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Abstract. Conventional statistical inference is awkward, which has the 
consequence that it is difficult to explain and even difficult to use properly. 
The problem is not with its fundamental elements (confidence intervals 
and hypothesis tests), but instead with how they are packaged. Here 
support functions are offered as an alternative package, which very much 
improves real-world practice and provides conceptual clarity to the 
process of scientific inference. 

 

 

Introduction 

The idea that probability can describe real world events goes back to 
Girolamo Cardano, who wrote a little book for gamblers in the 1520’s. For 
about 200 years it remained an esoteric topic for natural philosophers, 
until astronomers found that they could use probability to explain the 
unwanted variability that they inevitably saw in their measurements of 
star and planet positions. But the modern era of probability began in 1837 
with Poisson’s book on the probabilities of judgments, in which he 
invented confidence intervals for binomial proportions and differences 
between binomial proportions. Curiously, although the 19th century was 
an explosion of progress in science generally, it was a statistical desert. 
The first rains fell in 1895 and again in 1900 when Karl Pearson wrote 
about “non-normal” distributions in biology, and proposed the chi-square 
test. This initiated the rapid development of modern statistics in the first 
quarter of the 20th century. 

Based on his work at the Rothamsted Experimental Station in the early 
1920’s, R.A. Fisher promoted the null hypothesis test, which he pushed 



Support Functions 

 

 

2 

forward very strongly as the fundamental method of statistics in his 1934 
book. Due to his compelling arguments, and perhaps also his disagreeable 
personality, statisticians were persuaded to adopt it as the defining 
contribution of their discipline to empirical science. It was soon accepted 
across a wide swath of data-oriented fields, and it is even today arguably 
the dominant method of statistics. 

In 1934 and again in 1937, Jerzy Neyman re-invented the confidence 
interval, evidently ignorant of Poisson’s priority. Neyman’s second article 
was remarkable; in one publication he presented essentially the complete 
modern theory of confidence intervals. His personality was, however, just 
short of Fisher’s level of disagreeability, and so his method came to take 
second place in the statistical armamentarium.  

So the situation in the mid-20th century was that data analysts had two 
basic procedures to choose from; confidence intervals and null hypothesis 
tests. Near the end of this period the American Statistical Association 
began its series of complaints about how the craft of statistical analysis 
was too seldom used, and when it was employed, it was too frequently 
abused. For more than half a century the continuing claim was that the 
fault was in statistics education and the quality of professional 
presentations. It was not seriously considered to be a problem of how 
statistical methods had come to be packaged. Only recently has it been 
entertained by some in the statistics profession that packaging might be 
the main problem. 

The purpose of this note is to suggest that the concept of support 
functions provides a potential solution. It is based on the observation that 
confidence intervals and hypothesis tests are not separate methods, but 
two sides of the same coin. That this is true has been known at least since 
Allan Birnbaum’s 1961 article, in which he showed that both methods 
could be expressed with one curve. He did not, however, see the curve as 
doing anything more than showing that the two methods were one, and so 
he proposed no re-packaging of statistical inference. Consequently, his 
article had no influence, and it was not until Charles Poole re-introduced 
the idea in 1987 that it was seriously proposed as an alternative. But 
despite arguing that using his curves would provide an improved method 
of inference, Poole gave no interpretational metaphor for what he 
suggested. Part of the purpose of this note is to offer empirical support as 
the missing metaphor. 

 

Support Functions 

The setting is the usual one for statistical inference. A collection of 
probability distributions is proposed for the description of the mechanism 

producing observed values. The general notation is pr(A:), the 
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probability that observed variables will fall into a set A, assuming that  is 
the true value of a parameter which determines the distribution. The 

concept of  as an unknown variable permits the consideration of a 
collection of possible distributions for the observations, with the tacit 
assumption that one of them is correct. 

The probably distributions relate outcome sets A to the parameter , 
and the inverse problem is to use sample observations to make inferential 

statements about the true . To do this, a support function has the 
following characteristics: 

1. It is a function defined over the parameter space which assumes 
values between 0 and 1. 

2. It is defined in terms of a sample, or more frequently in terms of a 
small number of statistics computed from a sample. 

3. At a particular parameter value, it is the p-value for a test of the 
hypothesis that the parameter value is the true one. 

4. The set of parameter values for which the function is above a cutoff 
is a confidence interval. 

The interpretation of a value s at the parameter value  is that it is the 
support which the sample gives to the parameter. A support of zero means 
that the sample effectively rules-out the parameter value. Small supports 
mean that there is very little support for the parameter value. A support of 
one means that the sample gives the maximum possible support to the 
parameter value, and values near one mean that the parameter value is 
very well-supported by the sample. 

Based on the duality of confidence intervals and hypothesis tests, the 

support of s for a parameter value  has two characteristics: 

1. s is the p-value of the test of the hypothesis that  is the true 
parameter value. 

2.  is on the boundary of a 1-s confidence interval for the parameter. 

The second property is the one that gives meaning to the term “support”. 
The support which a sample gives to a parameter value is one minus the 
maximum confidence with which one can rule it out. That is, one 
interprets the confidence coefficient of a confidence interval as the 
confidence with which one can rule-out all parameter values which it does 
not contain. The support for a parameter value is then the complement of 
its maximal rule-out confidence. 

If  just lies on the boundary of a 0.95 confidence interval, then it can 
be ruled-out with confidence 0.95, and so it has support 0.05. Due to the 
duality of confidence intervals and hypothesis tests, it also has a p-value 

of o.o5. On the other hand, if  just lies on the boundary of a 0.05 
confidence interval, then it can at most be ruled-out with confidence 0.05, 
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and so it has support 0.95. In the first case there is a convincing argument 

that  could be ruled-out, but in the second case the strongest argument 
against the parameter value is only very weak. 

A typical support function is shown in Fig. 1.  For each value s on the 
vertical axis, the interval containing values with support above s forms a 

1-s confidence interval. For each parameter value  the value of the 
support is its p-value. 

 

Fig. 1. For each s the line between the two branches of the curve determines a 1-s 
confidence interval (the thick line). 

 

The form of Fig. 1 seems strange because we are not used to seeing it. 
Its justification is that it is based on the twin concepts of confidence 
intervals and hypothesis tests, which we are used to seeing. In fact, Francis 
Galton was the first to realize that this was an alternative form for 
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representing probability distributions. He presented it in 1885, but it did 
not catch on. 

Support functions are easy to compute in the modern era. All that is 
required in a given situation is a computer program that will either test 
any parametric hypothesis, or will compute confidence intervals for any 
confidence coefficient. In the first case there must be a p-value for each 
parameter value, and in the second case an interval for any possible 
confidence coefficient. Such programs are very widely available. 

 

Extensions 

The basic logic of support allows support functions to be extended 
beyond single parameter values. Given a subset T of the parameter space, 

if supp(:x) is the support for  from a sample x, then the support for T is 

supp(T: x) = max{supp( ∶ x) ∶   ∈ T} 

The support for a parameter subset is the maximum (actually supremum) 
of the supports of the values it contains. This follows since the support for 
the set should be at least as large as the support for any parameter it 
contains, and there is no reason for it to be any larger. This has the 
advantage that (when T is closed) there is an actual member of T which 
has the maximal support. 

Given a collection of supports supp(i ∶ xi) the support for all of them 
simultaneously is 

supp(1,2, … : x1, x2, … ) = min{supp(i ∶ xi)} 

Again the logic dictates that the support should not be any less than the 
minimum, and there is no reason why it should be larger. It is worth 
pointing out that this does not depend on the joint probability distribution 
of the observations xi, and thus it completely resolves the historically 
thorny multiple-testing problem. 

If each of the i parameters could actually be the same parameter, then 

the support for the contention that they are equal to  is 

supp(,, … : x1, x2, … ) 

from the previous computation, and thus the minimum of all the 

individual support functions at . The maximum of this expression over 

all  is the support that the true parameters i are all the same. 
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An Example 

One of the most famous experiments in physics was instigated by the 
astronomer royal Frank Dyson in 1919. In order to keep his friend and 
colleague Arthur Eddington out of the military draft in WWI, he obtained 
funding for an expedition to measure the bending of starlight near the rim 
of the sun during an eclipse. The nominal reason for the expedition was 
the belief that the bending angle following from Einstein’s recently-
announced theory of general relativity was twice that predicted from 
Newton’s theory of light. Twin forays to Solari in Brazil and Principe (an 
island off the west coast of Africa) were to get the measurements that 
would settle the Einstein-Newton contest. 

There were altogether photographic plates from three telescopes; two 
astrographics (state of the art), one at each site (SA and PA), and a small 
4-inch telescope at Solari (S). Getting accurate bending angles was an 
exceedingly difficult task, and there is considerable controversy about 
whether Eddington was actually able to do it. The results were published 
at the end of 1919, and they were declared to confirm Einstein and reject 
Newton. This was the commencement of Einstein’s otherwise inexplicable 
rise to fame. 

Dyson and Eddington published some results from individual stars, 
although they did so somewhat vaguely, in remarkable distinction to the 
sprawling tables they presented as arguments for the intricate data 
adjustments that were required to get any results at all. From them we can 
compute support functions, based on conventional t-tests, shown in Fig. 
2. We can plainly see from this figure how disconcerting the results were. 
The SA telescope completely supported Newton, the PA results supported 
values between Newton and Einstein, but ruled out Newton while giving 
decent support to Einstein. The S results supported values higher than 
Einstein’s, giving almost no support to him while firmly ruling out 
Newton. It was a subjective judgment on the part of Eddington to claim 
that the S telescope provided the definitive results, and on this basis to 
declare Einstein the winner. Clearly this would not have been possible if 
he had had support functions available. He was, in fact, only able to do it 
by having cast the issue as Einstein vs. Newton, and not allowing any 
consideration that they might both be wrong. This was a fundamental 
inferential error, the form of which continues in the present day because 
hypothesis testing makes it an easy one to commit. 
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Fig. 2. Support functions for starlight bending from the three expedition telescopes, 
Sobral 4-inch (S), Sobral astrographic (SA) and Principe astrographic (PA). The left 
dashed line is Newton’s prediction, and the right dashed line is Einstein’s prediction. 

 

There were multiple attempts to repeat the Eddington experiment in 
the half century afterwards, which were not collected for joint publication 
until Goldoni and Stefanini in 2020. Fig. 3 shows support functions for 
their Eddington data, together with support based on eight subsequent 
repetitions. The obvious implication is that the later studies support 
values at and above what Eddington found, and that they effectively rule-
out Einstein (and Newton even moreso). Physicists generally claim that 
the subsequent data confirm Eddington, which is true, but they avoid 
making the observation that the data eliminate Einstein. They can do this 
because it is not standard practice to display a support function, so that 
the more obvious conclusion is hidden. They can also avoid dealing with 
Fig. 2, thereby escaping an even more obvious conclusion – that starlight 
bending experiments provide at best flimsy evidence for distinguishing 
Einstein from Newton. This raises the issue of whether experiments with 
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significant flaws should be relied on for deciding fundamental issues in 
physics. 

 

Fig. 3. Support from 8 starlight-bending experiments (solid) compared with 
Eddington’s support function (dashed) as given by Goldoni & Stefanini. 

 

Fig. 3 illustrates the combination of support functions for what may be 
the same parameter. If we assume that all the experiments pertain to the 
same parameter value, then the minimum of the two support functions is 
the sub-support function for their common value. Thus combining 
Eddington with subsequent experiments gives highest support (about 
0.63) to values around 1.87, and effectively rules out Einstein. 

Fig. 3 also illustrates one of the most pernicious side-effects of null 
hypothesis testing. It is conventional to test a null hypothesis (such as two 
medical treatments being equally effective) by seeing whether it is 
confirmed or rejected, without considering any alternatives. This leads 
to the practice of confirming equal treatment effectiveness when in fact 
considerably important effects have as much support as the null value. It 
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also leads to the reverse error of rejecting treatment equality to favor one 
of the treatments, when the largest reasonably supported beneficial effect 
of the winning treatment is clinically negligible. In Fig. 3 we could say that 
Eddington’s data give support 0.50 to Einstein, but then we would be 
required to observe that they also give support 0.50 to about 1.95, rather 
far from Einstein’s value. The conclusion from Eddington’s data would 
then be consistent with the later repetitions; his results did not have 
enough precision to decisively confirm Einstein. 

 

A Default Support Function 

Even in a specific situation, support functions are not uniquely 
defined. All that is required is a complete set of confidence intervals (one 
for each confidence coefficient, and so that they are nested) or a complete 
set of hypothesis tests (a p-value for every parameter value). This suggests 
that there can be a choice among multiple support functions, with no issue 
of there being a “correct” one. This section derives one approach that may 
be attractive enough to be the default. 

Start with the case of a real-valued statistic x, and suppose that for 

each possible  we know the CDF of x when  is true, which I denote F(x:). 

For now, think of both x and  as being variable. 

Fixing , the interval of x values for which  

F(x: ) ≥
s

2
    1 − F(x: ) ≥

s

2
 

is a 1-s central probability interval. The values of  for which the above 
inequalities hold, for the observed x, is a 1-s confidence interval. Using the 

fact that s will be the support for  when the latter is on the boundary of 
the 1-s confidence interval, we must have either 2F(x: ) = s or 

2(1 − F(x: )) = s. For reasons that will become evident in a second, I 

express this as 

s = min {
F(x: )

1/2
,
1 − F(x: )

1/2
} 

This shows how to compute the support s for any value of .  

I now want to go beyond this practical example to give a more 
theoretical argument. To do this, I define the Galton function as 

(a, b) = min {
a

b
,
1 − a

1 − b
} 
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for a and b in the unit line. This was the transformation of a CDF that 
Galton published in 1885. Let u have the uniform distribution on the unit 
line. Then 

(u, b) ≥ s 

is the same as 

u ≥ sb   and  1 − u ≥ s(1 − b), the second being u ≤ 1 − s + sb 

The probability of these conditions is thus 1-s. 

To apply this, if the CDF’s are continuous and strictly increasing, then 

F(x:) has a uniform distribution when  is true, and so the ’s for which 
(F(x: ), 1/2 ) ≥ s  form a 1-s confidence interval, and so finally the 

support for any particular  is (F(x: ), 1/2 ). This reproduces the 
argument given above, but the point is that it very greatly generalizes. 

A more general result depends on there being a g(x,) with the 

property that if  is the true value, then its CDF is known to be F(g:). 
Again assuming continuity and strict increasingness, this is all that is 

required for F(g(x,):) to be uniformly distributed, and this in turn 
implies that support is given by 

s = (F(g(x, ): ), F((): )) 

where () is what g(x,) estimates when  is true, usually taken to be its 

expected value, ()=E[g(x,):] 

Historically, something like g(x,) was to have a distribution that did 

not depending on , when  was true. It was called a “pivotal quantity”, 
and its advantage was that only one table was necessary for its 
distribution. Most of the currently common examples are of this form. 
Tables are now irrelevant, which is why the generalization is useful. I 
would refer to this as a generalized pivotal quantity, and its use as above 
to obtain support would be a reasonable default computation. Again, I 
point out that other sensible computations are often possible. 

For an example, if the model is that x is the average of a Normally 

distributed sample, with mean  and standard deviation , then √𝑛(x-)/s 
is a pivotal quantity (in the historical sense) where s is the sample 
standard deviation and n is the sample size, and its distribution is a t-
distribution F(x:n-1), with df=n-1. Then (,) = 0 and F(0:n-1)=1/2, so 

that support for  is 

s = (F(√𝑛(x − )/s: n − 1),1/2) 

For cases with large sample sizes, the t-distributions converge to the 
standard normal distribution, FN. This happens not only for averages, but 
for many other kinds of estimates. In such cases, all that is needed is the 
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estimate x, and an estimate of its standard deviation (the standard 
deviation of the estimate, or SDE). This takes different forms in different 
cases, and is usually produced by computer routines. With s as the SDE, 
the support function becomes 

s = (FN((x − )/s),1/2) 

This sort of approximation is used very frequently in statistics. 

The important point here is that a default support function is often 
easy to construct. A considerable portion of any basic course in probability 
involves finding generalized pivotal quantities (although they are not 
called that) and their expectations, the critical issue being that the relevant 
CDF’s are also presented. Thus conventional textbooks often contain all of 
the ingredients for making a support function for a one-dimensional 
parameter. The only step they do not take is the application of the Galton 
function and its interpretation in terms of support. 

The above argument is oriented toward continuous, strictly increasing 
CDF’s. This seems to leave out discrete cases. In these cases I would 

replace both F(g(x,):) and especially F(():) with smoothed, 
continu0us and increasing versions. This may seem questionable, but if 
done well it is quite accurate. In any case, procedures that use the actual, 
discrete CDF’s tend to become complicated, and the usual practice is to 
smooth the results at the last step. I find it easier and more convincing to 
smooth at the first step. 

 

Summary 

The problem with conventional statistical inference is not that its 
fundamentals are somehow wrong, but that their packaging is suboptimal. 
Since confidence intervals and hypothesis tests are mirror-images of the 
same process, it seems sensible to package them as one inferential object, 
and this is the support function. 

There is a sensible interpretation of support; a value is supported 
when the strongest argument against it is weak, and it is not supported 
when there is a strong argument against it. The only thing we can expect 
from an inferential principle is that it should tell us how much support a 
sample gives to various parameter values. Resting perhaps somewhat on 
our usual interpretation of “support”, the concept could be relatively easily 
explained in the classroom. Support functions are easy to compute with 
modern software, and when it is lacking there is an attractive default 
version. 

In 1987 Charles Poole made a prophecy; that if one consistently used 
support functions, one’s inferences would differ significantly from the use 
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of conventional methods. In two decades of following his advice I have not 
found him to be mistaken. 
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