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Abstract

Gauge theories are often characterized as possessing ‘redundancy’ or ‘excess structure’. This,

in turn, motivates reducing the gauge symmetries, commonly through ‘symplectic reduction’ in

the Hamiltonian framework. However, there are multiple ways to formulate a Hamiltonian gauge

theory. This paper examines the relationship between the formulation of a Hamiltonian gauge

theory and the attribution of excess structure. I argue that one can formulate a Hamiltonian

gauge theory such that symplectic reduction does not remove structure, and therefore that the

role of symplectic reduction cannot be purely to remove ‘excess structure’. I discuss in what sense

symplectic reduction is thereby motivated.

1 Introduction

There are several cases in physics where the mathematical formalism of a theory appears to have re-

dundancy: there are objects in the theory that don’t seem to play any role in capturing the empirical

content of the theory. There have been attempts to formalize the idea of a theory having redun-

dancy through the notion of “excess structure”1: a theory has excess structure when it has distinct,

non-isomorphic models that are taken to represent the same physical situation. And what it is to

remove excess structure is to come up with a new theory with less structure—in particular, with-

out the structure distinguishing the problematic models—that captures the same empirical content.

This notion has been fruitfully applied to several cases to understand the sense in which a theory

does, or does not, have redundancy: from formulations of classical mechanics (North (2009), Barrett

1Sometimes the term “surplus structure” is used, following Redhead (1975).
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(2015a)), to formulations of spacetime theories (Barrett (2015b), Weatherall (2018)), to formulations

of electromagnetism (Weatherall (2016b)).

One context where the term ‘redundancy’ is used by both physicists and philosophers is in the

context of gauge theories; indeed, sometimes a ‘gauge theory’ is used to mean just a theory with

redundancy.2 And this is not just an observation; taking gauge theories to have redundancy motivates

the procedure of ‘reduction’, which involves reformulating a gauge theory by effectively removing the

‘excess’ quantities from the formalism.

On the other hand, Weatherall (2016b) argues that some theories that are called ‘gauge theories’—

namely, (the standard formulations of) Yang-Mills theory and General Relativity—are not theories

with excess structure, in the sense defined above. The reason is that the ‘gauge symmetries’ act as

isomorphisms in the theory, and so they do not give rise to distinct models of the theory. It follows

that whether a gauge theory is a candidate for excess structure depends on the particular formulation

of the theory, and therefore, whether reduction is motivated by considerations of excess structure

depends on how the gauge theory that one reduces is formulated.

A standard procedure for reduction, known as ‘symplectic reduction’, takes place in the Hamil-

tonian formulation of gauge theories. The Hamiltonian formalism provides a useful framework for

formulating gauge theories because, as originally shown by Dirac (1964), one can connect gauge sym-

metry to constraints on the Hamiltonian variables.3 There is, therefore, a natural question to ask:

is it the case that the Hamiltonian formulation of gauge theories has excess structure? While many

discussions on the Hamiltonian formulation of gauge theories suggest that this is the case4, there has

not been an explicit attempt to formalize this claim. The aim of this paper is to rectify that.

The question is complicated by the fact that there are disputes about how to characterize a Hamil-

tonian gauge theory—in particular, which transformations constitute the gauge transformations—that

comes down to a disagreement about the equivalence class of Hamiltonians that generate the dynamics.

The standard view is that the ‘Extended Hamiltonian’ is the right equivalence class of Hamiltonians

and that gauge transformations are generated by arbitrary combinations of first-class constraints. The

alternative view—argued for, most prominently, by Pitts (2014b)5—is that the ‘Total Hamiltonian’

is the right equivalence class of Hamiltonians and that gauge transformations are generated by a

2For example, this is suggested by Earman (2004), Rovelli (2014), Ismael & van Fraassen (2003).
3This is not to say that the Hamiltonian formalism provides the best or most general framework for formulating

gauge theories. However, it is important because symplectic reduction provides the basis for standard quantization
techniques.

4For example, see Thébault (2012), Earman (2002a, 2004), Belot (2003).
5See also Pitts (2014a, 2022, 2024) as well as Pons (2005).
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particular combination of first-class constraints. In attempting to answer the question above, we will

therefore consider whether different characterizations of a Hamiltonian gauge theory lead to different

answers to this question.

In fact, I will show that the formulation of a Hamiltonian gauge theory that takes the Extended

Hamiltonian to be the equivalence class of Hamiltonians has less structure than the formulation that

takes the Total Hamiltonian to be the equivalence class of Hamiltonians. This suggests that the

theory formulated in terms of the Total Hamiltonian is one with excess structure, and that the theory

formulated in terms of the Extended Hamiltonian is precisely a way of removing this excess structure.

This is interesting in itself; it suggests that an argument for the standard view can be made in terms

of considerations of excess structure. Moreover, it opposes a recent argument made by Pitts (2022,

2024) that the Extended Hamiltonian is (at best) a “trivial reformulation” of the Total Hamiltonian.

With the theory in terms of the Extended Hamiltonian as a starting point, we then ask whether

this is a theory with excess structure by considering whether symplectic reduction can be said to re-

move structure from this theory. I show that symplectic reduction does not, in fact, result in a theory

with less structure than the theory characterized by the Extended Hamiltonian. This might appear

surprising, given that the theory characterized by the Extended Hamiltonian has symmetries of pre-

cisely the kind that are removed via symplectic reduction. However, I will argue that this appearance

results from a misunderstanding of the relationship between the number of gauge symmetries a theory

has, the amount of structure it has, and whether it has redundancy.

More carefully, I will argue that there is a way to characterize the kind of redundancy that a

gauge theory has compared to the symplectic reduced theory, but that it is conceptually distinct to

the kind of redundancy at issue in the context of excess structure. This kind of redundancy is rather

one that Bradley & Weatherall (2020) call “representational redundancy”: the redundancy comes

from the fact that the theory has the freedom to represent a particular physical situation in lots of

different ways. Applying the notion of representational redundancy in the context of Hamiltonian

gauge theories helps to clarify the motivations for moving to the symplectic reduced theory, and how

these motivations differ from the motivations for moving to a theory without excess structure.

The rest of the paper will go as follows. In Section 2, I discuss the notion of ‘excess structure’

and how the tools of category theory can be usefully applied to formalize this notion. In Section 3, I

give an overview of the constrained Hamiltonian formalism for describing gauge theories. In Section

4, I argue that the theory corresponding to the Extended Hamiltonian removes excess structure from
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the theory corresponding to the Total Hamiltonian, using the tools described in Section 2. In Section

5, I turn to the relationship between the Extended Hamiltonian theory and the theory obtained via

symplectic reduction. I show that the latter does not remove excess structure from the former, and

I discuss the sense in which symplectic reduction is nonetheless motivated. In Section 6, I conclude

with some broader lessons.

2 Defining Excess Structure

As a starting point, we will take a theory to have ‘excess structure’ whenever it admits non-isomorphic

models that are taken to represent the same physical situation. This allows for various refinements.

First, one might argue that if a theory contains distinct models that are taken to represent the same

physical situation, yet no plausible alternative theory captures the same empirical content without such

distinct models, then one shouldn’t regard the theory as having excess structure.6 The underlying

thought is that structure counts as ‘excess’ only if it can, in principle, be dispensed with. On this view,

a theory has excess structure only when there exists another theory with less structure that nonetheless

captures the same empirical content. In what follows, we will at least presume that presenting such

an alternative theory is a way of determining that the first theory has excess structure.

Second, there are different ways that one might spell out what it is for two models to represent the

same physical situation, or what it is for two different theories to have the same empirical content.

Some philosophers have tried to narrow down the sense in which two models represent the same

physical situation through an account of ‘symmetries’ between models of a theory.7 However, there

are challenges with providing a general account of this kind,8 and for our purposes here, it suffices

that there is a way to spell out the sense in which two models or theories are empirically equivalent

on a case-by-case basis. For example, Barrett (2019) discusses how empirical equivalence between

(hyperregular) Lagrangian and Hamiltonian formulations of a theory can be captured in terms of

agreement about the collection of integral curves that represent solutions to the equations of motion,

under the map that takes a model of Lagrangian mechanics to one of Hamiltonian mechanics and

vice versa. Later, when we discuss Hamiltonian gauge theories, we will similarly specify the relevant

sense in which the theories in question share the same ‘empirical content’. This leaves open that

6This is sometimes expressed as a ‘motivational’ as opposed to ‘interpretational’ view of symmetries, following
Møller-Nielsen (2017).

7For example, see Baker (2010), Ismael & van Fraassen (2003), Earman (2002b), Dewar (2019).
8For discussion of some of these challenges, see Belot (2013).
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there might be other ways of comparing and interpreting the theories such that they are not regarded

as empirically equivalent. Indeed, we will return to the importance of the choice of comparison in

determining whether two theories are empirically equivalent in Section 4.

Finally, to say whether one theory has excess structure over another theory, we need a way to

compare the structure of two theories. First, we can ask what it means for one model—understood as a

single mathematical object—to possess more structure than another model. A criterion for comparing

the amount of structure of two mathematical objects has recently been proposed by Barrett (2015a,b):

(SYM∗): A mathematical object X has at least as much structure as an object Y if

Aut(X) ⊆ Aut(Y )

The intuitive idea behind this criterion is that the amount of structure a mathematical object

possesses is related to its isomorphisms, since an isomorphism is, by definition, a structure-preserving

map. In particular, the fewer the isomorphisms that a mathematical object has, the more structure

it has. And vice versa—more isomorphisms indicate less structure.

However, there are some limitations of this account. First, it only applies when one can compare

the set of automorphisms of X and Y , which itself relies on X and Y being similar in a certain way,

such as having the same underlying domain.9 Second, in order to say whether one theory has excess

structure over another, what we care about is not just whether a single model of one theory has

more structure than a single model of the other, but whether one theory as a whole—understood as a

collection of models with structure-preserving maps between these models—has more structure than

the other.

To extend the above criterion to theories more generally, we can make use of the tools of category

theory.10 To think about a physical theory categorically, we take the objects of the category to be

the models of the theory, and the arrows between objects to be the isomorphisms between models of

the theory. Relations between theories are described by functors between the categories representing

those theories, where a functor is a structure-preserving map between categories that takes objects to

objects and arrows to arrows.

A functor F : C → D from the category C to the category D is said to be full if for every pair

of objects A,B of C the map F : hom(A,B) → hom(F (A), F (B)) induced by F is surjective, where

9For further discussion, see Barrett et al. (2023).
10See, for example, Weatherall (2016b), Nguyen et al. (2020), Bradley & Weatherall (2020). For a defense of using

category theory to represent theories more generally, see Halvorson (2012, 2016), Halvorson & Tsementzis (2017),
Weatherall (2016a, 2017).
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hom(A,B) is the collection of arrows from A to B. Similarly, F is said to be faithful if for every pair

of objects the induced map on arrows is injective. Finally, F is said to be essentially surjective if

for every object X of D, there is some object A of C such that F (A) is isomorphic to X. Using this

terminology, we say (following Weatherall (2016b)) that a theory represented by category C has more

structure than a theory represented by category D if a functor F : C → D is not full (but is faithful

and essentially surjective). In this case, we say that F forgets (only) structure.

We therefore say that a theory, represented by a category C, has ‘excess structure’ relative to

another theory D, when there is a functor F : C → D that forgets (only) structure while preserving

empirical content. The intuitive reason that such a formal notion captures what it is for one theory

to have excess structure over another is that a functor failing to be full means that there are some

isomorphisms in the second theory that are not mapped to by any isomorphisms in the first theory.

In other words, the isomorphisms of the second theory are ‘wider’ than the isomorphisms of the first.

If we take on board the principle that more isomorphisms indicates less structure, this suggests that

a functor failing to be full captures precisely the idea that we have moved to a theory with overall

less structure.

However, there are other interesting relationships between theories, represented as categories. For

example, if the functor F : C → D is not faithful (but full and essentially surjective), we say that F

forgets (only) stuff. To draw out the interpretation of a theory having more ‘stuff’, it is helpful to

consider an example.11 Take a category Vect whose objects are two-dimensional vector spaces and

whose arrows are linear transformations. Similarly, take a category OBVect whose objects are two-

dimensional vector spaces with a fixed, ordered basis, with basis-preserving maps as arrows. Then,

there is a functor from Vect to OBVect that takes all objects in Vect to a single object in OBVect,

and all arrows in Vect to the identity map on the chosen object in OBVect. This functor is full

and essentially surjective, but not faithful, and so it forgets stuff. The reason is that the objects

in Vect have multiple automorphisms that correspond, via the functor, to the identity map on the

corresponding model in OBVect. We can understand this difference as characterizing the fact there

are multiple ways that one can ‘use’ the objects of Vect to represent some ordered basis (such as

a choice of ‘North’ and ‘East’) via its non-trivial automorphisms, whereas there is no corresponding

freedom using the objects of OBVect, because one ordered basis is privileged from the rest.

Does this correspond to a kind of redundancy? One relevant observation is that there also exists

11The following example is taken from Bradley & Weatherall (2020).
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a functor in the opposite direction, from OBVect to Vect, that forgets only structure. Indeed, this

captures the fact that the objects of OBVect are just those of Vect plus the structure of a fixed

ordered basis. So in this case, the theory that has more ‘stuff’ is really the one with less structure.

We therefore might see the additional ‘stuff’ that Vect has as being a feature of the fact that it is a

theory without redundancy.12

On the other hand, one might argue that there is a kind of redundancy associated with the fact that

there are multiple automorphisms of the models of Vect: it indicates that there is nothing privileged

about one vector over any linear transformation of that vector, and yet such vectors correspond

to distinct vectors in the vector space. Bradley & Weatherall (2020) label the idea that a model

can represent some object or physical situation in multiple ways via its non-trivial automorphisms

“representational redundancy”. One might argue that removing this kind of redundancy can be

achieved by moving to OBVect or, depending on one’s representational concerns, by moving to a

category whose objects are equivalence classes of vectors under the linear transformations, where the

only automorphisms are the identity map.

This suggests that there are different ways one could interpret the fact that one category has more

‘stuff’ than another. It might be that the first is regarded as a theory without excess structure, or

it might be that the first is regarded as a theory with redundancy, as captured by ‘representational

redundancy’. Which is regarded as the ‘right’ interpretation might depend on the particular repre-

sentational concerns one has in some context. As we will discuss in Section 5, this is precisely the

situation in the context of symplectic reduction. However, to make the point in this context, we first

need to discuss how one should formulate (the structure of) a Hamiltonian gauge theory. To do this,

we will make use of the “constrained Hamiltonian formalism”, to which we now turn.

3 The Constrained Hamiltonian Formalism

The standard geometric way of formulating a Hamiltonian theory is to take its state space to be a

symplectic manifold.13 A symplectic manifold consists of a pair (M,ω) where M is a smooth manifold

and ω is a symplectic form: it is a two-form (a smooth, anti-symmetric tensor field of rank (0,2)) that

is closed and non-degenerate. A Hamiltonian theory is a theory whose state space is given by the

cotangent bundle of configuration space T ∗Q i.e. the points of the manifold are {(qi, pi), i = 1, ..., N}
12Indeed, this is exactly what is argued for in Bradley & Weatherall (2020).
13For details, see Abraham & Marsden (1987).
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where qi are the generalized positions and pi the generalized (canonical) momenta. T ∗Q comes

naturally equipped with a one-form, the Poincaré one-form, given by θ = pidq
i. The corresponding

symplectic two-form is given by ω = dθ = dpi ∧ dqi.

Given a function f : T ∗Q → R, one can uniquely define a smooth tangent vector field Xf through:

ω(Xf , ·) = df (1)

where {·} represents any vector field tangent to T ∗Q. An important function is the Hamiltonian

H(qi, pi), where the unique vector field associated with H via the above equation is interpreted as the

generator of the solutions to the equations of motion i.e. the equations of motion can be expressed as:

ω(XH , ·) = dH (2)

The “constrained Hamiltonian formalism” concerns a collection of Hamiltonian theories where

there are constraints of the form ϕm(qi, pi) ≈ 0 for m = 1, ...,M where M is the number of constraints

and the meaning of ≈ is that one can substitute the left-hand side for the right only on the subspace

where the equation holds.14 Constraints that arise from the definition of the canonical momenta

pi =
∂L
∂q̇i

for Lagrangian function L are called the primary constraints. We can think of the primary

constraints as defining a submanifold of T ∗Q, which we call the primary constraint surface, Σp.

The Total Hamiltonian is the equivalence class of Hamiltonians defined as HT = H+umϕm (using

the Einstein summation convention) where um(qi, pi) are arbitrary functions, which is equivalent to

H when one restricts to the points of Σp. Taking the Total Hamiltonian to generate the dynamics on

T ∗Q means that there are multiple possible solutions given some initial state. In other words, it leads

to the failure of a well-posed initial value problem. This apparent indeterminism is the root of gauge

symmetry in the Hamiltonian context: gauge symmetries are understood to relate states or solutions

that are equivalent from the perspective of restoring unique evolution.

We can alternatively see the underdetermination in the dynamics by formulating the theory in-

trinsically on Σp. To do this, we define an induced two-form ω̃p = i∗ω , where i : Σp → T ∗Q is the

inclusion map. We say that a (primary) constraint is first-class when its associated vector field is

tangent to Σp (and second-class when it is not tangent to Σp). Whenever there are first-class primary

constraints, ω̃p is presymplectic, which means that it is degenerate: it has null vector fields—vector

14This formalism originates with Dirac (1964) and Bergmann (1961). For details, see Henneaux & Teitelboim (1994).
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fields X that satisfy ω̃p(X, ·) = 0—that correspond to the primary first-class constraints. This means

that the equations of motion, written intrinsically as ω̃p(XH , ·) = dH|Σp , have non-unique solutions:

they are unique up to arbitrary combinations of vector fields associated with the primary first-class

constraints.

However, the theory formulated intrinsically on Σp may be such that the solutions to the equations

of motion are not well-defined everywhere i.e. the vector fields XH that define the solutions to this

equation may not be tangent to the primary constraint surface everywhere. For the solutions to be

tangent to the constraint surface, it must be that ω̃(XH , Xϕa
) = dH(Xϕa

) = 0 for vector fields Xϕa

associated with the primary constraints. This may define a further collection of constraints called

secondary constraints, and we can think of these additional constraints as leading to the specification

of a further submanifold. Continuing this process of requiring that the solutions to the equations of

motion be tangent to the constraint surface terminates in a final constraint surface, (Σf , ω̃f ), with

dynamics given in terms of H|Σf
via ω̃f (XH , ·) = dH|Σf

, which has solutions everywhere that are

unique up to an arbitrary combination of the vector fields associated with the primary and secondary

first-class constraints. The integral curves of the null vector fields of ω̃f are sometimes called the

gauge orbits.

We can alternatively think of the dynamics on the final constraint surface in terms of solutions

on T ∗Q where, instead of taking the Total Hamiltonian to generate the dynamics, one takes the

Extended Hamiltonian to generate the dynamics, defined as HE = HT +wjφj where φj are the first-

class secondary constraints and wj(qn, pn) are arbitrary functions. Indeed, Dirac (1964) argued that

the Extended Hamiltonian is the ‘right’ equivalence class of Hamiltonians, and correspondingly that

the gauge transformations are generated by arbitrary combinations of first-class constraints, which

connect solutions generated by the Extended Hamiltonian. This is now the standard view.

However, some have found this position unfounded; in particular, Pitts (2014b) argues that the

Extended Hamiltonian is unmotivated because he takes the Total Hamiltonian to correctly generate

the dynamics, and so he takes the gauge transformations between solutions to be more restrictive than

the transformations relating solutions to the Extended Hamiltonian. One can take Pitts to be arguing

that a Hamiltonian theory should be formulated intrinsically on the primary constraint surface, and

not on the final constraint surface.

There are two reactions that one could have to the disagreement between the standard view and

that of Pitts. First, one could maintain that the question of whether arbitrary combinations of first-
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class constraints generate gauge transformations or not comes down to whether the Total Hamiltonian

or Extended Hamiltonian is considered the right equivalence class of Hamiltonians, and this needs to

be independently settled. Second, one could maintain that what the debate shows is that there is

no Hamiltonian-independent way to characterize the gauge transformations, but that we can think of

these different forms of the Hamiltonian as equivalent, and so there is no conflict.15 We will presently

argue that the first option is right: there is a way to settle the question of which equivalence class of

Hamiltonians should be regarded as the right one through considerations of excess structure.

4 The Extended Hamiltonian Removes Excess Structure

We have already seen that there is a sense in which the Total Hamiltonian and the Extended Hamil-

tonian naturally correspond to the theories formulated intrinsically on the primary constraint surface

and the final constraint surface, respectively. However, given the inconsistencies that arise with the

intrinsic dynamics on Σp, the corresponding theory will need to be such that it essentially takes the

dynamics to be defined only at those points that satisfy the secondary constraints. We will therefore

think of the theory characterized by the Total Hamiltonian as being defined geometrically in terms of

the structure (Σp, ω̃p, H, φi) where H is the Hamiltonian restricted to the primary constraint surface

and φi are the secondary constraints, and we will take the dynamics of this theory to be given by

two equations: ω̃p(XH , ·) = dH and φi = 0. Similarly, we can think of the theory described by the

Extended Hamiltonian as characterized geometrically by the structure (Σf , ω̃f , H) where H is Hamil-

tonian restricted to the final constraint surface, and the dynamics are given by the single equation

ω̃f (XH , ·) = dH.

Characterizing the theories in this way naturally provides a sense in which the Extended Hamilto-

nian theory regards more solutions as equivalent compared to the Total Hamiltonian theory. Consider

the vector fields of the form XH + ajXφj where Xφj are the vector fields associated with the sec-

ondary first-class constraints φj . These vector fields correspond to equivalent solutions according to

the Extended Hamiltonian theory, since the solutions to ω̃f (XH , ·) = dH are unique up to arbitrary

combinations of vector fields associated with the first-class constraints. On the other hand, they are

distinct solutions according to the Total Hamiltonian theory, in the sense that they are solutions to

distinct Hamiltonian functions on Σp. The reason is that Xφj are not null vector fields of ω̃p, while

they are of ω̃f .

15I take this to be one way of interpreting the position maintained by Pitts (2022, 2024).
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However, in another sense, these theories are empirically equivalent. The reason is that the solu-

tions that Total Hamiltonian theory distinguishes between that the Extended Hamiltonian theory does

not are solutions that correspond to distinct Hamiltonian functions, according to the Total Hamilto-

nian theory, only at points off the final constraint surface. Since the points that do not lie on the final

constraint surface are regarded as empirically inaccessible according to both theories, this suggests

that by the lights of both theories, there is no way to empirically distinguish such solutions—they are

generated by Hamiltonians that are equivalent at all points that are empirically accessible.16

We can therefore say that the theories agree about empirical content but disagree about which

curves on the state space correspond to (physically) equivalent solutions. This suggests that we are

precisely in a situation of ‘excess structure’: the Total Hamiltonian theory draws distinctions that one

does not need to make in order to capture the empirical content of the theory.

Let us spell this out precisely, starting with the idea that a Total Hamiltonian theory has fewer

symmetries, or isomorphisms, than the associated Extended Hamiltonian theory. Take the symmetries

of the Total Hamiltonian theory to be given by diffeomorphisms of Σp, f : Σp → Σp that preserve the

two form ω̃p in the sense that f∗(ω̃p) = ω̃p and preserves the Hamiltonian H and secondary constraints

φi in the sense that f∗(H) = H and f∗(φi) = φi. Similarly, take the symmetries of the Extended

Hamiltonian theory to be given by diffeomorphisms of Σf , g : Σf → Σf such that g∗(ω̃f ) = ω̃f

and g∗(H) = H. In other words, the symmetries are just the automorphisms of the structures

(Σp, ω̃p, H, φi) and (Σf , ω̃f , H) respectively. Notice that these symmetries preserve solutions to the

equations of motion since the solutions are determined by the two-form and the Hamiltonian. Then:

Proposition 1 The automorphisms of (Σp, ω̃p, H, φi), restricted to their action on Σf , are a subset

of the automorphisms of (Σf , ω̃f , H).17

The core part of the proof of this proposition is contained in the fact that the null vector fields of

ω̃p are a subset of the null vector fields of ω̃f (when we consider the action of these vector fields on the

final constraint surface) and arbitrary transformations along the null vector fields are automorphisms

of the respective structure. This shows that there are ‘fewer’ isomorphisms of the Total Hamiltonian

theory compared to the Extended Hamiltonian theory. As we pointed out in Section 2, having more

isomorphisms is associated with having less structure. Therefore, the above proposition suggests

16For further discussion of whether the Extended Hamiltonian can be empirically distinguished from the Total
Hamiltonian, see Pitts (2014b) and the response by Pooley & Wallace (2022).

17See A.1 for proof.
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that the Total Hamiltonian theory should be thought to have more structure than the Extended

Hamiltonian theory.18

We can spell out the comparison of structure more precisely using the tools from category theory:

Define the category TotHam (the category of Total Hamiltonian theories) as having as objects

the models (Σp, ω̃p, H, φi) and as arrows between objects (Σp, ω̃p, H, φi), (Σp, ω̃
′
p, H

′, φ′
i) the diffeo-

morphisms f : Σp → Σp such that f∗(ω̃′
p) = ω̃p, f

∗(H ′) = H and f∗(φ′
i) = φi i.e. the symmetries are

taken to be the symplectomorphisms that preserve the Hamiltonian and the secondary constraints.

Similarly, define the category ExtHam (the category of Extended Hamiltonian theories) as hav-

ing as objects the models (Σf , ω̃f , H) and as arrows between objects (Σf , ω̃f , H), (Σf , ω̃
′
f , H

′) the

diffeomorphisms g : Σf → Σf such that g∗(ω̃′
f ) = ω̃f and g∗(H ′) = H.

Consider the functor F : TotHam → ExtHam that takes each model (Σp, ω̃p, H, φi) to its

restriction to the points that satisfy the constraints φi = 0, i.e. the associated model (Σf , ω̃f , H), and

that takes the arrow f to its action on Σf (since f preserves the secondary constraints, f preserves

Σf , and so this is well-defined). Then:

Proposition 2 F : TotHam → ExtHam forgets (only) structure.19

Inasmuch as forgetting structure in category-theoretic terms captures what it means for one theory

to have less structure than another, this proposition captures a precise sense in which the Extended

Hamiltonian formalism removes structure from the Total Hamiltonian formalism. Moreover, F pre-

serves empirical content because it takes the Hamiltonian in the model (Σp, ω̃p, H, φi) to its restriction

to the points of Σf , which are precisely the points where the Hamiltonian is empirically accessible.

Therefore, the proposition allows us to capture in precise terms the sense in which characterizing

gauge theories in terms of the Total Hamiltonian has ‘excess structure’: there is an alternative way

to characterize the empirical content of such theories but with less structure, by characterizing the

theories in terms of the Extended Hamiltonian.

An interesting consequence of this argument is that it provides a response to a recent argument

by Pitts (2022, 2024) that moving to the Extended Hamiltonian is a “trivial reformulation” of the

theory characterized by the Total Hamiltonian. In particular, Pitts argues that we can always add new

‘gauge’ transformations by adding new terms to the Hamiltonian while preserving empirical content.

18Indeed, this reasoning can be seen as an application of (SYM∗), allowing for the comparison to be made at the
points where the domains of the objects coincide. As we show below, this is further justified by the category-theoretic
comparison.

19See A.2 for proof.
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To support this, Pitts invites us to consider a simple example. Take a Lagrangian given by:

L1 =
1

2
q̇2 (3)

This describes a particle moving in a straight line with uniform velocity; the equation of motion

is q̈ = 0. Now consider the Lagrangian:

L2 =
1

2
(q̇ − µ̇)2 (4)

where µ is either an arbitrary function of time or a dynamical variable. This Lagrangian is invariant

under the transformation q → q + ϵ, µ → µ+ ϵ where ϵ is an arbitrary function of time. Since not all

choices of ϵ are symmetries of L1, Pitts argues that we have added symmetries by moving from L1 to

L2. Moreover, L2 gives rise to the equation of motion q̈ − µ̈ = 0, which says that q − µ represents a

particle moving in a straight line with uniform velocity. Therefore, the argument goes, we have added

symmetries while keeping the empirical content the same.

In the Hamiltonian framework, the move from L1 to L2 can be seen to add gauge symmetries in

the following way: there are no constraints corresponding to L1 and so there is no gauge freedom.

However, treating µ as a dynamical variable, we find that the Hamiltonian formulation of L2 has a

constraint, pq + pµ, which is first-class. So, there are new gauge transformations in the Hamiltonian

formulation; the transformations q → q + ϵ, µ → µ+ ϵ generated by the first-class constraint.

Pitts calls this process of revising a Lagrangian by adding a new variable (or “splitting one quan-

tity into two”) and thereby adding new symmetries “de-Ockhamization”. Arguably, it is a trivial

way of adding symmetries, as demonstrated by the above example. But, Pitts argues, this is ex-

actly what is going on when one moves from the Total to the Extended Hamiltonian: one adds a

new term to the Hamiltonian—some arbitrary function of the secondary constraints—and in doing

so, one introduces new symmetries while preserving empirical content. Therefore, these additional

gauge symmetries that the Extended Hamiltonian theory is associated with should not be regarded as

“genuine” gauge transformations, in just the same way that the symmetries of L2 are not physically

interesting symmetries.

However, once we understand the relationship between the Total Hamiltonian and the Extended

Hamiltonian in terms of Propositions 1 and 2, we can see that the process of “de-Ockhamization”

is not what is going on when one moves from the Total Hamiltonian to the Extended Hamiltonian.
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The reason is that one cannot set up a proposition analogous to Proposition 1 in the case of de-

Ockhamization and simultaneously maintain that the two theories are empirically equivalent. To see

this, recall that Proposition 1 stated that the symmetries of the Total Hamiltonian theory are a subset

of those of the Extended Hamiltonian theory, when we consider their action on the same state space.

This last clause is important: to compare the symmetries of two theories, we need some mapping

between the two theories so that we can say which symmetries are being identified.

If we want to claim that L1 and L2 are empirically equivalent, then the natural choice of mapping

is to take q to represent the position of the particle in L1 and q − µ to represent the position of the

particle in L2.
20 Therefore, we ought to consider the relationship between the symmetries under this

standard of comparison. But now we run into a problem: the transformations of q that preserve the

Euler-Lagrange equations for L1 are the same as the transformations of q−µ that preserve the Euler-

Lagrange equations for L2. Indeed, all we have done is effectively change the label of the variable that

represents position. This is clearly a trivial kind of reformulation. However, it does not support the

claim that L2 has additional symmetries, since under the standard of comparison where q is identified

with q − µ, the Lagrangians are empirically equivalent and also have the same symmetries.

One might try to respond by saying the following: we have added symmetries by moving to L2

because the transformations q → q + ϵ, µ → µ + ϵ, where ϵ is an arbitrary function of time, are

symmetries of L2 that are not symmetries of L1 and that preserve the equations of motion. But under

the identification of q with q − µ, these transformations are symmetries of L1, since they correspond

to the identity transformation on q in L1. What this response points out is that there are many

symmetries of L2, differing over the choice of ϵ, that correspond to a single symmetry of L1. However,

this is not sufficient to set up an analogous proposition to that of Proposition 1; one cannot say that

there is a symmetry of L2 that is not a symmetry of L1 when we identify q in L1 with q − µ in L2.

The upshot is that there is no way to maintain simultaneously that L1 and L2 are empirically

equivalent and that the symmetries of L1 are a subset of the symmetries of L2. Under the mapping

that preserves empirical content, every symmetry of the first theory is a symmetry of the second theory

and vice versa. Since Propositions 1 and 2 show that the symmetries of the Total Hamiltonian theory

are a subset of those of the Extended Hamiltonian theory under the map that preserves empirical

content—namely, the map that takes every point on the final constraint surface to itself—this suffices

20If we took q in both Lagrangians to represent the position of the particle, then the Lagrangians would not be
empirically equivalent: L2 would represent a particle whose acceleration is equal to the acceleration of µ, which is not
(necessarily) zero.

14



to show that de-Ockhamizaiton is not what is going on in the move from the Total Hamiltonian to

the Extended Hamiltonian. Therefore, whether de-Ockhamization is a way of trivially adding gauge

symmetries is orthogonal to the question of the significance of moving from the Total Hamiltonian to

the Extended Hamiltonian.

5 Symplectic Reduction Does Not Remove Further Structure

Given that we have convinced ourselves that the theory characterized by the Extended Hamiltonian

removes excess structure from the theory characterized by the Total Hamiltonian, a natural question

arises: is the theory characterized by the Extended Hamiltonian a theory without excess structure, or

is there some other theory that has even less structure while preserving empirical content? Indeed,

the standard way of removing what is regarded as excess structure from a Hamiltonian gauge theory

is to undergo symplectic reduction. We therefore want to consider the relationship between the theory

one gets via symplectic reduction and the theory characterized by ExtHam.

On the face of it, models of ExtHam have a kind of redundancy: states along the gauge orbits

on Σf cannot be distinguished by the induced two-form, and so the theory doesn’t depend upon

which point along a gauge orbit one chooses to represent the state of a system. In light of this, it is

tempting to make the following interpretive move: one should treat gauge-related states/solutions as

being equivalent. Therefore, only gauge-invariant quantities (the “observables”) should be interpreted

as physically meaningful. However, if we want to interpret gauge-related states/solutions as being

equivalent, then, the argument goes, we should find a new mathematical formalism for describing

Hamiltonian gauge theories such that gauge-related states/solutions are identified. The symplectic

reduced theory is such a formalism.

For example, Thébault (2012) says that one could interpret a theory in the constrained Hamiltonian

formalism by “instituting a many-to-one relationship between gauge related sequences of points on

the constraint surface and the unique sequences of instantaneous states they represent” but that this

“does nothing about removing what would seem like superfluous mathematical structure—to dispense

with this surplus structure we need to move to the reduced phase space.” Similarly, Belot (2003) says

that “because the points of such orbits are dynamically indifferent, the xi [the gauge variables] are

dynamically irrelevant—any way of setting their value leads to the “same” evolution. This suggests

in turn that it may be possible to drop the xi from our theory altogether”. These quotes suggest
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that reduction provides an option for removing redundancy present in a model of ExtHam since the

points of the reduced space are just the equivalence class of points along the gauge orbits.

In more detail, symplectic reduction works as follows: we take the theory defined on the final con-

straint surface, and then we ‘quotient out’ the gauge symmetries by effectively equivocating between

the points along the gauge orbits.21 More precisely, we can define a smooth, differentiable manifold

Σ̄ by taking the quotient of Σf by the kernel of ω̃ i.e. the null vector fields of ω̃. Next, we can

define an open, surjective projection map π : Σf → Σ̄ such that we define the reduced two-form ω̄

via ω̃f = π∗(ω̄), which acts according to ω̄(X̄, Ȳ ) = ω̃f (X,Y ) where X̄ = π∗(X). One can show

that ω̄ is well-defined and is symplectic. We can also define a reduced Hamiltonian H̄ as the value

of H on the equivalence class of points along the gauge orbits i.e. H = π∗(H̄). This is well-defined

because H is constant along the gauge orbits on the final constraint surface. We can therefore write

the equations of motion on the reduced space in terms of the reduced Hamiltonian as ω̄(X̄H̄ , ·) = dH̄,

whose solutions are the projection of the solutions to the equations of motion on Σf to Σ̄. We can

think of the dynamics on the reduced space as just the dynamics for the gauge-invariant variables.

This provides the sense in which the reduced theory preserves empirical content: the predictions for

the ‘physical’ variables are the same.

In order to evaluate the argument that reduction removes excess structure, let us consider the

relationship between the reduced theory and the theory defined on the final constraint surface given

by ExtHam. Unlike in the case of moving from the Total Hamiltonian theory to the Extended

Hamiltonian theory, we cannot think about the automorphisms of the Extended Hamiltonian theory

and the reduced theory as acting on the same state space, since Σ̄ is not a submanifold of Σf or vice

versa. Instead, we think of Σ̄ as the projection of Σf under a map that collapses distinctions between

the points along the gauge orbits. Therefore, we cannot say that the automorphisms of one are a

subset of the other in the same way. Instead, what we can say is that:

Proposition 3 Every automorphism of (Σf , ω̃f , H), under the projection π : Σf → Σ̄, is an auto-

morphism of (Σ̄, ω̄, H̄), and every automorphism of (Σ̄, ω̄, H̄) corresponds to some automorphism(s)

of (Σf , ω̃f , H) under π.22

Since this proposition says that all of the symmetries of the Extended Hamiltonian theory corre-

21The procedure we describe here is really a special case of what is sometimes also called “symplectic reduction”,
or “Marsden-Weinstein reduction”. For more details on reduction as we describe it here, see Henneaux & Teitelboim
(1994), Souriau (1997), Thébault (2012). For discussion of symplectic reduction more generally, see Butterfield (2006),
Belot (2006).

22See A.3 for proof.

16



spond to symmetries of the reduced theory, we cannot infer that one theory has more structure than

the other by drawing an analogy with Proposition 1. So let us see whether the category-theoretic

approach can shed light on the structural relationship between these theories.

An issue that we face is that some of the models in ExtHam are, essentially, partial reductions

of other models in ExtHam, since we didn’t restrict the dimension of the final constraint surface

when defining this category, nor the dimension of the null space. Given that we want to capture the

relationship between theories and their reduced counterpart, we will restrict to the case where the

models of ExtHam have the same dimensions, which excludes the case of objects within the category

ExtHam being related by (partial) reduction.

We can define the category HamRed as having objects (Σ̄, ω̄, H̄) and arrows between objects

(Σ̄1, ω̄1, H̄1) and (Σ̄2, ω̄2, H̄2) to be given by diffeomorphisms h : Σ̄1 → Σ̄2 such that h∗(ω̄2) = ω̄1 and

h∗H̄2 = H̄1. Take the functor G that takes the object (Σf , ω̃f , H) to (Σ̄, ω̄, H̄) and that takes an

arrow g : Σf → Σf to ḡ : Σ̄ → Σ̄ where ḡ(x̄) = g(x̄) i.e. ḡ is the action of g on the gauge orbits, such

that whenever g acts by moving points of Σf along the gauge orbits, ḡ acts as the identity on G(Σf ).

This is well-defined because every arrow g : Σf → Σf preserves the gauge orbits. Then, the following

is true:

Proposition 4 G : ExtHam → HamRed is full and essentially surjective but not faithful i.e. G

forgets only stuff.23

This shows us that symplectic reduction is not a way of removing ‘excess structure’ from ExtHam.

In a way, this was to be expected: we already established that gauge symmetries are isomorphisms of

the models of ExtHam, and so this theory already captures the idea that gauge symmetries relate

physically equivalent situations. Nevertheless, the fact that the functor G forgets ‘stuff’ remains

significant. As we suggested in Section 2, one can think about a theory with more stuff as exhibiting

“representational redundancy”: the models of that theory can be used to represent some object

or physical situation in lots of different ways through its non-trivial automorphisms. This seems

to correctly capture the role of the gauge transformations in ExtHam: they reflect the fact that

any point along the gauge orbit is equally well-suited to represent some physical state.24 Moreover,

removing this ‘redundancy’ seems well-motivated from the perspective of pursuing a well-posed initial

value problem. Therefore, while symplectic reduction does not remove excess structure, Proposition

23See A.4 for proof.
24One might notice the analogy between this reasoning and the one we considered in the vector space example at

the end of Section 2.
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4 might nonetheless indicate that it removes a relevant form of redundancy from the theory on the

final constraint surface—one associated with the failure of a well-posed initial value problem.

However, as we also discussed in Section 2, having more ‘stuff’ can indicate that the theory less

‘structure’, and therefore that the two notions of redundancy can pull in different directions. Indeed,

notice that a different way of removing the ‘representational redundancy’ that ExtHam has would

be to pick out a representative for each gauge orbit—that is, to fix a gauge. By analogy, one might

regard symplectic reduction as adding structure insofar as it is effectively like fixing a representative

for each gauge orbit.

Of course, much more could be said about the similarities and differences between symplectic

reduction and gauge fixing. But at the very least, the foregoing discussion shows that the notions

of structure and stuff must be handled with care in the context of gauge theories, and that the

corresponding types of redundancy they track should not be conflated. This observation may have

important implications, for instance, when considering the motivations behind standard quantization

procedures that proceed through—or are equivalent to proceeding through—the reduced theory.

6 Conclusion

We have examined two central questions. First, what is the relationship between the structure of

the Total Hamiltonian theory and that of the Extended Hamiltonian theory? Second, what is the

relationship between the structure of the Extended Hamiltonian theory and the symplectic reduced

theory? We argued that the first relation is best understood in terms of excess structure, whereas

the second concerns representational redundancy. We used this to argue that the motivations for

symplectic reduction differ, conceptually, from the motivations for moving from the Total Hamiltonian

to the Extended Hamiltonian.

While our focus has been on the context of Hamiltonian gauge theories, there are broader take-

aways. First, our intuitions about whether one theory is simpler or more complicated than another

can diverge from whether it possesses more or less structure. In particular, counting terms in the

Hamiltonian or dimensions of the state space is not sufficient to capture the amount of structure that

the theories commit to. In moving from the Total to the Extended Hamiltonian, additional terms

appear in the Hamiltonian, but no new structure is thereby introduced. Conversely, in symplectic re-

duction, while the theory is formulated on a lower-dimensional space with the same empirical content,

18



this does not entail that it has less structure.

Second, to say that one theory has ‘excess structure’ relative to another, one needs to be able

to say two things simultaneously. First, one theory has more structure than the other. Second,

the two theories have the same empirical content. While one might be able to say both things

relative to two different maps between the theories, being able to say both things relative to a single

map is importantly different. In Section 4, we discussed how this differentiates Pitts’ notion of ‘de-

Ockhamization’ from the move from the Total Hamiltonian to the Extended Hamiltonian. However, it

is also relevant in the context of symplectic reduction.25 Indeed, Proposition 3 highlights that there is

a sense in which the reduced theory and the Extended Hamiltonian theory have the ‘same’ symmetries,

under the map that preserves empirical content: when points on the reduced space correspond to the

collection of points along the corresponding gauge orbit, there is no symmetry of one theory that is not

a symmetry of the other. Therefore, even though ExtHam might be said to have less ‘structure’ than

HamRed, relative to a functor between the categories, it seems inappropriate to regard HamRed

as having excess structure, at least in the same way that, for example, the Total Hamiltonian theory

has compared to the Extended Hamiltonian theory.

Finally, the discussion here emphasizes the conceptual differences between a theory having ‘repre-

sentational redundancy’ and a theory having ‘excess structure’. While both are related to the amount

of structure that a theory has, as represented as a category, the interpretational significance is im-

portantly different. In particular, whether ‘representational redundancy’ is regarded as a genuine

sort of redundancy depends on what one’s representational aims are. As we have seen through our

exploration of Hamiltonian gauge theories, the distinction between the two notions is especially im-

portant for understanding the relationship between theories where the dimension of the state spaces

is different; in particular, when the state space of one can be understood as the quotient, under some

symmetry group, of the state space of the other.

25In fact, ‘de-Ockhamization’ can be thought of as a kind of ‘un-reducing’, in the following way: Imagine that we
start with the Lagrangian L2 = 1

2
(q̇ − µ̇)2 where q and µ are two dynamical variables. In the Hamiltonian framework,

there is a single first-class constraint, pq + pµ = 0. This generates a gauge symmetry that preserves the quantity q− µ.
Reducing this theory gives rise to a new theory that is equivalent to starting with the Lagrangian L = 1

2
α̇2 where

α = q − µ. Viewed this way, the relationship between L1 = 1
2
q̇2 and its “de-Ockhamized” counterpart L2 = 1

2
(q̇ − µ̇)2

is precisely that between a reduced and an unreduced theory.
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A Proofs of Propositions

A.1 Proposition 1

We need to show that every automorphism of (Σp, ω̃p, H, φi), restricted to its action on Σf , is an

automorphism of (Σf , ω̃f , H), but that there is some automorphism of (Σf , ω̃f , H) that is not an

automorphism of (Σp, ω̃p, H, φi) on Σf . The first follows from the fact that every automorphism of

(Σp, ω̃p, H, φi) preserves the points where φi = 0 (since it preserves φi) and so preserves Σf , and that

i∗(ω̃p) = ω̃f where i : Σf → Σp is the inclusion map.

For the second, consider the diffeomorphism g : Σf → Σf that takes each point on Σf to another

arbitrary point along the gauge orbit associated with the secondary first-class constraints φj at that

point. We can represent g as the flow of the vector field associated with αjdφj where αj are arbitrary

functions. Since dφj = 0 on Σf , α
jdφj = 0. This means that αjdφj is closed i.e. d(αjdφj) = 0.

But this means that one can (locally) associate a vector field Y with αjdφj via ω̃f (Y, ·) = αjdφj . It

follows that the flow of Y on Σf consists of maps that preserve ω̃f .
26 So g is a diffeomorphism that

takes ω̃f to itself. Moreover, g∗H = H because H is gauge-invariant on the final constraint surface.

So g is an automorphism of (Σf , ω̃f , H).

Now consider the diffeomorphism f : Σp → Σp that takes each point on Σp to another point

along the vector field associated with the secondary first-class constraints at that point. We can

similarly consider f to be the flow of the vector field associated with αjdφj . In order to associate a

vector field X with αjdφj via ω̃p(X, ·) = αjdφj , it must be that d(ω̃p(X, ·)) = d(αjdφj) = 0. But

db(α
jdaφj) = αjdbdaφj + d[aφjdb]α

j . The first term vanishes since d(dφj) = 0 by Poincaré’s Lemma.

However, the second term does not necessarily vanish, since αj is an arbitrary function of the canonical

coordinates (so dαj is not necessarily zero). In such cases, one cannot associate with f a vector field

via ω̃p(X, ·) = αjdφj , and so the flow of the vector field associated with αjdφj does not take ω̃p to

itself. Therefore, there are automorphisms of (Σf , ω̃f , H) that do not correspond to an automorphism

of (Σp, ω̃p, H, φi).

A.2 Proposition 2

We want to show that F is not full i.e. that it fails to be surjective on arrows, but that it is faithful

and essentially surjective. That F is not full follows from Proposition 1: the arrows g : (Σf , ω̃f , H) →
26This follows from Abraham & Marsden (1987) Proposition 3.3.6. (when we extend the proposition to presymplectic

manifolds).
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(Σf , ω̃
′
f , H

′) in ExtHam such that g ̸= F (f) for any arrow f in TotHam are transformations along

the null vector fields associated with secondary first-class constraints. That F is essentially surjective

follows from the fact that every object of ExtHam is the restriction of some object (Σp, ω̃p, H, φi) to

the surface defined by φi = 0. Finally, to show that F is faithful, we need to show that if two arrows

f, g between objects (Σp, ω̃p, H, φi), (Σp, ω̃
′
p, H

′, φ′
i) of TotHam are distinct, then their action on Σf

is distinct. In other words, we want to show that if f |Σf
= g|Σf

, then f = g.

Suppose that f |Σf
= g|Σf

. If f, g are arbitrary gauge transformations, then the only way that f

and g could differ is if they move points off of Σf by differing amounts along the vector fields associated

with the primary first-class constraints. But H is not constant along the vector fields associated with

the primary first-class constraints off of Σf . Since f, g must preserve H by definition, f must be equal

to g. If f, g are symplectomorphisms that are flows along vector fields other than the vector fields

associated with the primary first-class constraints, then the only way that f and g could differ is if at

least one changes the secondary constraints. But since f, g must preserve φi by definition, f must be

equal to g. So F is faithful.

A.3 Proposition 3

That every automorphism of (Σf , ω̃f , H), under the projection π : Σf → Σ̄, is an automorphism of

(Σ̄, ω̄, H̄) follows from the fact that ω̃f = π∗(ω̄) and H = π∗(H̄) and so every transformation from

Σf to itself that preserves ω̃f and H must preserve ω̄ and H̄ under π. That every automorphism

of (Σ̄, ω̄, H̄) corresponds to some automorphism(s) of (Σf , ω̃f , H) under π follows from the fact that

every transformation on Σf that preserves the equivalence class of points along the gauge orbits is an

automorphism of (Σf , ω̃f , H) by the proof of Proposition 1 (since these transformations correspond

to moving along the gauge orbits at each point).

A.4 Proposition 4

That G is essentially surjective follows from the fact that every model of the reduced theory is the

reduction of some model on the final constraint surface by definition. To show that G is full, notice that

if there is an arrow h between G(Σf , ω̃f , H), G(Σ′
f , ω̃

′
f , H

′), then there is a transformation between

(Σf , ω̃f , H), (Σ′
f , ω̃

′
f , H

′) that preserves the equivalence class of points along the integral curves of the

null vector fields of ω̃f , ω̃
′
f . Since Σf , Σ

′
f are of the same dimension (by assumption), this implies that

there exists a diffeomorphism g : Σf → Σ′
f such that g∗(ω̃′

f ) = ω̃f . Moreover, since H,H ′ are invariant
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along the gauge orbits, and give rise to isomorphic reduced Hamiltonians, it must be that g∗(H ′) = H.

So g is an arrow between (Σf , ω̃f , H), (Σ′
f , ω̃

′
f , H

′) and h = G(g). Therefore, every arrow between

G(Σf , ω̃f , H), G(Σ′
f , ω̃

′
f , H

′) is mapped to by at least one arrow between (Σf , ω̃f , H), (Σ′
f , ω̃

′
f , H

′),

and so G is full.

G is not faithful if there are two distinct arrows in ExtHam that map to the same arrow in

HamRed. Consider some model (Σf , ω̃f , H) where ω̃f has at least one null vector field and consider

two arrows g1, g2 from (Σf , ω̃f , H) to itself corresponding to distinct gauge transformations i.e. two

different ways of moving the points of Σf to other points along the gauge orbits (as long as ω̃f has at

least one null vector field, one can find such distinct g1, g2). Then G(g1) = G(g2) = Id since g1 and

g2 preserve the gauge orbits. So G is not faithful.
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