theoretic foundations,
then so too presumably is physical necessity, prediction, explanation, causation and more.) As
Quine writes in a different context, "Carnap has maintained that [the question of which axioms
hold] is a question not of matters of fact but of choosing a convenient language form, a
convenient conceptual scheme or framework for science. With this I agree, but only on the
proviso that the same be conceded regarding scientific hypotheses generally (1951, XX)” The
question of whether a theory is deterministic along a given dimension is, on the present view,
either misconceived or practical—whether to assume V=L or LC for the purpose at hand. Of
course, this position should not be taken lightly. But it must be reckoned with given the
independent plausibility of set-theoretic pluralism, and the entanglement of math and physics.

Quantum-gravity theorists sometimes remark that we may need "new math" to formulate a final
theory (Ashtekar & Lewandowski 2004; Polchinski 1998). I have argued that this "new math"
may go much deeper than anticipated—not just new tools within a familiar framework, but new
foundational frameworks. Future progress in physics may therefore depend on novel interactions
between physics and the foundations of mathematics.

Appendix A. The Projective Hierarchy and PD

For sets of naturals, X’ 1/TI°L.1/A°[] alternate first-order quantifiers (Rogers 1987). For sets of
reals, X'1 (analytic) are projections of Borel sets; IT': (coanalytic) have analytic complements;
A =X'TNI' . PD (from strong large cardinals) implies every projective set is Lebesgue
measurable, has the Baire and perfect-set properties (Martin & Steel 1989; Kechris 1995,
§38.B; Moschovakis 2009, Ch. 6). Analytic sets are regular already in ZFC; coanalytic need not
be.

Appendix B. Absoluteness and Regularity

Shoenfield absoluteness: X'o/I1': truths with real parameters are absolute between transitive
models of ZFC with the same reals (Shoenfield 1961; Jech 2003, Thm. 25.20). Membership in
lightface A': sets is absolute; regularity (measurability/Baire) can diverge in V=L vs PD.

Appendix C. Coding invariance

This appendix gathers modest but essential facts about coding invariance that the main text
presupposes. The guiding idea is that a single physical “data class” or “state class” can be
represented in many mathematically equivalent ways—by different rational Cauchy-name
schemes, file formats, grids, or enumerations. The content of claims about definability,
measurability, “almost all,” and canonical selection should not depend on which such coding we
choose. What follows records the assumptions we make about recodings and proves that, under
these assumptions, the definability and ensemble-level claims in §§ 2—7 are invariant across
choices. At the same time we do not claim that measurability itself implies coding-invariance of
the particular selector. Identity in the strong, representation-independent sense still requires
symmetry or structural uniqueness in the selection rule.

should not matter if a single factual issue were in play. What remains is, if not a verbal question about what we
happen to mean by “set”, a pragmatic question—which framework to use—not a factual one about what exists.
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C.1. Setting and standing assumptions

Fix two standard Borel spaces of codes X and 9) for the same underlying mathematical objects
(e.g., two rational Cauchy-name schemes for L*-data, two ways of coding orthonormal bases,
two encodings of spin configurations). A recoding is a bijection T: X — %) whose graph and
inverse graph are Borel. Such T are Borel isomorphisms. When we treat the state space (e.g.,
reconstructed images, continuations, bases) as coded, we write S and &' for two standard Borel
code spaces and U: S — &' for a Borel isomorphism. Call (T,U) an admissible recoding when:

(1) T and U are Borel isomorphisms;

(i1) for any fixed o-finite Borel measure p on X representing a physical probability law
or ensemble (noise models, product measures, Gaussian/Gibbs states), the push-forward
T *uw is the measure used on 9);

(ii1) when the body of the paper uses Baire category rather than measure (e.g.,
“comeager”), we require T to be a Baire isomorphism for the chosen Polish topologies:
there are dense G_0 sets C< X and C'S9) such that T: C—C' is a homeomorphism and
maps meager sets to meager sets and comeager sets to comeager sets;

(iv) if passing between codings requires fixed calibration parameters a (gauge choices,
discretization furniture), we treat all pointclasses relative to a, i.e., A'z(a), ' /(a),
IT'C(a).

These assumptions are satisfied in the applications. Rational Cauchy codings, dyadic-grid file
formats, and basis-codes are standard Borel. Natural “regrid,” “reencode,” and “rename” maps
are Borel and measure-class preserving. Where “comeager” is used, the recodings are
homeomorphisms on dense G_6 cores (as in the usual passage between equivalent Cauchy-name
systems). Nothing here presumes effectivity. Names can code non-computable reals, as they do
in the main text’s examples.

C.2. Pointclass and regularity robustness under recoding

The first and most basic claim is that definability does not depend on coding. Let S© X be
defined by a formula at some projective complexity (possibly relative to parameters a). Because
Borel isomorphisms preserve projective pointclasses (pullbacks and push-forwards of projective
sets remain projective at the same level, uniformly in parameters), the image T[S]< ) has the
same pointclass as S, and conversely. In particular, lightface A': sets and relations, as used
throughout § 2 and in the toy schemata of § 3, remain A': when transported across codings.

Two corollaries matter in the paper. First, Shoenfield absoluteness is unaffected by recoding.
X1/IT' truths with real parameters (hence A': membership) remain absolute between transitive
models of ZFC with the same reals regardless of which code space we use. Second, when PD is
assumed, the regularity of projective sets (Lebesgue measurability, Baire property, perfect-set
property) is invariant under recoding, because these are properties of the underlying sets of reals
and of their projective definitions, not of any particular naming convention. So, wherever the text
invokes projective regularity under PD, or highlights its failure under V=L, this is code-robust.

C.3. “Almost all” and “comeager” are code-invariant

19



Ensemble statements have the schematic form: “for p-almost all d < X, property P(d) holds.”
Under an admissible recoding T, the truth value of such a statement is unchanged when we pass
to 9 and the push-forward measure T u. Indeed, A< X is unull iff TA] <Y is T p-null.
Likewise, a function f: X—R is p-measurable just in case foT ' is T u-measurable. Hence “P
holds p-almost everywhere” is equivalent to “P°T ' holds T p-almost everywhere.”

When the main text instead uses Baire category (e.g., “for a comeager set of data”), assumption
(ii1) guarantees that comeager/meager status is preserved by T, because T is a homeomorphism
on a dense G_§ core and maps meager sets to meager sets. Hence, all ensemble-level claims in
§§ 4-7 retain their meaning and truth value across codings, provided we transport the measure
(or the topology) in the canonical way.

C.4. Transport of measurable uniformizations and selectors

Let RE Xx& be a definable admissible-pair relation (data — admissible states), and suppose s:
X— S is a measurable selector with graph(s)=R (e.g., the output of an arg-min rule). Given an
admissible recoding (T,U), define R' = (TxXU)[R] & YxS" and s’ = Ues°T': Y—S". Then s’ is
measurable for T *u whenever s is measurable for p, and graph(s’)& R'. In particular, if under
PD a projective multifunction admits a measurable uniformization in one coding, the transported
multifunction admits a measurable uniformization in any other coding. This justifies using
whichever coding is convenient without jeopardizing the existence or measurability of selectors
that the paper requires. (Conversely, if only A'z, merely definable uniformizations exist—as
under V=L at higher projective levels—transport preserves definability but not measurability.)

C.5. Equivariance, symmetry, and the strong notion of identity

The identity notion in § 3.3 requires more than measurability. It also requires that the same
outcome be selected under all physically admissible recodings. Formally, let a (countable) group
Z of admissible recodings act on the data and state code spaces via (T,U)~(T,U). Let I'(x) be the
admissible-fiber multifunction and ® a Borel secondary cost used to break ties, both Finvariant
in the sense that I'(Tx)=U[I'(x)] and ®(Tx,Uy)=®(x,y). Consider the arg-min fibers

[ (x)=arg min_{y ET'(x)} P(x,y).

(1) Structural uniqueness. If for p-almost every x the fiber I'* (x) is a singleton {yx}, then the
selector s(x)=yx is Borel whenever graph(I') is Borel, and it is J~invariant in the strong sense
s(Tx)=U(s(x)) for all (T,U) € . Identity is automatic.

(2) Genuine multiplicity. If I'% (x) contains multiple elements related by the J~action, then
measurability alone does not enforce identity. Under PD one still obtains measurable selectors s
with s(x) ET'% (x) for p-almost every x, but a J~invariant selector exists only if there is a
canonical J~fixed choice in each fiber (for example, because additional physically mandated
symmetry constraints or secondary costs pick out a unique representative). In the absence of such
structure, identity can fail even though measurable selection holds. Under V=L, where only
definable A': tie-breakers may be available, both measurability and J~invariance may fail.

This dichotomy is exactly what § 3.3 exploits. PD restores ensemble measurability at the
projective level. Identity still requires either structural uniqueness or an explicitly symmetric
tie-break. Nothing in the Appendix claims more than this, and nothing in the text needs more.
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C.6. Relative parameters and gauges

Occasionally, passing between codings requires fixed external parameters a (calibrations, gauge
choices, discretization furniture). All definitions and results above lift uniformly relative to a:
one simply works with A'x(a), X'(a), I1'[J(a), and with measures/Polish topologies coded
relative to a. Shoenfield absoluteness (for X'+/I1'2(a)) and PD-regularity/uniformization (for
projective(a) sets) hold in the same way. So, every “relative” use of coding invariance in the
paper is secure.

C.7. Application check (how the pieces are used in §§ 4-7)

In inverse problems (§ 4), X codes data d, © codes reconstructions u, and R encodes the arg-min
relation for J A. Recodings T are regriddings/format changes; U is the corresponding state
recoding. Ensemble claims (“for p-almost all d, ...”) are transported by push-forward;
measurable uniformizations under PD carry over by § C.4; identity relies on structural
uniqueness or symmetric tie-breaks as in § C.5.

In thin-barrier capacity / Markov uniqueness (§ 5), A»S_A is A': and the index set U={A :
cap1,2(S_A)=0} is analytic. Changing how A and S_A are coded preserves pointclass and the
truth of ensemble statements; the uniqueness hinge is therefore code-robust.

For zero-temperature Ising (§ 6), 6= {—1,+1}"{Z¢} and the one-step update U(c) are coded in
standard Borel spaces; “shape changes” of finite boxes induce Borel recodings. The “almost
sure” claims are invariant by § C.3; measurable uniformizations at the projective level transport
by § C.4; identity again hinges on symmetry/uniqueness, not on measurability alone (§ C.5).

In decoherence / preferred basis (§ 7.1), B _adm and the arg-min graph are projective;
admissible recodings T on environment-states and U on bases are Borel and measure-class
preserving. Under PD, measurable selectors exist and transport; whether a single selector is
J-invariant depends on symmetry/uniqueness (the group 7 captures “mere renamings” of bases).
Under V=L, definable but non-measurable tie-breakers may exist, and ensemble talk may be
ill-posed; both conclusions are code-robust.

For Kerr interiors (§§ 7.2—7.3), the data space D and horizon-trace space are coded in Polish
spaces; recodings are the standard ones from discretization and representation changes. The
analytic facts (existence of I'(d), L.s.c. of E,, Borel nature of E,) are unaffected by recoding;
ensemble claims transport by § C.3; the canonicalization step behaves as in § C.5.

C.8. Summary

Across the board, definability and regularity (the projective pointclasses that drive the
metatheoretic toggles) are preserved across admissible codings; “almost all” and “comeager”
claims are invariant once we transport measures and, where relevant, work with Baire
isomorphisms; and measurable selectors transport along Borel isomorphisms. These three facts
underwrite the main text’s ensemble-level claims. What they do not say—by design—is that
measurability alone forces identity. Identity, as argued in § 3.3, is secured either by structural
uniqueness or by an explicit symmetry requirement. Otherwise it may fail even under PD.
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Appendix D. Energy estimates used in §7

LetT {ab} =0 a0 bo— ' g {ab}(0p)* be the energy-momentum tensor and take the Killing
field K = 0_v in the near-horizon region. The weighted current J a =e"{xv} T {ab} Kb
satisfies

V-J=xeMMxv} |0 v o] + O(e{—v}).

Integrating on slabs bounded by v = v1,v: quantifies the blue-shift amplification and controls the
horizon flux in the first term, with boundary terms subordinate. These standard computations
underwrite continuity of the trace map and lower-semicontinuity of the flux part of & (Wald
1984; O’Neill 1995; Dafermos & Luk 2017).

Appendix E. Finite precision, e-determinism, and why the toggle survives

Finite precision does not wash out the metatheoretic dependence. First, the horizon-flux
component of & is continuous where finite, and & as a whole is lower-semicontinuous in natural
weak topologies. Small data perturbations change costs only slightly. Second, &-determinism
for an observable ¢ on a data domain D amounts to the existence of €s > 0 and a Borel map S
with outputs within € whenever inputs lie within €. Under LC, the measurable projective
uniformization in §7 yields measurable selectors (and Borel representatives p-a.e.) so that
e-determinism makes sense for projectively defined domains D. Under V=L, the same D may be
non-measurable, so ensemble-level e-determinism statements (“for almost every d”) are ill-posed
and rival A’z selectors can disagree on a A':, non-measurable set regardless of €. The analytic
layer (continuity/l.s.c.) is again ZFC-robust; the regularity layer that ensemble talk presupposes
is where LC vs V=L continues to matter.

Appendix F. Cumulative protocols for testing the determinism profile

This appendix sketches a way in which one might actually look for the metatheoretic effects
described in the paper. The goal is to ask whether ordinary physical systems behave as if the
measurable, coding-invariant selections required by the large-cardinal (LC) picture are realized
in nature. Each of the following protocols adapts an example already discussed—imaging,
diffusion, spin dynamics, decoherence, and black-hole interiors—to an experimentally or
computationally testable form. The idea is cumulative rather than one-off. Repeated refinements
and cross-checks probe whether observable quantities stabilize as they should if the underlying
selections are measurable. When the LC profile holds, convergence and invariance emerge
naturally. When only definable, non-measurable selections are available (as under V=L) the same
procedures fail to settle down in reproducible, law-of-large-numbers, fashion.

(1) Imaging and inverse problems (identity — uniqueness)

In medical or geophysical imaging, one reconstructs a signal u from data d by minimizing a
total-variation—Tikhonov functional

JO(u; d) = IAu — dI? + & - TV(u),
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with A chosen by the usual discrepancy principle: pick the smallest A such that the reconstruction
fits within the noise tolerance t €. To test whether the reconstruction rule is measurably
well-defined, one can process identical raw data under several admissible encodings (different
interpolation schemes, file formats, or sampling grids) and track how the reconstructions
converge as resolution increases. If the LC regularity obtains, the reconstructions approach one
another. The “reconstruct-then-recode” and “recode-then-reconstruct” procedures eventually
agree. Under V=L, the gap between them should persist, revealing a failure of measurable,
coding-invariant canonization.

(2) Markov uniqueness and thin barriers (uniqueness)

Porous or granular materials provide a way to test ensemble-level uniqueness. One can fabricate
samples in which the insulating barrier S is generated by a single calibration rule, e.g., adjusting
a threshold 0 so that the blocked fraction equals a target ¢*. Measuring diffusion or the
Dirichlet-to-Neumann map then tells us whether the associated operator L=-V -(aV -) has a
unique Markovian extension. If LC regularity governs the system, the fraction of “unique”
versus ‘“non-unique” samples stabilizes and remains the same across equivalent coarse-grainings.
If V=L were the right backdrop, the frequencies could drift with the coarse-graining scheme,
betraying the loss of measurable uniformization.

(3) Zero-temperature Ising dynamics (identity, discrete)

A more discrete test arises in spin-system arrays. In a two- or three-dimensional ferromagnet, let
us define the one-step update U that flips precisely those spins whose flip lowers the limiting
energy density along van Hove sequences. Approximating the thermodynamic limit with finite
boxes of different shapes (cubes, slabs, nearly square regions) one can compare how the updates
behave across shapes. If the underlying selection is measurable (the LC case), the updates
coincide almost surely as the volume grows. If not, distinct shapes can yield distinct outcomes
for a fixed initial configuration, and that disagreement fails to wash out. This would indicate
V=L-style identity failure.

(4) Decoherence and pointer-basis selection (uniqueness / identity)

Quantum platforms such as optomechanical resonators or trapped ions allow a parallel test on the
quantum side. Fix the system Hamiltonian and vary the environment’s initial state p_E across a
family of thermal or Gaussian mixtures. For each run, evaluate a dephasing-rate functional ®[B;
p_E] over a small menu of physically admissible bases B (position-like, momentum-like, etc.),
and let the basis minimizing ® define B*(p_E). If the map p_E = B*(p_E) stabilizes in
frequency and remains invariant under equivalent ways of encoding p_E, the ensemble behaves
measurably, as LC predicts. Persistent dependence on the encoding—different “preferred bases”
under equally legitimate parametrizations—would be evidence of the opposite profile.

(5) Elliptic media and weak-form coherence (coherence)

In conductivity or heat-flow experiments, one can vary material coefficients v. A(x) = vo +
ay {W_A}(x), where each W_A is generated by a uniform calibration or thresholding rule. The
question is whether the weak formulation
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a(u,v) =] Qv A®x)(Vu, Vv)dx

remains stable (bounded and coercive) under different admissible codings and refinements of A.
Empirically, all W_A will of course be Borel, but the experiment tests whether a single physical
rule yields coding-invariant results (the LC profile) or whether outcomes depend on
representational choices (a V=L-type incoherence).

(6) Kerr-interior simulations (identity / ensemble)

Numerical relativity offers an analogue of the same idea. Evolve the wave equationo g ¢ =0
inside a sub-extremal Kerr black hole from an ensemble of initial data d € D. Compute the
weighted horizon flux #(d) and apply the lexicographic selection described in the main text, first
minimizing energy mildness Eo, then late-time tameness Ei. Run the full simulation twice under
distinct but equivalent discretization schemes. If the LC regime applies, the two pipelines
converge toward the same continuation as resolution increases. If V=L, the divergence between
them remains bounded away from zero. This is a reproducible split in what counts as the
“canonical” continuation.

Interpreting the outcomes

If the stability indices and cross-coding discrepancies (quantities such as SSI(n), SC(n), and their
Kerr analogue) decay toward zero, if ensemble frequencies settle, and if law-of-large-numbers
behavior appears across representations, the evidence supports the LC-style regularity the
analysis presupposes. On the other hand, a plateau in these indices, persistent dependence on
arbitrary codings, or lack of convergence would suggest that only definable, non-measurable
selections are operative, the V=L profile. Note that none of these experiments involves exotica.
They just ask whether nature enforces measurable, coding-invariant, and refinement-stable
behavior. If it does, convergence and invariance will appear on their own. If it does not, the
attempt to preserve those scientific virtues will fail in systematic, reproducible ways.
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