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Abstract

This paper offers a computationally explicit reformulation of N. R. Hanson’s thesis that obser-
vation is theory-laden seeing-as [16]. Drawing on predictive processing (PP) and Bayesian model-
ing [3, 11, 20], it advances a failure-sensitive bridge hypothesis: a role- and constraint-preserving
correspondence—not a reductive identification—between personal-level philosophical roles and sub-
personal computational roles.

Crucially, the paper rejects the slogan “theory = prior.” Instead, it models theories as meta-level
admissibility constraints on model space: they constrain eligible variables, admissible structures,
likelihood/measurement assumptions, and relatively durable precision expectations. On this view, what
can count as an observation report or a scientific “fact” is shaped by inference and policy-governed
reporting under theory-conditioned constraints together with stabilized measurement and reporting
regimes.

The first part reconstructs Hanson’s analysis in computational terms: seeing-as is modeled as
posterior-guided inference under a theory-conditioned generative model, and observation statements
are treated as goal-, context-, and norm-sensitive report policies over posterior states rather than
as direct readouts of raw data. The second part recasts discovery dynamics as multi-tier revision:
apparent mismatches may be resolved by within-model routes (parameter retuning, measurement/noise-
model repair, and precision reallocation), but persistent structured residuals—stable across plausible
measurement/noise variants—can rationally motivate between-model selection and, when required,
revision of the admissible model space itself. A reanalysis of Kepler’s adoption of elliptical orbits
illustrates how such constraint changes reorganize the space of admissible observations, facts, and
explanations.

Overall, the paper proposes a computationally explicit yet non-reductive framework that clarifies
structural relations among theory, perception, and discovery.
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1 Introduction

1.1 Background of the Present Study: Is Observation Neutral?

Where, ultimately, does the warrant for scientific knowledge lie? Since the rise of modern science, one
influential answer has been observation. A familiar idealized picture—often invoked in textbook recon-
structions of empiricism and logical empiricism—treats observation reports as providing a comparatively
neutral basis from which laws can be inductively inferred and theories can be tested. On this picture, the
observer is sometimes portrayed as approximating a fabula rasa: as if a camera could passively register
“bare facts” from sensory stimulation prior to any conceptual articulation. (We emphasize that this is a
deliberately simplified foil, not a precise exegetical claim about every empiricist position.)

However, it is doubtful that this “neutral observer” model is compatible with either actual scientific
practice or ordinary perceptual experience. Even when the proximal stimulus is held fixed, what is seen can
vary with the observer’s conceptual repertoire, background expectations, and practical interests. Classic
ambiguous figures make this vivid: the very same drawing can be seen as a young woman or as an old
woman, depending on how it is organized perceptually [19]. Philosophically, this motivates the familiar
worry that theory-testing by appeal to observational “facts” risks circularity: if the relevant background
commitments partly determine what counts as an observational fact, then the evidence seems to presuppose
what it is meant to test [16, 24, 32].

At the same time, the moral need not be that evidence is hopelessly subjective. Scientific practice
routinely distinguishes messy, theory-mediated data from comparatively stable phenomena extracted from
those data across methods, instruments, and laboratories [2]. This suggests that the relevant question is
not whether observation is influenced by background commitments (it often is), but zow such influences
operate and under what conditions they threaten (or fail to threaten) objectivity.

Contemporary cognitive science likewise emphasizes that perception is not a passive intake of sensory
inputs, but an inferential and constructive process. Gregory’s well-known slogan that “perceptions are
hypotheses” captures the idea that perception involves active inference toward a best interpretation of
sensory evidence [15]. This general orientation has been developed in explicitly Bayesian and predictive
frameworks, in which perceptual content is understood as inference to latent causes under a generative
model [3, 10, 23, 25, 31]. These developments resonate with philosophical doubts about the neutrality of
observation and motivate a re-examination of what “observation” amounts to in scientific inquiry.

The present study addresses these issues under the heading of the theory-ladenness of observation. The
guiding question is whether observation is not merely an optical and physiological process, but an active
inferential process mediated by conceptual and cognitive frameworks. This question is at once a challenge
to how scientific objectivity is to be understood and a methodological problem concerning the appropriate
level of description (personal vs. sub-personal) at which observation should be theorized [5, 27].

Preview of the proposal. The paper advances a failure-sensitive bridge hypothesis between personal-level
roles (theory, seeing-as, observation statements, anomaly, and discovery) and sub-personal computational
roles (hierarchical generative inference, precision-weighted mismatch, and model updating/selection). We
reject the slogan theory = prior by treating theories as meta-level admissibility constraints on model space
(Sections 1.5 and 1.7). We also treat observation statements as report policies that extract publicly assess-
able commitments from posterior states under goals, contexts, and community constraints (Section 4.3;



see also Section 1.6), rather than as direct readouts of theory-free data.

Contributions in brief (what this paper adds). The contribution of the paper is not a general endorse-
ment of PP/FEP, but a set of computationally explicit bridge claims that go beyond a change of vocabulary.
First, it replaces the slogan “theory = prior” with a typed decomposition of theory-ladenness across (i)
theory-level admissibility constraints on model space (' = (Vp, Sy, L1, Il7)), (ii) concrete instrumenta-
tion/calibration regimes (I), and (iii) community-level reporting norms (IV), with explicit boundary rules
separating these components (Sections 1.5 and 1.6; cf. Table 1). Second, it models observation statements
as report policies over posterior states, making the public, norm-governed character of scientific reporting
explicit without requiring a strong thesis of cognitive penetration (Section 4.3). Third, it operationalizes the
anomaly—discovery connection via a multi-tier revision picture: routine misfit is handled by within-model
routes, whereas persistent structured residuals motivate between-model selection and, when required,
admissibility-constraint revision (Sections 1.4 and 1.12; see also Section 5.2). Because the bridge is stated
with success conditions, failure modes, and discriminators (C1-C3; F1-F2; D1-D3), it yields testable and
failure-sensitive predictions rather than a mere analogy.

Target of theory-ladenness (three layers). To reduce ambiguity about what is meant by “theory-
ladenness,” we distinguish three layers at which it can arise.

1. Early input-processing (hard cases). When low-level sensory/instrumental channels are assigned
high precision, perception is strongly constrained by input, and theory-ladenness is expected to be
limited in scope (cf. D1).

2. Mid-high-level generative inference (seeing-as as posterior organization). Theory-ladenness is
expected to be salient at levels where categorical organization and higher-level hypotheses structure
posterior inference under a theory-conditioned model space (Sections 1.5 and 3).

3. Report and public commitment (policy- and norm-governed). Theory-ladenness is often most
institutionalized at the level of observation statements, where reporting thresholds, hedging, and
admissible vocabulary are regulated by goals, contexts, and community constraints (Section 4.3; cf.
D3).

The present paper focuses primarily on (2) and (3), while treating (1) in a graded way via precision
allocation (D1). Accordingly, the bridge does not presuppose a strong thesis of cognitive penetration of
early vision; it is compatible with skeptical assessments that locate many “top-down” effects at attentional,
inferential, or reporting stages [9].

1.2 The Evolution of the Concept of Observation in Philosophy of Science

Early twentieth-century philosophy of science often attempted to separate “observational” from “theoreti-
cal” vocabularies and to assign observation reports a distinctive epistemic role. The post-positivist turn
challenged this separation: Sellars rejected the Myth of the Given, Kuhn emphasized paradigm-dependent
perception and description, and Feyerabend denied the autonomy of an observation language [8, 24, 32].
Hanson—the focal point for the present study—crystallized the issue by analyzing observation as “patterned
seeing” and by linking seeing-as to discovery dynamics [16].



1.3 Hanson’s Challenge: Theory-Ladenness and the Philosophy of Discovery

Hanson’s core claim is that “seeing” and “seeing-as” are inseparable: the content of observation is structured
from the outset. His canonical historical illustration contrasts the ways in which Tycho Brahe and Kepler,
confronted with the same astronomical data, “saw” different celestial motions—not because they received
different stimuli, but because they organized those stimuli under different theoretical commitments [16, 38].
The intended lesson is not that observers fabricate facts at will, but that observation is already structured

by prior conceptual organization.

Drawing on Gestalt psychology, Hanson emphasized that shifts in organization can be both sudden
and systematic, as in classic cases of perceptual reorganization [19]. Theory-ladenness, on this view, is
not merely a source of bias but a positive force that can drive scientific discovery. As Peircean abduction
(and later discussions of inference to the best explanation) illustrate, novel hypotheses are often generated
through concept-laden engagement with anomalous patterns in what is observed [17, 30].

Nonetheless, Hanson’s account—rich in epistemological insight—does not by itself explain the cog-
nitive or computational mechanisms that realize such “seeing-as.” In particular, the question of how
“theory” might intervene in perception opens a gap between descriptions at the personal level (scientists’
reasoning, judgment, and discourse) and descriptions at the sub-personal level (neural and computational

information-processing mechanisms) [5, 27].

The present study does not attempt to collapse these levels into a reductive unity. Rather, it pro-
poses a bridge hypothesis: a structural correspondence between explanatory roles at the personal level
and computational roles at the sub-personal level. Here “structural correspondence” is understood in
a modest sense—as a role- and constraint-preserving mapping rather than a strict mathematical iso-
morphism. That is, the question is what kind of correspondence can be identified between Hanson’s
observation—anomaly—discovery pattern and the predictive-processing cycle of generative inference—
(precision-weighted) prediction error—belief updating and model comparison [1, 10, 11, 26, 31].

The correspondence envisioned here is analogous to Marr’s distinction among computational, algo-
rithmic, and implementational levels [27], Dennett’s relations among the intentional, design, and physical
stances [7], and Craver’s mechanistic account of multi-level explanation [5, 22]. Descriptions at the per-
sonal level concern the normative and semantic structure of how scientists observe, form hypotheses, and
revise theories. Descriptions at the sub-personal level specify neurocomputational constraints that make
such practices possible. To “bridge” these levels is not to assert identity, but to clarify which structural
relations must obtain for the two levels of description to mutually constrain one another.

From this perspective, the proposed correspondence is motivated by at least three shared features:
(1) both levels treat the tension between input and expectation as a primary driver; (2) surprise or anomaly
functions as a trigger for structural revision; and (3) the dynamics of revision plausibly involve both
continuous learning and, in some cases, discrete shifts in model class (model selection) [11, 24, 26].

Finally, clarifying how “theory” intervenes in perception requires a careful reconsideration of the
relation between theories and priors. As developed in Sections 1.5 and 1.7, we treat theories as meta-level
structures that constrain the space of admissible generative models—{fixing representational vocabulary,
admissible causal structure, and likelihood/measurement assumptions—rather than adopting the slogan
theory = prior [2, 12, 26, 29, 40].



1.4 Bridge Hypotheses and Criteria for Structural Correspondence

Because structural correspondence can otherwise be mistaken for a mere analogy, this paper makes explicit
what would count as a successful bridge between the Hanson-style personal-level pattern and the PP-style
sub-personal computational pattern. In what follows, the correspondence is treated as constraint-bearing:
it should not only “match” roles, but also articulate when and why the match fails [5, 22].

Type of correspondence. The correspondence proposed here is not a strict identity claim. It is a role-to-
role mapping intended to preserve key explanatory constraints. In particular, it aims to preserve: (i) what
drives revision (anomaly/surprise), (ii) what kinds of revision are available (within-model vs. between-
model), and (iii) what changes when revision is radical (the space of admissible facts and explanations).

Success conditions (minimal criteria). The bridge hypothesis is intended to succeed only if the following
conditions are met:

C1 (Functional drive) A mismatch between expectation and input plays a driving role in both descriptions:
anomalies at the personal level correspond to sustained, precision-weighted prediction-error regimes
that motivate revision at the sub-personal level [10, 11].

C2 (Two-tier dynamics) The account distinguishes within-model updating (adjusting parameters or priors
within a fixed model class) from between-model selection (shifting to a different model class when the
existing class cannot accommodate the relevant discrepancies) [1, 26].

C3 (Reorganization) Between-model shifts reorganize what can count as an admissible observation, fact,
or causal explanation—i.e., they restructure the relevant explanatory space rather than merely refining
a fixed description [16, 24].

Failure modes (how the correspondence can break). Conversely, the correspondence is not intended
to hold in at least the following kinds of cases:

F1 The Hanson-style transition from anomaly to discovery is present at the personal level, yet no change
of model class is needed at the computational level (e.g., the discrepancy is resolved entirely by
attentional reweighting or post-perceptual judgment without requiring model-space revision).

F2 A computational model-selection episode occurs, yet there is no corresponding shift in seeing-as
(no change in the relevant semantic or explanatory framework), so that the episode amounts only to
parameter identification rather than a reorganization of interpretation.

Two immediate constraints. Stating these criteria yields two immediate constraints that guide the
remainder of the paper. First, theory-ladenness does not entail unconstrained top-down influence on early
vision; within predictive-processing formulations, the extent of top-down influence depends on hierarchical
level and on the allocation of precision (the estimated reliability of prediction errors) [3, 10, 20]. This
constraint helps keep the present proposal compatible with skeptical assessments of strong “cognitive
penetration” claims [9]. Second, “theory” must be treated as a meta-constraint on model space rather than
as a numerical prior, to avoid a category mistake (see Section 1.7). Later sections will operationalize



these constraints in more detail—including a minimal account of observation reports as report policies
that extract actionable public commitments from posterior states under goals (&), contexts (C), and
community-level constraints, rather than as a direct probability-to-text mapping [4, 11].

Public scientific theories vs. internal generative models (no category mistake). A further worry
is that scientific theories are public symbolic and institutional objects (mathematics, representations,
instruments, and shared standards), whereas PP-style generative models are posited as sub-personal
resources in individual agents. The bridge hypothesis does not identify these as the same kind of entity.
Rather, it targets a role- and constraint-preserving correspondence between (i) the public, norm-governed
theoretical package that structures scientific practice and (ii) the internal inferential resources that must
be in place for individual scientists to competently perceive, model, and report under that package. In
the present notation, 7" is an as-if representation of those practice-stabilized constraints as they become
operative for an agent (typically via training and enculturation), while N and I keep the communal
reporting norms and instrumentation/calibration regimes explicitly in view rather than reducing them to
neural states. Accordingly, the bridge concerns how public theory-guided practices can constrain and
be realized by sub-personal inference without collapsing levels or treating theories as literal probability
distributions [5, 7, 22, 27].

Mediation hypothesis (how public theory constrains individual inference). The bridge presupposes
a minimal mediation story: public, norm-governed theory packages (7, N, I') constrain individual sub-
personal inference via training and practice. Roughly: (i) enculturation and disciplinary training fix
an agent’s usable representational vocabulary and structural expectations (linking to Vr and St), (ii)
instrument pipelines and calibration routines stabilize how licensed measurement families are instantiated
and which error channels are treated as diagnostically reliable (linking to I, L7, and durable Ilp; cf.
Section 1.6), and (iii) reporting norms shape the learned space of permissible report options, thresholds,
and vocabulary in the report-policy transition from posterior states to public commitments (linking to N
and Section 4.3). On this view, the correspondence is neither a mere metaphor nor an identity claim: it
is a role-preserving mapping that becomes operative only under such mediated stabilization; when the
mediation is absent or disrupted (e.g., novices, cross-community mismatches, unstable calibration), the
bridge can fail in the sense captured by the stated failure modes.

1.5 A Minimal Specification: Theory as Meta-Level Constraints on Model Space

To reduce the risk that “theory as a meta-constraint” remains a slogan, we provide a minimal specification.
Let M denote a space of candidate generative model classes M. A theory T is not identified with a single
probability distribution; rather, it is modeled as a constraint operator that selects an admissible subset:

Mrp C M.

A natural objection is that such restrictions are equivalent to imposing a degenerate 0/1 model prior; we
address this explicitly in Section 1.7. This formulation mirrors a familiar Bayesian distinction between
(intra-model) parameter learning and (inter-model) choice of model class, now reinterpreted as a locus for
theory-level constraint [1, 12, 26]. Concretely, we decompose the constraint into four components:

T = <VT7 ST7 LT? HT>7



where:

1. Vocabulary / variable constraints (V). Which latent variables are eligible as candidate causes (what
can be represented as a cause at all) [29, 40].

2. Structural constraints (S7). Which dependency/causal architectures are admissible (e.g., which links
in a hierarchical generative structure are permitted) [29, 40].

3. Likelihood / measurement constraints (Lr). Which likelihood families or noise/measurement models
are treated as appropriate (how measurements are interpreted as data) [2, 12].

4. Structural precision expectations (II7). Relatively durable, methodologically stabilized expectations
about which channels/levels are treated as trustworthy within the admissible model space (e.g., which
discrepancies are taken as diagnostically significant) [3, 10]. Moment-to-moment, task- and goal-driven
precision control is treated separately under goals (G) and contexts (C') later in the paper.

The admissible model space can then be represented schematically as

Mp ={MeM : VM) Vr, S(M)e Sp, LIM) € Lp, ITI(M) =g }.

Types of theory change (constraint change). On this view, “theory change” can occur by: (i) expand-
ing/revising V1 (new kinds of causes become representable), (ii) relaxing or replacing St (new structures
become admissible), (iii) revising L7 (new measurement/noise interpretations), or (iv) redistributing Iy
(what counts as reliable evidence shifts). This decomposition lets us state more precisely what is meant by
“theory reorganizes observation and facthood”: it reorganizes the admissible model space M in which
posterior inference and reporting take place.

What is (and is not) counted as “theory” in 7. In this paper, T' = (Vr, S, L7, II1) is a narrow notion
of theory: it specifies constraints on admissible representational resources (variables), dependency/causal
architecture, and measurement/noise interpretation, plus durable precision expectations. This specification
intentionally does not absorb all normative and institutional aspects of scientific practice into 7. In
particular, community-level reporting norms and instrumentation/calibration regimes are treated separately
(later as N and I), entering explicitly in the policy-governed transition from posterior states to public
observation statements (Section 4.3) [2].

A broader Kuhnian notion of a paradigm plausibly includes not only 7" but also such communal
constraints [24]. When that broader reading is intended, one may schematically treat a paradigm as
(T, N, I): a package of admissibility constraints together with stabilized measurement practices and
reporting norms.

1.6 Boundary Rules for 7', N, I, G, C

To keep the bridge model from becoming an unconstrained “everything-box,” we fix explicit boundary
rules for the components that enter the mapping.



(1) T (theory as admissibility constraints). 7 = (Vp, Sy, L, Il7) specifies what is admissible in
principle within a community or research tradition: eligible variables (Vr), admissible dependency archi-
tectures (St), licensed likelihood/measurement families (L), and relatively durable precision expectations

(II7). Importantly, L is a class-level license (a “permit list”), not an instrument-specific calibration.

(2) I (instrumentation/calibration as instances). [ denotes the instance-level measurement and cal-
ibration regime: a concrete instrument pipeline, preprocessing conventions, calibration history, and
parameterization choices that instantiate (and sometimes stress-test) a licensed likelihood family. A simple

way to see the distinction is:
L licenses a family {p(s | z, M, ) }xea, I fixes or constrains A (and data handling) in practice.

Thus, changes in L7 expand/alter what measurement models are licensed in principle, whereas changes in
I revise how an accepted measurement family is concretely instantiated and validated.

(3) N (community-level reporting norms). NN denotes public, socially enforced norms that regulate
what counts as an acceptable observational claim: admissible vocabulary, hedging conventions, confidence
thresholds, error-reporting standards, and “what must be reported” requirements. These norms constrain
not only which report options are permitted, but also how public commitments are scored (e.g., penalties

for overclaiming vs. underreporting).

@) G, C (local goals and contexts). G and C are local and can vary within the same community: task
goals (archiving, warning, hypothesis testing), situational contexts, time pressure, and pragmatic stakes.
They modulate reporting behavior even when 7', NV are held fixed.

(5) I vs. task-driven precision control. Il captures relatively durable, methodologically stabilized
expectations about which channels/levels are treated as trustworthy. Moment-to-moment precision reallo-
cation driven by attention, task demands, or context is treated under G, C' (and is separated from Il7) in
order to keep the model components non-overlapping.

Locating components of theory-ladenness. Table 1 summarizes how the bridge framework locates
theory-ladenness across admissibility constraints (7'), instrumentation and calibration regimes (), and
community-level reporting norms (/V), drawing on the data/phenomena distinction and standard Bayesian
modeling practice (including model checking and comparison) [2, 12, 26].

Mini-example: detection claims as a joint function of 7', I, and N. Suppose an instrument delivers a
time series s (a noisy waveform). A minimal generative setup posits a latent cause z € {signal, noise}
with a measurement model p(s | z, M) and a prior p(z | M ). Theory-level constraints 7" determine (i)
whether “signal” is even an admissible latent variable (Vr), (ii) which families of noise/likelihood models
are permitted (L7), and (iii) how precision is allocated to different channels (I17). Instrumentation and
calibration regimes I fix concrete parameterizations of the measurement model (e.g., baseline corrections),
while reporting norms N fix decision thresholds for public claims (e.g., when to report a detection vs. an
upper bound) [2, 12].



Table 1:

Locating components of theory-ladenness in the bridge framework.

Target phenomenon Primary con- Computational locus Empirical/practical han-
straints dle
Seeing-as  (percep- T (esp. Vp,Sp,Ilp)  Posterior structure p(z | s, M) Precision manipulations;

tual/content level)

under a theory-conditioned
model space

ambiguity vs. high-SNR
regimes (D1)

Observation  state-
ment (public report)

G,Cplus N, I Report policy over posterior

states (Section 4.3)

Thresholds/hedges; vocab-
ulary norms; detection
conventions (D3)

Scientific “fact” (sta- NN, I (plus shared ) Reproducible posterior- Calibration protocols;

bilized report class) supported  reports  across replication; error bars;
agents/labs inter-lab robustness

Anomaly T and I (what counts  Persistent, structured residuals Posterior predictive

as misfit) after best within-model tuning checks; residual diag-

(D2) nostics;  robustness to

noise-model variants

Between-model selection /
model-class revision

Discovery / theory
change

Change in T (and
sometimes NV, I)

Model comparison under
revised admissibility con-
straints; reorganized re-
port space

Boundary note. L is a class-level license of admissible likelihood/measurement families, whereas [ is an instance-level calibration
and instrument pipeline that instantiates (and can stress-test) such families. N encodes community reporting norms; GG, C' encode
local goals and contexts. See Section 1.6.

In such cases, the same raw readout s can license different public observation statements without any
appeal to “theory-free data”: changing I (calibration) or L7 (noise model) can change whether residual
structure counts as systematic or as noise; changing N (thresholds) can change whether one issues a
categorical claim, a hedged claim, or a non-detection. This illustrates concretely how the bridge locates
theory-ladenness across model-space constraints (71"), measurement practices (/), and public reporting
norms (/V), rather than collapsing it into “theory = prior.”

1.7 Why Admissibility Constraints Are Not (Just) Priors

A natural Bayesian objection is that restricting an admissible model space M7 C M is equivalent to
imposing a degenerate model prior: simply assign p(M | T') = 0 for M ¢ M and renormalize. Formally,
one may define

p(M | T) o 1[M € Mr] p(M),

so that “admissibility” appears as a 0/1 filter on a baseline model prior p(M ). Likewise, one may represent
theory-level constraints via hierarchical constructions (hyperpriors) or structural priors that generate
families of models, e.g. p(M) = [ p(M | n) p(n) dn, thereby embedding model-space restrictions within
standard Bayesian machinery [12, 26].

The key point: formal embeddability does not fix philosophical role. We grant the formal point:
constraints can be encoded probabilistically. However, the present thesis is not an identity claim of the

form theory = (model) prior. It is a role claim about what theories do in scientific practice. Priors (whether



over parameters or over models) presuppose that the relevant representational vocabulary, admissible
structures, and measurement interpretations are already in place. By contrast, what is called “theory” here
is precisely the package that helps establish and stabilize those prerequisites: it constrains what counts
as an eligible variable, what dependency architectures are admissible, which likelihood/measurement
families are licensed, and which precision expectations are methodologically treated as durable.

Role-identification: constitutive vs. regulative. The issue is not merely that constraints can be encoded
as priors, but that they play a different identifiable role in scientific practice. Priors are regulative: they
weight options within an already articulated inferential setting—where the representational vocabulary,
admissible structures, and measurement interpretations are treated as fixed for the purposes of updating.
By contrast, admissibility constraints are constitutive: they help fix what counts as an eligible variable, an
admissible dependency architecture, and a licensed likelihood/measurement family in the first place (cf.
Vr,Sr, L7 and the T'/1 boundary in Section 1.6). A practical diagnostic is this: if changing the relevant
assumption changes what is even well-typed as a hypothesis or as a measurement interpretation, then it is
constraint-like (constitutive), not merely a reweighting within a fixed space.

Revision target: why this matters for C2/C3. The constitutive/regulative contrast matters because
the bridge criteria explicitly require a difference in rargets of revision. Within-model and within-space
adjustments preserve the underlying vocabulary/structure/measurement interpretation and yield continuous
re-tuning (criterion C2 in Section 1.4). Constraint revision targets the space itself—changing what is
admissible as a hypothesis and thereby reorganizing what can count as an observation report, a stabilized
fact, or an acceptable explanation (criterion C3). This is precisely what the slogan theory = prior tends to
obscure: it makes genuine reorganization look like nothing more than reweighting within a fixed space.

Optional: graded admissibility (soft licenses). In practice, admissibility need not be a strict 0/1 filter.
One can model this by a licensing strength a(M) € [0, 1] that expresses methodological permissibility
within a research tradition, so that highly licensed model families are treated as more eligible than marginal
ones. Crucially, ar is not introduced as a private degree of belief; it tracks publicly stabilized licenses
(what is methodologically allowed) and is revised by methodological change, not by ordinary within-space
Bayesian updating.

As-if representation and the bridge target. For bridge purposes, it is often convenient to represent
a theory 7' as if it were a filter or generator of admissible models, and (when needed) to encode that
filter as a structural prior or a hyperprior. But doing so is not to collapse semantic and methodological
commitments into a mere probability assignment. Rather, it provides an as-if computational representation
of the constraint-bearing roles that theories play at the personal level. This is why the slogan “theory =
prior” is rejected as a category mistake: the mistake is to identify a public, norm-governed theoretical
package (including representational, methodological, and measurement licenses) with a literal probability
distribution (a prior) in an individual agent. Accordingly, the bridge does not claim that theories are
probability distributions, but that theories can be modeled as constraints that shape the space of admissible
models (hence the families of priors and likelihoods) on which Bayesian updating and model comparison
operate.
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Consequence for theory change. On this reading, “changing the theory” is not merely shifting weights
within a fixed space (reweighting priors over already admissible hypotheses). It can also involve revising
the admissibility package itself 7'+ T” (hence My — M), thereby reorganizing what counts as an
admissible explanation and a reportable observation. This is the sense in which constraint revision differs
from (and can rationally be motivated beyond) ordinary within-space updating, even though both can be
expressed in Bayesian notation [12, 26].

1.8 The Predictive Turn in Contemporary Neuroscience

In recent decades, computational neuroscience has developed a family of Bayesian frameworks—including
predictive coding, predictive processing (PP), and free-energy/active-inference formalisms—that provide
candidate sub-personal mechanisms for the kind of “seeing-as” emphasized in the theory-ladenness
tradition [3, 10, 11, 20, 31]. According to these approaches, the brain (or cognitive system) maintains
hierarchical generative models of the latent causes of sensory inputs and reduces mismatches between
predicted and incoming signals by updating beliefs, often described in terms of (precision-weighted)
prediction errors [10, 11].

A brief terminological note will reduce confusion. In this paper, predictive coding refers to a family of
mechanistic architectures (often discussed in relation to cortical hierarchies); predictive processing refers
to the broader research program that interprets perception and action in predictive terms; active inference
extends the story to action and policy selection within the free-energy formalism; and the free-energy
principle (FEP) provides a general variational framework often used to unify these ideas [4, 10, 11].
For expository purposes, we will sometimes write prediction error in the schematic form “actual minus
predicted.” This is a didactic idealization: in standard formulations, error signals are typically precision-
weighted and defined across multiple hierarchical levels [10, 11].

Within PP, perception is construed as estimation of causes via a posterior distribution, and high-
level priors (together with precision allocation) can exert strong constraints on perceptual content [3, 10,
23, 25]. This provides one route to Seth’s “controlled hallucination” metaphor, while also motivating
clinical applications that interpret certain psychopathologies as disorders of prediction and precision [34,
35]. Importantly, none of this entails that cognition exerts unconstrained influence on early perceptual
processing; the relevant claim is conditional and hierarchy-/precision-sensitive, and the empirical debate
about “cognitive penetration” remains live [9].

1.9 Research Question: Can Hanson’s Theory-Ladenness Be Computationally Recon-
structed?

Against this background, the central question of the present study may be stated as follows:

Can Hanson’s theory-ladenness of observation and the process of scientific discovery
be computationally reconstructed within the predictive-processing framework, while
respecting the distinction between the personal and sub-personal levels?

The aim of this study is to integrate Hanson’s philosophical analysis with the computational architecture
of PP, reinterpreting observation, hypothesis formation, and theory change in terms of Bayesian inference
and model updating and selection. In doing so, the paper develops and evaluates a bridge hypothesis: it
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clarifies the structural correspondences—in the sense made explicit in Section 1.4—between personal-
level patterns of scientific reasoning and discovery and the sub-personal inferential machinery posited
by predictive processing. The result is intended to be a naturalized yet non-reductive model: it seeks
level-coherent constraints between philosophy of science and computational cognitive science without

collapsing one level into the other [5, 22, 27].

1.10 Relation to Bayesian Philosophy of Science and the Paper’s Novelty

Bayesian philosophy of science supplies formal tools for within-model updating and between-model
comparison. Our project is continuous with that tradition at the level of formal structure, but it differs in
target and level-relations: we use Bayesian/PP roles to articulate a failure-sensitive bridge between personal-
level philosophical roles and sub-personal computational roles (Section 1.4). For the key constructive
moves—theory as admissibility constraints on model space and observation statements as norm- and
instrument-sensitive report policies—we refer to Sections 1.5, 1.7, and 4.3; here we only situate the

contribution relative to the Bayesian PoS toolbox.

Much Bayesian philosophy of science proceeds by taking the hypothesis language (or model class) and
the measurement/likelihood interpretation as fixed, and then asking how evidence confirms hypotheses,
how priors should be chosen or constrained, and how model comparison trades off fit and complexity. On
that standard picture, theory-ladenness is often discussed in terms of prior dependence or model-choice
dependence within an already articulated space. Our claim is compatible with those tools, but it shifts
the explanatory locus: the central Hanson-style question is not merely how to weight hypotheses, but
how scientific theorizing helps constitute and stabilize what counts as an eligible variable, an admissible
structure, and a licensed measurement family in the first place.

This shift clarifies why “theory = prior” is (at best) a potentially misleading slogan. Even when
admissibility restrictions can be represented as priors formally, their methodological role is different:
priors regulate updating within a fixed inferential setting, whereas theories (in our narrow sense) function
as admissibility constraints that shape the space in which priors and likelihoods are well-defined (Sec-
tions 1.5 and 1.7). Moreover, because scientific observation is a public, norm-governed practice, we model
observation statements as report policies constrained by communal norms and instrumentation/calibration
regimes (/V, I) as well as local goals and contexts (G, C') (Section 4.3). Finally, predictive processing
is used here not as a normative foundation but as a sub-personal role vocabulary that makes the bridge
explicit and failure-sensitive (Section 1.4): the point is to articulate level-coherent role correspondences,

not to identify public theories with neural priors.

The novelty of the present proposal is threefold. First, it treats theories as meta-level admissibility
constraints on model space (Sections 1.5 and 1.7), thereby locating “theory-ladenness” primarily in how
hypothesis spaces, structures, and measurement families are licensed [12, 29, 40]. Second, it models
public observation statements as report policies over posterior states under explicit communal constraints
(N, I and local pragmatics (G, C) (Section 4.3) [2, 11]. Third, it recasts discovery dynamics as multi-tier
revision with explicit success criteria and failure modes (Section 1.4), and connects anomaly diagnosis to
standard model-checking practice via structured residuals (Section 1.12) [3, 10, 12, 26].

Methodologically, our aim is not to offer a purely normative Bayesian reconstruction of scientific
inference, but to articulate a bridge hypothesis between personal-level philosophical roles (theory, observa-
tion, anomaly, discovery) and sub-personal computational roles (generative inference, precision-weighted
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error, model updating/selection). The bridge is therefore explicitly failure-sensitive: if the proposed

role-constraints do not hold, the correspondence fails (Section 1.4).

1.11 What the Bridge Adds: Explanatory Payoffs Beyond Restatement

A natural worry is that a PP/Bayesian reconstruction merely restates Hanson in new vocabulary. The
payoffs below are intended to be substantive and operational, given the bridge criteria and failure modes in
Section 1.4.

1. A principled locus-of-variation story (precision). The bridge predicts where theory-ladenness
is likely to be “hard” vs. “soft”: when low-level sensory signals are assigned high precision, top-
down influence is limited; when precision is redistributed to higher levels, seeing-as becomes more
theory-sensitive [3, 10, 20]. This yields a non-binary alternative to simple penetration/non-penetration
dichotomies [9].

2. Two-tier dynamics with an explicit failure criterion. The bridge makes explicit when anomalies
should be treated as resolvable by within-model tuning and when they should trigger between-model
selection: persistent structured residuals under best within-model fit (especially under high precision)
function as a computational proxy for “anomaly” [12, 26].

3. A minimal model of observation reports as actions. By treating observation statements as report
policies over posterior states, the framework explains why identical sensory input can yield system-
atically different observation reports under different goals, contexts, and community norms, without
collapsing the issue into a mere “probability-to-text” mapping [2, 11].

4. A clarified target for “theory” (meta-constraints). The bridge makes explicit where “theory” enters
the Bayesian/PP picture: not as a single numerical prior, but as constraints on admissible model space
(variables, structure, likelihood/noise licenses, and durable precision expectations). For the minimal
specification and the “constraints-not-priors” argument, see Sections 1.5 and 1.7 [26, 29, 40].

These payoffs are modest but substantive: they sharpen Hanson’s insights into a set of testable and
failure-sensitive structural claims.

1.12 Operational Discriminators and Empirical Touchpoints

To keep the bridge hypothesis from being a mere relabeling, we state three operational discriminators
(D1-D3) that connect the proposed role mappings to empirical and methodological patterns.

D1 (Precision manipulation) Prediction: the degree and locus of theory-ladenness should vary with
precision allocation [3, 10, 20]. When low-level sensory channels are assigned high precision, top-
down theoretical influence should be limited (the “hard” case); when precision is redistributed toward
higher-level hypotheses (e.g., under ambiguity, degraded input, or task-driven uncertainty), seeing-as
and categorization should become more theory-sensitive (the “soft” case). This discriminator provides
a graded alternative to binary penetration claims [9].
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D2 (Structured residuals vs. noise) Prediction: anomalies that rationally motivate between-model shifts
should correspond to persistent, structured residual patterns that survive best within-model tuning
under an appropriate noise/measurement model [12, 26]. In contrast, discrepancies that dissipate under
plausible changes to precision weighting, attention, or measurement/noise assumptions are expected
to remain within-model (including “instrument-model” repair) rather than triggering model-class

revision [2].

Practical diagnostics (toy checklist). In ordinary statistical practice, “structured residuals” are
diagnosed by a small family of robustness and model-checking routines rather than by a single magic
criterion. For present purposes, the following checklist is sufficient:

* Posterior predictive checks: compare replicated data from p(s | M) (or p(§ | s, M)) with
observed s; look for systematic discrepancies rather than isolated outliers [12].

* Residual structure: test residuals for autocorrelation, periodicity, and systematic bias (e.g.,
patterning by time, condition, or instrument setting).

* Noise-model robustness: check whether the pattern survives plausible likelihood variants (e.g.,

heavy-tailed errors, heteroscedasticity, correlated noise, or mixture/outlier components) [2, 12].

» Calibration/processing sensitivity: verify that the residual pattern is stable across reasonable
calibration or preprocessing revisions (linking to I rather than to world-model structure).

* Cross-setup stability: where applicable, test whether the pattern reproduces across instru-

ments/labs under comparable reporting and calibration regimes (V, I) [2].

Controlled circularity (not a vicious one). What counts as a “plausible” family of noise/mea-
surement variants is indeed theory- and practice-dependent (via the licensing package L7 and its
instance-level instantiations in I). The proposal therefore does not pretend to eliminate circularity; it
manages it. The key external constraints are communal: cross-instrument replication, calibration stan-
dards, and inter-lab robustness (I, N) restrict which re-specifications count as acceptable repairs, and
they stabilize when residual structure is treated as methodologically significant rather than dismissible
noise [2, 12]. When persistent residual structure survives these managed checks, pressure can shift to
the licensing package itself (including revision of L7), which is exactly the failure-sensitive loop the
bridge is designed to capture.

D3 (Report-policy dissociation) Prediction: systematic variation in public observation statements can be
induced without altering perceptual content by manipulating reporting goals, thresholds, and community
constraints (parameters G, C, N, I), holding stimuli and core inferential constraints fixed. Conversely,
manipulations that genuinely alter priors/precision in the underlying generative model should change
posterior structure and thus propagate to both seeing-as and report behavior [9, 11]. This discriminator
operationalizes the distinction between perceptual change and post-perceptual/report-level change

without presupposing a strong cognitive-penetration thesis.

Mini-case (how N shapes reports and how [ stabilizes them). Consider a detection-style setting
in which the same calibrated data stream s is analyzed under a fixed generative model and yields a
stable posterior over a latent “signal-present” variable z. Suppose the posterior support for z = signal
is high but not decisive for a categorical claim. Even holding the posterior structure fixed, different
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community norms N can rationally force different public observation statements: one community may
require an exceptionally stringent evidential threshold for the speech act “detect” (and mandate explicit
uncertainty reporting), thereby licensing only a hedged report (evidence) or an upper-bound; another
community, with different historical error-cost asymmetries and reporting conventions, may treat the
same posterior as sufficient for a categorical detection claim. Likewise, the same posterior can support
different report choices when the goal/context (G, C') changes (e.g., archival reporting vs. real-time
warning), even when the perceptual/inferential state is unchanged.

Crucially, this is not a subjectivist loophole. The norms N are publicly enforceable constraints on what
counts as an acceptable observational commitment, and instrumentation/calibration regimes I constrain
which posterior states are even reproducible across laboratories. In mature practice, what stabilizes as
a “fact” is therefore not a private posterior as such, but a report type that is robust under shared I and
N (and under reasonable model-checking and noise-model variants), mirroring the data/phenomena
distinction emphasized in the philosophy of measurement and modeling [2, 12]. This is the intended
content of D3: systematic report variation can be induced by policy constraints (G, C, N, I'), without
requiring a change in perceptual content, while still remaining methodologically constrained and

publicly assessable.

These discriminators sharpen the failure modes stated in Section 1.4: D3 without D1/D2 is a natural
candidate for F1, whereas D2 without a corresponding reorganization of seeing-as is a natural candidate
for F2.

Accordingly, Sections 2 and 3 are intentionally selective: they are not comprehensive surveys, but
targeted reconstructions that serve the bridge claims developed in Sections 4-5.

1.13 Two Worked Micro-Cases: How D1-D3 Show Up in Scientific Practice

To illustrate that D1-D3 are not merely labels, we flag two recurring patterns (sketched only at a high level).
First, in detection-style measurement contexts, high effective precision (high SNR and stable calibration)
tends to limit top-down influence on posterior structure (D1), while low effective precision increases prior-
and model-sensitivity; nevertheless, public reports can still vary with reporting goals, thresholds, and
community norms even when posterior structure is held fixed (D3). Second, strong “anomaly” diagnoses
in mature practice typically track the persistence of structured residual patterns across best within-model
tuning and plausible measurement/noise-model repairs (D2). We return to these patterns in Sections 4-5,
where the multi-tier dynamics are developed in detail.

1.14 Structure of the Paper

The remainder of the paper is organized as follows.

1. Section 2 reconstructs Hanson’s account of observation and extracts the relations among observation,

data, theory, and discovery at the personal level.

2. Section 3 introduces the predictive-processing framework and the Bayesian brain hypothesis, outlin-
ing the relevant computational structure at the sub-personal level.

15



3. Section 4 presents a computational reconstruction of the theory-ladenness of observation and
develops an integrated model based on the idea of theory as a meta-structure that constrains high-
level priors and the admissible model space.

4. Section 5 analyzes Kepler’s discovery as a case study, distinguishing between incremental updating
characteristic of normal science and model-selection processes characteristic of paradigm shifts [38].

5. Finally, Section 6 summarizes the overall argument and discusses the implications and limitations
of bridging the personal and sub-personal levels.

2 Theory-Ladenness of Observation in Hanson

This section offers an analytical reconstruction of N. R. Hanson’s account of the theory-ladenness of
observation as developed in Patterns of Discovery (1958) [16]. Hanson does more than merely assert that
observation is “not independent of theory.” He articulates a network of interrelated claims that together
structure what he calls observation in mature science: (1) the relation between seeing and seeing-as, (2) the
linguistic dependence of observational reports, (3) the conditional and practice-bound character of “facts”,
(4) the theory-ladenness of causal explanation, and (5) the structure of hypothesis formation and discovery.

Deliverable of this section. Our goal here is to extract a personal-level role map that can later be put
in explicit (but non-reductive) correspondence with a predictive-processing and Bayesian vocabulary.
Accordingly, the output of this section is a structured characterization of (i) seeing-as, (ii) observation
statements as public, truth-evaluable reports, (iii) fact-stabilization as a practice-bound achievement,
(iv) causal explanation as framework-relative selection of dependencies, and (v) discovery as reorganization
driven by anomaly.

Hanson’s project forms a central component of the mid-century reorientation of philosophy of science
toward historically and psychologically realistic accounts of scientific practice, alongside Kuhn’s paradigm
theory and Feyerabend’s methodological critique [8, 24]. It also resonates with Sellars’ critique of the “Myth
of the Given,” which denies that perceptual episodes can function as justificatory givens apart from their
conceptual roles [32]. Finally, Hanson’s concerns anticipate later probabilistic and model-based approaches
that re-examine the relations among data, evidential support, and theoretical structure [12, 21, 26].

Importantly, the aspects of Hanson’s analysis examined in this section belong to what Section 1 called
the personal level—the level of scientists’ reasoning, judgment, and linguistic practice. By contrast, the
predictive-processing framework introduced in Section 3 targets the sub-personal level of neural and
computational mechanisms [5, 27].

The objective of this paper is not to collapse these levels into a reductive identity. Rather, drawing on
Marr’s levels of analysis [27], Dennett’s relations among the intentional, design, and physical stances [7],
and mechanistic accounts of multi-level explanation [5, 22], the aim is to clarify structural correspondences
between explanatory roles at the personal level and computational roles at the sub-personal level. In line
with the criteria stated in Section 1.4, the correspondence is not a strict mathematical isomorphism but a
role- and constraint-preserving mapping: it should illuminate what drives revision (anomaly), what forms
of revision are available (within-model adjustment vs. model-class change), and what is reorganized when
revision is radical (the space of admissible observations, facts, and explanations).
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Accordingly, the purpose of this section is not to catalogue Hanson’s remarks as a series of isolated
episodes, but to extract from his discussions a personal-level model of the relations among observation,
data, and theory. With an eye toward the PP connection developed in Section 3, the following subsections

examine each component of this structure in turn.

2.1 The Structure of Seeing and Seeing-as

At the core of Hanson’s analysis lies the claim that what matters epistemically in scientific observation
is not merely the reception of sensory stimulation, but an organized perceptual uptake of the world as
containing objects, events, and processes—that is, seeing-as [16]. What is often treated as a simple “raw”
visual experience is, for Hanson, something whose structure must itself be interrogated.

To motivate this point, Hanson introduces the contrast between Kepler and Tycho Brahe. Confronted
with the same visible scene (e.g., the apparent diurnal motion at sunrise), they agree on the appearance
but organize and describe it under different kinematic commitments: for Kepler, the observed pattern
is naturally taken as compatible with a moving Earth; for Tycho, the Earth remains at rest and the same
appearance is organized under a different cosmological framework [16, 38]. Hanson’s point is not a claim
about differential retinal stimulation; it is a claim about what the observers are prepared to take the visible
scene to be an instance of.

For expository purposes, it is helpful to distinguish two layers that Hanson treats as importantly
different in scientific observation:

* Sensory registration (‘“seeing” in a thin sense): stimulus-driven uptake and early processing that
(at least in many ordinary cases) can function as comparatively shared constraints across observers
and that constrains what can be seen at all. (This is not claimed to be wholly theory-free; rather, it is

not where Hanson locates the explanatory differences of primary interest.)

» Interpretive uptake (‘“seeing-as’’): organization of the stimulus as an object, event, or process,
under concepts and background commitments that determine what is salient and what counts as
relevant structure [16].

This distinction becomes vivid in classical Gestalt ambiguity, such as the “old woman/young woman”
figure (Fig. 1) [19]. Here the proximal stimulus is held fixed, yet perceivers can undergo a reorganization
in which the same lines are taken as an elderly woman or as a young woman. What changes is not
the stimulus but the organization of the stimulus into a meaningful whole. Hanson’s interest is not the
psychological curiosity of illusions; it is the structural moral that mature scientific observation likewise

involves organization under learned conceptual and theoretical schemes [6, 16].

Hanson reinforces the same point with mundane examples: a written leaflet may appear to a non-
speaker as a mere array of marks, while to a fluent reader it is immediately seen as meaningful text. Again,
the stimulus can be shared while the uptake differs.

It is useful to note a family resemblance between Hanson’s “seeing-as” and later cognitive-scientific
slogans such as Gregory’s “perception is a hypothesis” [15], as well as Bayesian and predictive approaches
to vision in which perceptual content is understood as inference to latent causes under a generative
model [23, 25]. Hanson does not offer such a computational account; his contribution is to isolate, at the

personal level, the role that organization and background commitment play in observation.
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Figure 1: The ambiguous “old woman / young woman” figure. Based on Hill (1915) [19].

As Section 3 will show, predictive-processing models provide a way to revisit this topic by distinguishing
sub-personal processes close to sensory input (corresponding to the thin sense of seeing) from higher-level
generative-model-based processes (corresponding to seeing-as), with their relative influence modulated by
precision assignment [3, 10, 20]. The present paper emphasizes a cross-level structural correspondence
between these descriptions without reducing Hanson’s personal-level analysis to a sub-personal mechanism.

In sum, Hanson’s basic insight is that observation is not merely the registration of retinal images but
the interpretive uptake of the world through conceptual and theoretical frameworks [16].

2.2 Linguistic, Conceptual, and Contextual Dependence: The Non-neutrality of Observa-
tion Statements

While the distinction between seeing and seeing-as already shows that observation involves organization,
Hanson further emphasizes that scientific observation is inseparable from language [16]. Scientists
typically communicate observational outcomes in the form of observation statements. For Hanson, it is
precisely at this linguistic level that theory-ladenness becomes especially salient.

A central contrast is that observation statements are truth-evaluable: they have truth conditions and
can function as premises in inference, whereas a picture or sensory presentation is not truth-evaluable
in the same way as a proposition is [16]. To transform an observational episode into a reportable claim,
the world must be articulated into subjects and predicates, and such articulation involves conceptual and
syntactic choices.

Consider the image in Fig. 2.

We normally describe it as “The bear is climbing the tree.” Although it is logically possible to say
“The tree is lifting the bear upward,” our background knowledge about biology and mechanics renders the
latter description pragmatically and explanatorily inappropriate. The point is not that language merely
decorates a neutral visual core, but that reporting an observation as a candidate fact already presupposes a
shared conceptual organization.

Context-sensitivity in ordinary language underscores the same lesson. The utterance “Fire!” can mean
“Shoot!” on a training ground but “There is a fire!” in a theater. Such examples serve Hanson to show
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Figure 2: A bear climbing a tree. Redrawn from Hanson (1958) [16].

that the meanings of observation words and observation statements depend on contexts of action and
communication, and thus cannot be treated as a purely neutral “observation language” [16].

Here Hanson’s position aligns with Sellars’ critique of the Myth of the Given: to play epistemic roles,
perceptual episodes must be situated within conceptual and linguistic practices [32]. In later sections, this
linguistic point will be connected to the bridge framework developed in Section 1: public observation
reports will be modeled as report policies that extract actionable public commitments from an agent’s
epistemic state under goals and contexts, rather than as direct readouts from raw data [2, 12].

2.3 Facts and Data: Stabilization, Measurement, and Practice-Bound “Facts”

In everyday use, the term “fact” suggests something stable, universal, and independent of any particular
observer. Hanson challenges this naive conception by emphasizing that what counts as a “fact” in scientific
practice is often conditional on background frameworks of description and on the context of use [16].
The point is not relativism about truth, but that the conditions of fact-stating—what is taken to be settled
enough to assert—depend on conceptual resources, measurement practices, and shared standards.

A central locus of such dependence is measurement and stabilization. Many scientific “facts” are not
raw data points but stabilized report types secured through calibration, error modeling, and communal
reporting norms. For example, whether a time series licenses a public claim of detection, a hedged
claim of evidence, an upper limit, or a non-detection depends not only on the recorded signal but also on
background assumptions about noise, instrument behavior, and acceptable thresholds for assertion (cf. the
data/phenomena distinction) [2]. Similarly, whether a discrepancy is treated as a measurement artifact, as
noise, or as a robust phenomenon can depend on how error bars are modeled, how calibration procedures
are justified, and how results are checked across laboratories.

A related issue concerns categorization. Predicates such as “red” or “blue” presuppose a classificatory
scheme and standards for applying terms; likewise, scientific categories (e.g., “signal,” “artifact,” “back-
ground,” “outlier”’) encode learned conceptual resources and practical criteria for application. The point is
not that such predicates lack any physical basis, but that the space of expressible and reportable “facts”
depends on conceptual and methodological capacities [16, 32].

To connect Hanson’s point to the bridge framework of Section 1, it is helpful to distinguish data
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from phenomena. Although Hanson does not employ this later terminology, Bogen and Woodward’s
distinction clarifies how theory-ladenness can coexist with objectivity: data are often local, instrument-
and practice-dependent records, whereas phenomena are comparatively stable patterns extracted from
those data across methods and contexts [2]. On this reading, “facts” in mature science are rarely bare
data; they are more often stabilized, communicable report classes supported by shared constraints on
measurement, interpretation, and reporting.

This point will matter later when we introduce a computational vocabulary: the paper will treat “facts”
not as theory-free atoms but as stabilized outcomes of interpretive and methodological practices under
shared admissibility constraints and measurement regimes.

2.4 Causal Chains: The Theory-Ladenness of Explanation and Inference

Hanson also argues that causal explanation depends on the observer’s theoretical framework [16]. A
stream of events does not wear its causal structure on its sleeve; rather, scientific explanation involves
selecting variables, carving event-streams into relevant units, and organizing them into explanatory relations.
Accordingly, different theoretical perspectives can pick out different causal “chains” or explanatory linkages
from the same underlying sequence.

Hanson’s moral can be expressed in a way that connects naturally to later formal work on causality:
causal claims are evaluated within representational frameworks that specify which variables are candidates
for causes, which structural relations are admissible, and which interventions would make a difference [29,
40]. Read in this light, Hanson anticipates (at the personal level) the idea that causal structure is not simply
read off from uninterpreted data, but depends on modeling assumptions that determine what counts as
a cause, an effect, and an explanatory pathway. Later sections will use this connection to motivate the
treatment of theory as a meta-level constraint on admissible model space, rather than as a mere prior
distribution (Section 1.5).

A clarifying distinction (preview). In what follows, “causal structure” is primarily invoked in this
[framework-relative, explanatory-role sense. A further question—central to interventionist accounts—is
when such dependency structures license claims about interventions and counterfactual difference-making.
We return to this distinction later when we introduce the generative-model sense of “causality” used in
predictive-processing formulations.

2.5 Hypothesis Formation and Pattern Recognition: The Structural Features of Discovery

For Hanson, the theory-ladenness of observation is not a skeptical thesis about distortion. It is a condition
that makes scientific discovery possible. Discovery is not the mechanical accumulation of data but an
active process in which observers detect and stabilize patterns by deploying and revising hypotheses [16].

Kepler’s reformulation of planetary motion provides a canonical illustration. Working within prevailing
circular-orbit commitments, Kepler organized and reorganized observational results while confronting per-
sistent misfits that could not be eliminated by routine adjustments. Through a sequence of conjectures and
refinements—including explorations of non-circular trajectories and revisions of auxiliary assumptions—
Kepler arrived at the elliptical model as a superior way of organizing the relevant data [6, 38]. The point

is not that data uniquely determine a hypothesis, but that hypotheses restructure what counts as salient
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structure in the data, thereby enabling new phenomena to become visible.

Hanson connects the logic of such reorganizations to Peirce’s notion of abduction (hypothetical
inference) [30]. Abduction is not a mysterious leap from data but a sensitivity to latent patterns that
become salient under an appropriate conceptual organization. This perspective aligns with later defenses
of inference to the best explanation [17].

These structural features also foreshadow the role of generative models in the predictive-processing
frameworks introduced in Section 3. In PP, hypotheses correspond (at a sub-personal level) to internal
generative models; sensory inputs are received and interpreted as instances under those models, and
persistent precision-weighted prediction errors can drive updating or model-class revision [10, 11, 26, 31].
Later sections will exploit this parallel to map Hanson’s observation—anomaly—discovery pattern onto
Bayesian updating and model comparison dynamics.

2.6 Summary: Hanson’s Personal-Level Role Structure and Its Bridge-Relevance

The foregoing analysis allows Hanson’s account of observation to be summarized in three theses:

1. Observation is not mere sensory registration but seeing-as, and is therefore structured by the
observer’s concepts, background commitments, and training [16].

2. Observation statements, and the “facts” stabilized through scientific practice, are linguistically and
contextually articulated; the ideal of a theory-neutral observation language is difficult to sustain [16,
32].

3. Discovery is an active process in which observers reorganize experience through hypotheses, in-
cluding abductive and explanatory forms of inference [16, 17, 30].

Hanson thus presents theory-ladenness not as a purely skeptical thesis but as a positive condition of
possibility for scientific practice [16]. At the same time, his analysis remains primarily descriptive and
conceptual. It does not specify sub-personal mechanisms that realize seeing-as, nor does it provide a
computational criterion for when anomalies rationally warrant model-class change.

This paper therefore seeks to map the personal-level structure identified by Hanson onto the sub-personal
framework of predictive processing. In line with the bridge criteria of Section 1.4, the correspondence
of interest can be summarized as follows: (1) tension between input and expectation functions as a
driver; (2) surprise/anomaly triggers revision; and (3) revision includes both within-model adjustment
and, in some cases, between-model selection that reorganizes the space of admissible observation and
explanation [11, 24, 26].

Finally, regarding how theory intervenes in observation, this study rejects the simplifying slogan theory
= prior. Instead, theory is understood as a meta-level structure that constrains which variables may count
as candidate causes, and which causal and likelihood structures are admissible within the model space (cf.
Section 1.5) [2, 29, 40]. Section 3 develops predictive processing and the Bayesian brain hypothesis as the
sub-personal framework for addressing the explanatory gap left open by Hanson’s personal-level account.

21



3 Predictive Processing and the Bayesian Brain Hypothesis

In Section 2, we reconstructed Hanson’s account of theory-ladenness at the personal level: scientific
observation is not a neutral reception of sensory input but a concept- and context-dependent process of
seeing-as. Yet Hanson’s account remains primarily conceptual and historical; it does not specify the
sub-personal cognitive mechanisms or computational structure that could realize such theory-ladenness.

This section begins to fill that gap by surveying the contemporary cognitive-neuroscientific framework
of predictive processing (PP) and the Bayesian brain hypothesis. Very roughly, PP treats perception and
learning as forms of approximate inference under hierarchical generative models, in which mismatch
signals (prediction-error-like discrepancies or closely related variational quantities) play a functional role
in belief updating and, in some formulations, action selection [3, 10, 11, 20, 31].

Deliverable of this section. Our aim here is not to defend one neuroscientific doctrine, but to extract
a sub-personal role map that can later be put into explicit correspondence with the personal-level roles
reconstructed from Hanson. The output of this section is therefore a structured characterization of
(i) hierarchical generative inference (posterior estimation under a model), (ii) precision-weighted mismatch
as arevision-driving signal, and (iii) model evidence and model comparison as resources for between-model
selection.

Methodological stance (minimal commitments). The bridge developed here does not presuppose
that the free-energy principle (FEP) or a strong “Bayesian brain” thesis is established as a complete
neurobiological theory. What we require is weaker: (i) perception and learning can be fruitfully modeled
as if they involved approximate inference under hierarchical generative models, (ii) mismatch (prediction-
error-like) signals play a functional revision-driving role, and (iii) uncertainty/precision modulates the
influence of top-down expectations. If even these weak commitments fail, the proposed correspondence
fails—which is why we formulated explicit success conditions and failure modes in Section 1.4 (see also
Subsection 3.8 below).

A crucial point must be emphasized at the outset: the PP models discussed here operate at the sub-
personal level, describing information-processing in the brain. They are not to be conflated with the
personal-level descriptions of scientists’ reasoning and linguistic practice analyzed in Section 2 [5, 27].
The aim of the present work is to identify a computational and structural correspondence (a realization
relation) between these levels, in the modest sense articulated by the bridge criteria in Section 1.4. Thus,
the central question for the remainder of this section is:

What role- and constraint-preserving correspondences can be identified between the personal-
level relations among observation, anomaly, and discovery described by Hanson and the
sub-personal relations among generative inference, (precision-weighted) prediction error,

and model updating/selection posited by predictive processing?

Terminological note. In what follows, predictive coding refers to a family of mechanistic architectures
often discussed in relation to hierarchical cortical signaling; predictive processing refers to the broader
research program; and active inference and the free-energy principle (FEP) refer to a variational formalism
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and its extensions that unify perception and action within a single inferential framework [4, 11]. These
labels are sometimes used interchangeably; here we keep them distinct for clarity.

Outline. The section proceeds as follows.

1. Section 3.1 introduces the intuitive picture of predictive coding.

2. Section 3.2 reviews the Bayesian inferential framework that underwrites these models.
3. Section 3.3 examines generative models in relation to hierarchical cortical organization.
4. Section 3.4 introduces prediction-error minimization and the free-energy principle.

5. Sections 3.5-3.6 discuss PP interpretations of perceptual construction, including Seth’s “controlled
hallucination” slogan and the role of precision in illusions and psychopathology.

6. Section 3.7 synthesizes these elements to articulate a computational account of what it means for
the brain to “see” the world.

7. Finally, Section 5 will use these tools to reconstruct Hanson’s account of discovery as a two-tier
process of within-model updating and between-model selection.

3.1 Predictive Coding as a Model of Perception

Predictive processing reconceives perception not as passive registration of sensory inputs but as an ongoing
cycle of prediction and correction. Early hierarchical models of predictive coding are exemplified by Rao
and Ballard’s account of visual cortex [31], later generalized by Friston into a theory of cortical responses
and the free-energy principle [10, 11].

The basic ideas may be summarized as follows:

* The system maintains an internal model of hidden causes of sensory signals (objects, events, latent
variables), and uses this model to generate predictions about forthcoming sensory input.

* Incoming sensory signals are compared with these predictions, and the discrepancy is encoded
(often implicitly) as a prediction error.

* The system reduces such discrepancies by updating internal states (beliefs) and, in some formulations,
by acting so that sampled sensory input better conforms to predictions (active inference).

Crucially, sensory inputs are not simply fed upward through a hierarchy. Rather, higher-level areas
send top-down predictions to lower levels, while lower levels send bottom-up mismatch signals reflecting
deviations from those predictions. This bidirectional architecture—top-down predictions and bottom-up
errors—is the signature of predictive coding [10, 31].

Where traditional feedforward accounts conceive perception as a largely unidirectional cascade from
receptors to higher cognition, predictive coding instead emphasizes a continual cycle of hypothesis
generation and error-driven correction. Perception becomes, in a computational sense, an ongoing form of
hypothesis testing [3, 20].
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It is important not to overstate empirical conclusions here. The present goal is not to review the
experimental evidence for any specific implementation, but to extract the role structure that will later
be put in level-coherent correspondence with Hanson’s personal-level account: top-down expectations,
bottom-up mismatch signals, and revision dynamics modulated by uncertainty/precision [10, 11].

3.2 Bayesian Inference: Prior, Likelihood, Posterior, and Model Evidence

The mathematical backbone of many PP formulations is Bayesian inference and its approximate imple-
mentations. This subsection reviews the core components of Bayesian updating—priors, likelihoods,
and posteriors—as well as the notion of model evidence that will later matter for between-model selec-
tion [12, 21, 26].

For simplicity, suppose we have observed a datum d and wish to update beliefs concerning a discrete
set of candidate hypotheses h. Prior beliefs about h are encoded in the prior p(h). The probability of
observing d given h is the likelihood p(d | h). The updated belief after observing d is the posterior

p(h | d).
Bayes’ rule expresses their relationship:

p(h | d) < p(d | h)p(h),

that is,

_ __p(d[n)p(h)
PO = o ) )

In this framework, priors encode background expectations; likelihoods encode a hypothesis-to-data
mapping; and posteriors encode the updated inferential state in light of the data. In many cognitive and
neural applications, such updating is understood as approximate and sequential rather than exact and
batch-style [4, 11].

A further distinction is crucial for the present paper. Bayesian updating presupposes a hypothesis
space (or model class) over which the update is carried out. When competing model classes M are in play,
Bayesian model comparison appeals to model evidence (marginal likelihood) p(d | M) and the posterior
over models:

p(M | d) o< p(d | M) p(M),

where
p(d| M) => p(d|h,M)p(h| M)
h

(or the corresponding integral in continuous cases) [1, 12, 26]. This distinction between within-model
updating and between-model selection will be central later for reconstructing discovery as a two-tier
process.

Using Hanson’s terminology from Section 2, what we call “theory” or “paradigm” maps not to a single
numerical prior but to a higher-level structure that constrains which priors, likelihood forms, and model
architectures are admissible. Accordingly, rather than reducing a theory to a particular prior distribution,
this paper interprets theories as meta-level constraints on model space: constraints on candidate variables,
admissible causal structures, and likelihood/measurement assumptions (Section 1.5) [2, 29, 40]. Thus the
operative correspondence is not theory = prior, but:
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theory constrains which priors and generative-model architectures are admissible.

The Bayesian framework is fundamental in statistical pattern recognition and probabilistic machine
learning [1, 28]. Predictive processing can often be fruitfully modeled as if it implemented approximate
Bayesian inference: the system maintains expectations about latent causes, incorporates sensory inputs via
a likelihood (measurement) model, and updates internal states in ways that reduce mismatch signals under
precision control [3, 10, 11, 20]. This is the core idea behind the Bayesian brain hypothesis (under the
present, minimal, modeling-oriented reading).

3.3 Generative Models and Hierarchical Cortical Architecture

In Bayesian inference, the likelihood specifies how probable the observed data would be if a hypothesis
about hidden causes were true. If a hypothesis is interpreted as an internal representation of some
latent cause in the world, then the likelihood specifies how that cause generates the sensory data. The
corresponding internal structure is a generative model [1, 26].

Formally, a generative model M can be expressed as a joint distribution
ps,z | M) =p(s |z, M)p(z | M),

where z denotes hidden causes (latent states) and s denotes sensory signals. Here p(z | M) is a prior
over hidden causes, and p(s | z, M) is a measurement/likelihood model describing how causes generate
sensory input.

Predictive-processing models often propose that this generative structure is mirrored (at least ap-
proximately) in hierarchical cortical organization. Lower sensory cortices represent comparatively local,
short-timescale features, while higher areas encode increasingly abstract and integrative structure. In
a hierarchical generative model, higher-level states generate the states below them, culminating in sen-
sory signals at the lowest level. This is often represented by a cascade of conditional distributions
p(zi—1 | 21, M) [23, 25].

Top-down signals convey predictions—*"“if the world is in state z, then the sensory input should look
like s”—while bottom-up signals convey mismatch signals (prediction errors) computed by comparing
predicted and actual sensory input. These mismatch signals are then used to update both the hidden states
and, in learning contexts, parameters of the generative model.

When juxtaposed with Hanson’s analysis in Section 2, the significance of hierarchical generative
structure becomes clear. Higher levels of a generative model can serve as computational counterparts to
relatively abstract background expectations, while intermediate levels encode categorical and schematic
organization, and lower levels remain more tightly constrained by sensory input. This is not a one-to-
one identification of personal-level “theories” with particular neural representations; it is a structural
correspondence that supports the bridge project of maintaining level consistency without reduction [5, 27].

3.4 Prediction-Error Minimization and the Free Energy Principle

Within predictive processing, mismatch signals are not treated as mere computational residuals; they are
treated as quantities that drive belief updating (and, in some formulations, action selection). For expository
purposes, prediction error is sometimes written schematically as “actual minus predicted.” However, in
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standard PP formulations, mismatch signals are typically precision-weighted and defined across multiple
hierarchical levels. A minimal schematic expression is therefore:

where II denotes (possibly level-dependent) precision (inverse variance) weighting [10, 11]. In standard
accounts, such mismatch terms are distributed across hierarchical levels and can concern both hidden-state

estimates and (in learning contexts) parameters of the generative model.

A more general formalization is given by Friston’s free-energy principle (FEP) [11]. Let ¢(z) denote
an approximate posterior (an internal variational representation) over latent causes z under a model M.
The variational free energy can be written as

Flg] = Ey)[—logp(s,z | M)] + Egy[logq(2)],

and one can show the standard variational identity

Flg] = Kl q(2)|Ip(z |5, M)) — logp(s | M),

which implies
Flql = —logp(s | M).

Thus minimizing F'[g] both (i) makes ¢(z) a better approximation to the posterior and (ii) tightens an
upper bound on sensory “surprise” (negative log evidence) under the model [11, 26].

In PP/FEP frameworks, perception corresponds to updating internal states (or beliefs) so as to reduce
free energy, while action can be understood as selecting policies that change the sampled sensory input so
as to reduce free energy. This extension to action is often referred to as active inference [4, 11].

The present paper does not require the full technical apparatus of FEP. What matters for the bridge
is the role structure: hierarchical generative models, mismatch signals that drive revision, and preci-
sion/uncertainty as a parameter controlling the balance between top-down expectations and bottom-up
signals. From this perspective, what Hanson called theory-ladenness of observation is exactly the kind of
phenomenon expected when top-down models and precision-weighted mismatch signals jointly shape
perceptual content.

Finally, note how the variational identity connects to model evidence. Since —logp(s | M) is the
negative log evidence, minimizing free energy can be interpreted as a process that (approximately) increases
evidence by improving posterior approximation. This is a formal connection, not a normative vindication
of scientific method: the present paper does not claim that scientific inference is rational because brains
minimize free energy [12, 26]. Accordingly, FEP/PP is treated as a naturalized candidate framework
that can support a level-coherent bridge, while normative assessment remains a distinct philosophical
task [18, 40].

3.5 Anil Seth’s “Controlled Hallucination” and the Role of Precision

A vivid formulation of PP’s philosophical implications is Anil Seth’s claim that perception is a controlled
hallucination [34]. Read charitably (and stripped of rhetorical excess), the slogan highlights a core PP
commitment: perceptual content is generated by top-down predictions under a generative model, while
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sensory signals—weighted by their estimated precision—function as error-correcting constraints that keep

perception tethered to the environment [3, 10, 20].

On this view, perception is not a direct copy of external reality but an actively constructed, hypothesis-
like representation continuously corrected by incoming evidence. The qualifier “controlled” matters:
precision-weighted mismatch signals determine the degree to which predictions dominate perceptual
content and the degree to which sensory input can override those predictions.

Juxtaposed with Section 2, Seth’s slogan can be read as a sub-personal analogue of Hanson’s theory-
laden seeing-as: an observer sees the world as something under a generative model whose high-level
expectations and precision assignments shape perceptual interpretation [4, 11, 20].

3.6 Illusions, Hallucinations, and Delusions: Priors, Likelihoods, and Precision

PP is often motivated by its promise to unify ordinary perception with cases of illusion, hallucination,
and delusion, treating these as “natural experiments” that reveal how perceptual construction depends on
priors, likelihoods, and precision allocation [15, 23, 35].

Classic illusions illustrate the Bayesian moral that perception reflects a balance between prior expec-
tations and sensory likelihoods, modulated by uncertainty and reliability estimates. A crucial point for
the bridge project is that this balance is not fixed. It is regulated dynamically by the estimated precision
of prediction errors at different hierarchical levels [3, 10, 20]. This helps explain why some low-level
illusions cannot simply be “unseen” even when one knows that the stimulus is misleading: in such cases,
the relevant sensory error signals are treated as highly reliable. By contrast, in ambiguous stimuli or
high-level categorization tasks, sensory signals can be treated as less precise, and higher-level expectations
exert proportionally greater influence.

In psychopathology, PP-style accounts have been applied to hallucinations and delusions by emphasiz-
ing aberrant priors and, especially, aberrant precision weighting. Very roughly (and without adjudicating
clinical details), hallucination-like experiences can be modeled as cases in which the precision of relevant
sensory prediction errors is down-weighted relative to top-down expectations, allowing internally generated
predictions to dominate experience, whereas delusion-like fixation can be associated with maladaptive
precision assignment and disrupted updating dynamics [35]. The point for present purposes is structural:
PP provides a principled vocabulary for locating where and how top-down expectations and bottom-up
constraints differentially shape perceptual content.

This perspective also interfaces with the cognitive penetration debate. Firestone and Scholl argue that
many alleged top-down effects on perception can be explained by attention, judgment, or task demands
rather than by genuine changes in perceptual content [9]. PP does not, by itself, settle this debate; but it
offers a graded alternative to binary penetration claims by locating variation in precision assignment and
hierarchical level. In particular, stronger encapsulation is expected in regimes where low-level errors are
treated as highly precise, while theory-ladenness is expected to be more pronounced in regimes where
higher-level priors and precision allocation dominate seeing-as (cf. discriminator D1 in Section 1.12).

These considerations support a bridge-relevant moral: theory-ladenness is not a rare exception but a
general feature of human perception, though its strength and locus vary systematically with precision and

hierarchical organization.
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3.7 Summary: A Computational Understanding of What It Means for the Brain to “See”
the World

In this section, drawing on predictive processing and the Bayesian brain hypothesis, we outlined a compu-
tational framework for understanding what it means for the brain to “see” the world.

The discussion can be summarized as follows:

1. The brain can be modeled as maintaining hierarchical generative models that generate predictions
about sensory input, with mismatch signals driving revision—an architecture often described as
predictive coding and embedded within broader PP interpretations [3, 4, 10, 11, 20, 31].

2. Bayesian inference supplies the formal backbone: posterior estimation depends on priors and
likelihoods, while between-model selection can be articulated via model evidence and model
comparison [1, 12, 21, 26].

3. Prediction errors are typically precision-weighted and distributed across levels; precision allocation
provides a principled locus-of-variation parameter that modulates the balance between top-down
expectations and bottom-up signals [3, 10, 11]. This parameter will later support the bridge discrim-
inators (D1-D3) in Section 1.12.

4. Rather than reducing theories to single numerical priors, the present account treats theories as meta-
level constraints on admissible model space (variables, causal structures, likelihood/measurement
assumptions, and durable precision expectations; Section 1.5) [2, 12, 29, 40].

5. PP-style interpretations of perceptual illusions and atypical cases illustrate how changes in priors,
likelihood assumptions, and precision can yield systematic changes in perceptual content, thereby
supplying a graded alternative to simple penetration/non-penetration dichotomies [9, 15, 35].

Predictive processing thus provides a candidate sub-personal framework for clarifying Hanson’s claim
that observation is theory-laden seeing-as, now articulated in computational terms. However, the corre-
spondence between the philosophical and computational frameworks can remain merely intuitive unless it
is made explicit as a role- and constraint-preserving mapping in the sense of Section 1.4. Accordingly,
the next section (Section 4) advances this project by reconstructing Hanson’s conceptual apparatus in
the formal vocabulary of PP. There, theory-ladenness is recast as an explicit computational structure—
including (i) theory as a meta-constraint on model space, (ii) seeing-as as posterior-guided inference under
precision control, and (iii) observation reports as goal- and context-sensitive report policies rather than

direct probability-to-text mappings.

3.8 Methodological Caution: PP as a Family and Alternative Realizations

Predictive processing and the free-energy principle are best read as a family of modeling strategies rather
than a single, fully established neurobiological theory. For the bridge developed here, we rely only on
weak commitments: (i) perception and learning can be modeled as approximate inference under generative
models, (ii) mismatch signals play a functional revision-driving role, and (iii) uncertainty/precision
modulates the influence of top-down expectations [4, 11].
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This matters because the bridge is not a bet on one neuroscientific doctrine. Even if future work
replaces current PP implementations with a different sub-personal architecture that still realizes these roles
(e.g., alternative hierarchical inference schemes), the bridge claims can be reformulated at the level of
roles and constraints. Conversely, if no credible sub-personal realization can be found for these roles, the
bridge fails—as captured by the explicit success conditions and failure modes in Section 1.4 [5, 22]. For
the corresponding clarification about public scientific theories vs. internal inferential resources (and why
the bridge does not collapse levels), see Section 1.4.

4 A Computational Reconstruction of the Theory-Ladenness of Observa-
tion

Sections 2 and 3 examined, respectively, Hanson’s personal-level account of theory-ladenness and the
sub-personal computational framework of predictive processing. Although these bodies of work originate
in distinct disciplinary contexts, they invite a shared structural reading: perception (and, in science,
observation) is not mere registration but an organized uptake that is sensitive to expectations, explanatory
structure, and revision in the face of mismatch [3, 10, 11, 15, 16, 20].

The aim of this section is to integrate these approaches by making Hanson’s insights computationally
explicit in terms of generative models, (precision-weighted) mismatch signals, priors, posteriors, and
within-model updating vs. between-model selection. The goal is not merely to “translate” Hanson into
scientific vocabulary, but to articulate a bridge hypothesis that is role- and constraint-preserving in the
sense specified by the bridge criteria in Section 1.4.

Importantly, this reconstruction does not reduce Hanson’s personal-level descriptions—concerning
scientists’ reasoning, discourse, and conceptual organization—to the sub-personal computations attributed
to the brain in PP. Instead, the goal is to identify a structural correspondence (arealization relation) between
these levels. In the spirit of Marr’s levels of analysis [27] and Dennett’s relations among stances [7],
the aim is to establish a non-reductive coherence between philosophical and computational descriptions,
consistent with mechanistic accounts of multi-level explanation [5, 22].

In short, this section develops a “Bayesian/PP reading” of Hanson: it maps his philosophical roles
onto computational roles without collapsing the levels.

Notation and scope (roadmap). We use s for sensory/instrumental input, z for latent causes, and M
for a generative-model class; posterior inference is written p(z | s, M). A theory T is modeled (as an
idealized representation of personal-level theoretical constraints) as selecting an admissible region of
model space M C M. Public observation statements are idealized as report options u chosen by
a report policy under goals and contexts (G, (') and community constraints (/N for reporting norms;
I for instrumentation/calibration). This notation is a modeling scaffold for the bridge, not a claim of
personal/sub-personal identity.

4.1 Reinterpreting Theory as Constraints on Admissible Model Space

For Hanson, a “theory” is a high-level conceptual framework that structures how an observer sees the world:
it guides seeing-as and shapes the background network within which observations are interpreted [16].
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Similarly, Kuhn’s notion of a paradigm determines what counts as a salient phenomenon and which

problems and solutions are intelligible [24].

Within PP, the closest computational analogue to this personal-level role is not a single probability
distribution but a family of constraints on the generative models under which inference is carried out. As
reviewed in Section 3, generative models are often hierarchically organized, with upper levels encoding
abstract hypotheses about global structure, causal organization, and invariances [11, 25].

In this paper, we follow the minimal specification from Section 1.5: a theory 7" is modeled as a
meta-level constraint operator that selects an admissible subset of model classes,

Mp C M.

Importantly, this is not an exegetical claim that scientists explicitly represent 7" in this form. Rather, 7" is
an as-if computational representation of the kinds of admissibility constraints that play the personal-level

role of “theory” in Hanson’s sense.

This captures the idea that theories constrain not only numerical priors but also representational
resources, structural assumptions, and measurement models that make priors and likelihoods well-defined
in the first place [2, 12, 29, 40].

Concretely, a theory constrains (at least) the following components:

1. which variables count as plausible candidate causes (V'r);

2. which structures or dependency architectures are admissible (St);
3. which likelihood/noise/measurement families are appropriate (L7);

4. which channels/levels are treated as reliable via durable precision expectations (II7) [3, 10].
Accordingly, the relevant dependency is not theory = prior but:
Theory T' ~~» constraints on M7 (hence on admissible priors, likelihoods, and precision regimes).

This avoids a misleading identification of theories with single numeric priors while still explaining how
theory can shape what is taken to be observed.

This formulation also preserves the two-way constraint that motivates empirical testing rather than
circularity. Theory constrains which models are admissible, but persistent, precision-weighted misfit can
rationally motivate revising those admissibility constraints (cf. C1-C3 and D2 in Sections 1.4 and 1.12).
In this sense, the “direction of dependence” is not one-way: theory conditions inference, and structured
anomaly can force constraint change.

Finally, the Kepler—Tycho contrast can be reconstructed schematically as a difference in theory-
conditioned admissible model spaces: given the same input s, different constraints yield different posteriors

over latent causes,
p(z]s,M) with M € Mg .. vs. p(z|s, M) with M € Mg, .

Hanson’s thesis that observation is structured by conceptual frameworks is thus recast as: observation
is shaped by inference under theory-constrained generative models, including their priors, likelihood
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assumptions, and precision regimes [11, 16].

4.2 Seeing-as as Generative Inference

The core of Hanson’s account of observation is not mere sensory registration but seeing-as: taking
something as something under a conceptual organization [16]. Ambiguous figures illustrate that a fixed
proximal stimulus can support distinct organizations (distinct “ascriptions”).

Within PP, a natural computational analogue of seeing-as is generative inference. Given a generative
model M encoding assumptions about latent causes z and their sensory consequences s, observation
corresponds (approximately) to inferring

p(z | 5, M),

that is, which latent causes best explain the sensory input under the model. In this sense, Gregory’s dictum
that “perception is a hypothesis” can be read as the claim that perceptual content reflects posterior inference
rather than direct copying of stimulus structure [15, 23, 25, 26].

A key refinement, consistent with the bridge criteria and the PP discussion in Section 3, is that posterior
inference is modulated by uncertainty. Precision (estimated reliability) controls the balance between
top-down expectations and bottom-up mismatch signals [3, 10, 11]. Consequently, even for the same s,

observers (or the same observer across contexts) can occupy different posterior regimes:
Same s = different p(z | s, M) under different M, II.

Here 11 is schematic: in standard PP formulations, precision control is level- and channel-dependent, and
it modulates which mismatch signals dominate updating rather than simply scaling a single error term.

Computationally, “seeing as X can be idealized as occupying a posterior state concentrated around
the X -region of latent space (or, more generally, as selecting one mode of a multimodal posterior), while
perceptual reorganization corresponds to a shift in posterior mass across modes.

This provides a bridge-friendly structural correspondence: Hanson’s personal-level seeing-as describes
the role that PP models at the sub-personal level as posterior-guided inference under a generative model,
with the strength and locus of theory-ladenness varying systematically with precision and hierarchical
level (D1) [3, 10, 16].

4.3 Observation Statements as Report Policies over Posteriors

Scope note (perception vs. report). The present account does not require a strong thesis of cognitive
penetration of early vision. Our target is scientific observation as a composite practice that typically involves
(i) hierarchical perceptual inference (seeing-as as posterior-guided estimation under a generative model),
(ii) precision allocation (which determines how “hard” or “soft” the influence of high-level expectations can
be), and (iii) report policies that transform posterior states into public observation statements under goals,
contexts, and norms. Accordingly, even in cases where early perceptual content is relatively encapsulated,
substantial theory-ladenness can arise at higher inferential levels and in the policy-governed transition from
posterior states to publicly evaluable reports [9]. This division of labor follows the three-layer target stated
in the Introduction, which separates early input-processing, higher-level seeing-as (generative inference),
and norm-governed public reporting.
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As discussed in Section 2, observation statements are not neutral reports of raw facts but linguistically
and conceptually articulated claims within a practice [16, 32]. A natural computational idealization is
therefore not that observation statements are probability-to-text readouts, but that they are outputs of a
report policy that selects what to say (and how strongly to say it) on the basis of an agent’s posterior state,

given goals and context.

Let u range over report options (e.g., categorical labels, hedged claims, upper bounds, or withholding
judgment), and let G and C' denote goal and context parameters. A minimal policy-based formulation is:

*

u* = argmax B, ,.(s [ U(u,2; G,C)].

How to read U (epistemic scoring, not hedonic utility). The objective function U (-) is not a psycho-
logical or hedonic utility (comfort, persuasion, etc.). It schematizes a publicly regulated epistemic scoring
function: it encodes which reports are licensed, how strongly they may be stated, and how trade-offs
(informativeness vs. risk of false assertion) are handled under scientific reporting standards. Concretely,
U can be read as encoding epistemic-scoring considerations such as accuracy and calibration (avoiding
false assertion under uncertainty), informativeness (avoiding vacuous hedging), and community-imposed
costs/standards for public commitments. This matters because observation statements are normative acts:
they undertake commitments and license inferences within a shared practice, in the broadly Sellarsian
sense that observation claims occupy positions in a space of reasons rather than merely expressing private
states [32].

Making communal constraints explicit (/V, ). Scientific reporting is constrained by community-
level norms and measurement regimes. Let N denote reporting norms (admissible vocabulary, hedging
conventions, confidence thresholds, error-reporting standards) and let I denote instrumentation/calibration
regimes (accepted measurement models, correction procedures). Then the policy is more appropriately
idealized as:

ut = arg max E.pzls,an U(u, 2 G,C, N, I)],

which links the computational state (posterior structure) to the public observation statement via explicit
communal constraints [2, 12]. Here /N should be read as constraining admissible report options and public
scoring standards, while I fixes the instance-level calibration and measurement pipeline used to instantiate
licensed likelihood families. For explicit boundary rules separating L7 from [ and N from G, C, see

Section 1.6.

Several familiar special cases illustrate how such policies can behave:

* MAP-style reporting: report the most probable label under the posterior.

* Thresholded/hedged reporting: report X only if posterior support exceeds a threshold; otherwise
hedge or withhold.

* Goal-sensitive reporting: the same posterior can yield different verbalizations depending on

whether the goal is archiving, warning, or hypothesis testing.

Toy report-policy class (detection-style). To make the policy form more concrete, let report options
be u € {detect, evidence, upper-bound, withhold}, where (roughly) detect is a categorical detection
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claim, evidence is a hedged claim, upper-bound reports a constraint without detection, and withhold
declines commitment. A minimal epistemic scoring function U (u, z; G, C, N, I') can then include:

* Error-cost trade-offs: asymmetric costs for false positives vs. false negatives (stakes-sensitive via

G,0).

 Calibration / overclaim penalties: penalties for reporting beyond what is warranted by calibration
and uncertainty quantification (linked to I).

* Informativeness: rewards for informative commitments and penalties for vacuous hedging when
stronger claims are warranted.

* Norm penalties: penalties for violating community thresholds, required uncertainty reporting, or
admissible vocabulary (encoded by N).

Here NN fixes which report forms and thresholds are permissible (e.g., “50”-style criteria, mandatory error
bars, and licensed vocabulary for reporting), while I fixes the concrete preprocessing and calibration
pipeline (baseline corrections, instrument settings, and parameterizations) used to instantiate licensed
likelihood families in practice (cf. Section 1.6).

Why this matters for theory-ladenness. Because observers with different admissible model spaces (or
different priors, likelihood assumptions, and precision regimes) can form different posteriors in response to
the same s, they may also produce systematically different observation statements even when the sensory
input is held fixed. Moreover, even holding posterior structure fixed, differences in G, C, N, I can induce
report-level variation (D3) without any commitment to strong early-vision penetration. This preserves
Hanson’s emphasis on linguistic practice while keeping the computational bridge modest: observation
statements are modeled as goal-, context-, and norm-sensitive extractions from posterior states, not as
transparent readouts of theory-free data [9, 16].

4.4 Facts and Data: Two-Tier Stability and Model-Dependence

Hanson claimed that a “fact” is never a piece of naked data but always a conditioned item, stabilized within
a background framework of description [16]. Historical and philosophical work on scientific practice also
emphasizes that stabilized “facts” are not identical with raw data records, but are extracted and secured
through methodological and instrumental practices [2, 6, 24].

To connect this to the bridge framework, it is useful to distinguish (i) data records from (ii) stabilized
report classes. In the present notation, s can be treated as a data-bearing sensory or instrumental input,
while a “fact” in scientific practice corresponds more naturally to a publicly evaluable report type u that is
stabilized across contexts under shared constraints.

Computationally, posterior structure is still central: report eligibility and stability depend on what is
supported by p(z | s, M) under an admissible model. But it is a mistake to identify facthood with posterior
structure alone. Instead, one can idealize scientific facthood as a two-tier stability condition:

* Posterior support (intra-agent / intra-model): a report type u is licensed by an agent’s posterior
state under a model M (and relevant policy constraints).
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* Reproducible stability (inter-agent / inter-lab): the same report type is robustly reproduced across
agents/labs under shared calibration regimes and reporting norms (I, V), and remains stable under
reasonable variations of measurement/noise assumptions (including explicit model checking) [2, 12].

Methodologically, the same toolbox that secures fact-stability also supports anomaly diagnosis: pos-
terior predictive checks and residual diagnostics help distinguish noise-like deviations from persistent
structured misfit that motivates model-class or constraint revision.

This framing preserves Hanson’s insight that facts depend on background frameworks while also
explaining how objectivity is achieved in practice: not by theory-free givens, but by stabilized procedures
for extracting phenomena from data and for regulating public reporting. On this view, “fact” is neither a
private sensation nor a mere posterior state; it is a stabilized public commitment supported by posterior
evidence under communal constraints.

Finally, this is exactly where anomalies become operational. An “anomaly” in the strong sense is
not a single surprising datum but a persistent, structured residual that survives best within-model tuning
and plausible measurement-model repairs, thereby motivating a revision of admissibility constraints
(D2) [2, 12, 26]. This prepares the ground for the multi-tier dynamics developed below.

4.5 The Construction of Causality as Structure in Generative Models

As discussed in Section 2, Hanson treated causality not as a property transparently read off from event
streams, but as a selective organization of events into explanatory relations under a theoretical stand-
point [16]. Which variables count as causes, which links are salient, and which counterfactual contrasts
matter depends on background commitments and explanatory aims.

Within PP and related Bayesian modeling frameworks, directed dependence structure is typically
encoded in the generative model. A schematic hierarchical dependence can be written as

2L, =7 R[—1 7" —7 21— S,

where higher-level latent states generate lower-level states and ultimately sensory input. Hierarchical
Bayesian models of perception provide concrete instantiations of such generative structure [23, 25].

Generative dependence vs. interventionist causation. It is crucial to keep distinct two notions of
“causal structure.” Directed dependencies in a generative model encode a model-relative asymmetry
of generation and conditional dependence; they do not automatically coincide with interventionist or
manipulability notions of causation. Interventionist frameworks (e.g., causal Bayesian networks and
structural equation models) impose additional constraints connecting directed structure to counterfactual
and interventional claims [29, 40]. In this paper, “causal structure” is used primarily in the generative-
model sense appropriate for PP-style explanation: it characterizes how the model organizes explanatory
dependence and prediction. Bridging this to interventionist causation is an important further project, but it
is not required for the present bridge claim about theory-ladenness and the organization of seeing-as and
explanation.

On the present reading, causal explanation corresponds to selectively articulating parts of the generative
structure under a theory-conditioned model space (Section 1.5): to explain is to locate an event within

34



a model’s dependency organization and to identify which latent variables and links do the explanatory
work. This mirrors Hanson’s claim that causal chains are not simply discovered but constructed under a
theoretical stance [16].

4.6 Abduction as Hypothesis Formation, Model Search, and Model Selection

Hanson understood scientific discovery not as passive accumulation of data but as active hypothesis
formation and pattern detection [16]. His reliance on Peirce’s notion of abduction is well known [30], and
later epistemology connects abduction to inference to the best explanation (IBE) [17].

Within a Bayesian vocabulary, abduction can be partly reconstructed as model comparison and
selection: competing models M7, M, ... are compared by their posterior credibility,

p(M; | s) o< p(s | M;) p(M;),

where p(s | M;) is model evidence and p(M;) is a prior over models [12, 26]. In a simplified setting, one
may write
M* = argnR/zllxp(Mi | s).

However, abduction is not merely selection among a fixed list. A central feature of discovery is that the
space of admissible hypotheses itself can change. In the present framework, this corresponds to changes in
theory-level constraints, i.e. revisions of M7 (Section 1.5). Accordingly, the most faithful bridge-friendly
idealization treats discovery as a three-tier process:

1. Within-model updating: hold M fixed and update parameters or latent-state estimates so as to
reduce mismatch (C1; within-model dynamics).

2. Between-model selection: compare alternative models within a fixed admissible space M € Mt
(C2; model comparison).

3. Model-space (constraint) revision: revise theory-level admissibility constraints 7' +— 7" so that
M changes (C3; reorganization of what is admissible as explanation and observation).

This explicit separation is crucial for respecting Hanson’s discovery structure while preserving the
bridge criteria. It also blocks a common objection that Bayesian updating can only describe gradual
change: the framework allows both continuous adjustment within a model, discrete shifts across models,
and (when required) reorganizations of the admissible model space itself [24, 26].

Finally, none of this identifies Bayesian model choice with normative scientific rationality. Although
evidence and complexity trade-offs parallel familiar epistemic virtues, they do not by themselves yield
normative conclusions. The present use of Bayesian/PP structure is explanatory and bridge-oriented, not a
reduction of normativity [18, 40].

4.7 Formulating Hanson’s Theory-Ladenness in Predictive-Processing Terms

On the basis of the correspondences developed above, Hanson’s theory-ladenness can be expressed using
a unified PP vocabulary:
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Theory Meta-level constraint on admissible model space M7 (variables, structure,

likelihood/noise, durable precision expectations)

Seeing-as Posterior-guided inference over latent causes, p(z | s, M)

Observation statement Report policy over posteriors (goal-, context-, norm-, and instrument-
sensitive extraction from p(z | s, M))

Fact Stabilized report type supported by posterior evidence; scientific fact-
hood requires reproducible stability under shared NV, I (data/phenomena
extraction)

Causal explanation Selective articulation of model-relative dependency/causal structure en-

coded in the generative model
Hypothesis formation (ab- Search/selection with multi-tier dynamics (within-model updating;
duction) between-model selection) and, when required, constraint revision (7" +—

T

These correspondences are intended as more than loose metaphors: they specify role-to-role mappings
that can be made explicit in Bayesian terms. As a simplified illustration, one possible report policy is
MAP-style labeling,
UMAP = argmzaxp(z | s, M),

but this is only one policy among many. Thresholded and goal-sensitive reporting, as well as communal
constraints (N, I), are captured by the decision-theoretic formulation in Section 4.3.

To emphasize again: this mapping does not identify the personal level (“Kepler reasoned in this way”)
with the sub-personal level (“the brain computed in this way”). They may be causally related, but they
remain distinct explanatory levels. The claim here is structural correspondence (a realization relation), not
reduction [5, 22].

4.8 Summary: Validity and Limits of the Computational Reinterpretation

This section concludes by summarizing both the achievements and the limitations of the computational
reconstruction.

Achievements: making the correspondence explicit. We reconstructed Hanson’s core roles—observation/seeing-
as, theory, causal explanation, and hypothesis formation—in a computational vocabulary that distinguishes
generative inference, precision-weighted mismatch, report policies, and multi-level revision dynamics.
This clarifies how Hanson’s insights can be rendered as a structured bridge between personal-level patterns
and sub-personal computational roles, while avoiding the slogan theory = prior by treating theories as
constraints on admissible model space [2, 12, 29, 40]. It also sharpens the locus-of-variation story: theory-
ladenness is expected to vary with precision and hierarchical level (D1), and anomalies are operationalized

as persistent structured residuals that motivate revision (D2) [3, 10, 12].

Limitations: idealizations and open gaps. Several limitations remain:

* PP/FEP is a family of modeling strategies rather than a settled neurobiological theory; the present

bridge relies only on weak commitments (Section 3.8) [4, 11].
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* The link between theory-level admissibility constraints and learned conceptual structures remains
incomplete; development, training, and social organization likely matter essentially for how T is
acquired and revised [37].

* The mapping from posterior states to natural-language observation statements is modeled only
schematically via report policies; a fuller account would require further work in pragmatics and
philosophy of language (cf. Sellars on inferential role) [32].

* Generative dependence in PP does not automatically yield interventionist causation; connecting
model-relative causal structure to interventionist explanation remains a further project [29, 40].

* Variational/evidence-based interpretations parallel certain epistemic virtues but do not by themselves
ground normative claims about scientific rationality [12, 18].

These limitations do not undercut the main contribution of this section. They clarify the status of
the proposal: a computationally sharpened, failure-sensitive bridge hypothesis that preserves Hanson’s
personal-level structure while opening a route to explicit modeling.

In the next section (Section 5), we examine how far this framework can go in reconstructing concrete
episodes of scientific discovery, and we assess the prospects and limits of a unified model spanning
philosophy of science, history of science, and cognitive science.

5 A Computational Model of Scientific Discovery

Section 4 provided a computational reconstruction of the theory-ladenness of observation, articulating a
bridge between Hanson’s personal-level roles (seeing-as, observation reports, anomaly, discovery) and
PP/Bayesian sub-personal roles (generative inference, precision-weighted mismatch, report policies, and
multi-level revision). The aim of the present section is to extend that reconstruction from the comparatively
static thesis of theory-laden observation to its dynamic counterpart: a computational model of discovery
and theory change.

The guiding thought is that discovery is not an external add-on to theory-ladenness. Rather, if
observation is inference under theory-conditioned admissibility constraints, then discovery is (sometimes)
the revision of those constraints in response to persistent structured misfit. This section therefore develops
a bridge-friendly account of the theory-ladenness of discovery: how anomalies can drive within-model
retuning, between-model selection, and, when required, revisions of the admissible model space itself (cf.
C1-C3 in Section 1.4).

In Marr’s and Dennett’s sense, the present account is a bridge hypothesis: it specifies a role- and
constraint-preserving structural correspondence between personal-level episodes of discovery and sub-
personal inferential dynamics, without identifying the levels [5, 7, 22, 27].

Scope note (individual vs. community). Predictive-processing models primarily target sub-personal
mechanisms in individual agents, whereas scientific discovery and revolution are also embedded in
community-level institutions, instruments, and norms. Accordingly, we develop the bridge mainly at the
level of individual inferential organization (personal/sub-personal), while treating communal stabiliza-
tion as constraint-bearing inputs rather than as something reduced to neural computation. In the bridge
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framework, communal constraints enter explicitly via [V (reporting norms) and I (instrumentation/cali-
bration regimes), which shape the policy-governed transition from posterior states to publicly evaluable
observation reports and the stabilization of report types as “facts” [2, 12].

5.1 Positioning Hanson’s Account of Discovery: Observation — Anomaly — Discovery

In Patterns of Discovery, Hanson argues that scientific discovery is not a simple extension of data accu-
mulation. Rather, it involves a qualitative shift in which the observer comes to see the world differently,
often prompted by an anomaly that cannot be coherently integrated within the current theoretical orga-
nization [16]. In this respect, Hanson rejects the idea that discovery can be cleanly separated from the
epistemic life of observation, a point reinforced by later historical work on scientific practice [6, Ch. 1].

Hanson’s schematic pattern can be summarized as:

1. Observation: seeing the world under an existing theory (a given seeing-as)
2. Anomaly: a persistent mismatch relative to the expected pattern

3. Discovery: acquisition of a new way of seeing that renders the mismatch intelligible

For Hanson, an anomaly is not merely an irregular datum. Its significance lies in the fact that it resists
integration within the operative explanatory scheme. This is why anomalies must be distinguished from
mere noise, measurement error, or one-off outliers.

In predictive-processing terms, the closest analogue to the anomaly role is not a bare prediction error
at a single time point but a regime of precision-weighted mismatch that persists and exhibits structured
residual patterning (cf. discriminator D2) [10, 11, 12]. For expository purposes one may write

& Ht (St — §t),

but this is a didactic idealization; in standard PP formulations, mismatch signals are distributed across
hierarchical levels and their influence depends on precision assignment (Section 3.4).

An anomaly, in the bridge sense, corresponds to a situation in which mismatch signals remain
persistently salient affer reasonable within-model responses have been attempted (parameter retuning,
measurement-model repair, and precision reallocation; see Section 5.2 below). When such structured
misfit survives, revision pressure shifts from local tuning to model (or model-space) change, matching the
Hanson pattern: observation — anomaly — discovery.

Operational gloss on ‘“‘structured misfit.” In what follows, “structured residuals” refers to misfit patterns
that are stable across best-fitting parameter retuning and plausible likelihood/measurement variants, and
that remain visible under standard diagnostics (e.g., posterior predictive checks and residual analyses),
rather than dissipating as noise under reasonable re-specification. For a short practice-oriented checklist
of diagnostics (posterior predictive checks, residual structure, and robustness to noise-model variants), see
discriminator D2 in Section 1.12.

The PP cycle of inference — mismatch — revision thus offers a formal expression of Hanson’s
dynamic sequence. This remains a structural correspondence between sub-personal inferential dynamics
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and personal-level episodes of surprise, discrepancy, and reinterpretation, not an identity claim. The
bridge target is shared abstract organization, not reduction.

5.2 A Taxonomy of Anomaly Resolution: Parameter, Measurement, Precision, and Con-
straint Revision

To avoid conflating distinct responses to mismatch, we distinguish three “within-model” routes that can
often resolve apparent anomalies without requiring genuine between-model change, before turning to
cases that plausibly require revising admissibility constraints.

Within-model(A): parameter/prior retuning (fixed structure and measurement model). Here the
model class M is held fixed while parameters (or prior settings within the class) are adjusted to reduce
misfit. This corresponds to routine learning or retuning within a stable explanatory framework (normal-
science-like adjustment) [12, 26]. (In schematic terms: #-level retuning within a fixed M and fixed

Lr/1.)

Within-model(B): measurement/noise-model repair (instrument-model revision). Here the target
of revision is not the world-model structure but the likelihood/measurement assumptions, including
calibration regimes I and admissible likelihood families £7. Many dramatic discrepancies dissolve once
the measurement model is repaired or re-specified (cf. the data/phenomena distinction) [2, 12]. This route
is central for diagnosing when “anomaly” is an artifact of the instrument-model interface rather than of the
world-model. (In schematic terms: revisions to £ and/or I with the world-model structure held fixed.)

Within-model(C): precision reallocation and attentional reweighting. Even with fixed structural
assumptions, redistributing precision across levels/channels can change which mismatch signals dominate
updating. This route is especially relevant to cases where the personal-level episode looks ‘“Hansonian”
(surprise and reinterpretation) but no model-class revision is computationally required (failure mode
F1) [3, 9, 10]. In bridge terms, such cases can generate report-level and interpretation-level variation
without reorganizing admissible model space. (In schematic terms: reallocation of II across levels/channels;
distinct from report-policy variation in G, C; N (D3).)

Between-model and beyond: revision of model class and admissibility constraints. When structured
residuals persist across best-fitting parameters, plausible measurement/noise-model repairs, and reason-
able precision reallocations—and especially when the relevant signals are high-precision and robustly
replicated—the misfit plausibly targets the admissibility constraints themselves (e.g., Vr, St), motivating
model-class change and reorganization of what counts as an admissible observation, fact, or explanation
(criterion C3) [12, 24, 26]. This is the bridge-theoretic sense in which an anomaly can be revision-driving

rather than merely inconvenient.

5.3 Reanalyzing Kepler’s Discovery of Elliptical Orbits

One of Hanson’s central historical illustrations is Kepler’s discovery of elliptical planetary orbits [16].
Here we offer a structural reanalysis through the framework of PP and Bayesian inference. The aim is not
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to reproduce full historical detail, but—drawing on standard scholarship in the history of early modern
science [6, 38]—to make explicit the inferential roles at issue in a way that is bridge-friendly.

Throughout, the Bayesian/PP vocabulary is used as an idealizing representational framework for the
structure of Kepler’s reasoning, not as a claim that Kepler literally performed probabilistic calculations.

A strong admissibility constraint: uniform circular motion

By the late sixteenth century, a widely entrenched methodological commitment in European astronomy
favored uniform circular motion: planetary trajectories were expected to be composed of circles (often
implemented via deferents and epicycles), and departures from circularity were typically handled through
auxiliaries rather than by revising the basic orbit-shape assumption [6, 38]. In the notation of Section 1.5,
this functions as a theory-level admissibility constraint restricting the relevant region of model space.

Historically, this commitment functioned less like a soft preference and more like a methodological
constraint on what counted as an admissible basic explanation of planetary motion. The ideal of saving
the phenomena by uniform circular motions was embedded in a package of mathematical intelligibility
conditions, representational habits, and standards of astronomical acceptability: departures from circularity
were typically treated as something to be accommodated by auxiliaries (epicycles, eccentrics, equants,
coordinate choices, and related devices) rather than as a reason to treat non-circularity as an eligible
primitive orbit-shape hypothesis [6, 38].

In bridge terms, this matters because it supports the intended diagnosis of an eligibility regime. Even
if one can retrospectively parametrize “ellipse” as “circle plus an eccentricity parameter,” the historically
operative constraint was that e # 0 was not treated as a live explanatory degree of freedom at the level
of basic orbit shape. Accordingly, what changes in the Kepler episode is not merely the estimate of a
parameter already treated as admissible, but the admissibility status of a structural option: the model space
itself is reorganized so that non-circularity becomes an acceptable basic explanatory form [6, 38].

Schematically, one may represent the restriction as privileging a model regime in which orbit-shape
hypotheses are effectively constrained to circular constructions. Lower-level parameters (epicycles, ec-
centrics, equants, etc.) are then adjusted to fit observational data. The critical point for the bridge is that
“circle” here functions not merely as a parameter value but as an eligibility constraint embedded in a
broader framework of modeling and interpretation.

Persistent structured misfit: the Martian anomaly

Highly precise observational constraints (notably those associated with Mars) resisted accommodation
by standard circular—epicyclic resources [6, 38]. In bridge terms, this is a case where mismatch is not a
one-off deviation but a persistent structured residual pattern.

Computationally, such a case corresponds to a regime in which mismatch signals remain salient
under high effective precision and survive routine within-model responses (A) parameter retuning and (B)
plausible measurement-model repair. The intended diagnosis is not simply “large error,” but structured
misfit robust to best within-model tuning (D2) [12, 26].
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Model search under shifting loci of error

Kepler’s extended period of trial and correction can be reinterpreted as model search under uncertainty
about the locus of misfit:

* refining parameters within a circle-privileging class Mircle,
* exploring eccentric-circle and epicyclic variants within that class,

* reconsidering whether the admissibility constraints themselves should be revised.

Episodes in which Kepler discovered and corrected computational mistakes illustrate the within-model
reassignment of error loci (procedure vs. data vs. measurement assumptions), while the eventual move to
ellipses illustrates a shift in admissibility constraints [38].

A potential objection (nested models) and the intended reply. A statistical worry is that “circle vs.
ellipse” looks like a nested-model case: a circle is a limiting case of an ellipse (e.g., e = 0). Our point,
however, is not a claim about what Kepler explicitly parameterized. Rather, the historically entrenched
commitment functioned as a methodological eligibility regime: non-circularity was treated as ineligible as
a basic explanatory form, with departures managed via auxiliaries. Representing this as a hard restriction
on admissible model space (Section 1.5) captures the bridge-relevant structure: relaxing the eligibility
constraint so that e # 0 becomes admissible constitutes a revision of admissibility constraints (a change
in M), not merely estimation of a parameter value within a fixed regime [6, 38] (cf. Appendix A for a
minimal nested-model formalization).

Table 2: Constraint-change diagnosis in the Kepler case (schematic).

Component Before (circle-privileging regime) After (ellipse-admissible regime)

Vr (variables) Orbit-shape hypotheses effectively re-

stricted to circular constructions; devia-

Orbit-shape hypotheses expanded so that
eccentricity becomes an admissible ex-

St (structure)

Lr (likeli-
hood/measure-
ment)

II7 (precision ex-
pectations)

tions treated as auxiliaries

Admissibility constraint strongly favors
e = ( as the only eligible basic structure;
“ellipse” not treated as eligible geometry

Misfit partly interpretable as noise or pro-
cedural/instrumental artifacts under fa-
vored circular constructions

Tolerance for discrepancy can keep mis-
fit within auxiliary repair; key streams
may be treated as less diagnostically de-
cisive

planatory variable

Constraint relaxed: e # 0 becomes eli-
gible; structure permits focal geometry
and offset relations

Measurement assumptions tightened and
checked; persistent residuals treated as
model-relevant structure rather than dis-
missible noise

High precision assigned to key con-
straints makes structured residuals
salient and revision-driving

The point of this diagnosis is not that Kepler explicitly manipulated these components, but that the

historical shift can be represented as a change in admissibility constraints: the transition is from treating
e = 0 as effectively mandatory to treating e as a live explanatory degree of freedom. This is why the shift
is “between-model” in the methodological sense relevant to theory-ladenness: it changes what counts as
an eligible explanation and thereby reorganizes observation and facthood.
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Adopting the ellipse: model comparison under revised admissibility constraints

Kepler ultimately adopted the model according to which planetary orbits are ellipses with non-zero
eccentricity (e # 0). In Bayesian notation, this can be represented schematically as selecting the model
with highest posterior credibility within the admissible space:

M* =arg max p(M|s) o p(s|M)p(M),

where p(s | M) is model evidence (marginal likelihood) and p(M) is a prior over model classes [12, 26].

Despite strong antecedent preference for circular constructions, the ellipse achieved sufficiently greater
evidential support (and explanatory coherence) to shift posterior mass toward an ellipse-admissible regime.
In Hanson’s terms, Kepler acquired a new way of seeing: Mars was no longer seen as a perturbed circle
but as an ellipse [16]. In bridge terms, this corresponds to revising theory-level admissibility constraints
and thereby reorganizing the space of eligible explanations.

Kepler’s case thus illustrates how persistent structured misfit can drive not only parameter adjustment
but also model-space revision. It also highlights that discovery is not a one-directional sequence (‘“data
— theory”) but a feedback process in which expectations guide interpretation while anomaly diagnoses
motivate restructuring [6, 38].

5.4 Reinterpreting Scientific Abduction through Bayesian Inference

Hanson’s account of discovery is grounded in Peircean abduction—hypothesis formation in response to
surprising facts [16, 30]. Harman’s influential notion of inference to the best explanation (IBE) can be
seen as a modern restatement of the abductive pattern [17].

Within Bayesian inference, the selection aspect of abduction can be made explicit:
p(M | 5) o< p(s | M) p(M).

To account for anomalous data s, one may provisionally adopt a model M that achieves high posterior
credibility, balancing evidential fit (model evidence) against prior credibility and complexity trade-offs [12,
21, 26]. In an idealization, the “best explanation” corresponds to a model maximizing p(M | s).

However, abduction is not merely selection among a fixed list. A distinctive feature of discovery
is model search and model construction: the space of admissible hypotheses can change (Section 1.5).
Accordingly, a bridge-friendly reinterpretation treats abduction as a multi-stage process that includes:

1. model-space articulation: specifying (or revising) what is admissible as a candidate model class
M

2. within-space comparison: evaluating candidates by their evidential support and complexity trade-
offs;

3. selection and stabilization: adopting a model and stabilizing associated report practices under
communal constraints (N, I).

This preserves the spirit of abduction while avoiding the over-strong claim that abduction is Bayesian
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model selection. Bayesian structure captures a core constraint pattern (fit, complexity, and updating),
while leaving room for the creative and socially mediated aspects of hypothesis generation.

5.5 Scientific Revolutions as Revisions of High-Level Constraints (Paradigms)

Kuhn’s notion of a paradigm shift can be reinterpreted, within the present bridge framework, as a revision of
high-level admissibility constraints and thus an alteration of model space [24]. Normal science corresponds
to within-model and within-space adjustments under stable constraints; revolutions correspond to changes
in the constraint package.

In the notation of Section 1.5, ordinary change can often be represented as within-model updating:
0« 0 withfixed M € M,

and, more broadly, as selection among models within a fixed admissible space M € M.

By contrast, a revolution involves revising the admissibility constraints:
T — T, hence Mpr — M.

When T’ changes, the space of eligible explanations changes, and with it the organization of seeing-as,
observation reporting, and explanatory practice. Kuhn described this as the world looking different;
Hanson analyzed it as a change in seeing-as [16, 24].

From a PP/FEP perspective, one may also describe such shifts as responses to persistent system-level
misfit: when mismatch cannot be reduced by within-model tuning and plausible measurement-model
repairs, more radical revision becomes pressing [11, 12]. This does not reduce scientific rationality to
free-energy minimization; it offers a computational vocabulary for the role structure (persistent misfit —
constraint revision) that parallels the historical pattern of revolutionary change.

5.6 Connecting Scientific Model Revision with Contemporary AI and Machine Learning

The aim of this brief connection is purely structural: it highlights that the same fit/complexity and misfit-
diagnosis patterns arise in modern model-building practice, without suggesting a reductive identification
of scientific theories with machine-learning models.

Many approaches in contemporary Al and machine learning can be characterized as constructing
models that predict and explain data. Even when methods are not explicitly Bayesian, their dynamics often
exhibit structural similarities to Bayesian learning and model selection (fit vs. complexity, model class
choice, and adaptation under distribution shift) [1, 14, 26, 28].

Relevant structural parallels include:

* Parameter learning within a fixed model class (within-model updating);

* Architecture and hyperparameter search (between-model comparison/selection);
* Regularization as complexity control (often interpretable in Bayesian terms);

* Train—-test mismatch / dataset shift (a practical analogue of anomaly diagnosis under misfit).
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These parallels should be treated cautiously. They are structural, not reductive: scientific theories carry
semantic and normative dimensions, and their evaluation is community-regulated and instrument-mediated.
Still, Bayesian generative modeling provides a useful abstract framework for capturing some of the
inferential role structure that underwrites both machine learning practice and scientific reasoning [26, 37].

5.7 Summary: From the Theory-Ladenness of Observation to the Theory-Ladenness of
Discovery

The theory-ladenness of observation is not merely a static feature of perceptual organization; it deepens in
the dynamics of discovery. If observation is inference under theory-conditioned admissibility constraints,
then discovery is (sometimes) the revision of those constraints in response to persistent structured misfit.

In bridge terms, the key transitions can be summarized as follows:

* Hanson’s pattern observation — anomaly — discovery corresponds to inference under a generative
model = persistent precision-weighted structured misfit = within-model updating, between-model
selection, and (when required) constraint revision 7' — 7" [11, 12, 16].

* The anomaly taxonomy (Section 5.2) distinguishes cases resolved by parameter retuning, mea-
surement/noise-model repair, or precision reallocation from cases that plausibly require revising
admissibility constraints (C3; D2) [2, 10, 12].

» Kepler’s case illustrates how a historically entrenched eligibility regime can be forced open by per-
sistent structured residuals, motivating a shift to an ellipse-admissible model space and reorganizing
what is seen and reported as a fact [16, 38].

* Abduction and IBE can be partially reconstructed as model comparison under evidence and priors,
while preserving the fact that discovery often involves revising the admissible hypothesis space
itself [17, 26, 30].

» Kuhnian revolutions can be represented as revisions of high-level constraint packages (and sometimes
of associated norms/instruments), i.e. (T, N,I) — (T’,N’,I’), rather than as mere parameter
updates [2, 24].

Thus, this section has provided a computationally sharpened, failure-sensitive bridge for the dynamics
of discovery. Discovery is not a matter of “pure data” forcing a new theory. It is a process in which
misfit is diagnosed under a theory-conditioned model space, within-model repairs are attempted, and only
persistent structured residuals motivate more radical revisions of admissibility constraints. In this way,
predictive-processing and Bayesian modeling supply a naturalized role vocabulary for discovery without
reducing normative epistemology or community-regulated practice to sub-personal computation [5, 22].

Section 6 evaluates the contributions and limitations of this approach and outlines prospects for
integrated research across philosophy, neuroscience, and computational modeling.

6 Conclusion

This study has sought to reformulate the classical philosophical problem of the theory-ladenness of
observation, as articulated by Hanson, within the contemporary framework of predictive processing (PP)
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and Bayesian modeling in cognitive science.

Status of the bridge (what it is and is not). The bridge hypothesis defended in this paper is neither a
claim of mechanistic reduction (personal — sub-personal identity) nor an attempt at epistemic justification
(deriving norms of scientific rationality from PP/FEP). Its intended output is more modest and more specific:
it states level-coherent constraints—role- and constraint-preserving conditions under which personal-level
patterns (observation—anomaly—discovery, theory-ladenness, reporting practices) can be jointly modeled
by sub-personal computational roles (hierarchical generative inference, precision-weighted mismatch, and
multi-level revision). Accordingly, if these constraints fail, the correspondence fails; this is why we stated
explicit success conditions and failure modes (Section 1.4) and operational discriminators (Section 1.12).

Section 2 reconstructed Hanson’s analysis of theory-ladenness, emphasizing that observation has the
structure of seeing-as and depends essentially on concepts, language, and background theories [16, 32].
Section 3 surveyed PP-style computational theories of perception, outlining how perception and learning
can be modeled as approximate inference under hierarchical generative models with precision-weighted
mismatch signals [3, 4, 10, 11, 20, 34].

Section 4 made the bridge explicit: seeing-as was modeled as posterior-guided inference under a
generative model; theories were treated not as numerical priors but as meta-level constraints on admissible
model space (Section 1.5); observation reports were modeled as goal-, context-, and norm-sensitive report
policies over posterior states (Section 4.3); and “facts” were connected to stabilized report types supported
by posterior evidence, with a distinction between intra-agent stability and inter-agent reproducibility under
shared instrumentation/calibration and reporting norms (I, V) [2, 12, 26].

Section 5 extended this structure to the dynamics of discovery, articulating (i) a taxonomy of anomaly
resolution (parameter retuning, measurement-model repair, precision reallocation) and (ii) conditions under
which persistent structured misfit motivates between-model selection and, when required, admissibility-
constraint revision 7' — T" (Section 5.2) [12, 16, 17, 24, 26, 30].

Importantly, the slogan “theory = prior” is not endorsed. Theories are semantic and normative struc-
tures; they are not literal probability distributions. The intended claim is instead: insofar as theories
and paradigms shape observation at the personal level, one may model their sub-personal realization as
constraints on admissible model spaces (including admissible prior families, likelihood/measurement
assumptions, and durable precision expectations) [18, 29, 40]. Accordingly, theory change is best decom-
posed into (i) within-model updating, (ii) between-model selection within a fixed admissible space, and
(iii) when required, revision of admissibility constraints 7"+ T” (hence M — Mq).

Scope note (individual vs. community). Predictive-processing models primarily target individual sub-
personal mechanisms; scientific objectivity and stabilization also depend on community-level institutions,
instruments, and norms. In the present bridge framework, communal constraints are not reduced to
neural computation but enter explicitly as constraint-bearing inputs via /N (reporting norms) and [
(instrumentation/calibration regimes), which shape the policy-governed transition from posterior states to
publicly evaluable observation reports and the stabilization of report types as “facts” [2, 12].

Explanatory payoffs (recap). To highlight what the bridge adds beyond mere restatement (cf. Sec-
tion 1.11), the present framework yields several modest but substantive payoffs:
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Empirical and methodological touchpoints. The bridge is not merely interpretive: it yields operational
touchpoints for where theory-ladenness should vary (D1), how strong anomalies can be diagnosed (D2),
and how report-level variation can dissociate from perceptual content (D3) (Section 1.12).

* a principled locus-of-variation story via precision allocation (where theory-ladenness is likely to be
“hard” vs. “soft”) [3, 10];

* a failure-sensitive, multi-tier diagnostic for mismatch episodes: when discrepancies are resolvable
by within-model routes (parameter retuning, measurement repair, precision reallocation) versus
when they motivate between-model selection or constraint revision (Sections 1.4, 5.2) [12, 26];

* a minimal action-oriented model of observation statements as report policies over posterior states,
explicitly sensitive to goals, contexts, and communal constraints (/V, I), rather than probability-to-
text readouts [2, 32].

6.1 Summary of Contributions

The main contributions of this study can be organized under three headings:

1. A computational reinterpretation of the theory-ladenness of observation

Hanson’s seeing-as was reconstructed as posterior-guided inference under a generative model.
Theoretical background was modeled not as a single prior but as a meta-level constraint on admissible
model space (variables, structures, likelihood/measurement assumptions, and durable precision
expectations; Section 1.5). Observation reports were modeled as outputs of report policies over
posterior states under goals, contexts, and communal constraints (G, C, N, I'; Section 4.3). “Facts”
were treated not as posterior states as such, but as stabilized report types supported by posterior
evidence and secured via reproducibility under shared calibration and reporting regimes [2, 12, 16,
26].

2. A predictive-processing reconstruction of anomaly roles in discovery

Scientific anomalies were reconstrued not as single surprises but as persistent, precision-weighted
structured misfit regimes, diagnosed after reasonable within-model responses (parameter retuning,
measurement/noise-model repair, and precision reallocation) have been attempted (Section 5.2) [11,
12]. Kepler’s adoption of elliptical orbits was analyzed as a constraint-change episode in which
a historically entrenched admissibility regime was forced open by persistent residual structure,
motivating a shift to an ellipse-admissible model space [6, 16, 38].

3. A unified computational account of theory change and revolutions as constraint revision

Kuhnian paradigm shifts and Hansonian transformations in seeing-as were modeled as revisions
of admissibility constraints and reorganizations of the space of eligible models (7" — T”, hence
M7 — M), often accompanied by shifts in instrumentation and reporting regimes ((7', N, I) —
(T',N',I")) [2, 6, 24]. This analysis distinguished continuous within-model updating from discrete
between-model transitions and, when required, model-space (constraint) revision within a single
Bayesian role vocabulary [12, 26].
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Taken together, these contributions integrate Hanson-style theory-ladenness, Peircean abduction,
and Kuhnian theory change into a single, failure-sensitive bridge framework grounded in contemporary
computational cognitive science.

6.2 An Integrated Understanding of Observation, Theory, and Perception

This study has argued that observation, theory, and perception need not be treated as independent layers.
For the purposes of the bridge model, they can be fruitfully understood as roles within a hierarchy of gen-
erative inference: abstract background constraints shape admissible models; intermediate representational
organization supports seeing-as and categorization; and lower-level sensory signals constrain inference via
precision-weighted mismatch [3, 10, 11, 25, 31].

A key clarification is that this is a structural correspondence, not a one-to-one identity of personal-level
theories with neural states. At the computational level, seeing-as can be idealized as posterior-guided
inference under an admissible model:

p(Z‘S,M)O(p(S|Z,M)p(Z|M), MGMT,

where theory T constrains admissible model classes M rather than being identified with any single prior.

In Hanson’s canonical example, Kepler and Tycho share the same proximal input s but, under different
admissibility constraints, occupy different posterior regimes and hence different seeing-as:

Same s = different p(z | s, M) (under different M, IT).

Likewise, illusions and hallucinations can be understood as systematic outcomes of the balance among
priors, likelihood assumptions, and precision weighting, suggesting that “pure observation” is unlikely to
provide a theory-free baseline for scientific purposes, even when early perceptual processing is relatively
constrained [15, 23, 35].

The bridge also clarifies why observation statements are not transparent readouts of posteriors. Obser-
vation reports are modeled as policy-governed public commitments, sensitive to goals and contexts and
constrained by communal norms and measurement regimes:

u* = argmax B, s U(u,2; G,C, N, I)],

u
capturing Hanson’s and Sellars’ insistence that observation claims belong to a norm-governed practice
rather than to a myth of the given [2, 16, 32].

Finally, PP accounts of precision offer a principled way to reframe debates on cognitive penetration.
High precision assigned to low-level features can yield robustness against top-down influence, helping
to explain why some illusions persist even when one ‘“knows better,” while ambiguity and higher-level
interpretation can remain more theory-sensitive. This yields a graded alternative to binary penetration/non-
penetration claims [3, 9, 36].
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6.3 Scientific Discovery and the Structure of Model Revision

This study has also argued that scientific discovery is not merely an accumulation of observations, but is
characterized by recurrent cycles of model-based interpretation and revision. At the level of roles, the core
cycle can be expressed as:

Inference under M € My — mismatch diagnosis — revision (within/between/constraint).

Kepler’s case illustrates how discovery can be represented (as an idealization) in terms of Bayesian
model comparison and selection under historically structured admissibility constraints [6, 12, 38]. Anoma-
lies that trigger discovery correspond to persistent, precision-weighted structured residuals that survive
best within-model tuning and plausible measurement-model repairs (D2) [2, 12].

Peircean abduction and IBE can be partly reconstructed within this vocabulary. Bayesian model
comparison makes explicit one constraint pattern:

p(M | s) ocp(s | M) p(M),

but discovery typically involves not only selection among a fixed list but also model search and, when
required, admissibility-constraint revision 7' — T" (hence My — M) [17, 26, 30].

From this standpoint, scientific change can be summarized as follows:

* mismatch episodes are diagnosed via a taxonomy of within-model routes (parameter retuning,
measurement/noise-model repair, precision reallocation) versus more radical change (between-
model selection and constraint revision) [12, 26];

* hypothesis formation is model search and construction constrained by admissibility conditions, not
merely parameter estimation within a fixed class [17, 30];

* discovery occurs when revision yields an inferentially and methodologically stabilized way of
seeing-as and reporting, often reorganizing the space of admissible observations and explanations
(C3) [16, 24];

* revolutions involve revisions of constraint packages and associated practices, schematically (7', N, I) +—
(T, N', I'), reshaping observation, explanation, and the interpretation of data [2, 6, 24].

This Bayesian/PP vocabulary is explanatory and bridge-oriented: it articulates role constraints on
how mismatch can drive revision, while leaving normative questions about justification, objectivity, and
progress to distinct philosophical assessment [18, 40].

6.4 Limitations and Future Directions

Although this study achieved a coherent bridge proposal, important limitations remain.

(1) Limits of the computational idealization

PP/FEP should be read as a family of modeling strategies rather than a settled neurobiological theory.
The extent to which biological brains implement Bayesian inference or free-energy minimization remains
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an open empirical question [4, 11, 20]. The present bridge therefore relied only on weak commitments:
approximate inference under generative models, mismatch signals with revision-driving roles, and precision
allocation.

(2) Open gaps: language, norms, and social practice

While we modeled observation reports as report policies, a fuller account would require deeper integration
with pragmatics and philosophy of language. Moreover, communal norms and instrumentation were
treated as explicit constraints (/V, I) on reporting and stabilization rather than being reduced to neural
computation; this is appropriate for a non-reductive bridge, but it leaves open the detailed mechanisms of

institutional stabilization and collective epistemic dynamics [2, 6].

(3) Al as a testbed and a target

Modern Al implements approximate inference, model comparison heuristics, and representation learning,
but robust algorithms for open-ended model-space revision (the analogue of constraint revision 7" +— T")
remain limited relative to human scientific practice [1, 14, 28, 37]. The present framework also clarifies a
target for AI/ML as a testbed: explicit model-space constraints, diagnostics for structured residuals, and
policy-governed reporting under norms provide a concrete analogue of constraint revision in scientific
practice [26, 37].

(4) Prospects for interdisciplinary integration
Despite these limitations, the bridge clarifies concrete points of contact:

* Neuroscience: precision mechanisms, hierarchical inference, and the conditions under which
mismatch becomes revision-driving [11, 25, 31, 35];

* AI/ML: model search and meta-learning for representation and hypothesis revision [14, 26, 37];

* Philosophy of science: reinterpreting historical case studies via explicit role constraints and failure
modes, and reassessing objectivity via data/phenomena extraction and public reporting norms [2, 6,
16, 24];

* Cognitive science and psychopathology: using precision-weighting failures as a principled locus for
atypical perception, linking PP interpretations to broader issues of theory-ladenness [15, 23, 34, 35].

Concluding Remarks

Observation is not mere seeing, but inference arising from the interaction between generative models
and sensory or instrumental data. In this process, theories—modeled as constraints on admissible model
space—shape the form of seeing-as, and observation reports emerge as goal- and norm-sensitive report
policies grounded in posterior states.

Discovery, in an important sense, is the structured management of misfit: persistent, precision-weighted
residual patterns motivate within-model repairs, between-model selection, and, when required, revisions
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of the admissibility constraints themselves. Science, in this view, is a long-term communal enterprise of
model search and stabilization under shared measurement regimes and reporting norms, not a pipeline
from “pure data” to theory.

Four anticipated objections (short replies).

(A) “PP/FEP is speculative; it cannot ground philosophy.” The proposal does not treat PP/FEP as
established truth. It relies only on weak commitments (approximate inference under generative models,
mismatch as a revision-driving role, and precision allocation). When these fail, the bridge fails—hence
explicit success conditions and failure modes (Section 1.4).

(B) “Theory-ladenness is semantic/normative; posteriors cannot capture it.”” We do not identify
semantics with posteriors. Semantic and normative constraints enter via theory as admissibility
constraints on model space and via report policies constrained by communal norms and measurement
regimes (/V, I), while the personal-level description retains its autonomy [2, 18, 32].

(C) “This is judgment, not perception.” The target is scientific observation as a composite practice:
hierarchical inference, precision allocation, and policy-governed reporting. Strong cognitive penetration
of early vision is not required [9].

(D) “Circle is a special case of ellipse; so it is not between-model.” The relevant contrast is a change in
admissibility constraints (an eligibility regime that effectively enforces e = 0 versus one that treats
e # 0 as admissible), i.e., a change in which models are eligible explanations, not merely a change in
an already-admissible parameter value (Sections 1.5, 5.2) [12, 26].

A A Minimal Model-Comparison Sketch: Circle vs Ellipse

This appendix provides a deliberately minimal sketch of Bayesian model comparison for the Kepler case
discussed in Section 5. Its purpose is not to reproduce Kepler’s historical calculations, but to make
explicit—in a toy setting—how (i) persistent structured residual patterns can exceed the capacity of
within-model parameter adjustment and (ii) between-model selection (and, in the spike—slab reading below,
admissibility-constraint revision) can be rationally motivated despite higher model complexity. The sketch
supports the bridge criteria stated in Section 1.4, especially the distinction between within-model updating
and between-model/constraint revision (cf. Section 5.2).

Scope of the toy sketch. The appendix is designed to make one structural point explicit: why persistent
structured misfit can rationally favor relaxing an eligibility constraint (here, allowing e # 0) despite
an Occam-style complexity cost. It is not intended as a realistic reconstruction of Keplerian dynamics,
historical data processing, or the details of orbital time-to-angle mappings; those details are bracketed
because they are not needed for the model-evidence/constraint-revision moral.

Data (idealization). Let s = {(¢;,v;)}!_; denote a time-indexed observational record, where each y;

summarizes a measurement of a planet’s apparent position at time ;. For concreteness, take y; € R? (e.g.,
2

Y = (xgl), x;”’) in a fixed coordinate system), though an angular encoding would work as well. We treat
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measurement noise as approximately Gaussian with known scale o. (Allowing o to be unknown changes
details but not the Occam-trade-off moral.)

Generative-model perspective. For each model class M with parameters 6, assume a likelihood p(s |
0, M) and a parameter prior p(6 | M). Model comparison proceeds via model evidence (marginal
likelihood),

p(s | M) = / p(s | 6, M) p(8 | M) db,

and posterior model probability,
p(M | s) < p(s | M) p(M),

where p(M) is a prior over model classes [12, 21, 26].

A note on ‘“anomaly” in the toy setting. In line with discriminator D2 (Section 1.12), we treat an
“anomaly” not as a single large deviation but as persistent structured residual patterns that survive best
within-model fitting and plausible measurement/noise-model variants (cf. posterior predictive checking
and residual diagnostics) [12].

A.1 Two Candidate Model Classes

We compare two idealized model classes.

Model class 1: circular orbit (M ). Let 6. denote parameters (e.g., radius, phase, orientation, and a
crude time-to-angle mapping). A simple geometric parametrization is:

S rcos(wt + ¢)
y(t, 90) = R, (’F sin(wt I ¢)> + Te,

where r > 0 is the radius, w an angular rate, ¢ a phase, R, a planar rotation by angle o, and 7. € R? a
translation capturing coordinate centering. (Any comparable low-parameter “circle + adjustments” family
would serve.)

Assume isotropic Gaussian measurement noise:

n

P(S | 907Mcircle) = HN(yw ?j(tﬁec)’ 02]) .
i=1
Define residuals as
gi(0c) = yi — 9(ti;6).

Model class 2: elliptical orbit (Mcpipsc). Let 0. denote parameters that allow an ellipse:

Q(t§06) =R, <acosu(t) - Ce) + Te, be =av1— 627 Ce = —ae,

be sin u(t)
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where a > 0 is the semi-major axis, e € [0, 1) eccentricity, b, the semi-minor axis, c. an offset that breaks
circular symmetry, 7. € R? a translation, and u(t) is a toy phase parameterization. For minimality one
may take u(t) = wt + ¢; in real Keplerian dynamics the time-to-angle mapping is not linear (Kepler’s
equation), but that dynamical detail is not needed for the model-evidence/Occam point here. Note that this
parametrization recovers the circular case as the special case e = 0 (hence b, = a and ¢, = 0), which
supports the nested-model reading used below.

Assume Gaussian measurement noise:

n

p(s ‘ HeaMellipse) = HN(yza g(tiSHe)a 021) )

i=1

with residuals ;(0.) = y; — y(t;; 6e).

Within-model updating vs. structural mismatch (toy analogue of D2). Within a fixed model class
M, within-model updating corresponds to selecting (or learning) parameters # that improve fit, e.g. by
maximizing p(s | 6, M) (maximum likelihood) or p(# | s, M) (MAP). If, however, residuals retain
systematic structure even at the best-fitting parameters—i.e., ; (éc) remain patterned rather than noise-like
across i—then the discrepancy is not merely parametric but indicates a mismatch in model class. This is

the toy analogue of a persistent anomaly.

Where measurement/noise-model repair would enter (link to within-model(B)). In the main text
(Section 5.2), many apparent anomalies dissolve once the measurement/noise model is repaired. In the
present toy sketch this would correspond to revising the likelihood family (e.g., allowing heteroscedasticity,
correlations, or non-Gaussian tails) or revising calibration assumptions. Only residual structure that
survives such plausible likelihood variants counts as strong evidence for model-class (or constraint)
revision [2, 12].

Precision-weighted error (schematic PP alignment). To align with the PP vocabulary (Section 3), one
may treat the effective discrepancy driving revision as precision-weighted:

where 11; encodes reliability/precision (possibly time- and level-dependent). Here II; is a schematic scalar
weight for simplicity; in full PP formulations, precision control is typically level- and channel-dependent
rather than a single per-datum factor. The key point is that high-precision data make systematic residual
structure harder to dismiss as noise.

A.2 Model Evidence and the Occam Trade-off

Model selection compares Mcircle and Mejjipse via:

p(Mellipse ’ 3) . p(S | Mellipse) ) p(Mellipse)

p(Mcircle | 5) p(S ‘ Mcircle) p(Mcircle)

52



Even if one begins with a strong prior preference for circles (i.e., p(Mcircle) > p(Meuipse)), sufficiently
larger evidence p(s | Meiiipse) can overturn that preference.

Why evidence is not just best fit. Evidence integrates fit over parameter space:

ps | M) = /p<s 0, M) p(0 | M) db,

which implements an Occam-style trade-oft: a more flexible model can fit better, but it pays a complexity
cost because only a smaller fraction of its parameter space yields that fit [12, 26].

Laplace/BIC-style approximation (optional heuristic). Around a posterior mode 0, one may use a
Laplace approximation:

A A k 1
logp(s | M) ~logp(s |6, M)+ logp(@ | M)—|—§log(27r) — §log|H|,

where k is the number of parameters and H is the Hessian of —logp(6 | s, M) at 0. Heuristically, the last
term is an “Occam factor” penalizing overly flexible models unless improved fit is robust [26]. A cruder
but widely used proxy is the BIC penalty, which highlights the same idea: improved fit must compensate
for added complexity. This approximation is included only as intuition for the Occam factor; the bridge
argument does not rely on BIC/Laplace per se, but on the general fact that evidence integrates fit over
parameter space.

Nested-model reading (spike vs. slab on eccentricity; link to admissibility constraints). Because
a circle is a limiting case of an ellipse (e = 0), one can express the contrast as a nested comparison by
treating eccentricity explicitly. A “circle-only” admissibility regime can be idealized as a spike prior
p(e | Meircle) = 6(e), whereas an “ellipse-admissible” regime uses a continuous (slab) prior p(e | Meiiipse )
on [0, 1). Here ) collects all remaining (non-eccentricity) parameters of the orbit/measurement model.
The Bayes factor then compares:

p(s ‘ Mellipse) _ fp(s | 67197 Mellipse) p(€719 ‘ Mellipse) de dl?
p(S | Mcircle) fp(S ’ I, Mcircle) p(19 ‘ Mcircle) dv

BFellipse,circle =

On this reading, the “between-model” shift corresponds to revising the admissibility constraint from a
spike at e = 0 to a slab that allows e # 0. This is a toy formalization of the constraint-revision point made
in Section 1.5: the change is not merely parametric but alters what counts as an eligible explanation.

Interpretive moral for the Kepler case (toy form). First, one performs within-model fitting in Mjrcle.
If residuals remain systematically structured rather than noise-like at best fit (and under plausible mea-
surement/noise-model variants), then the discrepancy is not merely parametric but indicates a mismatch
in model class. Second, one compares evidence for an alternative class Mejjipse. If Meyipse removes the
structured residuals so that residuals are closer to noise (especially under high precision), then its evidence
can dominate even after the Occam penalty, motivating a transition to the new admissibility regime.
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Bridge connection. This appendix illustrates the bridge logic in minimal form: (i) an anomaly corre-
sponds to persistent, precision-weighted structured residual patterns that resist within-model updating (and
plausible measurement repair); (ii) discovery corresponds to adopting a new admissible model class (or
revising admissibility constraints) whose evidence outweighs the old class despite complexity penalties.
This is the minimal computational sense in which the observation—anomaly—discovery pattern can be
rendered as multi-tier revision dynamics consistent with the bridge criteria (Section 1.4).
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