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Abstract
Colin Howson (2000) claims that the no miracles argument in favor of a realist 
interpretation of a scientific theory falls prey to the base rate fallacy and is therefore 
invalid on logical grounds. In response, Dawid and Hartmann (2018) claim that 
Howson only reconstructs a limited part of the argument. They argue that a more 
complete reconstruction of the no miracles argument takes into account the success 
frequency of a wider spectrum of scientific theory building, and therefore avoids 
the base rate fallacy. In a critical response to Dawid and Hartmann, Boge (2020) 
presents two challenges to their approach, both of which are designed to provide 
reasons for skepticism about treating observed success frequencies in science as 
connected to the relevant base rates. In this paper, I argue that Boge’s challenges 
are not effective.
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1  Introduction

Scientific realism is, roughly, the view that well-confirmed scientific theories are 
typically approximately true. The view is defended on the basis on one general philo-
sophical argument: the no miracles argument (NMA). The core premise of the NMA 
asserts that the only plausible explanation of the predictive success demonstrated by 
science is that predictively successful scientific theories are typically approximately 
true (Putnam, 1975; Boyd, 1984). In other words, that success appears miraculous, or 
a ’cosmic coincidence’ (Smart, 1985), in absence of a realist explanation. Ever since 
the initial formulation of the NMA, the core premise of the argument has been criti-
cized, and a rich debate on its plausibility has since ensued. This debate underwrites 
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one of the most long-standing general philosophical disagreements in the philosophy 
of science, and no general consensus on this issue has been established. Both realism 
and anti-realism remain common views among philosophers of science to this day.

However, one perspective on the NMA threatens to disqualify the argument before 
debate on its core premise can even get started. Colin Howson (2000) has put forward 
the strong claim that, irrespective of whether or not the core premise of the NMA is 
true, the argument cannot justify the realist position, because it falls prey to a logical 
fallacy. On the basis of a Bayesian reconstruction of the NMA, Howson argues that 
the argument ignores the impact of base rate information about approximate truth. 
Such information, however, is crucial in order to understand whether or not the realist 
implication of predictive success, even if highly compelling in isolation, is ultimately 
a sufficient justification of scientific realism. For this reason, Howson concludes that 
the NMA commits the so-called base rate fallacy and is therefore invalid on logical 
grounds. This conclusion is also endorsed by Magnus and Callender (2004).

In response, some authors (Worall, 2007; Psillos, 2009) have expressed concerns 
about the adequacy of a Bayesian perspective on the NMA and the realist position, 
and suggested that the argument cannot be properly reconstructed in this framework. 
Against this criticism, Howson (2013) himself points out that rejecting a probabilistic 
framework in this context leaves the proponent of scientific realism without crucial 
tools to express the epistemic merits of the realist position. Buying into Howson’s 
reply, two more recent attempts to counter his original argument grant that there are 
no inherent issues with a Bayesian reconstruction of the NMA, but instead express 
a line of criticism which targets Howson’s understanding of the NMA. Henderson 
(2017) and Dawid and Hartmann (2018) [Henceforth, ’DH’] each suggest that How-
son only reconstructs a part of the full NMA structure. They then each claim that a 
more complete reconstruction of the argument shows that the argument in fact takes 
into account base rate information about approximate truth and conclude that the 
NMA therefore avoids the base rate fallacy.

Henderson’s argument is based on the suggestion that the overall high success rate 
of science is evidence for the hypothesis that theory selection in science is biased 
in favor of approximately true theories, and that supplementing the NMA with this 
evidence leads to a valid argument. Against this claim, both Boge (2020) and Dyck 
(2023) submit that, in the absence of an established base rate, concluding that a bias 
of this kind exists in no way constrains the relevant prior probability of approximate 
truth for a given scientific theory. But Howson’s core claim is exactly that the NMA 
is not valid because of the absence of a constraint of that kind. Hence, Henderson’s 
argument fails to improve the realist’s position with respect to this issue.

DH’s line of reasoning, however, leads to a constraint on the prior probability of 
approximate truth and therefore avoids this problem, as both Boge (2020: 4344) and 
Dyck (2023: 766) also note. On the basis of a formal argument, DH demonstrate 
that this prior is constrained by the core premise of the NMA, given that the theory 
targeted in the NMA is assigned a sufficiently large probability of predictive suc-
cess, prior to testing. Next, they adopt a statistical approach, and suggest that the 
frequency of predictive success in the relevant scientific research field can provide 
a well-founded estimation of this probability. In other words, if the research field of 
choice demonstrates a suitably high frequency of predictively successful theories, 
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a NMA in favor of realism about a successful theory in that field is not a fallacious 
argument. DH call this the frequency-based NMA, and suggest that Howson’s recon-
struction is not sensitive to the frequency-based aspect of the NMA.

In a critical response to DH, Boge (2020) presents two challenges to the frequency-
based NMA, designed to provide reasons to doubt the viability of DH’s frequency-
based approach to estimating the prior probability of predictive success of a scientific 
theory. Boge’s two challenges are interesting and may be understood to represent 
intuitive concerns about the frequency-based NMA. Hence, they put into question 
whether the frequency-based NMA is an adequate response to the charge that the 
NMA falls prey to the base rate fallacy. In this paper, however, I argue that the chal-
lenges are not effective.

The structure of the paper is as follows. Section 2 sets up the relevant background; 
In section 2.1, I reconstruct Howson’s criticism of the NMA, and in section 2.2, I 
present DH’s response to Howson, and their frequency-based version of the NMA. 
In sections 3.1 and 3.2, I turn to Boge’s two challenges. With the help of a Bayesian 
reconstruction of DH’s frequency-based approach to estimating the prior probability 
of predictive success of a scientific theory, I explain why the challenges do not pro-
vide grounds for doubting the logical validity of the frequency-based NMA.

2  The no miracles argument and the base rate fallacy

2.1  Howson’s reconstruction of the no miracles argument

Consider a diagnostic test for a rare disease that occurs only in one in a thousand 
people. The test is extremely sensitive (it always correctly diagnoses a positive case 
of disease) and very specific (the probability of a false positive is only 0.05). Next, 
consider a test that gave a positive result, conducted on a randomly picked test sub-
ject. What is the probability that the test subject has the disease? Given the high 
sensitivity and specificity of the test, one may be led to conclude that the patient most 
likely has the disease. But this would be neglecting the small base rate of the disease 
in the population from which the test subject was picked. Given the low base rate of 
disease in the population, only one of every thousand tests conducted in the specified 
way will correctly diagnose a positive case of the disease. And given that one in every 
twenty tests will be a false positive, the rate of true positive to false positive tests is 
just 1/51. In other words, the probability that any particular test is a true positive is 
approximately 0.02. Hence, the probability that the test subject actually has the dis-
ease, conditional on a positive test, is still very small.1

The base rate fallacy is typically understood as a reasoning error which disregards 
the significance of base rate information of this kind (e.g. Howson & Urbach, 2006: 
24). Formally reconstructed in Bayesian epistemology, the base rate of disease is 
represented as the prior probability that any randomly picked test subject has the dis-
ease. If this prior is very small, i.e., if one’s initial belief that the test subject does not 

1 Both Howson (2000) and Henderson (2017) use this analogy in their discussion of the NMA.
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have the disease is very strong, even a very sensitive and specific positive test may be 
considered fairly insignificant with respect to establishing infection.

Howson’s criticism against the NMA turns on the claim that this argument falls 
prey to a similar reasoning error. Let H be a scientific theory, and let T be a binary 
propositional variable with values T: H is approximately true, and its negation ¬ T. 
Let S be a binary propositional variable with values S: H is predictively successful, 
and its negation ¬ S. The core premise of the NMA can now be understood as the 
following two propositions, roughly analogous to the sensitivity and specificity of 
the medical test:

A1: P(S  T) is large.
A2: P(S  ¬ T) < k << 1.
Where A1 formalizes the assumption that approximately true theories should be 

expected to be predictively successful, and A2 formalizes the assumption that theo-
ries that are not at least approximately true should not be expected to be predictively 
successful. In other words, S can be treated as a fairly sensitive and specific test of 
T. From A1 and A2, the scientific realist infers that P(T  S) is large. But, as Howson 
points out, this conclusion does not follow from the premises, because the realist’s 
inference does not take into account the possibility of a very small prior probability 
of T. P(T  S) can be calculated with Bayes’ Theorem:

	
P (T | S) = P (S | T )

P (S | T )P (T ) + P (S | ¬T )P (¬T )
P (T )� (1)

The product at the right-hand side of this equality implies that no (non-dogmatic) 
assignments of values to A1 and A2 guarantees the realist’s conclusion, given an 
arbitrarily small prior probability P(T). Hence, concluding that P(T  S) is large, 
perhaps larger than 0.5, the realist neglects the possibility of a very small base rate of 
approximate truth, and therefore falls prey to the base rate fallacy.

Formally, the argument may of course be validated by adding a premise which 
suitably constrains P(T). But the problem runs deeper. P(T) is difficult to constrain, 
given that the probability that the theory under scrutiny is approximately true is the 
core epistemic object of disagreement between scientific realists and anti-realists. 
Asserting a priori constraints on that probability hence begs the question. For this 
reason, Howson concludes that the NMA therefore is bound to fail already at the level 
of establishing its logical validity.

2.2  The frequency-based no miracles argument

DH (2018) offer a response to Howson that is based on claiming that his reconstruc-
tion of the NMA is not fully comprehensive. DH individuates two different versions 
of the NMA: individual theory-based NMA, and frequency-based NMA. The former 
starts out by selecting a scientific theory which is known to be successful, and then 
deploys the realist conjecture to explain that theory’s success. The latter, on the other 
hand, deploys the realist conjecture to explain the observation that theories which are 
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developed and tested in science tend to be predictively successful.2 DH then claim 
that Howson only reconstructs the individual theory-based NMA, and that his con-
clusion that this argument falls prey to the base rate fallacy is correct: Individual 
theory-based NMA does not specify any constraints on P(T) and therefore does not 
convince anyone who is sufficiently initially skeptical about the theory’s approximate 
truth, even if that skeptic accepts A1 and A2 for the sake of the argument. However, 
they show that, once a frequency-based NMA is adopted, the base rate fallacy can be 
avoided, because the frequency-based NMA does specify certain constraints on P(T).

In order to demonstrate that the frequency-based NMA avoids the base rate fal-
lacy, DH construct a formal Bayesian model of the argument. They start by identify-
ing the historical frequency of predictively successful theories nS  to the total number 
of tested theories nE  in some scientific research field D: nS/nE  := R. Next, they 
assume that each new theory H in D can be treated as a random pick from D with 
respect to predictive success, and its probability of predictive success P(S) can there-
fore be estimated according to R.3 Finally, DH prove that, according to the law of 
total probability, P(T) is bounded from below by the difference P(S) – k. If k < P(S), 
that bound is therefore positive. Since k is small by assumption A2, satisfying this 
inequality requires only a modestly large value of R, in which case the core premise 
of the NMA leaves no room for an arbitrarily small P(T). In other words, if the fre-
quency of predictive success in a research field is sufficiently high, assuming A1 and 
A2 means assuming a prior probability of approximate truth for theories in that field 
that is positively bounded from below. On the observation that H was predictively 
successful, the argument can then proceed according to Howson’s reconstruction of 
the individual theory-based NMA.

The frequency-based NMA consists of two parts. The first part is the conclusion 
that P(T) is bounded from below by the difference P(S) – k, and is obtained math-
ematically on the basis of the law of total probability. The second part is the claim 
that P(S) can be estimated according to a statistical inference based on the frequency 
of predictive success in a scientific research field. This part of the frequency-based 
NMA is less rigid, because an inference of this kind relies on making several non-
trivial distinctions and observations. What counts as a predictive success? What 
counts as a theory? What are the boundaries on a scientific research field? Indeed, 
the difficulty in satisfactorily answering these questions have led some authors to 
reject the tractability of this inference. Considering a kind of prototype version of the 
frequency-based NMA, Magnus and Callender (2004: 325) hold that “it is impossible 
to count up or even fairly sample all the theories that were considered for our mature 
sciences, and so it is impossible to evaluate whether [R>>0] obtains”. More recently, 
Dyck (2023: 775) points out that it may be especially difficult to produce a candidate 
set of theories that is satisfactory to both camps of the realism debate.

2 This distinction is analogous to Henderson’s (2017) distinction between local and global NMA, and to 
Dawid’s (2008) distinction between analytic and epistemic NMA.
3 DH adopt the frequentist estimate P(S) = R for conceptual simplicity, but note that a Bayesian estimate 
is more involved, since it takes into account prior beliefs about S. However, on DH’s understanding of the 
argument, those beliefs are treated as subjective prior probabilities which are washed out in the large nE  
limit, and the frequentist and Bayesian estimate therefore converge in that limit.
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Nevertheless, Dyck also suggests that proceeding with this analysis may be “the 
best option available” for advancing the scientific realism debate. That something is 
difficult does not mean that it is impossible. Furthermore, what is at stake here are not 
exact probabilities, but the plausibility of the realist position. Justifying that position 
with respect to H only requires showing that P(T  S) is larger than some relevant 
threshold.4 Concluding simply that R falls into a certain range or interval may well be 
enough to establish inequalities of this kind (given, of course, A1 and A2).5

However, even if one holds against Magnus and Callender that R can be satisfac-
torily established, there is another potential problem with DH’s suggested statistical 
inference. In many contexts, the available data may not be substantial enough to take 
R as a reliable estimate of P(S), because the sample size may just be too small. In 
this situation, the frequency-based NMA is exposed to a similar problem that befalls 
the individual theory-based NMA: the assessment of the significance of the relevant 
observations with respect to the realist conjecture will be strongly subjective, even 
if the core realist assumptions A1 and A2 are assumed for the sake of the argument.

While a situation of this kind does present a real problem for the scientific real-
ist, it also reveals why DH claim that, unlike the individual theory-based NMA, the 
frequency-based NMA does not fall prey to the base rate fallacy. The individual 
theory-based NMA does not offer a framework within which the subjective element 
can be discharged and this element therefore remains structurally necessary in the 
justification of scientific realism. The frequency-based NMA, on the other hand, is 
based on an open series of experimental tests of new scientific theories in D. This 
series ensures that the influence of subjective priors can eventually be washed out in 
the large nE  limit. Hence, an anti-realist who accepts A1 and A2 for the sake of the 
argument but disagrees with the realist about the significance of the available data R 
with respect to the crucial probability P(S) can just wait for new data to come in to 
settle the disagreement. In DH’s words, “the deep reason why frequency-based NMA 
avoids the base rate fallacy ... lies in the fact that it provides a framework in which 
the convergence behaviour of posteriors under repeated updating can be exploited” 
(Dawid & Hartmann, 2018: 4071-4072).

3  How to estimate the success chance of a scientific theory?

The two concerns about DH’s statistical approach to estimating P(S) described above 
are based on the claim that the relevant statistical inference may in many research 
fields suffer from inconclusive or ambiguous data. These are clearly serious con-
cerns for the scientific realist who relies on the NMA to justify a high credence in 

4 For example, DH show that, for P(S | T) = 1, P(S) needs to be larger than 2 × P(S | ¬ T) in order to 
obtain P(T | S) > 0.5 (Dawid & Hartmann, 2018: 4073).
5 DH’s own perspective aligns with this understanding. They claim that “[the realist] normally is not in the 
situation to provid[e] a complete count of the successful and failed theories in the field based on precise 
criteria for what counts as a theory. The presented formalisation [of the frequency-based NMA] does not 
suggest that scientific realists must provide an actual count of theories any more than Bayesian confirma-
tion theory suggests that scientists must carry out Bayesian updating from explicitly specified priors of 
their theories” (Dawid & Hartmann, 2018: 4069).
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the approximate truth of her scientific theory of choice. However, they are practical 
problems that can in principle be addressed on the basis of a careful assessment of 
the relevant data sets. The current most critical response to DH’s frequency-based 
NMA, however, is based on a more fundamental issue. On the basis of two indepen-
dent arguments, Boge (2020) presents two challenges for DH’s suggested statistical 
approach to estimating P(S). In the next sections, I evaluate these challenges.

3.1  Why transfer expectations of success to a new scientific theory?

Boge’s first challenge concerns the inductive justifications for DH’s core assumption 
that P(S) can be estimated according to R. Boge begins with delimiting his challenge. 
To simplify their formal model, DH adopt the strict frequentist equality P(S) = R. 
Boge notes that a Bayesian will reject this strict equality, since she would take into 
account her prior beliefs about S when updating P(S) on R. However, he accepts DH’s 
practical choice to stick with the frequentist estimate. Since DH treat these beliefs as 
subjective priors which are eventually washed out by testing ever more theories in 
D, the Bayesian and frequentist estimates of P(S) are taken to converge in the large 
nE  limit. Hence, according to Boge, “the ‘roughness’ of the estimate nS/nE  is really 
not what’s problematic here” (Boge, 2020: 4345). What he is rather concerned with 
is “why the success of the other theories in D should confer any probability to the 
success of an entirely new theory, H, just because H also falls into D, i.e., concerns 
the same subject matter” (Boge, 2020: 4345).

Boge illustrates his concern with an analogy, which captures its intuitive pull. 
Consider a hitherto untested weather forecaster, picked from a group of somewhat 
successful weather forecasters “in ancient Greece with their predictions informed 
by past experience and their a priori ideas on how to conceptualize the weather” 
(Boge, 2020: 4345). Now Boge asks;

would we ... assume that the forecasts of a new forecaster, so far unknown to 
us, would also be somewhat successful, just because she tells us something 
about the weather, i.e., in the absence of any further information, as required 
by DH? Clearly one’s willingness to transfer the expectation of success to the 
new member may depend on all sorts of other factors: personal connections 
between the new forecaster and the known ones, similarities and differences it 
their basic beliefs, similarities in method, and so forth. Hence in the absence of 
further knowledge, one should be at liberty to remain far more skeptical about 
the new forecaster’s success (Boge, 2020: 4345).

Boge supplements his analogy with a concrete argument. He first notes that pre-
dictive success in scientific realism is typically understood as successful prediction 
of novel phenomena, rather than accommodation of known phenomena. Then, he 
asserts that it is unclear why one would assume that the success rate of earlier theo-
ries in D would be relevant when estimating the new theory’s chance of predictive 
success in the domains where the theory’s prediction diverges from those of earlier 
theories, which is required for novel predictive success. To illustrate this concern, he 
takes an example from theoretical physics: “why should the mere success of Newto-
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nian mechanics (NM) ... and that of special relativity (SR) ... have committed scien-
tists to the belief in general relativity (GR) ... ? Could GR not have easily made false 
predictions where it diverges from Newton’s theory?” (Boge, 2020: 4346). Indeed, 
Boge points at the numerous potential alternatives to GR which were considered at 
the time before GR was empirically confirmed, and states:

If it were correct that “in the absence of further knowledge, the success chances 
of a new theory should be estimated according to [the] rate of predictively suc-
cessful theories in D” (DH: 5), should the success of NM and SR not have led 
us to the false expectation of these alternative theories’ successes, before they 
were studied in detail or tested empirically? (Boge, 2020: 4346).

Boge’s challenge identifies two apparent issues for DH’s statistical approach. The 
first issue conceptual: in the absence of specific knowledge about the connections 
between a new theory H in a research field and earlier theories in that field, why 
should the probability of H’s novel predictive success be estimated according to the 
success rate of those earlier theories? The second issue is set up like a reductio. A 
consequence of assuming P(S) = R in the context of physics is that one’s expectation 
about the success of the alternatives to GR would have been much higher than what 
was ultimately proven to be the case, which looks like a problem for that assump-
tion. A successful response to Boge must address both issues associated with his 
challenge. Let me begin by addressing the first issue on the basis of a more elaborate 
Bayesian analysis of DH’s suggested estimation, before then going on to address the 
second issue.

In order to obtain a more detailed Bayesian perspective on DH’s statistical approach 
to estimating P(S), we first need to identify a (statistical) population of theories in 
some research field D. This population consists of the set HD of past, present and 
future theories in D. Next, we are interested in the relative frequency of predictively 
successful theories in HD. Since we are operating in a Bayesian framework, we begin 
by formalising our prior beliefs about that frequency. We assign a prior probability 
distribution PF  over a propositional variable F , such that {F  = j} := Fj, and j is a 
real number in the [0, 1] interval:6

Fj := the relative frequency of predictive success in HD is j.
Now consider a theory H from HD. By the law of total probability, H’s probability 

of success P(S) is expressed as:

	
P(S) =

1∑
j=0

P(S | Fj)P(Fj)� (2)

6 We must assume that PF  is non-extreme, i.e., that we are not already in advance fully certain about the 
relative frequency of success in HD . If we would be, it would be trivially true that we could not update 
PF . Moreover, if we already know the relative frequency of success in HD , we get a base rate of approxi-
mate truth from A1 and A2. Hence, the validity of the NMA could be guaranteed by a sufficiently small 
choice of A2 (of course, if exactly no theory in HD  is successful, no particular choice of A2 generates a 
valid NMA).
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Now, in the absence of further knowledge about H other than that it is from D, it will 
be treated as a random pick with respect to predictive success from D. Hence, for 
all j, we get P(S | Fj) = j, because if the relative frequency of predictive success in 
HD is j, the probability that a random pick from HD is predictively successful is by 
definition exactly j. Hence, we obtain:

	
P(S) =

1∑
j=0

jP(Fj) = F̄ � (3)

where F̄  is the PF – weighted mean of F .
The equality expressed in (3) is a formalisation of the fact that if one has no knowl-

edge about H except H ∈ HD, one’s opinion on the relative frequency of success in 
HD directly determines P(S), on pain of logical inconsistency. In other words, if H is 
treated as a random pick with respect to predictive success from HD, its probability 
of predictive success is equal to the relative frequency of predictive success in HD.

In order to understand how observing earlier instances of predictive success in D 
impacts H’s probability of success, we assume that some earlier theory H  was predic-
tively successful when exposed to empirical testing, and assess any (dis)confirmatory 
effect of this observation on each Fj. Let S  stand for the observation that H  was suc-
cessful. We can calculate the posteriors P (Fj | S′) with the help of Bayes’ theorem:

	
P (Fj | S′) = P (S′ | Fj)

P (S′)
P (Fj)� (4)

In absence of further information about H , it is treated as a random pick with respect 
to predictive success, and we obtain (S  | Fj) = j and P(S ) = F̄ . Hence, we can re-
write Eq. 4 as:

	
P (Fj | S′) = j

F̄
P (Fj)� (5)

Hence, we see that, given 0 < P (Fj) < 1, if j >F̄ , then we obtain P(Fj | S′) >P (Fj), 
that is, Fj  is confirmed by S . If j < F̄ , then we obtain P(Fj | S′) < P(Fj), that is, Fj  
is disconfirmed by S . The (dis)confirmation value depends on the difference of j and F̄ : 
The larger (smaller) j is compared to F̄ , the more it is (dis)confirmed, and the probabil-
ity distribution across F  will thereby be updated to favour higher (lower) P(Fj). Given 
(3), we see that H’s probability of success thereby increases or decreases by updating on 
the success or failure of earlier theories in D. That is, observing the predictive success of 
the earlier theory H  updates one’s opinion on the relative frequency of success in HD, 
and, therefore, one’s credence in the success of an entirely new theory H.7

7 DH’s frequentist equality P(S) = R avoids the arduous task of updating the probability distribution across 
F  for each instance of predictive success and failure in D. As long as PF  is treated as a strict prior dis-
tribution (i.e., as a fixed initial condition of the probabilistic model), the two frameworks converge in the 
large nE  limit, and the frequentist estimate therefore involves only quantitative distortions at small nE .
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The above analysis assumes, with DH, that “each new theory that comes up in 
D can be treated as a random pick with respect to predictive success” (Dawid & 
Hartmann,  2018: 4067). However, there may be situations where this assumption 
should be rejected. For example, one may consider a situation where information 
is available which leads to a substantially higher credence in the success of earlier 
theories in the research field D than in the success of the new theory. Boge’s weather 
forecasting analogy could be interpreted as spelling out such reasons. If one adds to 
his analogy the assumptions that the methodology and conceptualizations employed 
by the ancient forecasters can be associated a priori with a higher probability of 
forecasting success (and further that those tools are not known to be common to all 
forecasters) while the new forecaster is simply treated as a random pick from what is 
considered an overall fairly unsuccessful bunch of forecasters, then one encounters 
a situation where the power of the frequency-based estimation of the new forecast-
ers success may be significantly reduced. In the case of the NMA, this information 
controls the P(S ) which, as demonstrated by equation (4), is crucial to understand the 
significance of instances of predictive success in the field of interest with respect to 
beliefs in the relative frequency of success in that field. If this probability is large, the 
updating in credence in the relative frequency of success by observing S  will not be 
very significant, and one will be left with a fairly unchanged opinion on that relative 
frequency. Alternatively, or in addition, one may have information about specifically 
H which disqualifies treating H as a random pick, and which thereby impacts one’s 
credence in H’s success.

These situations are by no means ruled out by DH’s suggested framework in isola-
tion, as they operate under the assumption that theories in D are treated as random 
picks with respect to predictive success. Hence, they underwrite a line of criticism 
that is in principle available to the anti-realist. However, insofar as a situation of this 
kind actually obtains, the relevant information must be identified for each case and 
each theory. In order to put forward this kind of argument against the frequency-
based NMA, one would have to identify reasons to believe that the earlier theories in 
D differ in some specified way from the new theory that is related to their respective 
probabilities of predictive success. Simply postulating that there can be a difference 
of this kind does not undermine the validity of DH’s suggested statistical analysis. In 
the absence of information of this kind, theories will be treated as random picks with 
respect to predictive success. Moreover, in order to reject the validity of a frequency-
based NMA, the anti-realist would further have to demonstrate that this information 
speaks against, rather than for, the theory H that is the target of that argument. Assum-
ing that one has special information about the theories in D which disqualifies treat-
ing them as random picks with respect to predictive success may just as well be taken 
to imply a improvement of H’s success chance. For example, as a reviewer for this 
journal suggests, one may be tempted to assume that, ceteris paribus, a new theory 
may be considered more likely to succeed than theories that preceded it, simply due 
to the natural progression of science. In any case, anti-realists who seeks to ascribe 
to H a small success chance due to the availability of information of this kind carries 
the evidential burden of presenting that information.

Before moving to the second issue associated with Boge’s challenge, let me briefly 
address a final point made by Boge that is connected to his skeptical line of reasoning 
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about the justification for assuming P(S) = R described above, and which is related 
to the way the Bayesian updating described above proceeds:

... given the above arguments [described above], we must ask whether the fact 
that the new theory is from D suffices to sanction the induction in question. 
A detailed Bayesian analysis would allow a more precise assessment of this 
inductive justification. But it would presumably appeal to the theorem “of fun-
damental importance to the interpretation of the probability calculus as a logic 
of inductive inference” that “[i]f h entails e and p(h) >0 and p(e) < 1, then p(h 
 e) >p(h).” (Howson & Urbach, 2006, p. 20; notation adapted) In the present 

case the hypothesis, h, at any stage of the updating procedure must be that the 
next theory in D will succeed and the evidence, e, that a number of theories in 
D have succeeded so far. ... A core problem with the justification for using R or 
a similar value that comes from conditioning on the empirical success of other 
theories is hence that they may be largely unrelated, or not related in the appro-
priate ways, whence the sort of entailment relation required for the updating 
may not even hold: The success of the older theories will not be entailed by any 
genuine success of a new one, in the sense specified above, and one could hence 
reasonably maintain that older successes have no say in the estimation of the 
new theory’s success (Boge, 2020: 4347 [This quote is based on the corrected 
version (2021) of Boge’s text].

While this is an interesting suggestion on how to reconstruct the relevant updating 
procedure in a Bayesian framework, this point is based on a misunderstanding of 
how the relevant updating plays out that overly constrains the confirmation relation 
between R and S. In particular, Boge’s claims that the detailed Bayesian analysis he 
has in mind would appeal to the described theorem, and that an entailment relation of 
the kind Boge describes is required for updating h on e, are both false. The theorem 
Boge references describes a paradigmatic case of confirmation in Bayesian episte-
mology, but does not spell out necessary conditions for confirmation.8 The formal 
analysis of updating P(S) on R carried out above is a good illustration of this fact, and 
also serves to illustrate how the relevant updating procedure plays out in absence of 
an entailment relation between hypothesis and evidence.

The analysis carried out hitherto has addressed the first issue associated with 
Boge’s first challenge. Let me now move on to the second issue. In the statistical 
framework described above, there is nothing inherently problematic about the fact 
that one may ascribe a high probability of success to a scientific theory that ultimately 
fails. If the success rate of physical theory before the advent of GR was considered 
high, that framework indeed suggests that one might have a fairly high credence in 
the success of the theory which was up for testing next, since F̄  might by then be 
fairly large. To be clear, it does not at all imply that GR, or its alternatives, could 

8 In the paragraph just after the quote from Howson and Urbach (2000: 20) that Boge references in support 
of his claim, the former write ’but [this theorem] is just one of the results that exhibit the truly inductive 
nature of probabilistic reasoning. It is not the only one, and more celebrated are those that go under the 
name of Bayes’s Theorems”.
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not have failed. The observation that theories then started to fail in rapid succession 
would update that credence, and lower one’s confidence in the success of future theo-
ries. The conclusion would then be that the nascent success of the research field was 
a statistical fluke, and that the relative success frequency of the field in reality is much 
lower than what was expected on the basis of that initial success. One would not, 
however, take the failure of that expectation to imply that it was not well-founded to 
begin with.

3.2  The argument from incompatibility

In the next section of his paper, Boge puts forward a second challenge against DH’s 
core assumption that P(S) = R, which is set up as another reductio, and which can-
not be directly resolved by the formal analysis carried out above. The challenge is 
based on an argument that can be reconstructed as a three-step line of reasoning. 
First, Boge suggests that theories which have been developed in a research field can 
be partitioned into classes, such that theories within a class are compatible (i.e., can 
be approximately true simultaneously) but theories which belong to different classes 
are not compatible. Second, he asserts that P(T) must be constrained by the number 
of classes c. Since only one of the classes can contain approximately true theories, 
P(T) can at most be 1/c. Finally, given a fairly large c, plausible values of A1 and A2 
in conjunction with a high frequency of success in the relevant research field lead 
to a lower bound on P(T) that exceeds 1/c. Put simply, one is not rationally allowed 
to expect H to have an R>>0 probability of being successful, given that one accepts 
A1, A2 and 1/c as an upper bound on P(T). The formal reason is that, given A1 and 
A2, the law of total probability strongly constrains P(S) given a small upper bound 
on P(T). According to Boge, this conclusion generates “a conflict with DH’s reason-
ing”, because “is easily conceivable that ... values for A1, A2 and c could apply but 
that more than 1/c of the theories in the given [research field] can claim success” 
(Boge, 2020: 4348).

Although Boge’s claim that it is ’easily conceiveable’ that large values for c could 
apply in some given scientific research field is questionable, his formal analysis is 
entirely correct. The lower bound on P(T), established by A1, A2 and assuming P(S) 
= R, can indeed become incompatible with P(T) ≤ 1/c. However, this incompatibility 
it is not in conflict with DH’s statistical approach to estimating P(S). DH’s core claim 
is that given A1, A2 and a sufficiently high frequency of predictive success, P(T) is 
positively bounded from below. DH do not claim that A1 and A2 are in fact justified.9 
The frequency-based ’part’ of the NMA, advocated by DH, is required for establish-
ing that the argument is valid, i.e., that the conclusion follows from the premises. It 
does not in itself make A1 and A2 any more plausible than they were to begin with. 
And, as Boge himself notes (2020: 4349), the observation that predictive success is 
demonstrated by a large number of incompatible theories can be taken to suggest that 
H’s predictive success is quite probable, even if H is not approximately true (i.e., to 
a rejection of A2), rather than that the demonstrated pattern of success will probably 

9 “ ... a supporter of the frequency-based NMA must justify assumptions A1 and A2 ... whether or not that 
can be achieved lies beyond the scope of this paper” (Dawid & Hartmann, 2018: 4077).
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not continue in the future (i.e., to a rejection of the assumption that P(S) = R). This 
conclusion is a fully consistent response to the described observation. Hence, there 
is no general problem with taking the historical success frequency to deliver a fairly 
reliable prediction about the future success frequency, even in research fields where 
one finds a large c.

Indeed, this understanding would be consistent with a classic anti-realist argu-
ment, the pessimistic meta-induction (Laudan, 1981), against A2. Proponents of this 
argument claim that the predictive success observed in science should be expected 
to continue in the future, even if realism is false. According to them, the historical 
record of science shows that there is a fairly substantial probability that scientific 
theories which are absolutely false nevertheless turn out to be quite successful. The 
success rate of science may therefore be expected to continue in the future, even if 
one assumes a low rate of approximately true theories.

I do not take a stand on whether or not it is plausible to assume that c is large for a 
significantly large set of scientific fields. This is a difficult question that is related to 
the large and complicated debate on the pessimistic meta-induction and selective ver-
sions of scientific realism, and to the realist’s interpretation of the concept of approxi-
mate truth. Whether or not Boge’s argument for a large c is ultimately convincing is a 
question that lies beyond the scope of this paper, which is concerned with the logical 
validity of the NMA. The point made here is that Boge’s argument, even if one grants 
for the sake of the argument that many scientific fields instantiate a large number c 
of incompatibility classes, does not identify any special issue for DH’s statistical 
approach to estimating P(S). Contrary to what he claims, accepting 1/c as an upper 
bound on P(T) would not be in conflict with that estimation.

4  Conclusions

The following picture of the logical validity of the frequency-based NMA has 
emerged in this paper. Estimating the probability that a scientific theory will be pre-
dictively successful on the basis of the historical success frequency in the relevant 
discipline, as suggested by DH, is a fairly standard case of statistical inference. As 
such, it has all the benefits and drawbacks of such inferences in general. In some con-
texts, it may be difficult to establish that these inferences are reliable, while in others, 
they may appear fairly straightforward. In the end, whether or not those inferences 
turn out to support realism or anti-realism about some given theory or research field 
is an empirical question that must be addressed by the stakeholders of the scientific 
realism debate.

Questions about the soundness of the frequency-based NMA lie beyond the scope 
of the analysis provided in both this paper and by DH. Adopting a frequency-based 
perspective on the NMA does not amount to the claim that high success frequencies 
in science imply scientific realism on their own. The core assumptions A1 and A2 
must still be justified in order to reach that conclusion. In situations where a high 
frequency of success is coupled with an understanding that an abundance of abso-
lutely false theories have contributed to that success, either by way of a pessimistic 
meta-induction (Laudan, 1981) or, as Boge discusses, by way of considerations about 
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incompatibility, those assumptions may be difficult to defend. However, the point of 
understanding the NMA as a frequency-based argument is not to improve the plausi-
bility of the NMA’s core premise, but rather to analyse the strongest (logically valid) 
version of the argument. Hence, whether or not the realist position is justified lies 
beyond what a frequency-based perspective on the NMA can offer in isolation.

While this picture have expanded and offered clarifications of DH’s own presenta-
tion of the frequency-based NMA, it remains fully consistent with their core message 
that the frequency-based NMA does not fall prey to the base rate fallacy. The results 
of the analysis carried out in this paper therefore strengthen the scientific realist’s 
position in light of concerns about the logical validity of their main general argument.
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