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Abstract

In the Hamiltonian formalism, a gauge transformation is typically defined as a transformation

generated by an arbitrary combination of first-class constraints. But gauge transformations are

also understood as marking physical equivalence: they relate states or solutions that represent

the same physical situation. Whether these two characterizations coincide has been a matter

of debate. Pitts (2014b), for example, contends that first-class constraints can generate a “bad

physical change”. This paper defends the standard view, arguing that it correctly identifies

both states and solutions that are equivalent from the perspective of the geometric structure of

the Hamiltonian formalism. In doing so, it clarifies the relationship between mathematical and

interpretational perspectives on gauge transformations.

1 Introduction

Gauge transformations are of philosophical interest because they are often characterized as symme-

tries that reveal “excess structure” or “redundancy” in a physical theory: they are transformations

that relate mathematically distinct but physically equivalent situations.1 Given their central role in

the interpretation of a physical theory, it is crucial that the mathematical definition of gauge trans-

formations aligns with their intended physical interpretation.

There is a longstanding tradition of using the “constrained Hamiltonian formalism” to identify

1For more on the notion of excess structure and its connection to symmetries of a theory, see, for example, Ismael
& Van Fraassen (2003), Earman (2004), Baker (2010).
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the gauge transformations of a theory. The standard account, due to Dirac (1964), identifies the

gauge transformations as the transformations generated by an arbitrary combination of first-class

constraints, which are the constraints on the dynamically allowed states that have vanishing Poisson

bracket with all of the constraints. This definition has significant implications for the formulation of

Hamiltonian gauge theories. On its basis, Dirac argued that the Hamiltonian governing the dynamics

should be understood not as an equivalence class of Hamiltonians known as the Extended Hamiltonian.

Furthermore, in contexts where gauge symmetry must be eliminated—most prominently in standard

approaches to quantization—this definition justifies treating states related by first-class constraints

as equivalent, and therefore for moving to a state space where the differences between such states are

removed.

However, there have been several recent dissenters of Dirac’s account of gauge transformations.

For example, using the case of Electromagnetism, Pitts (2014b) argues that a first-class constraint

can generate “a bad physical change”. Similarly, Pons (2005) argues that Dirac’s analysis of gauge

transformations is “incomplete” since it does not provide an accurate account of the symmetries

between solutions to the equations of motion; it only provides an account of the symmetries between

individual states. Both authors conclude that Dirac was wrong about the definition of the gauge

transformations in the Hamiltonian formalism and that formulating a theory in terms of the Extended

Hamiltonian is therefore unmotivated.2 If correct, these arguments could have implications for other

issues in the foundations of the constrained Hamiltonian formalism. Notably, there is a puzzle called

the “Problem of Time” that arises for theories where the Hamiltonian function is itself a first-class

constraint: according to the standard definition, states along a single solution are equivalent to each

other. If gauge transformations are not given by the standard definition, then this could be an avenue

to avoiding the Problem of Time.3

In this paper, I defend the orthodoxy against the dissenters. I grant that they are correct in

noting that Dirac’s original reasoning is flawed, but I reject the claim that his conclusion therefore fails.

Instead, I argue that the standard view—that arbitrary combinations of first-class constraints generate

gauge transformations—can be independently motivated by examining the geometric structure of the

constrained Hamiltonian formalism. In particular, I show that one can distinguish two precise notions

of equivalence within this framework, and I demonstrate that the standard definition aligns with both,

2The alternative definition of a gauge transformation supported by Pitts and Pons can also be found elsewhere,
including in earlier work by Anderson & Bergmann (1951) and Castellani (1982).

3See Pitts (2014a) for a response of this kind. For an introduction to the Problem of Time and its philosophical
implications, see Thébault (2021).
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thereby connecting the mathematical formalism to its interpretational significance.

There are several important consequences. First, the argument extends a recent response to Pitts

(2014b) provided by Pooley & Wallace (2022). They demonstrate that Dirac’s orthodoxy can be up-

held in the case of Electromagnetism by showing that the standard definition is correct, provided one

regards the Extended Hamiltonian as the appropriate equivalence class of Hamiltonians. However,

they leave open the question of why one ought to formulate a theory in terms of the Extended Hamil-

tonian. The present argument answers this question: the equivalence class of solutions determined by

the Extended Hamiltonian emerges naturally from the mathematical structure of the formalism.

Second, the analysis sharpens the distinction between viewing gauge transformations as capturing

a notion of equivalence between states versus solutions. On Dirac’s account, gauge transformations

relate individual states along equivalent solutions, and so these two notions of equivalence are inter-

twined. Here, I show that these notions can be separated: one can identify a sense in which states

are equivalent that is conceptually independent of the equivalence between solutions to the equations

of motion. This may have implications for the Problem of Time, where a central question is whether

gauge transformations should be interpreted differently when applied to states than when applied to

solutions.

Finally, the argument brings into focus two questions that have not always been cleanly distin-

guished in the literature. The first is whether the standard definition of gauge transformations is

justified from within the Hamiltonian formalism itself. The second is whether the Hamiltonian ac-

count yields the same account of gauge transformations as that arising in the Lagrangian formalism.

This paper answers the first question affirmatively. The second, however, turns on the deeper issue of

how different theories, and their associated symmetries, are to be compared.

The paper will go as follows. In Section 2, I present Dirac’s version of the constrained Hamiltonian

formalism and the original reasoning that led to the conclusion that arbitrary combinations of first-

class constraints generate gauge transformations. In Section 3, I spell out the example that pitts uses

as a counterexample to Dirac’s account of gauge transformations, and I discuss where the tension

between the two views lies. In Section 4, I consider the extent to which Pooley & Wallace (2022)

provide a resolution, and in Sections 5 and 6, I extend this argument by showing that the geometric

formulation of the constrained Hamiltonian formalism provides the theoretical ground for motivating

the view that arbitrary combinations of first-class constraints generate gauge transformations. Finally,

in Section 7, I consider and respond to two possible counterarguments.
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2 Dirac’s Theory

Dirac’s version of the constrained Hamiltonian formalism is constructed by starting with the La-

grangian formalism. For the sake of simplicity, we will focus on the construction in the finite-

dimensional case, but it can be extended naturally to the infinite-dimensional case.4 The Lagrangian

formalism has a state space composed of N degrees of freedom qn, n = 1, ..., N , with corresponding

velocities dqn
dt = q̇n, where we assume an independent time variable t.5 The dynamics are given by

specifying a Lagrangian L = L(qn, q̇n) with corresponding action I =
∫
L(qn, q̇n)dt, from which one

derives the equations of motion called the Euler-Lagrange equations:

d

dt

∂L(qn, q̇n)

∂q̇n
=

∂L(qn, q̇n)

∂qn

To move to the Hamiltonian framework, one introduces ‘canonical momentum variables’ pn = ∂L
∂q̇n

.

When these momenta are not independent of each other, there are constraints of the form ϕm(qn, pn) ≈

0 for m = 1, ...,M where M is the number of constraints and the equality is weak equality, indicating

that the constraints only hold on a subspace of phase space (the state space given by the collection

of points (qn, pn)). Constraints of this kind are called the primary constraints.

The ‘Hamiltonian’ H(qn, pn) can be defined via FL∗(H) = EL where EL is the energy function

associated with the Lagrangian, defined as EL(qn, q̇n) = FL(q̇n)q̇n − L(qn, q̇n) and FL is the Legen-

dre transformation that takes the point (qn, q̇n) to (qn,
∂L
∂q̇n

). This only unambiguously defines the

Hamiltonian at the points (qn, pn) where the primary constraints hold; at all other points, the Hamil-

tonian is defined up to arbitrary combinations of the primary constraints. We call the equivalence

class of Hamiltonians up to arbitrary combinations of the primary constraints the Total Hamiltonian,

HT = H + umϕm where um are arbitrary functions of the canonical variables. From the variation in

HT , one can derive Hamilton’s equations of motion with constraints:

q̇n =
∂H

∂pn
+ um ∂ϕm

∂pn

ṗn = −∂H

∂qn
− um ∂ϕm

∂qn

More generally, for any dynamical variable g, ġ ≈ {g,H}+ um{g, ϕm} = {g,HT } where {} is the

4See Henneaux & Teitelboim (1994) for more details.
5In order to consider the Problem of Time, it is useful to drop this assumption and treat the time variable as an

additional dynamical variable, but we keep this assumption for the purposes here.
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Poisson bracket, defined by {f, g} = df
dqn

dg
dpn

− df
dpn

dg
dqn .

In order for the solutions to the equations of motion to be consistent with the primary constraints,

in the sense that the primary constraints hold at all times along a solution to the equations of motion, it

ought to be the case that ϕ̇m ≈ 0. In other words, it ought to be the case that {ϕm, H}+up{ϕm, ϕp} ≈

0 where p = 0, ...,m. For each m, this equation either is identically satisfied with the primary

constraints, reduces to an equation independent of the u’s of the form χk(qn, pn) ≈ 0, or it imposes

conditions on the u’s.

In the second case, we say that χk(qn, pn) ≈ 0 are secondary constraints, since they arise from

applying the equations of motion to the primary constraints. If we have a secondary constraint, then

we get new consistency conditions by requiring χ̇k ≈ 0, which is again one of the three kinds above.

It may be that this procedure ends up showing that the system is dynamically inconsistent; when it

doesn’t, one can show that the process of determining (secondary) constraints will terminate and that

one will be left with only the consistency conditions of the third kind. We can combine the primary

and secondary constraints, writing them as ϕj ≈ 0 for j = 1, ...,M + K where K is the number of

secondary constraints.

For the remaining consistency conditions that do not reduce, we find solutions um = Um + vaV m
a

where va is arbitrary and V m{ϕj , ϕm} ≈ 0. Substituting into the Total Hamiltonian, we get

HT = H ′ + vaφa

where H ′ = H + Umϕm and φa = V m
a ϕm. Notice that we have satisfied all the consistency

conditions but still have coefficients va that are arbitrary functions of the canonical variables.

A dynamical variable R(qn, pn) is said to be first-class if {R,ϕj} ≈ 0. In other words, a dynamical

variable is first-class if the Poisson bracket with any constraint equals a linear function of the con-

straints. If it is not first-class, it is called second-class. Importantly, H ′ and φa are first-class. This

means that HT is an equivalence class of Hamiltonians given by a sum of a first-class Hamiltonian

and an arbitrary combination of primary, first-class constraints.

Given some initial state (qn(t0), pn(t0)), the q’s and p’s at later times are underdetermined because

of the arbitrariness in the coefficients va. There is therefore a form of indeterminism in the theory:

there are multiple possible evolutions from an initial state. However, we might think that this indeter-

minism is an artifact of our mathematical description; it indicates that our theory contains redundant

terms, rather than a mark of real indeterminism in the world. It is this reasoning that led Dirac to
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propose the following definition of a gauge transformation:

State Gauge Transformation: A gauge transformation relates any two states that

are possible evolutions from an initial state under the dynamics generated by the Total

Hamiltonian at some fixed (infinitesimal) interval δt.

In other words, Dirac proposes that physically equivalent states are precisely those that result

from the arbitrariness in va in evolving the state of a system.

We can determine these transformations in the following way. For a given dynamical variable g

with initial value g0, its value after some infinitesimal δt under a specified choice of coefficients va is:

g(δt) = g0 + ġδt = g0 + {g,HT }δt = g0 + δt[{g,H ′}+ va{g, φa}] (1)

However, one could have made different choices for va. Call another set of choices v′a. The

difference between the two values for g at δt under these two choices of coefficients is given by:

∆g(δt) = δt(va − v′a){g, φa} = εa{g, φa} (2)

where εa is an arbitrary small number. This change will, according to the account above, describe

the same physical state: it corresponds to a change from one state to another that arises merely from

a different choice of arbitrary coefficient in the evolution from some initial state. Since φa are just

the primary first-class constraints, Dirac concludes:

All primary first-class constraints generate gauge transformations.

However, this isn’t the end of the story. Take some value for g(δt) and transform it by εa{g, φa}

twice. This new value for g(δt) is related to the previous value by some amount generated by {φa, φa′}.

The ϕa’s are first-class constraints, and the Poisson bracket of two first-class quantities is first-class,

so this generating function is a first-class constraint. However, it need not be a primary first-class

constraint; it could be a secondary first-class constraint. Observing this, Dirac presents the following

conjecture:

Dirac Conjecture: All secondary first-class constraints generate gauge transformations.

If this conjecture is true, then one can conclude:
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Arbitrary combinations of first-class constraints generate a State Gauge Transformation.

However, if we accept this conclusion, we have a puzzle. On the one hand, the dynamics are

generated by the Total Hamiltonian, which includes the arbitrariness associated with the primary

first-class constraints. On the other hand, there is arbitrariness associated with both the primary

and secondary first-class constraints through the definition of the state gauge transformations. This

mismatch between the dynamics and the state gauge transformations led Dirac to suggest that one

should also add the first-class secondary constraints to the Total Hamiltonian, giving rise to the

Extended Hamiltonian, HE = HT + wbχb where χb are the first-class secondary constraints and wb

are arbitrary functions of the canonical variables. The equations of motion then read: ġ = {g,HE}.

The final picture of Dirac’s theory is:

1. The symmetries that characterize physical equivalence are given by the “State Gauge Transfor-

mations”, which are generated by arbitrary combinations of first-class constraints.

2. The dynamics are generated by an equivalence class of Hamiltonians represented by the Extended

Hamiltonian.

Whether this picture is correct will be the subject of the rest of the paper.

3 The Case of Electromagnetism

Although Dirac’s account of the gauge transformations in the constrained Hamiltonian formalism has

been widely accepted as the standard framework, there are recent arguments that Dirac’s account

is flawed.6 Here, I focus on the argument provided by Pitts (2014b) that contends that classical

Electromagnetism is a counterexample to Dirac’s account.

The Lagrangian for classical Electromagnetism can be written relative to a given Lorentz frame as

L(A⃗, V ;
˙⃗
A, V̇ ) =

∫
1

2
(
˙⃗
A−∇V )2 − 1

2
(∇× A⃗)2 − (V ρ+ A⃗ · J⃗)

where A⃗ and V are time-dependent functions on R3 and the integral is over R3. The conjugate

momenta are pA⃗ = δL

δ
˙⃗
A
=

˙⃗
A−∇V and pV = δL

δV̇
= 0. This means that there is one primary constraint,

ϕ0 = pV . The Total Hamiltonian is:

6See in particular Pitts (2014a,b) and Pons (2005) but also Pons et al. (1997) and Barbour & Foster (2008).
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HT =

∫
1

2
(p2

A⃗
+ B⃗2) + λpV + pA⃗ · ∇V + (V ρ+ A⃗ · J⃗) (3)

where the integral is over R3 and λ is an arbitrary function of the canonical coordinates. Integrating

by parts with appropriate boundary conditions, we can rewrite the Total Hamiltonian as:

HT =

∫
1

2
(p2

A⃗
+ B⃗2) + A⃗ · J⃗ + λpV − V (∇ · pA⃗ − ρ) (4)

We can then find the evolution of the primary constraint:

{pV , HT } =
δH

δV
= ∇ · pA⃗ − ρ. (5)

So there is a secondary constraint given by ϕ1 = ∇ · pA⃗ − ρ. The evolution of the secondary

constraint is zero, so there are two constraints in total, and both constraints are first-class.

The equations of motion for A⃗ and V are given by:7

∂A⃗

∂t
= {A⃗,HT } =

∂HT

∂pA⃗
= pA⃗ +∇V

∂V

∂t
= {V,HT } =

∂HT

∂pV
= λ

(6)

The question that Pitts (2014b) asks is whether the arbitrary combinations of the primary and

secondary constraint generate gauge transformations for these equations. In other words, we want

to know whether, if (A⃗(t), V (t); pA⃗(t), pV (t)) satisfies these equations of motion, then transforming

this solution by an arbitrary combination of the first-class constraints,
∫
αϕ0 + βϕ1, also satisfies the

equations of motion, where α and β are arbitrary functions of the canonical coordinates and time.

We have that:

{A⃗,

∫
αϕ0 + βϕ1} = {A⃗,

∫
αpV + β(∇ · pA⃗ − ρ)}

= {A⃗,

∫
αpV }+ {A⃗,

∫
β(∇ · pA⃗ − ρ)}

(7)

The first term vanishes. Since
∫
β∇ · pA⃗ = −

∫
pA⃗ · ∇β by integration by parts (with appropriate

7We leave out the equations of motion for p
A⃗

and pV for convenience, since they aren’t important for the argument.
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boundary conditions), the second term is equal to {A⃗,−
∫
pA⃗ · ∇β + βρ)} = ∇β. Therefore, the

transformed quantity is given by A′ = A+∇β.

Similarly:

{V,
∫

αϕ0 + βϕ1} = {V,
∫

αpV }+ {V,
∫

β(∇ · pA⃗ − ρ)} (8)

The second term here vanishes, and the first term is equal to α. Thus, the transformed potential

is given by V ′ = V + α.

We also have that {pA⃗,
∫
αpV + β(∇ · pA⃗ − ρ)} = {pV ,

∫
αpV + β(∇ · pA⃗ − ρ)} = 0 and so the

conjugate momenta do not change under the transformation generated by an arbitrary combination

of the constraints. We can therefore write the transformed equations of motion for A⃗ and V as:

∂A⃗′

∂t
=

∂A⃗

∂t
+

∂∇β

∂t
= pA⃗ +∇(V + α)

∂V ′

∂t
=

∂V

∂t
+

∂α

∂t
= λ

(9)

Since we assumed that ∂A⃗
∂t = pA⃗ +∇V , the first equation is satisfied only when ∂∇β

∂t −∇α = 0. In

particular, in the case where either α or β is zero (where one considers the transformation generated

by only one of the primary or secondary constraints), the first equation is not satisfied.

On the basis of this argument, Pitts (2014b) concludes that arbitrary combinations of first-class

constraints do not generate gauge transformations; only particular combinations of first-class con-

straints generate gauge transformations. And since the form of the gauge transformations was the

basis for introducing the Extended Hamiltonian, one ought to also conclude that the Extended Hamil-

tonian is not motivated. Indeed, notice that since ∇α = ∂∇β
∂t , we only need one arbitrary function

(and its time derivative) to specify the gauge transformations; not, as the Extended Hamiltonian

implies, as many arbitrary functions as there are first-class constraints. Therefore, this argument

suggests that the Extended Hamiltonian is not the right equivalence class of Hamiltonians from the

perspective of capturing the arbitrariness in the dynamics of a gauge theory.

3.1 Where The Issue Lies

There is an immediate sense in which the above argument fails on its own to show that Dirac was

wrong. As we discussed in Section 2, Dirac provides an account of the “State Gauge Transformations”:
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transformations relating two states that are possible evolutions from some initial state. However, the

argument we just ran, following Pitts (2014b), doesn’t consider whether two states are equivalent; it

considers whether two solutions are equivalent. That is, it considers whether arbitrary combinations

of first-class constraints generate a transformation that takes one from a solution to the equations

of motion to another solution. We might alternatively call this notion of a gauge transformation a

“Solution Gauge Transformation”:

Solution Gauge Transformation: A gauge transformation relates any two curves that

are possible evolutions from an initial state under the dynamics generated by the Total

Hamiltonian.

What Pitts’ argument demonstrates is that the Solution Gauge Transformations are not gener-

ated by arbitrary combinations of first-class constraints in the context of classical Electromagnetism.

Indeed, arbitrary combinations of first-class constraints do generate State Gauge Transformations in

classical Electromagnetism. To see this, recall that we can write the Solution Gauge Transformations

as
∫
ϵ̇ϕ0 + ϵϕ1. At a fixed time, ϵ and ϵ̇ become independent of each other. And so, we can write

the State Gauge Transformations as
∫
αϕ0 + βϕ1, as would be the case if arbitrary combinations of

first-class constraints generate gauge transformations. So what Pitts (2014b) shows is that Solution

Gauge Transformations do not always match the State Gauge Transformations.

In light of this, one might think that what this shows is that we really have two distinct notions

of a gauge transformation, ‘State Gauge Transformation’ and ‘Solution Gauge Transformation’, and

it turns out that these notions do not coincide. This would suggest that there is not really a debate

here at all; different parties in the debate are just focusing on different concepts, and we can accept

that both are right.

Although this would be unproblematic if gauge transformations were purely a formal notion, there

remains an issue if gauge transformations are taken to mark physical equivalence. The reason is

that accepting that both notions of a gauge transformation are adequate means accepting that the

individual states along two curves can be physically equivalent without it being the case that the

curves that they make up are physically equivalent, since the transformations that generate Solution

Gauge Transformations are more restrictive than those that generate State Gauge Transformations.

Conceptually, this is not coherent: solutions just consist of a series of states, and so if all of these

states are physically equivalent to some other series of states, then the solutions ought to also be

physically equivalent.
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Therefore, if one wants to accept that “Solution Gauge Transformation” is the right account of

equivalence between solutions, then one must also accept that “State Gauge Transformation” fails to

independently capture the notion of equivalence between states. Rather, a state gauge transformation

would have to be understood as derivative to the solution gauge transformations: a state gauge

transformation is simply the action of a solution gauge transformation at a single point along the

solution. If this is correct, then one cannot conclude that any two states related by a transformation

generated by an arbitrary combination of first-class constraints are physically equivalent; one would

only be able to conclude that they correspond to two states along equivalent solutions. This would be a

significant position to hold, given that the standard Hamiltonian picture of gauge theories—including

the process of quantization—relies on treating individual states related by a gauge transformation as

being equivalent.

This sets the stage for the rest of the paper. I will argue that one can maintain independent

notions of state and solution gauge transformations as notions of equivalence, but it means that one

has to deny that “State Gauge Transformation” and “Solution Gauge Transformation” provide the

correct characterizations of gauge transformations on states and solutions, respectively. In particular,

a common part of the definition of a “State Gauge Transformation” and “Solution Gauge Transforma-

tion” is the assumption that state or solution notions of equivalence are derived from the equivalence

between Hamiltonian functions, which in turn is provided by the Total Hamiltonian. I will argue that

this assumption is misplaced: the Total Hamiltonian draws distinctions that a Hamiltonian gauge

theory, properly understood, is unable to draw. Rather, the distinctions that a Hamiltonian gauge

theory can draw match those distinctions provided by the Extended Hamiltonian, which in turn is

aligned with the standard definition of the gauge transformations. The last part of this argument

parallels the recent response to Pitts (2014b) developed by Pooley & Wallace (2022). To clarify how

my argument goes beyond that of Pooley & Wallace (2022), I will first outline their position and then

indicate where it falls short of resolving the issue.

4 Extended Hamiltonian Electromagnetism

Pooley & Wallace (2022) show that if one starts with the Extended Hamiltonian, arbitrary combi-

nations of first-class constraints generate gauge transformations between solutions for classical Elec-

tromagnetism. Their argument can be summarised as follows. Consider the Extended Hamiltonian
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for classical Electromagnetism, where we add to the Total Hamiltonian the secondary constraint

multiplied by an arbitrary function µ:

HE =

∫
1

2
(p2

A⃗
+ B⃗2) + A⃗ · J⃗ + λpV − (V + µ)(∇ · pA⃗ − ρ) (10)

With this Hamiltonian, the equations of motion become:

∂A⃗

∂t
=

∂HE

∂pA⃗
= pA⃗ +∇(V + µ)

∂V

∂t
=

∂HE

∂pV
= λ

(11)

When we now consider the transformation generated by an arbitrary combination of primary and

secondary constraints,
∫
αϕ0 + βϕ1, we find:

∂A⃗′

∂t
=

∂A⃗

∂t
+

∂∇β

∂t
= pA⃗ +∇(V + µ+ α)

∂V ′

∂t
=

∂V

∂t
+

∂α

∂t
= λ

(12)

We can rewrite the first equation as ∂A⃗′

∂t = ∂A⃗
∂t = pA⃗ +∇(V + µ+ α− β̇). Notice that µ, α and β̇

are all arbitrary functions, so we can write this equation as

∂A⃗′

∂t
=

∂A⃗

∂t
= pA⃗ +∇(V + µ′)

where µ′ is arbitrary. This is just the untransformed equation of motion, with µ′ in place of µ. In

other words, if (A⃗(t), V (t); pA⃗(t), pV (t)) is a solution to ∂A⃗
∂t = pA⃗+∇(V +µ), then (A⃗(t)+∇β, V (t)+

α; pA⃗(t), pV (t)) is also a solution. Therefore, arbitrary combinations of first-class constraints generate

gauge transformations on solutions, for the dynamics generated by the Extended Hamiltonian.

Although this argument shows that when we start with the Extended Hamiltonian, the gauge

transformations are generated by arbitrary combinations of first-class constraints, it leaves open the

question of what the justification is for starting with the Extended Hamiltonian. Indeed, it seems

that the proponents of “Solution Gauge Transformation” will deny that this is the right starting

point; they would say that it is the Total Hamiltonian that one should use to determine the gauge

transformations.
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Pooley & Wallace (2022) do provide one kind of response: the dynamics generated by the Extended

Hamiltonian is empirically equivalent to the dynamics generated by the Total Hamiltonian, in the

sense that they give rise to the same predictions for those quantities that both agree are gauge-

invariant. In particular, what they notice is that the difference between the solutions of the Total

and Extended Hamiltonian lies only in the quantity that plays the role of the electric field: when the

Total Hamiltonian is used to generate the dynamics, it is
˙⃗
A −∇V that plays the role of the electric

field, but when the Extended Hamiltonian is used, it is pA⃗. And so, given that it is the electric field

that one measures through its interaction with charges (and not the quantities
˙⃗
A and V ), there is no

empirical difference between these choices of Hamiltonian.

Although I consider this response to be both convincing and informative, I will argue that we can

go further: the Extended Hamiltonian does not just capture the same empirical content as that of

the Total Hamiltonian, it is the correct equivalence class of Hamiltonians from the perspective of the

mathematical structure of the theory. That is, once we formalize the mathematical structure of a

Hamiltonian gauge theory, the fact that the Extended Hamiltonian generates the equivalence class of

solutions to the equations of motion can be motivated directly.

To develop this argument, we will employ the standard geometric formulation of the constrained

Hamiltonian formalism, as it offers a formal framework for clarifying the issues at hand. In particu-

lar, the geometric framework highlights the role of first-class constraints within the structure of the

formalism. This, in turn, makes it possible to see more clearly the theoretical motivations underlying

specific definitions of state and solution gauge transformations.

5 Geometric Reformulation

The constrained Hamiltonian formalism can be expressed naturally in a geometric way using the

theory of symplectic manifolds.8 A symplectic manifold consists of a pair (M,ω) where M is a

smooth manifold and ω is a symplectic form: it is a two-form (a smooth, anti-symmetric tensor field

of rank (0,2)), that satisfies the following conditions:

1. ω is non-degenerate, i.e. if ω(Xi, Xj) = 0 for all Xj ∈ TM and some Xi ∈ TM , then Xi = 0.

2. ω is closed, i.e., dω = 0, where d is the exterior derivative operator, which is such that df = df ,

the differential of a function f , d(dα) = 0 where α is a k-form, and d(fα) = df ∧ α+ fdα.

8This formalism is widely used to express the constrained Hamiltonian formalism. For further details of this
formalism, see Henneaux & Teitelboim (1994), Butterfield (2006).
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There is a sense in which every symplectic manifold comes equipped with the Poisson bracket that

we defined (in coordinate-dependent form) in Section 2: Let (M,ω) be a symplectic manifold and

C∞(M) the space of smooth maps on M . In addition, let ω′ be the inverse of ω (a smooth, anti-

symmetric tensor field of rank (2, 0)).9 Then the map {·, ·} : C∞(M) × C∞(M) → C∞(M) defined

by f, g 7→ {f, g} = ω′(df)(dg) is the Poisson bracket on M .

A constrained Hamiltonian theory can be defined as a symplectic manifold in the following way.

The manifold is the cotangent bundle of configuration space (otherwise known as phase space), T ∗Q,

whose points can be written as {(qn, pn), n = 1, ..., N}. T ∗Q comes equipped with a one-form, the

Poincaré one-form, given by θ = pidq
i. The corresponding two-form is given by ω = dθ = dpb ∧ dqb,

which is symplectic.

Given a function f , one can uniquely define a smooth tangent vector field Xf through:

ω(Xf , ·) = df (13)

where {·} represents any vector field tangent to T ∗Q. In particular, one can uniquely define a vector

field corresponding to the Hamiltonian H = piqi − L through ω(XH , ·) = dH. This provides an

alternative way to write Hamilton’s equations. In particular, {f,H} = ω(Xf , XH) = df(XH) =

LXH
(f). If we define the flow parameter of XH to be time, then this says that {f,H} = df

dt , which is

Hamilton’s equation.

We can understand the primary constraints ϕm(qn, pn) = 0 for j = 1, ..,M where M is the total

number of constraints as giving rise to a smooth, embedded sub-manifold of phase space of dimension

N −M , which we call the primary constraint surface, given by Σp = {(qn, pn) ∈ Γ|∀m : ϕm(qn, pn) =

0}. The first-class primary constraints are those constraints whose associated vector field is tangent

to Σp, while the second-class primary constraints are those constraints whose associated vector field

is not tangent to Σp. For the purposes here, we will restrict ourselves to the case where we just have

first-class constraints, since these are the relevant ones for defining the gauge transformations.

We can define an induced two-form on the primary constraint surface ω̃p as the pullback along the

embedding i : Σp → Γ of ω. This induced two-form is in general degenerate i.e. it is not invertible. In

particular, it possesses M linearly independent null vector fields that form the null space of ω̃p. These

are the vector fields that satisfy ω̃(Xm, ·) = 0 where {·} is any vector field tangent to Σp. But these

are precisely the vector fields that off the constraint surface satisfy ω(Xm, ·) = dϕm where ϕm are the

9This is well-defined because ω is non-degenerate.
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primary first-class constraints, since dϕm|Σp
= 0. Thus, we will write Xϕm

for these null vector fields

to indicate that they are the tangent vector fields associated with the primary first-class constraints.

The degeneracy of ω̃p means that one cannot associate a unique vector field with any smooth function

on the constraint surface through the equation ω̃p(Xf , ·) = df , since if Xf satisfies this equation (if it

is tangent to the primary constraint surface), then so does Xf +Xϕm since the two-form acts linearly.

We can write the equations of motion on the primary constraint surface as ω̃p(XH , ·) = dH|Σp
.

However, this equation of motion may not have solutions everywhere, since XH may not be tangent

to the primary constraint surface. In order for the solutions to be tangent to the primary constraint

surface, it must be that ω̃p(XH , Xϕm
) = dH(Xϕm

) = 0. This is geometrically what gives rise to the

secondary constraints, and we can think of these secondary constraints as leading to the specification

of a further submanifold.

Continuing this process of requiring the solutions to be tangent to the constraint surface termi-

nates in some final constraint surface Σf , defined by the satisfaction of a collection of constraints

φj(qn, pn) = 0 for j = 1, ..., J where J is the total number of constraints. We can also define an

induced two-form on Σf , ω̃f , whose null vector fields are the vector fields associated with all of the

first-class constraints, which we will write as Xφj (since we are just considering the case where all

the constraints are first-class, although it is easy to extend to the case where there are second-class

constraints). The equations of motion are ω̃f (XH , ·) = dH|Σf
, which has (non-unique) solutions

everywhere on Σf .

The integral curves of the null vector fields on the final constraint surface are known as gauge orbits.

Equivalently, a gauge orbit is the set of points connected by a curve whose tangent vectors are null.

The gauge orbits on the final constraint surface coincide with the notion of a gauge transformation

in the Dirac formalism in the following sense: the null vector fields generating the orbits are precisely

the vector fields Xφj associated with the first-class constraints. Arbitrary combinations of first-class

constraints thus generate transformations that move points along a given gauge orbit. In this way,

the geometric formulation inherits the standard picture of gauge transformations. As emphasized in

the canonical textbook on the constrained Hamiltonian formalism:

“The identification of the gauge orbits with the null surfaces of the induced two-form

relies strongly on the postulate made throughout the book that all first-class constraints

generate gauge transformations.” (Henneaux & Teitelboim (1994, p.54) )

Here, however, our aim is to derive the gauge transformations directly from the geometric formal-
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ism. We will therefore not assume that the null surfaces of the induced two-form automatically identify

physically equivalent states. Accordingly, by “gauge orbits” we will mean only the integral curves of

the null vector fields, without presupposing that these curves correspond to gauge equivalence.

6 A Geometric Resolution

The above presentation of the geometric formulation of the constrained Hamiltonian approach shows

that it is natural to formulate the theory on the final constraint surface: it captures the dynamically

accessible points of phase space, such that solutions to the equations of motion are well-defined at

every point. We now consider whether, by formulating the theory on the final constraint surface, one

can resolve the issue raised earlier, namely, how to reconcile the gauge transformations on states with

the gauge transformations on solutions. Recall that both Dirac (1964) and Pitts (2014b) take gauge

transformations to be determined through the dynamics generated by the Total Hamiltonian, but this

leads to different mathematical transformations being counted as gauge transformations for states and

for solutions, and consequently different opinions about whether one should extend the equivalence

class of Hamiltonians. We can summarize the reasoning common to Dirac (1964) and Pitts (2014b)

as follows:

1. First, one determines the gauge transformations via the solutions to the Total Hamiltonian.

2. Then, one uses the gauge transformations to say whether one should extend the equivalence

class of Hamiltonians or not.

I will show that this reasoning is flawed in three parts. First, I show that the Extended Hamiltonian—

or more precisely, the generator of the solutions to the equations of motion—is motivated indepen-

dently from consideration of the gauge transformations, and so (2) is wrong: the gauge transformations

do not determine the equivalence class of Hamiltonians. Second, I show that the gauge transforma-

tions on states can be defined as structure-preserving maps on the final constraint surface, rather than

as transformations between points along solutions, and so (1) is wrong: the gauge transformations on

states are not simply a special case of the gauge transformations on solutions. Finally, I show that the

gauge transformations on solutions are generated by arbitrary combinations of first-class constraints,

and I discuss how they are related to the gauge transformations on states.
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6.1 Motivating the Extended Hamiltonian

First, let us start with why the Extended Hamiltonian is motivated if one takes the theory to be

formulated on the final constraint surface. There is an immediate sense in which the Extended

Hamiltonian is the right equivalence class of Hamiltonians from the perspective of the final constraint

surface: distinct Hamiltonians on T ∗Q that are related by an arbitrary combination of first-class

constraints are identified when one restricts to the points on the final constraint surface. However,

this requires us to refer back to the theory on the full phase space; what we also want is an intrinsic

characterization of the equivalence class of solutions. This is captured by the fact that on the final

constraint surface, the vector fields corresponding to solutions to the equations of motion for some

Hamiltonian are defined up to arbitrary combinations of vector fields associated with the first-class

constraints. In other words, what we have is not an equivalence class of Hamiltonian functions but

rather an equivalence class of vector fields associated with the Hamiltonian.

In more detail, take a (first-class) Hamiltonian vector field XH and transform it to XH + ajXφj

where Xφj
are the null vector fields associated with the first-class constraints φj and aj are arbitrary

functions. We have that

ω̃f (XH + ajXφj
, ·) = ω̃f (XH , ·) = dH|Σf

since Xφj
are null vector fields. But this means that transforming XH by an arbitrary combination

of the vector fields associated with the first-class constraints preserves the dynamical equations on

the final constraint surface. In other words, the structure of the final constraint surface is such that

the evolution generated by XH and that generated by XH + ajXφj
is not distinguished: if f satisfies

ω̃f (Xf , XH) = df
dt |Σf

, then it satisfies ω̃f (Xf , XH + ajXφj ) =
df
dt |Σf

. Therefore, we can think of the

vector fields XH + ajXφj
on the final constraint surface as characterizing the equivalence class of

vector fields that generate solutions to the equations of motion; they cannot be distinguished by the

structure of the theory. Let us call this equivalence class of vector fields the “Extended Hamiltonian

vector fields”.

Notice that in such reasoning, we have not made any assumptions about the Xφj
being associated

with primary or secondary first-class constraints, nor about what the gauge-transformations are; each

first-class constraint constitutes a null direction on the final constraint surface, and it is this property

that is important in determining which Hamiltonian vector fields are equivalent. This provides one
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argument for why restricting to the Total Hamiltonian is unnatural in the geometric framework: it

is to privilege a class of null vector fields (those that correspond to primary first-class constraints) as

generating equivalent solutions, despite the fact that the equations of motion on the final constraint

surface provide no way to distinguish this class of null vector fields from those corresponding to the

secondary first-class constraints.

6.2 State Gauge Transformations

Second, let us consider the notion of a gauge transformation on states. We want this notion to identify

those points on the final constraint surface that are physically equivalent to each other. In Dirac’s

account, this is understood in terms of transformations connecting individual points that lie along

equivalent solutions. If we follow the same reasoning, but took the solutions to be generated by the

Extended Hamiltonian vector fields, we would end up with the same conclusion as Dirac: arbitrary

combinations of first-class constraints generate gauge transformations. However, this would still have

the issue of being derivative, conceptually, of the transformations linking equivalent solutions. What

we want is an independent way of capturing whether two points on the state space represent the same

(instantaneous) physical situation.

One way to approach this task is by asking which states are structurally equivalent, much as

we considered which Hamiltonian vector fields are equivalent relative to the structure of the final

constraint surface. More precisely, we can ask which points are equivalent in the sense that the

theoretical structure is unaffected by how the value of a given function is distributed across them. In

other words, if there is some vector field such that arbitrarily changing the value of any function along

that vector field leaves the relevant structure intact, then the points along the integral curves of such

vector field ought to be regarded as equivalent from the perspective of the theory: the theory doesn’t

depend on which point is taken to represent the “actual” state. If the theory captures all genuine

physical distinctions, then this same perspective also tells us which states should count as physically

indistinguishable.

We can represent arbitrary changes in how one distributes the value of some property across some

set of points in terms of moving the points themselves around while keeping the properties ‘fixed’.

In other words, we can think about which states are equivalent by thinking about which points on

the final constraint surface are such that arbitrarily transforming one point to another preserves the

structure of the final constraint surface.
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It turns out that such points are given by the points along the integral curves of the null vector fields

i.e. the points along the gauge orbits. To see this precisely, consider the (smooth) diffeomorphism h

that takes one along the gauge orbits by an arbitrary amount at each point on Σf . Then the following

is true:

Proposition: h is an automorphism of the structure (Σf , ω̃f ) i.e. h is a diffeomorphism

h : Σf → Σf such that h∗(ω̃f ) = ω̃f .

Proof : Since h takes each point on Σf to another arbitrary point along the gauge orbit

associated with the first-class constraints φj at that point, we can represent h as the flow

of the vector field associated with αjdφj where αj are arbitrary functions. Since dφj = 0

on Σf , α
jdφj = 0. This means that αjdφj is closed i.e. d(αjdφj) = 0. But this means

that one can (locally) associate a vector field Y with αjdφj via ω̃f (Y, ·) = αjdφj . It follows

that the flow of Y on Σf consists of maps that preserve ω̃f .
10 So h is a diffeomorphism

that takes ω̃f to itself.

This proposition shows that arbitrary transformations along the gauge orbits are structure-preserving

maps of the presymplectic structure final constraint surface. Importantly, the proof of the proposition

relies centrally on the fact that the arbitrary transformations are along the null vector fields—if this

were not true, then one may not be able to associate a vector field with the transformation whose maps

preserve the induced two-form. This highlights that what makes gauge orbits special—as compared

to other (integral curves of) vector fields—is precisely that the structure of the state space doesn’t

discriminate between different ways of distributing the value of a function along the gauge orbits.11

This proposition therefore provides a way of associating transformations along the null vector fields

with equivalence in terms of the structure of the state space. However, the ‘theory’ under consideration

is not just a theory of the state space; it is also a theory of the dynamics of a system, which is specified

in terms of the Hamiltonian function. One therefore might worry that the proposition doesn’t capture

the points that are physically equivalent to one another, if the Hamiltonian is able to distinguish these

points. In particular, if the value of the Hamiltonian is different at points along the gauge orbits, then

10This follows from Abraham & Marsden (1987) Proposition 3.3.6. (when we extend the proposition to presymplectic
manifolds).

11Indeed, the flow along any vector field Xf associated with a function f via ω̃f (Xf , ·) = df consists of maps that
are automorphisms of (Σf , ω̃f ). This implies that one can change the value of f and preserve the structure of the state
space. However, this is to change f by the same amount at each point and not, as in the proposition above, by an
arbitrary amount along Xf at each point of Σf .

19



even if the structure of the state space cannot distinguish these values, one should still treat them as

physically distinct.

However, recall that the final constraint surface is defined in terms of the fact that the dynamics

has solutions everywhere. What this means is just that a well-defined vector field can be associated

with the Hamiltonian via ω̃f (XH , ·) = dH|Σf
and is tangent to the final constraint surface. But this in

turn implies that the Hamiltonian is invariant along the gauge orbits, since its change along the gauge

orbits is given by ω̃f (XH , Xφj ) = 0. In terms of the proposition above, this is the same as saying that

h∗(H|Σf
) = H|Σf

. Therefore, the proposition can be extended to show that h is an automorphism

of the structure (Σf , ω̃f , H|Σf
), which includes not just the structure of the state space, but also the

structure that defines the dynamics.

This demonstrates that the gauge orbits are not simply a way of geometrically encoding the gauge

transformations on states: the null surfaces correspond to the gauge-equivalent points because such

points cannot be distinguished by the theory, where the theory is determined by the structure of the

constraint surface along with the Hamiltonian on this space. This suggests a revision to the definition

of the state gauge transformations:

State Gauge Transformation, Geometrically: A state gauge transformation is a

transformation along the gauge orbits on the final constraint surface that preserves the

induced two-form and the Hamiltonian.

On this definition of the state gauge transformations, arbitrary combinations of first-class con-

straints generate gauge transformations, in line with Dirac’s conclusion. However, the reasoning is

importantly different to Dirac’s. In particular, one doesn’t need to restrict to the points of the state

space where the equations of motion are satisfied in order to determine the gauge transformations on

states. One therefore cannot object to this definition on the basis that it makes the state gauge trans-

formations a special case of the solution gauge transformations. Rather, it provides an independent

account of what the state gauge transformations are: they relate points on the state space that are

equivalent from the perspective of the structure of the theory.

6.3 Solution Gauge Transformations

Finally, let us turn to gauge transformations acting on solutions—that is, transformations relating

solutions that are physically equivalent. In the geometric framework, solutions correspond to integral
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curves of the vector field(s) generated by the Hamiltonian. What we seek, then, is a notion of

equivalence between these integral curves.

We have already determined the equivalence class of vector fields that generate solutions; they are

the non-unique vector fields associated with the Hamiltonian, which we called the Extended Hamil-

tonian vector fields. So solutions that differ just in terms of which vector field in the Extended

Hamiltonian vector fields generate it are equivalent from the perspective of the structure of the the-

ory.

This motivates the following definition of the gauge transformations on solutions as a way to

capture those solutions that are physically equivalent to each other, according to the theory:

Solution Gauge Transformation, Geometrically: A solution gauge transformation

relates any two integral curves of the Extended Hamiltonian vector fields.

Since the integral curves of the Extended Hamiltonian vector fields differ only with regard to where

on the gauge orbit they lie at each point in time, transforming a solution by an arbitrary amount

along the gauge orbit at each point gives rise to another solution generated by a Hamiltonian vector

field with a different combination of null vector fields. Therefore, solutions that differ just in terms

of where each point lies along the gauge orbit are related by a solution gauge transformation in the

revised sense. In other words, arbitrary combinations of first-class constraints generates solution gauge

transformations in this sense, just as Pooley & Wallace (2022) show in the case of Electromagnetism.

The solution gauge transformations are defined as acting on individual curves, while the state

gauge transformations are defined as acting on the entire state space. However, they can be related in

the following way. First, the state gauge transformations by definition preserve the induced two-form,

and they preserve the Hamiltonian. They therefore also preserve the equations of motion. This implies

that if one fixes some solution to the equations of motion, a state gauge transformation preserves the

fact that it is a solution. In other words, the action of the state gauge transformation on a solution

will be a solution gauge transformation. Similarly, a solution gauge transformation can be extended

to a structure-preserving map on the final constraint surface. Therefore, we can say that both state

and solution gauge transformations are generated by arbitrary combinations of first-class constraints,

while keeping the notions conceptually distinct.

This provides another argument for why it is problematic to take solution gauge transformations

to relate integral curves of the vector fields associated with the Total Hamiltonian: it would be to

say that there is a physical difference between certain states along a gauge orbit, even though these
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states cannot be distinguished by the structure of the state space on which the dynamics is defined,

nor by the Hamiltonian function on this state space. It would therefore require one to commit to

there being some further structure that distinguishes the points along the integral curves of the vector

fields associated with the secondary constraints. Inasmuch as the Hamiltonian is the generator of

the dynamics—and therefore determines the predictions of the theory—it is not clear what structure

could play this role.

We can thus conclude that the standard view—that gauge transformations are generated by ar-

bitrary combinations of first-class constraints—emerges naturally from the geometric formulation of

the constrained Hamiltonian formalism. However, we have also seen that this view conflates two ways

of understanding gauge transformations: as relating equivalent ways of representing the state space

of the theory, and as relating equivalent solutions to the equations of motion. Both are motivated by

the mathematical structure of the theory, but distinguishing them clarifies the relationship between,

and significance of, taking gauge transformations to act on states as opposed to on solutions.

7 Possible Counterarguments

There is one clear avenue for responding to the argument in the previous section: one can reject

the claim that the theory defined on the final constraint surface captures the physical content of the

theory, and therefore provides the basis for determining the gauge transformations. Let us consider

two versions of this counterargument. First, that one shouldn’t restrict to the points of the final

constraint surface. Second, that we shouldn’t think that the geometric formulation of the constrained

Hamiltonian formalism is adequate more generally.

Starting with the first objection, one might maintain that points off the final constraint surface

should not be discarded, since they continue to play a role in the theory. In particular, although

the dynamics are restricted to the points on the final constraint surface, we might take the points

off the final constraint surface to be kinematically possible states. The reason is that the secondary

constraints are determined by the consistency of the primary constraints with the dynamics, and

so the points of the final constraint surface are those that are dynamically accessible rather than

kinematically accessible. If one adopts this view, then because the vector fields associated with the

secondary first-class constraints are not null vectors of the two-form on the full phase space nor the

primary constraint surface, we cannot use the fact of them being null to argue that they generate gauge
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transformations. Indeed, on the primary constraint surface, the equivalence class of Hamiltonians is

the Total Hamiltonian, and the null surfaces are just the points along the integral curves of the vector

fields associated with the primary first-class constraints.

One natural response is that the points off of the final constraint surface are ‘excess structure’:

although there is nothing inconsistent about including them, the content of the theory is given by

the final constraint surface. Indeed, why should one formulate a theory in terms of points that the

dynamics could never reach, even in principle?

Another response is to point out that the idea that we start out with the primary constraints and

then generate the secondary constraints through the dynamics is somewhat an accident of the way

that the constrained Hamiltonian formalism is usually set up. As I presented Dirac’s version of the

theory, one starts with a Lagrangian function, from which one derives the primary constraints. Only

once we have the primary constraints and the Hamiltonian in hand do we determine the secondary

constraints. But we could have set up the Hamiltonian formalism in a different way: we could say

that our theory is given by specifying a Hamiltonian function, a symplectic two-form, and a collection

of constraints. In this way of setting up the formalism, although there is a functional relationship

between the primary and secondary constraints, there is no clear difference in the role that they play.

In particular, the only relevant difference seems to be which constraints are first-class; these are the

ones that generate transformations that keep one along the constraint surface and correspond to null

vector fields of the induced two-form on the constraint surface.

To push back on this response, one would have to argue that there is something wrong with treating

the primary and secondary constraints on the same footing. This leads to the second objection, namely

that the geometric formulation of the constrained Hamiltonian formalism is not adequate. There is

a clear sense in which this formulation is well-motivated from within the Hamiltonian framework—it

is a natural extension of the widely accepted formulation of Hamiltonian mechanics using symplectic

manifolds. But one might want to argue that it is inadequate in a different way: it is inadequate

because it fails to capture the same content as the Lagrangian formalism. The argument might go

as follows. The Hamiltonian formalism for gauge theories is derived from the Lagrangian one, and so

its adequacy depends on whether it captures the same content as the Lagrangian theory. From this

perspective, the primary constraints are necessary; they have to be imposed in order for the map from

the Lagrangian to Hamiltonian state spaces (the Legendre transformation) to be invertible. However,

the secondary constraints are not: they are ‘extra’ constraints on the Hamiltonian side that are not
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motivated from the Lagrangian perspective.

Therefore, this argument goes, restricting to the final constraint surface—and consequently having

the view that arbitrary combinations of first-class constraints generate gauge transformations—leads

to a theory that is inequivalent to the Lagrangian theory, and so is not the right theory to consider.

Indeed, one can show that the Total Hamiltonian formalism, understood as relying on the primary

constraint surface, gives rise to solutions that are equivalent to the solutions to the Euler-Lagrange

equations (Batlle et al. (1986)). Therefore, even if one can show that the solutions to the Extended

Hamiltonian are empirically equivalent to those of the Total Hamiltonian, restricting to the final

constraint surface gives rise to a theory whose solutions are not equivalent to the Lagrangian solutions.

And so, if one takes the view that the Lagrangian formalism is the “fundamental” one, then one

might conclude that the definition of a gauge transformation in the Hamiltonian formalism should

be inherited from the Lagrangian formalism, and consequently not the definition motivated by the

geometry of the constraint surface.

Whether this argument holds up depends on the details of what makes one theory more funda-

mental than another, and how best to characterize the equivalence of theories—questions that this

paper has not addressed directly.12 However, the discussion here indicates that if one wants to ad-

vocate for “Solution Gauge Transformation” as defined in Section 3.1 as capturing the right notion

of equivalence, these are questions that one is forced to face. In particular, one must explain what

distinguishes primary from secondary constraints, a task that seems to require taking a definite stance

on the relationship between the Hamiltonian and Lagrangian formalisms.

8 Conclusion

To summarize, I have argued that the debate about the correct characterization of the gauge transfor-

mations in the constrained Hamiltonian formalism can be resolved in favor of the orthodox position.

However, the resolution relied on deriving the gauge transformations in a novel way—through con-

sideration of the mathematical structure of the geometric formulation of the theory. In doing so, I

showed that there are (at least) two notions of equivalence that the gauge transformations might be

thought to capture that I think have not been clearly distinguished previously.

There are some further issues that we have not had space to discuss in any detail. An important

issue is the “Problem of Time”. Recall that the problem arises from the fact that for theories that are

12These issues are addressed in Bradley (2025).
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time-reparameterization invariant, the standard account of gauge transformations implies that time

evolution is itself a gauge transformation since the Hamiltonian is a first-class constraint. At first

glance, endorsing the orthodox view might seem to carry these difficulties along with it. However,

the distinctions developed here point to what is especially puzzling about the Hamiltonian constraint:

contrary to the cases we have discussed here, the separation between gauge transformations on states

and on solutions cannot be clearly drawn when the Hamiltonian is a first-class constraint, since the

gauge orbits coincide with the solutions to the equations of motion. As a result, states along a gauge

orbit cannot be understood independently of the dynamics, and the possibility of drawing two distinct

notions of equivalence is cast into doubt.13

A related issue concerns the relationship between equivalence of mathematical structure and phys-

ical equivalence. We have argued that the first ought to be used to bridge the two ways of thinking

about gauge transformations—as a transformation linking physically equivalent situations and as a

mathematical transformation. However, there is more to be said about the notion of physical equiva-

lence that is implied by the definition of the gauge transformations that we laid out in Section 6. For

example, if two states are equivalent from the perspective of the mathematical structure of a theory,

does that mean that they cannot represent physically distinct states? Answering this question in

the positive is part of the puzzle leading to the Problem of Time. But this answer is not necessarily

implied by our analysis here; it depends on the interpretational significance of two individual states

being related by an isomorphism of the structure of the entire state space. The arguments presented

here may therefore provide a basis for further exploration of this question.
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