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Abstract

While Einstein was guided by the principle of general covariance in formulat-
ing general relativity, Kretschmann later argued that this principle lacks physical
significance, since any space-time theory can be reformulated in a generally covari-
ant form. This critique has prompted an ongoing debate over how to distinguish
substantive general covariance from mere formal general covariance. Some pro-
posals for defining substantive general covariance are based on the requirement
that a theory be derivable from a diffeomorphism-invariant action. The present
work aims to critically assess these proposals by examining canonical examples
of Kretschmannian formulations of special relativistic theories. It will be shown
that these formulations – which seem merely formally generally covariant – can
always be derived from a diffeomorphism-invariant action. Although these ac-
tions involve auxiliary variables, these variables are trivial in the sense that they
are either pure gauge or dynamically fixed by the other variables. Consequently,
the theories described by these actions are arguably equivalent to the original
Kretschmannian formulations. This stands in contrast to the actions proposed by
Rosen and Sorkin, which include non-trivial auxiliary variables and hence seem
to describe distinct physical theories. More recently, Freidel and Teh have sug-
gested an additional criterion for substantial general covariance, namely that the
action should also yield a non-trivial corner charge associated to diffeomorphism
invariance. However, this too appears insufficient, since such actions can always
be constructed.

1 Introduction

In developing general relativity, Einstein took the requirement of general covariance
as a guiding principle. However, Kretschmann [1] soon objected that any space-time
theory can be written in a generally covariant form, so that the requirement merely
puts a constraint on the form and not the physical content of theories.1 As an example,
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1See [2] for a in-depth discussion of Kretschmann’s paper and [3] for a detailed review of the ensuing
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consider a special relativistic theory involving tensor fields. The dynamical equations
can be cast in generally covariant form by replacing the Minkoskwi metric ηµν by a
Lorentzian metric gµν(x) on R4, substituting the space-time derivatives with covariant
ones, and imposing the constraint that the Riemann curvature tensor vanishes, i.e.,

Rµνρσ = 0. (1)

This constraint implies that the metric gµν is flat, i.e., it is given by the Minkowski
metric up to a coordinate transformation.

Kretschmann’s critique has led to an ongoing debate over whether there exists a no-
tion of substantive general covariance, which would be instantiated in general relativity,
but not in Kretschmannian formulations [3–12]. The latter would then be merely for-
mally generally covariant. Some attempts to make the distinction rest on the question
whether the theory can be derived from a diffeomorphism-invariant action (see [9, 11,
12] for excellent reviews). The goal of this paper is to critically asses these attempts.
In particular, it will be argued that Kretschmannian formulations of the type above can
always be derived from a diffeomorphism-invariant action.

One of the earliest appeals to the action principle is by Anderson [4], who advanced
a prominent proposal for defining substantive general covariance. The basic idea is
the following. Consider a theory that is diffeomorphism invariant, meaning that diffeo-
morphisms map solutions of the dynamical equations to solutions. For Anderson, this
identifies the diffeomorphism group as the covariance group. This group is distinguished
from the invariance group, which is the subgroup of the covariance group that leaves the
absolute objects invariant. The absolute objects are the dynamical variables that are
the same for any solution of the dynamical equations, up to a diffeomorphism. Hence,
if there are no absolute objects, then the invariance group coincides with the diffeomor-
phism group and the theory can be regarded as substantially generally covariant. For
Anderson, this was the distinctive feature of general relativity. In the Kretschmannian
example above, the metric is an absolute object, so that the symmetry group is not the
group of diffeomorphisms, but the subgroup of Poincaré transformations. In other words,
the theory is merely formally generally covariant. While Anderson’s approach seems to
establish an important distinction from general relativity, it is not without problems,
since it seems to misclassify other theories, see Pitts [9] for an extensive discussion.2

Anderson [4, p. 88] also claimed that the flatness condition (1) cannot be derived
from an action principle (on the grounds that there are more equations of motion than
independent components of the absolute object) and conjectured this to be a general
feature of absolute objects [4, p. 88]:

The equations of motion for the dynamical objects can often be derived
from a variational principle, especially if these objects are fields. On the
other hand, it appears to be the case, although we can give no proof of the
assertion, that the equations of motion for the absolute objects do not have
this property.

2Actually, adopting Friedman’s refinement of Anderson’s analysis [5], even general relativity has an
absolute object [9].
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Anderson’s claim about the flatness condition seems right, at least if no auxiliary vari-
ables are introduced. Such variables would obviously not be present in the equations
of motion of interest and hence remain unobservable. They were labeled irrelevant by
Anderson and excluded from the outset [4, p. 83]. However, as will be discussed below,
this exclusion seems problematic. While gauge variables clearly qualify as irrelevant,
they seem indispensable to formulate an action for general relativity.

So if Anderson’s conjecture is correct, a theory that derives from an action principle
does not contain absolute objects. This suggests that a theory will qualify as substan-
tively generally covariant if it can be derived from an action that is diffeomorphism
invariant.

In recent years, the debate on substantive general covariance has sometimes shifted
to the related debate on background independence (see [11, 12] for extensive reviews). If
diffeomorphism invariance is not a distinctive feature of general relativity, then maybe
it is the fact that it is background independent. But what exactly does it mean for a
theory to be background independent? As with attempts to define substantive general
covariance, various ideas have been explored. For example, Giulini suggests to take
background independence as the absence of absolute objects in Anderson’s sense [8].
Another suggestion, discussed by Pooley, and again in the spirit of Anderson, is that
[11, p. 130]:

A theory T is background independent if and only if its solution space is
determined by a generally covariant action: (i) all of whose dependent vari-
ables are subject to Hamilton’s principle, and (ii) all of whose dependent
variables represent physical fields.

The demand that the action should not contain unphysical variables echoes Anderson’s
rejection of irrelevant variables. Indeed, Pooley’s understanding of an unphysical vari-
able appears to align with Anderson’s idea of an irrelevant variable.

So, can the existence of an action principle serve as a criterion for substantive general
covariance or background independence? Returning to the example of the Kretschman-
nian formulation above, the answer would seem to be negative if the flatness condi-
tion (1) can be derived from an action principle. While this seems impossible without
introducing auxiliary variables, Rosen [13] and Sorkin [14] showed that it can be done
if auxiliary variables are admitted (see again [9] for a detailed discussion). Rosen did
this for the matter-free case and Sorkin for a scalar field. In both cases, the auxiliary
field satisfies a non-trivial dynamics that depends on the metric, but there is no back-
reaction on the metric or scalar field. The introduction of the auxiliary field implies that
the solution space has been enlarged, even after identifying solutions related by diffeo-
morphisms. Hence, the corresponding theories appear to be different from the original
Kretchmannian formulations determined by (1), rather than mere reformulations [6–8,
11, 15]. Nevertheless, the theories by Rosen and Sorkin (with the auxiliary field) seem on
par with the Kretschmannian formulation concerning the status of general covariance.
Since the metric satisfies the same dynamics in both theories, they both seem to be
merely formally and not substantively generally covariant [11, p. 131]. So it seems that
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substantial general covariance is not guaranteed by merely requiring a diffeomorphism
invariant action. However, the Rosen and Sorkin action could be dismissed on the basis
that the auxiliary variable is irrelevant [9] or unphysical [11]. Namely, this variable does
not affect the metric and scalar field and hence is unobservable if the empirical content
resides in the latter.

The goal of this paper is to propose alternative actions. These still contain auxiliary
variables, but unlike the Rosen and Sorkin actions, their dynamics is completely trivial:
either these variables are completely unconstrained by the dynamical equations (derived
as Euler–Lagrange equations from the action) and hence they can be regarded as gauge
variables,3 or the dynamical equations completely fix these variables in terms of the
other variables. In both cases, the auxiliary variables can be seen as redundancies
which merely correspond to different mathematical representations of the same physical
situation. They are redundancies that can easily be eliminated on the level of the
dynamical equations, but not on the level of the action, where they seem to be essential
to allow for an action principle.

There are various examples of theories that employ such redundant variables. First
of all, Yang–Mills theories and general relativity contain gauge variables. In these cases,
it is unclear how to eliminate them, even on the level of the dynamical equations, let
alone on the level of the action. In general relativity, the diffeomorphisms are considered
gauge transformations, where metrics connected by a diffeomorphism are regarded as
physically equivalent (describing the same space-time geometry). The Einstein–Hilbert
action of general relativity is formulated in terms of this gauge-dependent metric field.
(In the ADM formalism, this becomes more explicit. The space-time metric is written
in terms of the spatial metric and the lapse and shift functions. The dynamics of the
latter is free and hence they are gauge variables. The spatial metric also contains gauge
freedom, but it is harder to isolate.)

As an example of the second (non-gauge) type of redundancy, we can again consider
the Einstein–Hilbert action. While this action is traditionally regarded as a functional of
just the metric field, it can also be considered in the Palatini formulation as a functional
of both the metric and the connection, treated as independent fields [21, 22]. The usual
expression for the connection in terms of the metric is then obtained as an equation
of motion. So this is an instance where the dynamics completely determines one of
the variables, namely the connection, in terms of the other variables. But the Palatini
formulation is not considered to yield a different physical theory. (Strictly speaking,
there would still be an ontological difference if both the metric and the connection
would be considered as part of the fundamental ontology, rather than just the metric.
But that difference seems inessential.) Similarly, the electromagnetic action can be
written in terms of the vector potential and the field strength as independent variables,
with the usual expression for the field strength in terms of the vector potential arising
as an equation of motion [23, 24]. Another example is the reformulation of the scalar
field theory in terms of a 5-component Kemmer spinor [25, 26]. The Kemmer equation

3This is according to the standard lore for singular Lagrangian systems, which yield a constrained
Hamiltonian dynamics [16–20].
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implies (in a particular representation of the Kemmer matrices) that one component
is a scalar field that satisfies the Klein-Gordon equation, while the other components
amount to the space-time derivatives of this scalar field.

The auxiliary variables still qualify as irrelevant in Anderson’s sense or as unphysical
in Pooley’s sense, but as just explained they are also present in our best physical theories
like general relativity and Yang-Mills theories. It is not even clear how to formulate those
theories without gauge variables (except in the Abelian case of the electromagnetic field).
Therefore, while it seems reasonable to exclude actions with irrelevant or unphysical
variables that are non-trivial, like the actions of Rosen and Sorkin, actions with trivial
auxiliary variables should still be allowed. Otherwise there simply seems to be no hope
of establishing substantive general covariance or background independence (through the
existence of an action principle) even in the case of general relativity.

In summary, auxiliary variables of the type just discussed can be regarded as mere
representational redundancies. In particular, after identification of gauge equivalent
solutions, the solution space is in a natural one-to-one correspondence with that of the
original theory. As such, the theories described by the proposed actions are arguably
mere reformulations of the original theory. The conclusion is that the requirement
that the theory be derivable from a diffeomorphism-invariant action is not sufficient for
substantive general covariance or background independence.

Perhaps there are additional criteria that could be considered. Freidel and Teh have
recently proposed one, namely that the action should also yield a non-trivial corner
charge associated to diffeomorphism invariance [27] (discussed in more detail in [28]).
However, it will be shown that such actions can always be found for Kretschmannian
theories of the type above.

The outline of the paper is as follows. In the next section, it will be illustrated how
actions can be formulated by introducing auxiliary variables whose dynamics is trivial,
using the ideas presented in [29]. In sections 3 and 4, this is applied to the Kretschman-
nian theories of vacuum Minkowski space-time and the scalar field on Minkowski space-
time. In section 5, the proposal of Freidel and Teh is considered. We conclude in
section 6.

2 Formulating an action

Formulating an action is straightforward when auxiliary variables are allowed [29]. The
discrete case is considered here for simplicity, as the generalization to field theories is
immediate.

Consider dynamical equations of the form

fi(q, q̇, q̈, . . . , t) = 0, i = 1, . . .M, (2)

with q some configuration and the dots representing higher-order time derivatives of q.
These equations may or may not be derivable from an action that is only a functional
of q(t). This is the inverse problem of Lagrangian mechanics. By introducing Lagrange
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multipliers λi as auxiliary variables, they follow from the action

S1 =

∫
dtλifi (3)

by varying with respect to λi. Variation with respect to q yields the additional equations∫
dtλi

δfi
δq

= 0. (4)

The variables λi do not affect the qi and hence are unobservable if the empirical content
of the theory resides in the qi. Such variables would be deemed irrelevant by Anderson
or unphysical by Pooley. In any case, their introduction entails that the theory defined
by the action S1 is different from the one given by the equations (2). The Rosen and
Sorkin actions are of this form, with Lagrange multipliers as extra variables that satisfy
non-trival equations of motion.

Another interesting (and early) application is the damped harmonic oscillator [30].
In that case the Lagrange multiplier satisfies the time-reversed of the damped harmonic
oscillator equation. As such, as Morse and Feshbach note [31, p. 298]: “the total energy
is conserved, and we can have an invariant Lagrange function, at the sacrifice of a certain
amount of “reality” in some of the incidental results”.

The Lagrange multipliers can also be introduced differently. Consider for example
the action

S2 =

∫
dtλijfifj, (5)

with λij = λji as auxiliary variables. Variation with respect to the λij yields the equa-
tions of motion (2). Variation with respect to q does not yield additional dynamical
equations after taking into account fi = 0. So, the variables λij remain free and as such
they qualify as gauge variables. The dynamical equations admit the gauge symmetry

λij(t) → λij(t) + θij(t), (6)

with θij(t) arbitrary functions of time. After identification of gauge-equivalent solutions,
the solution space for this action is in a natural one-to-one correspondence with that of
the dynamics (2). So, the theory is arguably equivalent to the one determined by (2)
(in contrast to the theory corresponding to S1).

Another possible action is

S3 =

∫
dt

(
λifi + λiλjλ̄ij

)
, (7)

with auxiliary variables λi and λ̄ij = λ̄ji. Variation with respect to λi, λ̄ij and q
respectively yields

fi + 2λjλ̄ij = 0, λi = 0,

∫
dtλi

δfi
δq

= 0, (8)
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and hence
fi = 0, λi = 0. (9)

In this case, the auxiliary variables λ̄ij are gauge, while the λi are zero because of
the dynamical equations. Again, identification of gauge equivalent solutions yields the
original theory.

The form of the actions S2 and S3 also appears in the context of generalized ξ-gauges
in the path integral approach to quantum field theory, see e.g. [32, p. 23]. Namely, if
fi = 0 is regarded as a gauge fixing condition for some theory described by an action S,
then a term of the form S2 with λij fixed parameters can be added to break the gauge
symmetry. Alternatively, a term of the form S3 can be added, with λi dynamical and λ̄ij

fixed parameters. The λi then play the role of Nakanishi-Lautrup fields. Our approach
is different in that we take all the variables as dynamical, rather than fixed parameters.

Finally, note that while the actions S2 and S3 yield dynamical equations with a
gauge symmetry, the actions themselves are not invariant under the gauge transforma-
tions. For example, the dynamical equations corresponding to S2 are invariant under
the transformations (6), but the action is not. However, it might be desirable to have
that gauge symmetries of the dynamical equations correspond to variational symmetries
of the action. This might perhaps serve as an additional requirement for substantial dif-
feomorphism invariance. This will not be further investigated here, but just as a toy
example of how this could be achieved, consider the action S =

∫
dt exp(λ)q2. The cor-

responding Euler-Lagrange equation is q = 0, while λ is free. This action is not invariant
under the gauge transformation λ → λ + ϵ, but taken together with q → q − qϵ/2, it
is. On-shell (i.e., using the equations of motion) this reduces to just λ → λ + ϵ, as
desired. So, at least in this case, there is a variational symmetry that corresponds to
the gauge symmetry of the dynamical equations. It is unclear whether this can always
be achieved.

3 Action for Minkowski space-time

Consider the Kretschmannian description of Minkowski space-time in terms of a Lorent-
zian metric gµν (with “mostly minus” convention) satisfying the flatness condition (1).
Rosen showed that (1) can be derived from the action [13]:

SRosen =
1

4

∫
d4x

√
−gλµνρσRµνρσ, (10)

where λµνρσ is an auxiliary field with the same symmetries as the curvature tensor, i.e.,
λµνρσ = λρσµν = −λνµρσ and λµνρσ + λµρσν + λµσνρ = 0. Varying the action with respect
to λµνρσ yields (1), while variation with respect to gµν and using (1) yields

∇ρ∇σλ
µρνσ = 0. (11)

Hence, λµνρσ satisfies a non-trivial dynamics, which implies that the theory actually
differs from the Kretschmannian formulation in terms of just the flatness condition. As
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noted by Rosen, particular solutions of (11) are given by

λ̃µρνσ
c = c(gµσgρν − gµνgρσ), (12)

with c constant.
As explained in the preceding section, a different action is

S4 =

∫
d4x

√
−gλµνρσαβγδRµνρσRαβγδ, (13)

with λµνρσαβγδ the same symmetries as RµνρσRαβγδ. The corresponding dynamics is just
the flatness condition (1), while the auxiliary field is free and hence a gauge variable.

Another possible action is

S5 =

∫
d4x

√
−g

[
1

4
λµνρσRµνρσ +

(
λµνρσ − λ̃µνρσ

c

)(
λαβγδ − λ̃αβγδ

c

)
λ̄µνρσαβγδ

]
, (14)

where λ̃µρνσ
c is the metric-dependent expression given in (12) and (as before) the auxiliary

fields have the appropriate symmetry properties to avoid redundancies. Variation with
respect to λ̄µνρσαβγδ yields

λµνρσ = λ̃µνρσ
c . (15)

Variation with respect to λµνρσ and using (15) yields (1). Finally, variation with respect
to gµν does not yield an extra equation given (1) and (15). Summarizing, the desired
flatness condition is obtained, while the field λµνρσ is a fixed function of the metric, and
the field λ̄µνρσαβγδ is gauge. A particularly simple choice is of course to take c = 0, so

that λ̃µρνσ
0 = 0 and (15) amounts to λµνρσ = 0.

As explained in the previous section, the theories corresponding to the actions S4

and S5 amount to the Kretchmannian theory given by the flatness condition.

4 Scalar field on Minkowski space-time

Sorkin’s action [14] is obtained by adding the scalar field action SM to Rosen’s action:

SSorkin = SM + SRosen =

∫
d4x

√
−g

(
−1

2
gµν∇µϕ∇νϕ+

1

4
λµνρσRµνρσ

)
. (16)

The corresponding dynamical equations are

gµν∇µ∇νϕ = 0, Rµνκσ = 0, (17)

∇ρ∇σλ
µρνσ = T µν , (18)

with T µν = ∇µϕ∇νϕ − gµν∇ρϕ∇ρϕ/2 the energy-momentum tensor of the scalar field.
Because of the flatness condition, these equations amount to the Klein–Gordon equation
on flat space-time, together with an equation for the auxiliary field λµνρσ.
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Sorkin demonstrated that (18) does not put further restrictions on the scalar field,
by proving the existence of solutions λµρνσ for a given energy-momentum tensor. A
particular solution can be given by considering a coordinate system where the metric
gµν equals the Minkowski metric ηµν . In such a coordinate system, a solution is

λ̃µρνσ = ηρσ
1

□
T µν + ηµν

1

□
T ρσ − ηµσ

1

□
T ρν − ηρν

1

□
T µσ, (19)

where
1

□
f(x) = − 1

4π

∫
d4yδ

(
ηµν(x

µ − yµ)(xν − yν)
)
f(y) (20)

is the convolution of f with the time-symmetric Green function of the d’Alembertian.
Namely, ∂ρ∂σλ̃

µρνσ = ∂ρ∂σ
(
ηρσ 1

□T
µν
)
= T µν , where the first equality is obtained us-

ing the conservation of the energy-momentum tensor. To express λ̃µρνσ in a general
coordinate system, the metric ηµν should be replaced by gµν in (19) and (20). To any

particular solution one can of course always add an expression of the form λ̃µρνσ
c given

in (12). The field λ̃µρνσ is a non-local functional of ϕ and gµν . Presumably, there is no

local functional that solves (18). This is in contrast to the solutions λ̃µρνσ
c of (11) which

are local functionals.
We now turn to actions with auxiliary variables whose dynamics is trivial, so that

the corresponding theories just amount to one of a scalar field on Minkowski space-time
described by the dynamical equations (17). The action

S6 =

∫
d4x

√
−g

[
λ (gµν∇µ∇νϕ)

2 + λ̄µνρσαβγδRµνρσRαβγδ

]
(21)

yields the desired equations of motion (17) and leaves λ and λ̄µνρσαβγδ as gauge.
Another possibility is

S7 =

∫
d4x

√
−g

[
− 1

2
gµν∇µϕ∇νϕ+

1

4
λµνρσRµνρσ

+
(
λµνρσ − λ̃µνρσ

)(
λαβγδ − λ̃αβγδ

)
λ̄µνρσαβγδ

]
, (22)

where λ̃µνρσ is the solution of (18) given in (19). The presence of λ̃µνρσ in the action
implies that the action is a non-local one (i.e., the corresponding Lagrangian density is
not a local functional of the fields), unlike the previous actions (or the Einstein–Hilbert
action). Variation of S7 with respect to ϕ yields the Klein–Gordon equation. Variation
with respect to λ̄µνρσαβγδ yields

λµνρσ = λ̃µνρσ. (23)

Variation with respect to λµνρσ and using (23) yields the flatness condition. Finally,
variation with respect to gµν , together with the flatness condition and (23), yields

∇ρ∇σλ̃
µρνσ = T µν , (24)
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which is automatically satisfied by virtue of the definition of λ̃µνρσ. Summarizing, again
(17) is obtained, λ̄µνρσαβγδ is gauge and λµνρσ is a fixed function of the metric and scalar
field.

Finally, for the purposes of the next section, consider the action

S8 =

∫
d4x

√
−gλ (gµν∇µ∇νϕ)

2 + S5 =

∫
d4x

√
−g

[
λ (gµν∇µ∇νϕ)

2

+
1

4
λµνρσRµνρσ +

(
λµνρσ − λ̃µνρσ

c

)(
λαβγδ − λ̃αβγδ

c

)
λ̄µνρσαβγδ

]
. (25)

This is again a local action. The corresponding equations of motion are the Klein-
Gordon equation and the flatness condition, λµνρσ = λ̃µνρσ

c , and λ and λ̄µνρσαβγδ are
gauge fields.

Sorkin remarked that his action has the desirable feature that the conservation of T µν

follows from diffeomorphism invariance of the action through a Noetherian analysis. This
can be derived from the property that the matter part SM is separately diffeomorphism
invariant, together with the fact that under a variation of the metric:

δSM =
1

2

∫
d4x

√
−gT µνδgµν , (26)

see e.g. [33, p. 56]. While all the alternative actions that we considered are diffeo-
morphism invariant, it is only for the action S7 that T µν satisfies (26) and that its
conservation follows similarly from diffeomorphism invariance.

In this section, we considered the scalar field, but it is clear that other special rel-
ativistic theories can be similarly Kretschmannized. Theories involving tensorial fields,
for instance, can also be reformulated in terms of a general curved metric, allowing for
actions analogous to those discussed here. These techniques can even be applied to
non-relativistic theories. For example, for the heat equation this can be done by first
reformulating it in special relativistic form, by introducing a vector field nµ that satisfies
ηµνn

µnν = 1 and ∂νn
µ = 0 [4, p. 79].

5 Non-trivial corner charge as a supplementary cri-

terion

In the preceding sections, it was shown that having a diffeomorphism-invariant action
appears insufficient to classify a theory as substantively generally covariant. Perhaps
supplementary criteria could be introduced. Recently Freidel and Teh argued that
the action should also imply a non-trivial corner charge with respect to space-time
diffeomorphisms [27].

To see how a corner charge may arise, let us summarize the main steps. Consider
an action S[φ] =

∫
d4xL(φ(x), ∂µφ(x), . . . ) which is defined in terms of a Lagrangian
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density L which is a local functional of some fields which are collectively denoted as φ.
Under a variation δφ, we have

δL = −Eφδφ+ ∂µθ
µ, (27)

where Eφ denote the Euler-Lagrange expressions and θµ is the symplectic potential
current which depends on φ, δφ, and their derivatives,. If the action is invariant under
infinitesimal diffeomorphisms xµ → xµ + ξµ, φ → δξφ, then Noether’s second theorem
implies the conserved current

jµξ = θµξ − lµξ , (28)

where θµξ is obtained from θµ by replacing δφ by δξφ, and lµξ is determined by δξL = ∂µl
µ
ξ .

This current can be written as

jµξ = Cµ
ξ + ∂νU

µν
ξ , (29)

where Cµ
ξ is zero on-shell, and Uµν

ξ = −Uνµ
ξ , so that ∂νU

µν
ξ is trivially conserved, ir-

respective of the dynamical equations. The tensor Uµν
ξ is called the superpotential. A

non-trivial superpotential implies a corner charge
∫
Σ
dσµ∂νU

µν
ξ =

∫
∂Σ

dσµνU
µν
ξ , where Σ

is a Cauchy hypersurface.
In the case of Sorkin’s action (16), the symplectic potential current is

θµ = −
√
−g∇µϕδϕ+

√
−g

2

(
λµαβσ∇σδgαβ −∇σλ

µαβσδgαβ
)
. (30)

Hence, with δξϕ = ∂µϕξ
µ, δξgµν = ∇µξν + ∇νξµ, and lµξ = −LSorkinξ

µ, the conserved
current is

jµξ =
√
−g

[
−T µ

νξ
ν −∇σλ

µ(αβ)σ∇αξβ + λµ(αβ)σ∇σ∇αξβ −
1

4
λµνρσRµνρσξ

µ

]
. (31)

With some algebra, this leads to the superpotential

Uµν
ξ =

√
−g

(
∇ρλ

µνρσξσ −
1

2
λµνρσ∇ρξσ

)
. (32)

Since this superpotential is non-trivial, there is a corresponding corner charge, and
Freidel and Teh conclude that this theory is substantively generally covariant.

This conclusion seems counterintuitive. Sorkin’s theory tends to be regarded as
an example of a theory that is not substantively generally covariant [11]. Moreover,
without introducing auxiliary variables, the flatness condition is not derivable from an
action and as such the theory does not qualify as generally covariant for Freidel and
Teh. It is only with the auxiliary variable λµνρσ that Sorkin’s theory can be regarded as
substantively generally covariant, even though the introduction of the auxiliary variable
does not change the dynamical equations of the metric and scalar field. Freidel and Teh
acknowlegde this, but argue that the introduction of λµνρσ makes it a different theory,
justifying a different classification.
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However, this stance also means that Kretschmann’s critique regarding the triviality
of general covariance looms again. While certain Kretschmannian theories might not
qualify as substantively generally covariant according to Freidel and Teh, there might
be empirically equivalent theories that are. Rosen and Sorkin have actually provided us
with a recipe to do so for a broad class of special relativistic theories. (It will not be
applicable to all special relativistic theories. For example, stochastic theories simply do
not admit an action principle. Other theories do not admit a local action and hence do
not allow for a Noetherian analysis.)

Moreover, as we saw in the preceding section, Kretschmannian theories can also be
derived from actions that merely involve trivial auxiliary variables. Three examples were
given: S6, S7 and S8. The action S6 implies a trivial corner charge. This immediately
follows from the fact that the action is quadratic in the field equations and hence the
conserved Noether current jµξ is proportial to the field equations, so that is vanishes on-
shell, implying a vanishing superpotential. The action S7 is non-local and hence does
not allow for the standard Noetherian analysis. Finally, the action S8 is a local one and
implies again the superpotential (32). (It is actually only the part S5 that contributes

to it.) On-shell, using the equation λµνρσ = λ̃µνρσ
c , the superpotential reads

Uµν
ξ =

√
−g

c

2
(∇µξν −∇νξµ) . (33)

If c is zero, the superpotential vanishes and there is no (non-trivial) corner charge. But if
c is non-zero, there is a non-trivial corner charge and the theory qualifies as substantively
generally covariant according to Freidel and Teh. This result is quite general, since an
action of the form S8 can be constructed for a broad class of special relativistic theories.
Hence, even requiring a non-trivial corner charge appears insufficient for substantial
general covariance.

6 Conclusion

General relativity can be derived from an action that is both diffeomorphism-invariant
and has a non-trivial corner charge associated to the diffeomorphism invariance. It has
been proposed that these features capture the defining criteria of substantive general
covariance. However, as was argued here, this does not appear to be the case. Actions
with these properties can be formulated for theories that do not seem to qualify as
substantively generally covariant. Although these actions require the introduction of
auxiliary variables, these variables can be regarded as mere descriptive redundancies –
the type of redunancies that already seems indispensable in the formulation of general
relativity itself.
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Einsteins neue und seine ursprüngliche Relativitätstheorie”, Ann. Phys. 358, 575–
614 (1917).

[2] R. Rynasiewicz, “Kretschmann’s Analysis of Covariance and Relativity Princi-
ples”, in The Expanding Worlds of General Relativity, edited by H. Goenner, J.
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