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Abstract

Recent scholarship (e.g., Dewar, Weatherall) challenges the strict elimination of surplus

structure, noting that in geometric theories, quotienting is often mathematically ’hostile,’

yielding spaces that lack the requisite differential structure (e.g., non-Hausdorff manifolds).

We contend, however, that while this skepticism is justified in the geometric domain, it

does not apply to the algebraic structures governing Quantum Mechanics.

In this paper, we propose the Spectral Quotient: a categorical reduction mapping

abstract syntax into a faithful Operational Cogenerator. We demonstrate that for algebraic

theories, the excision of surplus structure is generative rather than destructive.

We validate this constructive reduction across four foundational domains: (1) Sym-

metry, where Cayley’s Theorem grounds groups in permutation; (2) Topology, where

the Kolmogorov (T0) quotient enforces empirical distinguishability; (3) Fields, where

the Banach–Mazur construction guarantees separability; and (4) Quantum Mechanics,

where the Gelfand–Naimark–Segal (GNS) construction derives the Hilbert space as the

necessary quotient of the algebra of observables.

Unifying these results under the Yoneda Lemma, we identify the physical object

with its presheaf of operational outcomes. This establishes a Constructive Structural

Realism, demonstrating that for algebraic and functional theories, the metaphysically

reduced theory is mathematically superior to the sophisticated one.
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1 Introduction

Mathematical physics operates on a fundamental tension: symmetries and states are defined

axiomatically (as abstract groups, manifolds, or C∗-algebras), yet physical computation necessi-

tates concrete representations (matrix groups, coordinate charts, or Hilbert space operators).

Although abstract axioms provide a coordinate-independent framework [Weyl(1952)], they

remain purely mathematical until rules of physical correspondence bridge the gap to empirical

reality.

The central philosophical challenge in this correspondence is the problem of surplus struc-

ture [Redhead(1975)]. Concrete instantiations inevitably introduce mathematical artifacts—

such as the choice of basis in a Hilbert space or a coordinate chart on a manifold—that

do not correspond to physical reality. Distinguishing genuine physical content from these

representational artifacts requires a robust criterion for theoretical equivalence.

1.1 The Point of Contention: Sophistication vs. Reduction

How should a philosopher of physics treat this surplus structure? This question has generated

a sharp divide in the recent literature regarding the trade-off between metaphysical parsimony

and mathematical tractability.

The traditional realist instinct is Reductionism (or strict quotienting): one ought to construct

a physical theory where the state space consists solely of the equivalence classes of the surplus

structure (e.g., X/ ∼). However, recent scholarship, most notably by Dewar [Dewar(2019)] and

Weatherall [Weatherall(2016), Weatherall(2018)], warns that this strategy can be mathemati-

cally ’hostile’ when applied to differentiable manifolds. They observe that in geometric contexts

(such as General Relativity), quotienting a manifold by its diffeomorphism group often yields a

topological space with singularities, stripping the physicist of the local differential structure

required to define field equations. Consequently, they advocate for Sophistication: retaining the
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surplus structure to preserve mathematical tractability, while asserting that physical equivalence

is captured by isomorphism rather than identity.

1.2 The Contribution: The Constructive Quotient

While the ‘Sophistication’ view may remain necessary for purely geometric theories like General

Relativity (where quotients typically induce singularities), this paper demonstrates that it is not

required for the broad class of algebraic and functional theories governing Quantum Mechanics

and Classical Fields. In these domains, the Spectral Quotient provides a rigorous mechanism

for a ‘Constructive Reductionism’ that satisfies metaphysical parsimony without sacrificing

mathematical power.

We contend that the perceived tension between metaphysical parsimony and mathematical

power is largely an artifact of geometric intuition. While the skepticism regarding quotients is

justified in the context of spacetime manifolds—where such operations often induce singularities—

it does not hold for the algebraic and functional theories governing Quantum Mechanics. We

demonstrate that, unlike the geometric quotient of a manifold, the spectral reduction of an

algebra is generative rather than destructive.

We propose a resolution via the Representation Theorem. We argue that when the reduction

of surplus structure is performed via a Spectral Representation (mapping the abstract syntax

into a canonical operational cogenerator), the process is not destructive, but constructive.

• Unlike the geometric quotient of a manifold, the spectral quotient of a C∗-algebra (via

the Gelfand-Naimark-Segal construction) does not produce a singularity; it generates a

Hilbert Space.

• The reduction of a Banach space (via the Banach-Mazur construction) does not break the

vector space; it guarantees its Separability.

Therefore, we argue that the dilemma between parsimony and power is a false dichotomy.

By shifting the framework from geometric objects to categorical representations, we can achieve

a Strict Empirical Reduction (eliminating surplus structure) that simultaneously enhances,

rather than diminishes, the mathematical tractability of the theory.

To demonstrate this, we structure the paper as a dialectical progression:
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1. Thesis (The Canonical Representation): We posit the existence of a faithful functor

from Syntax to Semantics.

2. Antithesis (The Surplus Obstruction): We identify the failure of faithfulness (gauge

redundancy) that fuels the Sophistication argument.

3. Synthesis (The Empirical Reduction): We demonstrate how the Representation

Theorem functions as a “Constructive Razor,” deriving the physical ontology (e.g., the

quantum state space) as the image of the reduction.

1.3 Thesis: The Canonical Representation Hypothesis

The relationship between mathematical form and physical content begins with a distinction

in origin. In the context of discovery [Reichenbach(1938)], the abstract formalism A is rarely

derived strictly from operations. It is often posited via heuristic intuition, symmetry arguments,

or criteria of mathematical elegance. The ubiquity of specific axiomatic systems—groups,

C∗-algebras, Hilbert spaces—raises a foundational question regarding their ontological status:

do these structures possess intrinsic physical necessity, or are they merely convenient accounting

tools?

To bridge this heuristic syntax with empirical reality, we must formalize the two categories

at play:

• The Abstract System (A): The category of mathematical structures (e.g., Grp, C∗Alg,

Diff) encoding the theoretical symmetries and kinematics.

• The Operational Context (C): The category of concrete realizable processes (e.g.,

Hilb, Set, or a category of convex operational states) wherein physical experimentation

or computation can be described.

The core task of mathematical physics is to establish a correspondence between these domains.

We contend that Representation Theorems are the mathematical vehicle for this correspondence.

While Field [Field(1980)] argued for the empirical conservativeness of mathematics, we seek

a more nuanced guarantee: that the abstract syntax is sound with respect to the operational

semantics. We formalize this expectation as the Canonical Representation Hypothesis.
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Definition 1.1 (The Canonical Representation). Let A be a category of abstract structures

and C be a category of operational contexts. The Canonical Representation Hypothesis posits

the existence of a faithful embedding:

Φ : A ↪→ C

The Anatomy of an Observational Comparison. We must rigorously define what it

means to distinguish two processes operationally. We propose that any attempt to verify a

theoretical distinction consists of four structural phases:

1. The Abstract Relation (f, g): We propose two theoretically distinct transitions

f, g : A→ B in the abstract system A.

2. The Concrete Instantiation (Φ): A functor maps these hypotheses to dynamical

processes Φ(f),Φ(g) : Φ(A)→ Φ(B) in the operational context C.

3. The Semantic Target (Ω): The object Ω ∈ C encoding the type of “operational

truth-value” (e.g., {0, 1} or C).

4. The Measurement Probe (k): The configuration of the setup, modeled as a morphism

k : Φ(B)→ Ω.

Abstract System: A B

Operational Context: Φ(A) Φ(B) Ω

f

g

Φ Φ

Φ(f)

Φ(g)

k◦Φ(f)
?
=k◦Φ(g)

k

Consequently, the empirical outcome of a physical process is the profile generated by coupling

the system to the Semantic Target.

Definition 1.2 (Experimental Outcome Profile). Let A ∈ Ob(A). The Experimental Outcome

Profile of A, denoted O(A), is the set of all possible observable outcomes generated by probes:

O(A) := HomC(Φ(A),Ω)
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Constraints on the Semantic Target. For the representation to be well-posed, we require

two axioms governing the Semantic Target Ω:

1. Semantic Compatibility (The Dualizing Object): We cannot meaningfully represent

an abstract system A in an arbitrary context C without a structural bridge. A topological

space may not be correctly representable by a group, nor a quantum logic by a classical

Boolean algebra, without a loss of categorical structure. Ω must be a Dualizing Object

(or “Schizophrenic Object” [Johnstone(1986)]) capable of internalizing the axioms of A.

That is, the contravariant functor of experimental profiles O = HomC(−,Ω) : Cop → Set

lifts to a functor valued in the abstract category A: Õ : Cop → A.

This condition implies that the “outcomes” of experiments are not merely raw data sets,

but naturally form a structure of type A (e.g., the set of measurements on a quantum

system forms an algebra; the set of measurements on a topological space forms a frame).

This ensures the existence of a natural adjoint relationship between the syntax and the

semantics. This is the Axiom of Semantic Compatibility.

2. The Operational Cogenerator Axiom: The Semantic Target must be discerning. We

postulate that any category C serving as an Operational Context is equipped with at least

one object Ω which acts as a Cogenerator for C. That is, for any parallel morphisms

u, v : X → Y in C:

u ̸= v =⇒ ∃k ∈ HomC(Y,Ω) such that k ◦ u ̸= k ◦ v

If the set of probes HomC(Y,Ω) failed to separate operational processes, the context would

contain transformations that are formally distinct yet operationally identical, rendering

the theoretical distinction empirically empty. To prevent this, we enforce the Axiom of

the Operational Cogenerator. This ensures that the “internal logic” of the operational

category has a semantic interpretation visible to the observer.

3. Empirical Discernibility (Faithfulness): The map on morphisms is injective. This

is justified by a methodological application of Leibniz’s Principle of the Identity of

Indiscernibles (PII) [Saunders(2003), French and Krause(2006)]. If f ≠ g in A, but
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Φ(f) = Φ(g), then we are incapable of distinguishing them empirically.

f ̸= g =⇒ ∃k ∈ O(B) such that k ◦ Φ(f) ̸= k ◦ Φ(g)

If Φ were not faithful, the theory would posit kinematic distinctions that are operationally

erased.

4. Theoretical Equivalence (Embedding): The functor is injective on objects.

Φ(A) = Φ(B) =⇒ A = B

If two systems are operationally identical, they must be the same object in the abstract

theory. This prevents the theory from positing ontological distinctions between systems

that are empirically equivalent.

1.4 Antithesis: The Problem of Surplus Structure

If the Thesis represents the structuralist ideal, the Antithesis addresses the operational reality.

As A is often posited via heuristic intuition or mathematical elegance, it frequently over-

describes the physical world. The Canonical Representation Hypothesis is thus falsified for

Φ : A → C in practice by the presence of “ghost” structures in both the objects and morphisms.

Dynamic Redundancy (Failure of Faithfulness). Let Φ : A → C be a functor. There

may be distinct dynamical transitions f, g (f ̸= g) in A that generate identical operational

profiles: Φ(f) = Φ(g). This implies Operational Indiscernibility:

∀k ∈ O(B), k ◦ Φ(f) = k ◦ Φ(g)

If this equality holds for every possible probe k, then f and g are physically identical, de-

spite being mathematically distinct. This corresponds to gauge redundancy, where distinct

mathematical histories yield indistinguishable experimental data.

Ontological Redundancy (Failure of Embedding). The theory may posit distinct physical

systems X, Y (X ≠ Y ) that are operationally identical: Φ(X) = Φ(Y ). This leads to the
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Identification Problem, a physical analogue to Benacerraf’s dilemma [Benacerraf(1965)],

where the choice of representation is underdetermined.

Proposition 1.1 (Underdetermination from Non-Embedding). Let Φ : A → C be a functor. If

Φ fails to be an embedding (is not injective on objects), then there exist distinct X ̸= Y such

that the experimental profiles are identical: O(X) = O(Y ). Consequently, no experiment defined

within the context C can uniquely determine whether the source system is X or Y .

Proof. Since Φ is not an embedding, there exist X, Y ∈ A with X ̸= Y such that Φ(X) = Φ(Y ).

For any probe k : Φ(Y ) → Ω, the set of outcomes is identical. The empirical data are thus

underdetermined with respect to the abstract ontology.

Abstract: X Y

Concrete: Φ(X) Φ(Y )

Observer: Ω

Φ Φ

k
k

Remark 1.1 (Intra-theoretical vs. Inter-theoretical Equivalence). It is crucial to distinguish

this Identification Problem from the Observational Equivalence (Duality), which we will discuss

later. The Identification Problem is an intra-categorical failure: two objects in the same theory

map to the same data (a failure of resolution). Observational Equivalence is an inter-categorical

success: two distinct theories map to the same empirical core (a discovery of duality).

A Prototypical Failure: The Topological Resolution Gap. We anticipate the full

treatment in Section 3, but the case of Topological Spaces serves here as a prototypical failure

mode. Consider the representation of abstract topological spaces Top via the Sierpiński space

S. If the abstract space (X, τ) is not Kolmogorov (T0), distinct points x ≠ y share identical

neighborhood filters. When mapped via the valuation map ev(X,τ) : X → Sτ , these distinct points

collapse into a single profile. The representation fails Faithfulness (the distinct morphisms

1
x−→ X and 1

y−→ X are mapped to identical profiles) and consequently fails Embedding (the

object X is identified with its non-T0 quotient). This “Dark” region represents a mismatch

where the granularity of the syntax exceeds the resolution of the semantics.
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The Structuralist Pivot. The Antithesis leads to a proliferation of surplus structure

[Redhead(1975), Nguyen(2017)]. As we saw above, if the functor Φ is not an embedding,

the theory makes distinctions at the level of syntax that are invisible at the level of semantics.

To resolve this indistinguishability, we adopt the perspective of Categorical Structural

Realism [Awodey(2004), Landry and Marquis(2005)]. We posit that the physical content of

an abstract system A is not defined by its internal constitution, but by its relations with

the Cogenerator Ω. Thus, the cogenerator acts as the filter that separates the “objective”

structural content from the “artifactual” redundancies.

1.5 Synthesis: The Empirical Reduction

How do we resolve the tension between a rich, heuristic formalism (A) and a constrained

operational reality (C)? We do not discard the abstract formalism; instead, we apply the

Representation Theorem as a Razor.

Resolution of Underdetermination. We restore structural parsimony by eliminating the

surplus structure identified in the Antithesis. We posit that the physical content of the theory is

defined entirely by the Experimental Outcome Profiles generated by the specific Operational

Cogenerator Ω.

Critically, this implies that physical ontology is not monolithic; it is context-dependent. By

selecting a specific semantic target (a specific Ω ∈ C), we explicitly define the scope of our

physical inquiry. The move from abstract axioms to concrete operationalism is not merely a

translation, but a specification of a semantic resolution.

The Empirical Reduction Strategy. We now define the constructive procedure to excise

the surplus structure. We apply the Representation Theorem as a methodological sieve to trim

the abstract formalism to the observational limit of the context. We begin with the proposed

representation functor Φ : A → C and seek to extract a canonical representation.

Definition 1.3 (Ω-Empirical Equivalence). Let A be the abstract syntactic category and Ω ∈ C

be the chosen operational cogenerator. We define a congruence relation on the morphisms of A.

Two processes f, g : X → Y are equivalent, denoted f ∼Ω g, if they yield identical statistics for
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all possible probes:

∀k ∈ Hom(Φ(Y ),Ω), k ◦ Φ(f) = k ◦ Φ(g)

This equivalence relation identifies exactly those theoretical distinctions that are invisible via

the target Ω (the “gauge” orbits). We now construct the physical theory by strictly identifying

these indistinguishable processes and objects.

Definition 1.4 (The Empirical Reduction). Let A be the abstract syntactic category and Ω

be a semantically compatible target in the operational context C. The physically realized theory,

denoted AΩ, is the Image Category of the proposed representation, effectively quotienting A

by the observational resolution of Ω.

We define AΩ as the subcategory of C generated by the image of Φ:

• Objects (Ontological Reduction): The objects are the experimental profiles themselves

(sub-objects in C).

Ob(AΩ) := {Φ(A) | A ∈ Ob(A)}

This implicitly identifies any abstract objects X, Y that have identical operational profiles

(Φ(X) = Φ(Y )), thus enforcing the Embedding condition.

• Morphisms (Gauge Reduction): The morphisms are the physical operations induced

by the abstract dynamics.

HomAΩ
(Φ(A),Φ(B)) := {Φ(f) | f ∈ HomA(A,B)}

This implicitly identifies any abstract morphisms f, g that generate indistinguishable

profiles (f ∼Ω g =⇒ Φ(f) = Φ(g)), thus enforcing Faithfulness.

Universality and Observational Equivalence. A natural consequence of this reduction

strategy is the classification of operational contexts by their resolving power. Consider two

physically distinct operational contexts Ω1 ∈ C1 and Ω2 ∈ C2 (e.g., a photon detector vs. a

magnetic flux probe). A foundational question arises: under what conditions do these distinct

physical realizers instantiate the same physical theory?

We define this phenomenon as Observational Equivalence. It posits that two contexts

are empirically indistinguishable regarding A if they induce canonically equivalent empirical
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reductions:

AΩ1
∼= AΩ2

Mathematically, this isomorphism witnesses an equality of kernels: ker(ΦΩ1) = ker(ΦΩ2). The

quotient categories are isomorphic precisely because the contexts induce identical congruence

relations on the abstract syntax A. Physically, this signifies that while the devices differ in

construction, they possess identical informational completeness with respect to the system;

they induce the same “cut” between gauge redundancy and physical content.

Contextual Realism vs. Epistemic Underdetermination. This structural dependence

on the cogenerator Ω necessitates a rigorous demarcation between the skeptical problem of

underdetermination and our positive thesis of contextuality.

• Epistemic Underdetermination is a skeptical stance. It asserts a deficit of knowledge:

that because multiple mathematical structures can save the same phenomena, the agent

is epistemically blocked from accessing the unique “true” ontology of the world.

• Contextual Structuralism is a constitutive stance. It asserts that the physical content

is generated by the relation between the system and the observer. The dependence on Ω is

not a failure of objectivity, but a specification of the modal condition of the experiment.

The quotient operation defined in Definition 1.4 does not discard “hidden” elements of

reality; rather, it purifies the formalism. It excises precisely those theoretical degrees of freedom

that are vacuous within the specified observational regime. Thus, the choice of the cogenerator

Ω does not obscure the ontology; it collapses the gauge orbit, upgrading the theory from

indeterminate syntax to determinate semantics.

Example: The Aharonov-Bohm Effect and the Latency of Structure. The necessity

of retaining the “surplus” structure in the parent category A—rather than discarding it

immediately via an aggressive Occam’s Razor—becomes evident when we consider the stability

of the theory under refinements of the operational cogenerator. Consider the ontological status

of the electromagnetic potential connection one-form A.

1. The Semantic Target ΩLocal (The Curvature Limit): Consider an operational

context where the cogenerator Ω is sensitive only to local kinematic forces (e.g., a classical
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test body governed by the Lorentz force law). The observable profile is determined

entirely by the field strength tensor F = dA. In this regime, the representation functor

Φloc is not an embedding for connections; it identifies all potentials A,A′ such that

dA = dA′. Consequently, the potential A is relegated to the status of pure gauge

surplus—a mathematical artifact with no ontological weight.

2. The Semantic Target ΩGlobal (The Holonomic Limit): If we refine the context

to include phase-sensitive probes (e.g., interferometry on a non-simply connected man-

ifold), the cogenerator Ω becomes sensitive to global topology. The observable profile

now depends on the holonomy of the connection, exp
(
i
∮
γ
A
)
, rather than merely its

local curvature. Here, the potential A (modulo gauge transformations) is “resurrected”

from surplus to essential structure, as it encodes physical data invisible to the local

probe [Aharonov and Bohm(1959)].

Crucially, if we had treated the reduction in ΩLocal as an absolute metaphysical verdict, we

would have excised the connection A from our ontology entirely. We would subsequently lack

the syntactic vocabulary to formulate the Aharonov-Bohm effect when the context expanded.

The abstract reservoir A retained A as a syntactic possibility, allowing the physical theory to

distinctively map the holonomy once the operational context possessed the requisite resolution.

The “surplus” of one era becomes the “structure” of the next, validating our dialectical approach:

A provides the reservoir of formal possibility (Thesis), while Ω determines the specific horizon

of empirical reality (Synthesis).

Alternative Strategies and the Gribov Obstruction. While one could formally proceed

via categorical localization (inverting the weak equivalences f ∼Ω g) followed by a skeletal

reduction to establish an abstract equivalence, we consciously reject this geometric strategy in

favor of the Spectral Representation. The skeletal approach—attempting to select a unique

representative object for each gauge equivalence class—is tantamount to constructing a global

gauge-fixing section. In rich non-Abelian theories, this strategy is fatally undermined by the

Gribov Ambiguity [Gribov(1978), Singer(1978)]. As Singer demonstrated, the configuration

space often possesses a non-trivial topology that prohibits the existence of a continuous global

section; the “skeleton” cannot be consistently defined without coordinate singularities.
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Our approach sidesteps this topological obstruction entirely. By defining the physical

theory as the Image Category inside C (the range of the functor), we operationalize the

algebra of observables directly. We do not attempt to “slice” the redundant abstract space;

rather, we characterize the system solely by its dual “spectral” shadow on the Semantic Target.

This ensures that our construction is manifestly gauge-invariant by definition, explicating the

geometric ‘state space’ (the Spectrum) dual to the algebraic ‘observables’ without incurring the

topological debts of a geometric quotient.

1.6 Roadmap of the Paper

The remainder of this paper applies this dialectical framework to four foundational domains of

mathematical physics. Section 2 examines the algebraic prototype, demonstrating how Cayley’s

Theorem grounds abstract groups in the category of Sets. Section 3 investigates Topology,

identifying the Sierpiński space as the operational cogenerator that enforces the T0 separation

axiom. Section 4 extends this to Classical Fields, where the Banach-Mazur theorem resolves the

tension between abstract vector spaces and continuous signals. Section 5 addresses Quantum

Mechanics, interpreting the GNS construction as the quotient of the algebra of observables

by the Gelfand ideal. Finally, Section 6 unifies these case studies, arguing that the Yoneda

Embedding constitutes the categorical formalization of the Operational Reconstruction itself.

2 Case Study I: The Algebraic Prototype (Groups)

We now apply the general dialectical framework of Section 1.3 to its most elementary instantia-

tion: the theory of symmetry. Cayley’s Theorem serves not merely as a mathematical result,

but as the operational prototype for the Canonical Representation Hypothesis. It exemplifies

the claim that abstract axioms are not arbitrary inventions, but are validated through a faithful

embedding into a canonical operational object.

We summarize the structural correspondence in Table 1.
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Concept Abstract Syntax (A) Operational Semantics (C)

Theory Grp (Abstract Groups) Set (Distinguishable States)

Object G (A Formal Group) XG (A Structured Set)

Dynamics Group Multiplication Φ(G) ⊆ Sym(X) (Permutations)

Cogenerator — Ω = {0, 1} (The Subobject Classifier)

Probe — k : X → {0, 1} (Binary Questions)

Profile Subgroup Lattice Boolean Function Space 2X

Table 1: The dialectical structure of Cayley’s Representation.

2.1 The Abstract Formalism and The Operational Context

In the context of discovery, symmetry is often treated as a algebraic property. We posit the

abstract category Grp as the syntactic structure.

Definition 2.1 (The Abstract Group). An object G ∈ Grp is a set equipped with a binary

operation · : G×G→ G satisfying associativity, the existence of a unique identity element e,

and the existence of a unique inverse g−1 for every g ∈ G.

In this syntactic view, elements g ∈ G are purely symbolic entities governed by algebraic

rules, devoid of intrinsic spatial or dynamical meaning.

To ground this syntax, we turn to the context of justification. Following the operationalist

tradition of Wigner [Wigner(1959)], a symmetry is physically defined not as an abstract algebraic

object, but as a concrete transformation of a state space.

We identify the Operational Context C as the category of concrete state spaces and

reversible transformations. Specifically, we define C ⊆ Set, the category where objects are sets

(distinguishable states) and morphisms are functions.

Remark 2.1 (The Zero-Point of Structure). Why do we choose Set? We posit that the

fundamental primitive of any physical ontology is Distinguishability. A physical state space

requires, at a minimum, the capacity to distinguish one state from another. The category Set

encodes pure distinguishability without assuming auxiliary structures like topology (nearness),

measure (volume), or linearity (superposition). It serves as the “ground state” of mathematical

structure—the simplest possible canvas upon which dynamics can be written. Any more complex

context (such as Hilb or DiffMan) is an enrichment of this underlying set structure.
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Definition 2.2 (Operational Symmetry Group). Let X ∈ Ob(Set) be a state space. The

operational symmetry group corresponds to the automorphism group of the object in the context

C:

AutC(X) := {ϕ : X → X | ϕ is a bijection}

This is the standard symmetric group Sym(X).

2.2 The Semantic Target: The Atom of Distinction

Having established the Operational Context as the regime of pure distinguishability, we must

identify the Semantic Target Ω.

In the language of Set, the fundamental operation is classification. A measurement is an

act of separating the state space into distinct partitions. Therefore, the canonical target is the

Subobject Classifier.

Definition 2.3 (The Operational Discriminator). We identify the Operational Cogenerator Ω

as the Two-Element Set of truth values:

Ω := {⊥,⊤}

Here, ⊥ represents “False” (or Exclusion) and ⊤ represents “True” (or Inclusion).

This object is native to Set and relies on no prior algebraic definitions. Its internal structure

is defined not by a group operation, but by the only non-trivial automorphism available in this

context: the Negation (or Swap) map:

¬ : Ω→ Ω, (⊥ 7→ ⊤, ⊤ 7→ ⊥)

Demonstrating the Cogenerator Axiom. To validate this choice, we demonstrate that

this target satisfies the Operational Cogenerator Axiom using only the logic of indicator

functions.

Proposition 2.1. The Discriminator Ω is a cogenerator in Set.

Proof. Appendix A.1 for the verification of functoriality and faithfulness.
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Demonstrating Semantic Compatibility (Emergence of Structure). Finally, we must

show that Ω is a Dualizing Object. We must explain how the abstract structure of a Group

emerges from this purely set-theoretic substrate.

We observe that the set of all probes HomSet(X,Ω) is isomorphic to the Power Set P(X).

While P(X) is a set, it admits a natural binary operation defined strictly via set-theoretic logic:

the Symmetric Difference.

Definition 2.4 (Operational Composition of Probes). For any two probes k1, k2 ∈ Hom(X,Ω),

identifying subsets S1, S2 ⊆ X, we define their composition k1∆k2 as the probe identifying the

symmetric difference:

S1∆2 := (S1 ∪ S2) \ (S1 ∩ S2)

This operation corresponds to the logical XOR gate, which is constructible entirely from

the elementary set operations of Union, Intersection, and Complement.

Crucially, the tuple (P(X),∆) satisfies the axioms of an abelian group: Associativity;

Identity: The Empty Set ∅ (the probe that returns ⊥ everywhere); and Inverse: Every set is

its own inverse (S∆S = ∅), matching the self-inverse property of reflection.

2.3 Synthesis: The Categorical Turn

We have established the Abstract Formalism (G) and the Operational Context (Set with

cogenerator Ω). However, a formal mapping between them requires resolving a subtle ontological

mismatch. Standard algebraic definitions treat group elements as static entities (members of a

set), whereas physical operations are inherently dynamic processes (transformations). To bridge

this gap, we must execute the Categorical Turn.

The Ontological Mismatch: Static Elements vs. Dynamic Morphisms. In the context

of discovery, symmetry is often conceptualized as a static property. The standard definition

(Def. 2.1) posits a set G where an element g ∈ G is a “noun”—an entity to be enumerated.

Conversely, in the context of justification, a symmetry is a “verb”—an active transformation of

a state space.

To prepare the abstract structure for physical representation, we reify these static elements

into dynamic agents by “delooping” the group [Baez and Dolan(1995)]. We shift our perspective
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from the category of groups (Grp) to the group as a category (BG).

Definition 2.5 (The Delooping of G). Let (G, ·) be an abstract group. The delooping BG is a

category with a single object ∗, where:

• Morphisms: The hom-set HomBG(∗, ∗) is the set G.

• Composition: Morphism composition corresponds exactly to group multiplication:

g ◦ h := g · h.

This shift is philosophically significant. In BG, the element g is no longer a “thing” but

a process acting on the abstract object ∗. This reframing is the necessary prerequisite for

representation: we cannot represent a static element as a physical transformation unless we

first acknowledge its nature as a morphism in the syntactic category [Mac Lane(1998)].

The Representation as a Functor. With the abstract group reformulated as BG, a

representation is no longer a mere mapping of sets, but a structure-preserving map between

categories. The Canonical Representation Hypothesis is thus formalized as the existence of a

functor F : BG ↪→ Set. This functor explicitly resolves the “potentiality” of the single object ∗

into the “actuality” of a structured state space X.

Definition 2.6 (The Representation Functor). A representation of G is a covariant functor

F : BG ↪→ Set. It maps the unique object ∗ to a state space X, and maps each abstract

morphism g to a concrete automorphism ϕg : X → X. Functoriality guarantees that the physical

operations respect the logical structure of the abstract symmetries: F (g · h) = F (g) ◦ F (h).

The Cayley Embedding. Finally, we demonstrate that this framework is operational.

Cayley’s Theorem serves as the existence proof for such a functor. By choosing the state space

X to be the underlying set of the group itself (the regular representation), we construct a

functor Φ that is faithful.

Theorem 2.2 (Categorical Cayley Theorem). There exists a faithful functor Φ : BG→ Setiso,

defined by the Left Regular Representation, which maps abstract group morphisms to concrete

permutations. This confirms that the axioms of G are fully realizable within the operational

context of Set.

Proof. Appendix A.2 for the verification of functoriality and faithfulness.
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2.4 The Linear Refinement: From Sets to Hilbert Spaces

The transition from classical combinatorial symmetries to the quantum regime is often mischar-

acterized as a modification of the symmetry group itself. We contend, rather, that it represents

a refinement of the Operational Context. To capture quantum phenomenology, we do not

alter the abstract syntax (BG); instead, we lift the representation from the category of sets

(Set) to the category of unitary spaces (Hilb).

Refining the Cogenerator. In the set-theoretic context, the operational cogenerator was

the Boolean discriminator ΩSet = {0, 1}. This limited experimental outcome profiles to sharp

distinctions (inclusion/exclusion). The hallmark of the quantum context is the expansion of

this target to the complex field:

ΩHilb := C

This shift allows the “truth values” of the theory to support continuous interference and

superposition, rather than mere logical negation.

The Linearization Functor. We formalize this transition via the Linearization Functor,

which systematically upgrades combinatorial data into linear-algebraic structure. This is the

categorical process of “free generation,” transforming a basis set into a vector space.

Definition 2.7 (The Linearization Functor). Let L : Setcore ↪→ Hilb be the faithful functor

defined by free generation:

1. Object Mapping: For a set X, L(X) = ℓ2(X) is the Hilbert space spanned by the

orthonormal basis {|x⟩}x∈X .

2. Morphism Mapping: For a permutation σ ∈ Sym(X), L(σ) is the unitary operator Uσ

defined by its action on the basis elements:

Uσ|x⟩ := |σ(x)⟩

The Quantum Regular Representation. We can now rigorously characterize the standard

quantum representation not as an ad-hoc postulate, but as the canonical linear extension of the

Cayley embedding [Weyl(1952)].
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Lemma 2.3 (Linearization of the Cayley Embedding). The Quantum Regular Represen-

tation Ψreg arises as the composition of the Cayley functor Φ (Def. 2.2) and the linearization

functor L:

Ψreg = L ◦ Φ : BG ↪→ Hilb

BG Setcore HilbΦ

Cayley

Ψreg

L
Linearization

Since the composition of faithful functors is faithful, Ψreg provides a faithful embedding of the

abstract group into the category of Hilbert spaces.

Proof. See Appendix A.3 for the verification of the composition and faithfulness properties.

Philosophical Implication: The Expansion of Resolution. This formulation clarifies

the ontological status of the Hilbert space formalism. The transition L does not introduce

new group-theoretic information; Ψreg distinguishes the same group elements as Φ. Rather, it

provides a linearization of the combinatorial cogenerator.

While the set-theoretic context Set allows only for Boolean outcome profiles (distinguishabil-

ity), the linear context Hilb introduces surplus structure: the capacity for superposition. The

functor L preserves the distinctness of the group elements (Faithfulness) while expanding the

“resolution” of the measurement probes, effectively allowing the theory to access the probabilistic

interference patterns characteristic of quantum mechanics.

3 Case Study II: Topology and Empirical Distinguisha-

bility

If Group Theory formalizes the active transformation of a system, Topology formalizes its

passive observation. Under a rigorous operational interpretation, a topological space is not

merely a collection of points, but a lattice of verifiable properties.

We summarize the dialectical correspondence for topology in Table 2.
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Concept Abstract Syntax (A) Operational Semantics (C)

Theory Top (Topological Spaces) Obs (Observation Spaces)

Object (X, τ) (Space) Φ(X) ⊆ Sτ (Profile Space)

Morphism Continuous Function Commutative Pullback

Semantic Target — S = {0, 1}τS (The Sierpiński Space)

Logic Geometric/Intuitionistic Finite Verification

Constraint — T0 Separation (Kolmogorov)

Table 2: The dialectical structure of Topological Representation.

3.1 The Abstract Formalism

In the context of discovery, a topological space is typically introduced as a set-theoretic structure.

Definition 3.1 (Abstract Topological Space). A topological space is a pair (X, τ), where X is

a set and τ ⊆ P(X) is a collection of subsets (called open sets) satisfying:

1. Triviality: ∅ ∈ τ and X ∈ τ .

2. Finite Intersection: If U, V ∈ τ , then U ∩ V ∈ τ .

3. Arbitrary Union: If {Uα}α∈A ⊆ τ , then
⋃
α∈A Uα ∈ τ .

In this standard formulation, the axioms are often treated as mathematical givens—conditions

imposed for analytic convenience (e.g., to define limits) rather than physical necessity.

3.2 The Operational Desideratum

We seek to ground these abstract axioms in the context of justification. Before selecting the

specific target object that will generate our context, we must first define the nature of the context

itself. Unlike the group-theoretic case where the context was Set (pure distinguishability), the

topological context must encode asymmetric verifiability. The context is not one of sets,

but of observable locales.

We begin by positing a provisional state space S, where each physical detector DU is mapped

to a specific subset U ⊆ S, representing the subcollection of states capable of triggering an

affirmation. However, operationally, we possess no direct access to S; our access is restricted

entirely to the affirmation or indifference of the detectors. We, therefore, abstract away the
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internal states, treating them as a semantic scaffold that is discarded in the formalization.

Consequently, we will define “operational topology” τ not as a property of the system’s intrinsic

states, but strictly as the collection of all admissible detectors. In this framework, τ characterizes

the structural limits of observation—the hierarchy of detector possibilities—rather than the

ontology or configuration of the underlying system.

The definition of “Operational Openness” must also reflect the fundamental asymmetry of

physical measurement: Verification of a state x within a detector region U occurs in finite time,

whereas the failure to observe x does not constructively verify its absence [Brouwer(1923)].

Based on this, we propose the following definition for the physical content of the term

“open.”

Definition 3.2 (Operational Openness as Detectability). A collection of states U ⊆ X is

operationally open if and only if membership in U is a semi-decidable property. That is,

there exists a physical procedure (a detector) DU such that:

• If the system is in state x ∈ U , DU halts and outputs “Yes” in finite time.

• If the system is in state x /∈ U , DU does not halt (it remains silent or loops indefinitely).

Within this detector-centric topology, the asymmetry of τ (arbitrary unions vs. finite

intersections) follows directly from this operational constraint. An infinite array of detectors

{Dα} constitutes a valid union composite detector, as a single affirmative signal suffices to verify

detection. Conversely, an infinite intersection composite detector is operationally non-realizable,

as it would necessitate the simultaneous verification of an infinite sequence of affirmations

[Vickers(1989)].

Definition 3.3 (Operational Topological State Space). An operational topological space (X, τ)

consists of a set of states X and a topology τ ⊆ P(X) (which constitutes a spatial frame),

closed under arbitrary unions and finite intersections.

3.3 The Semantic Target: The Sierpiński Space

Having established that the logic of physical observation is the logic of semi-decidability, we

must select a Semantic Target Ω that encodes this asymmetry.
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The standard Boolean classifier ΩBool = {0, 1} is operationally inadequate because it implies

that both “True” (1) and “False” (0) are symmetrical, observable outcomes. However, as

established above, “False” (non-detection) is not an observable event—it is the absence of an

event.

The following definition realizes the logic of observation as a Sierpiński Space. We must

note the breakdown of the Law of Excluded Middle (P ∨ ¬P ).

Definition 3.4 (Sierpiński Space). The Sierpiński Space is the set {0, 1} equipped with the

topology τS = {∅, {1}, {0, 1}}.

In this space, {1} is open (observable), while {0} is not. This space acts as the target for

the characteristic function of any observable property.

Definition 3.5 (The Characteristic Function). For any subset U ∈ τ , the characteristic function

χU : X → S acts as the measurement probe for the property U , defined as:

χU(x) =


1 if x ∈ U

0 if x /∈ U

Operational Continuity. We define continuity operationally: a transformation f : X → Y

is continuous if it preserves empirical verifiability. That is, for every detector χV : Y → S on

the output, the composition χV ◦ f must be a valid detector on the input.

χV ◦ f = χf−1(V )

By evaluating the composition, we see:

(χV ◦ f)(x) = 1 ⇐⇒ f(x) ∈ V

⇐⇒ x ∈ f−1(V ).

Thus, the composite map is exactly the characteristic function of the preimage:

χV ◦ f = χf−1(V ).
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The operational requirement that “detectors pull back to detectors” is therefore exactly equiva-

lent to the standard topological axiom that “preimages of open sets are open.”

Structural Validation: The Metric Correspondence. This choice of Ω is further validated

by reconstructing it from the abstraction of analysis on metric spaces [Hausdorff(1914)]. Within

the categorical framework, we seek a subobject classifier Ω such that the characteristic map χU

is a morphism in Top if and only if U is open.

χU ∈ HomTop(X,Ω) ⇐⇒ U ∈ τX

Analyzing the preimage constraints necessitates the Sierpiński topology:

1. Affirmation: Since χ−1
U ({1}) = U , the singleton {1} must be open in Ω to ensure

continuity whenever U is open.

2. Negation: The preimage of the “default” outcome is χ−1
U ({0}) = X \ U . Since the

complement of an open set is closed (and not generally open), the singleton {0} must not

be open in Ω to preserve continuity.

These constraints uniquely identify Ω = S as the unique Semantic Target compatible with

the abstraction of metric continuity.

3.4 Products and Finite Observation

To represent the total structure of (X, τ), we consider the indexed collection of all characteristic

maps {χU}U∈τ . This requires a target object capable of encoding the simultaneous truth values

of all possible measurements.

The Universal Observer. Having discarded the intrinsic state space S 3.2, we attempt

to construct the canonical state space from the detectors themselves. We define the universal

target as the product space:

Sτ :=
∏
U∈τ

SU
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where each SU is a copy of the Sierpiński space associated with the observable detector U ∈ τ .

An element of this product space, ϕ ∈ Sτ , represents a total assignment of truth values to the

lattice of affirmable properties. In this view, a “state” is no longer an inaccessible variable, but

a specific, consistent profile of detector responses.

Operational Derivation of the Product Topology. The choice of topology on Sτ is

uniquely determined by the operational requirement that any observable property of the aggre-

gate system must be deducible from a finite number of elementary detections [Vickers(1989)].

We distinguish between two candidate topologies on the product:

• The Box Topology (τbox): Generated by the base of all sets
∏

U∈τ VU , where each VU is

an arbitrary open set in S.

• The Product Topology (τprod) : Generated by the base of sets
∏

U∈τ VU , where VU = S

for all but finitely many indices U .

The selection of the Product Topology is necessitated by the Finitude of Verification. In

the Box Topology, a basic open set could be defined by the simultaneous affirmative detection

of an infinite number of properties (e.g., V =
∏∞

i=1{1}i). Verifying membership in V would

require an infinite sequence of concurrent “Yes” outputs to halt, violating the definition of

an affirmable property. Consequently, the only operationally sound topology is the Product

Topology, where basic open sets are of the form
∏

U∈τ VU with VU = S for all but finitely many

indices.

This also implies the continuity of the projection maps πU : Sτ → S; we can retrieve the

state of any individual detector U . This requires the topology on Sτ to be at least as fine as

the Product Topology.

3.5 The Operational Context: CTop

Having established the abstract formalism, we must define the concrete arena in which physical

symmetries are realized. We take the Operational Context to be the category of Concrete

Observation Spaces, denoted CTop.

In Section 2.3, we analyzed the representation of a single abstract group. We now scale this

approach to represent the entire theory of topology. Our goal is to embed the abstract category
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of topological spaces (Top) into the concrete category of observational profiles (CTop).

Defining the Target Category. Is it meaningful to define a category containing “all possible

observational profiles”? A physical system is operationally defined solely by the totality of

outcomes yielding a binary detection (1) or non-detection (0) across a spectrum of possible

observations. Consequently, we define the objects of CTop as subspaces of powers of the

Sierpiński space S. Just as Set serves as the universe for algebraic structures, CTop serves as

the universe for bit-wise measurability.

Definition 3.6 (Category of Concrete Observation Spaces). CTop is the full subcategory of

Top defined by the following class of objects:

Ob(CTop) =
{
Y ∈ Ob(Top) | ∃ operational topology Λ on some set X,Y ⊆ SΛ

}
The morphisms are the continuous maps restricted from the product topology.

Remark 3.1. Strictly speaking, since Λ ranges over the universe of sets, Ob(CTop) is a proper

class. Thus, CTop is a “large” category, of the same size complexity as Set or Top.

This category is “large” in the set-theoretic sense, but it is operationally restricted: it

contains only those spaces that are fully resolvable by binary observations. To validate this

context, we must verify that our fundamental classifier, the Sierpiński space S, serves as a valid

Semantic Target.

Theorem 3.1 (Operational Cogenerator). The Sierpiński space S is a cogenerator for the

category CTop. This guarantees that for any two distinct states or processes in this category,

there exists a binary measurement capable of distinguishing them.

Proof. See Appendix B.1 for the formal derivation using projection probes.

3.6 The Representation Theorem: Topological Separation

We now arrive at the central challenge of the topological representation: formalizing the mapping

between abstract space and concrete observation. Having defined the operational target category
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CTop as the regime of verifiable measurements, we seek a functor that translates topological

structures into these experimental profiles.

We frame this construction as a dialectical resolution between the abstract capacity of a

space and the concrete limits of observation.

Thesis: The Evaluation Functor. We propose that a topological space is completely

characterized by the simultaneous evaluation of all its open sets. This motivates the definition

of the Evaluation Functor, which maps an abstract space to its “spectral decomposition” in

the target category.

Definition 3.7 (The Evaluation Functor). The topological representation is a functor Φ :

Top→ CTop defined as follows:

1. Object Mapping: For each abstract space (X, τ), Φ(X) is the image of X in the product

space Sτ under the valuation map ev(X,τ) : X → Sτ :

x 7→ (χU(x))U∈τ

2. Morphism Mapping: For each continuous map f : X → Y , Φ(f) is the unique map

between experimental profiles that makes the diagram commute with the pullback of

observables:

Φ(f)(x)V = χV (f(x)) = χf−1(V )(x)

Space X Space Y

∏
U∈τX S

∏
V ∈τY S

S S

f

evX evY

∃!Φ(f)

πU πV

Antithesis: The Failure of Distinguishability. Is this representation faithful? Consider

the object mapping Φ(X). Suppose there exist distinct states x, y ∈ X such that ev(X,τ)(x) =

ev(X,τ)(y). By the construction of the product space, this implies equality in every coordinate:

∀U ∈ τ, χU(x) = χU(y)
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Theoretically, this signifies that x and y satisfy the same set of affirmable properties: x ∈

U ⇐⇒ y ∈ U . Since Φ(X) is defined as the image of the valuation map, such states force the

map X → Φ(X) to be non-injective. Consequently, the concrete representation identifies points

that the abstract theory treats as distinct, resulting in a representation that is not a categorical

embedding.

Synthesis: The Kolmogorov Reduction. We resolve the ontological mismatch by refining

it. The failure of injectivity indicates that the abstract space X carries gauge redundancy :

distinctions in the mathematical set that have no correlate in the physical spectrum.

To resolve this conflict between abstract distinctness and operational indistinguishability,

we must restrict our domain. We demand that the “abstract” difference between points be

grounded in an “operational” difference in measurement. This requirement uniquely identifies

the Kolmogorov Separation Axiom as the necessary condition for physical reality.

Definition 3.8 (T0 Operational Separability). A topological space X is physically realizable

(satisfies the T0 axiom) if the evaluation map ev(X,τ) is injective. Equivalently, for any distinct

x, y ∈ X, there exists at least one observable U ∈ τ that acts as a witness to their distinctness.

Let TopT0 be the category of topological spaces with the T0 property.

Definition 3.9 (Empirical Indistinguishability). Two states x, y ∈ X are empirically equivalent,

denoted x ∼ y, if they yield identical evaluation profiles:

x ∼ y ⇐⇒ ∀U ∈ τ, χU(x) = χU(y)

Definition 3.10 (The Kolmogorov Quotient). The physical configuration space is the quotient

space XKQ := X/ ∼, equipped with the final topology. The projection π : X → XKQ identifies

all indistinguishable points, ensuring that the resulting space satisfies the T0 separation axiom.

Proposition 3.2 (Categorical Reflection). The space XKQ satisfies the T0 separation axiom.

Furthermore, the association X 7→ XKQ defines a functor KQ : Top→ TopT0 known as the

T0-reflection, which is left adjoint to the inclusion functor.

Proof. See Appendix B.2 for the proof.
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This reduction formalizes the transition from abstract redundancy to concrete distinctness.

The Representation Theorem can now be restated as a guarantee that this quotient is always

physically realizable.

Definition 3.11 (The Spectral Embedding Functor). We define the functor Φ : TopT0 → CTop

as follows:

• On Objects: For a T0 space (X, τ), Φ(X) is the image of the evaluation map ev : X → Sτ ,

considered as a subspace of the product space Sτ .

• On Morphisms: For a continuous map f : X → Y , Φ(f) is the unique map induced by

the pullback property of open sets, ensuring the diagram commutes.

Theorem 3.3 (Categorical Sierpiński Theorem). The functor Φ̃ : TopT0 ↪→ CTop constitutes a

faithful categorical embedding.

Moreover, for any space X in TopT0 (equivalently, any Kolmogorov quotient XKQ), the

space is homeomorphic to its spectral image:

X ∼= Φ̃(X) ⊆ Sτ

This isomorphism confirms that the axioms of Topology, once purged of empirical redundancy (via

the T0 constraint), are fully realizable within the Operational Context defined by the Sierpiński

cogenerator.

Proof. See Appendix B.3 for the verification of injectivity and inverse continuity.

Remark 3.2 (Ontological Distinction vs. Structural Equivalence). Although Theorem 3.3

establishes that Φ̃ is also a topological embedding (not merely a categorical embedding), thereby

allowing us to treat a T0 space X and its observational profile Φ̃(X) ⊂ Sτ as mathematically

interchangeable, we maintain an ontological distinction. In the context of our physical motivation,

X represents the abstract locus of existence (the states themselves), whereas Φ(X) represents

the locus of observation (the catalog of operational outcomes). While the functorial isomorphism

guarantees that no structural information is lost by passing to the concrete category CTop,

we conceptually regard Φ̃ as the bridge between the axiomatic theory of the system and its

experimental verification.
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3.7 Generalization: From Logic to Analysis

The Sierpiński embedding (Theorem 3.3) establishes S as the fundamental cogenerator for the

category TopT0 , representing the logical limit of qualitative distinguishability. However, physical

measurement is rarely restricted to binary logic; it generally necessitates distinguishability over

a continuous range of magnitudes.

We now interpret the hierarchy of topological separation axioms (TopT0 ⊃ TopT2 ⊃

TopT3.5 . . . ) not as arbitrary mathematical conditions, but as a Spectrum of Resolution. The

degree to which a space is “physically reasonable” corresponds precisely to its embeddability

into powers of increasingly rich cogenerators Ω.

1. T0 Separation (Logical Distinguishability): The minimal requirement for a faithful

representation into the context of observation CTop is an embedding into a power of the

discrete binary cogenerator S.

X ↪→ Sτ ⇐⇒ X ∈ Ob(TopT0)

This ensures that distinct states possess distinct characteristic profiles {χU}U∈τ .

2. Hausdorff (T2) Separation (Operational Isolation): Binary distinguishability does

not imply the ability to isolate states within disjoint measurement regions. Operationally,

the Hausdorff condition corresponds to the existence of Mutually Exclusive Detectors.

A space is T2 if and only if for distinct states x ̸= y, there exist disjoint open sets U, V

(U ∩ V = ∅) such that x ∈ U and y ∈ V . In the laboratory, this implies we can construct

two detectors DU , DV that cannot be triggered simultaneously by any single state. This

isolation is a prerequisite for the uniqueness of limits and is structurally guaranteed if the

space embeds into a product of Hausdorff cogenerators (such as [0, 1]).

3. Tychonoff (T3.5) Separation (Quantitative Magnitude): To capture the physics

of continuous fields, we must lift the cogenerator from the discrete logical bit S to the

continuous unit interval I = [0, 1]. This yields the Tychonoff Embedding Theo-

rem [Munkres(2000)]. A space X is completely regular (T3.5) if and only if it admits a
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faithful embedding into a Tychonoff Cube:

Φ : X ↪→ [0, 1]C(X,[0,1])

Φ(x) = (f(x))f∈C(X,[0,1])

Operationally, this shifts the definition of a state from a sequence of logical truth values

(“Is the particle in region U?”) to a sequence of intensities (“What is the value of the

field f at x?”). The topology is no longer generated by simple inclusion, but by continuous

functional discrimination.

4. Metrizability (Countable Informational Content): Finally, we consider the con-

straint of informational finitude. By the Urysohn Metrization Theorem, a regular space

with a countable basis is metrizable if and only if it admits a faithful embedding into the

Hilbert Cube [0, 1]N.

X ↪→ [0, 1]N

This represents the limit where the state space is fully characterized by a countably infinite

array of quantitative measurements [Urysohn(1925)]. It serves as the bridge between

general topology and the specific geometry of manifolds used in relativity.

The Transition to Non-Commutative Geometry. The hierarchy above demonstrates

that the topological structure of a system is uniquely determined by the nature of its cogenerator

Ω. Although the transition from S to [0, 1] allows for the modeling of continuous magnitudes,

it remains a purely commutative description—the order of measurement does not alter the

outcome.

However, in quantum mechanics, distinguishability is fundamentally tied to the projective

geometry of Hilbert space. Pure states |ψ⟩ and |ϕ⟩ are distinguishable through transition

probabilities |⟨ψ|ϕ⟩|2. The resulting topology is necessarily Hausdorff, reflecting the analytic

structure of the underlying complex field C. Yet, the logic of these subspaces is non-distributive

[Birkhoff and von Neumann(1936)].

To capture this phenomenology, we must execute one final dialectical shift: moving from

the category of Topological Spaces (sets of points) to the category of C∗-Algebras (algebras of

observables). In this framework, “points” are not primitive entities, but are derived as linear

30



functionals on the algebra. To justify this abstraction, we must identify the final “Concrete

Universal” in our survey: the category of Bounded Operators on Hilbert Space.

4 Case Study III: Functional Analysis and The Logic of

Magnitude

In Section 3, we established that topological distinguishability is modeled by the Sierpiński

cogenerator S. However, physical experiments yield not just logical truth values, but quantita-

tive magnitudes—intensities, energies, and probabilities. This necessitates a transition from

the logical detector {0, 1} to the continuous field F (where F ∈ {R,C}).

Following the operationalist program of Mackey [Mackey(1963)] and Ludwig [Ludwig(1985)],

we reject the primacy of the abstract state vector. Instead, we adopt the dual formalism:

physical states are defined strictly as linear functionals acting on the algebra of observables.

Definition 4.1 (Operational State Space). LetM be the set of physical measuring instruments.

We designate a subsetM1 ⊂M as the calibrated instruments (those with scale ≤ 1). A physical

state is a functional ρ :M→ R. The Operational State Space Σ is the vector space of such

functionals, structured by the following axiomatic constraints:

1. Affine Structure (The Principle of Mixing): The space Σ is closed under convex

combination. For any preparations ρ1, ρ2 ∈ Σ and probability p ∈ [0, 1], the mixture

ρmix = pρ1 + (1− p)ρ2 is a valid state defined by:

ρmix(A) = pρ1(A) + (1− p)ρ2(A) ∀A ∈M.

This affine geometry justifies the treatment of Σ as a vector space over R.

2. Metric Structure (The Principle of Calibration): We induce a norm ∥ · ∥Σ on the

state space via the supremum of signal intensity over the calibrated setM1. For any

ρ ∈ Σ:

∥ρ∥Σ := sup
A∈M1

|ρ(A)|.

We postulate that this assignment satisfies the axioms of a normed vector space:
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• Non-degeneracy: ∥ρ∥ = 0 ⇐⇒ ρ = 0 (Operational Detectability).

• Homogeneity: ∥λρ∥ = |λ|∥ρ∥ (Linear Response).

• Subadditivity: ∥ρ1 + ρ2∥ ≤ ∥ρ1∥+ ∥ρ2∥ (The Interference Limit).

3. Topological Closure (Experimental Refinement): The space Σ is complete with

respect to the metric topology induced by ∥ · ∥Σ. That is, every Cauchy sequence of

preparations (ρn) converges to a unique limit state ρ ∈ Σ. This guarantees that the theory

contains the limit points of all stable approximation procedures.

Remark 4.1 (The Induced Topology on Instruments). The duality between states and mea-

surements is symmetric. Just as instruments define the intensity of states, the set of states Σ

induces a canonical metric topology on the set of calibrated instrumentsM1.

We define the Operational Distance between two measuring devices A,B ∈M1 as the

maximal difference in their expectation values across all normalized states:

d(A,B) := sup
ρ∈Σ

∥ρ∥Σ≤1

|ρ(A)− ρ(B)|

• Physical Interpretation: Two instruments are “close” in this topology if they yield

statistically indistinguishable results for all possible physical preparations.

• Operational Continuity: Consequently, a physical state ρ is not merely a set-theoretic

map, but a uniformly continuous functional with respect to this operational metric.

Since |ρ(A)− ρ(B)| ≤ ∥ρ∥ · d(A,B), small errors in instrument calibration (d(A,B) < ϵ)

guarantee bounded errors in prediction.

This metric structure is the necessary prerequisite for identifying the instrument space with a

topological continuum like [0, 1].

These operational constraints recover the standard axioms of the abstract category:

Definition 4.2 (Abstract Banach Space). A Banach space is a vector space V equipped with

a norm ∥ · ∥ satisfying non-degeneracy, homogeneity, and the triangle inequality, and which

is complete with respect to the induced metric. Let Ban be the category where objects are

Banach spaces and morphisms are bounded linear transformations.
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4.1 Identification of the Semantic Target

We now validate the abstract definition through the Representation Method. We seek a Semantic

Target Ω capable of representing any system satisfying the Banach axioms.

We identify the canonical target Ω as the space C[0, 1]. This is a direct consequence of the

Empirical Refinement condition. We defined the topology of the instrument space K by the

metric of physical response: two instruments t, t′ are “close” if they yield similar readings for

all standard calibration states.

Consequently, for a fixed state f , if the instrument configuration is perturbed by a small

amount (t → t′), the resulting signal must change by a bounded amount (|f(t)− f(t′)| < ϵ).

If this were not true, the state would violate the stability criterion—an infinitesimal error

in calibration would yield a macroscopic jump in the reading. Thus, operational stability

necessitates f ∈ C[0, 1].

This object serves as the Standard Operational Space, providing a direct physical

realization of the axioms in Definition 4.1:

• Instruments as Points: The set of calibrated instrumentsM1 is identified with the

domain K = [0, 1]. Operationally, each point t ∈ K acts as an idealized detector

(evaluation functional) δt, where δt(f) = f(t).

• States as Continuous Signals: The abstract valuation ρ is realized as a continuous

profile f : [0, 1]→ R, interpreting the state as an analog signal rather than a geometric

vector.

• Norm as Peak Amplitude: The operational intensity translates exactly to the supre-

mum norm. The Principle of Calibration becomes the mathematical definition of the

uniform norm:

N(ρ) = sup
A∈M1

|ρ(A)| ←→ ∥f∥∞ = sup
t∈[0,1]

|f(t)|.

Definition 4.3 (The Operational Context CC[0,1]). We define the Operational Context CC[0,1]

as the category of physically constrained signaling systems.

• Objects: The objects are the closed linear subspaces W ⊆ C[0, 1], equipped with the

induced supremum norm.
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– Justification (The Subspace Condition): While C[0, 1] constitutes the universal

ambient space of analog signals, a specific physical system is characterized by its

internal structure. We identify a system not with the total space, but with the kernel

of a set of linear constraints (selection rules) acting on the universal signal generator.

– Justification (The Closure Condition): The subspace W must be topologically closed

with respect to the norm topology (W = W̄ ). By the property of Banach spaces, a

closed subspace of a complete space is itself complete. This ensures that every object

in CC[0,1] independently satisfies the axiom of Experimental Refinement (Definition

4.1, Axiom 3).

• Morphisms: The set of bounded linear operators T :W1 → W2.

Having defined the context, we must verify that our chosen target Ω = C[0, 1] is not merely

an object in this category, but the structural pivot of the entire theory. It must satisfy the

Axiom of the Operational Cogenerator (Axiom 2, Section 1.3).

Theorem 4.1 (Universality of the Signal Space). The object Ω = C[0, 1] is a Cogenerator for

the Operational Context CC[0,1]. This ensures that the context contains no “ghost” dynamics;

any distinct physical transformations T ≠ S can be empirically distinguished by a probe taking

values in the standard signal space.

Proof. See Appendix C.1 for the verification of the separation property using the inclusion

functional.

4.2 The Representation Theorem: Banach-Mazur

We now arrive at the central challenge of the Banach representation: formalizing the mapping

between abstract intensity and concrete signaling. Having defined the Operational Context

CC[0,1] as the regime of physically constrained signaling systems, we seek a functor that translates

Banach structures into these continuous profiles.

We frame this construction as a dialectical resolution between the abstract geometry of the

state space and the concrete limits of the standard instrument.
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Thesis: The Canonical Valuation. We propose that a Banach state is completely char-

acterized by the simultaneous evaluation of all normalized measurement procedures. This

motivates the definition of the Canonical Valuation Functor, which maps an abstract space

to the function space over its dual geometry.

Definition 4.4 (The Valuation Functor). The canonical representation is a functor J : Ban→

CComp (where CComp is the category of function spaces over compact Hausdorff domains)

defined as follows:

1. Object Mapping: For each abstract space V , J (V ) is the image of V in the function

space C(BV ∗) under the evaluation map evV : V → C(BV ∗):

v 7→ v̂, where v̂(ϕ) = ϕ(v)

Here, BV ∗ is the unit ball of the dual space equipped with the weak-* topology. This map

is an isometry by the definition of the dual norm.

2. Morphism Mapping: For a bounded linear map T : V → W , J (T ) is the unique map

induced by the pullback of the dual operator T ∗, ensuring the diagram commutes:

J (T )(v̂) = v̂ ◦ T ∗

Space V Space W

C(BV ∗) C(BW ∗)

BV ∗ BW ∗

T

evV evW

J (T )

dom(ϕ) dom(ψ)

T ∗

Antithesis: The Topological Obstruction. Is this representation operationally realizable?

The immediate target of our valuation is the function space C(BV ∗), yet our valid Operational

Context is restricted to CC[0,1] (subspaces of the standard signal). The unit ball BV ∗ is always

compact (by the Banach-Alaoglu Theorem), but it is not necessarily physically representable

as a linear interval [Rudin(1991)]. If the abstract space V is “too large” (e.g., possessing an

uncountable basis), the dual ball BV ∗ is non-metrizable in the weak-* topology.
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Theoretically, this signifies a Density Mismatch. The “detector array” BV ∗ is too

topologically complex to be mapped onto the standard calibration dial [0, 1] without collapsing

distinct measurements. Consequently, a direct embedding into the Operational Context CC[0,1]

is impossible for such spaces; the complexity of the syntax exceeds the capacity of the semantics.

Synthesis: The Separable Quotient. How do we resolve the tension between a potentially

immense abstract space V and the countable resolution of the operational context? The standard

mathematical approach is to simply assume V is separable. However, dialectically, we must

derive separability from the measurement process.

If the abstract space V is non-separable (e.g., ℓ∞), it contains “dark” degrees of freedom. To

an observer equipped with a physically realizable (countable) set of instruments, these excess

dimensions result in Operational Indistinguishability.

Definition 4.5 (Operational Instrument Set). Let V be an abstract Banach space. An

Operational Instrument Set is a countable subset of the dual, Ψ = {ϕn}n∈N ⊂ BV ∗ , representing

the calibrated detectors actually available in the laboratory.

Definition 4.6 (Ψ-Indistinguishability). Two states v, w ∈ V are empirically equivalent with

respect to the instrument set Ψ, denoted v ∼Ψ w, if they yield identical readings on all available

detectors:

v ∼Ψ w ⇐⇒ ∀ϕ ∈ Ψ, ϕ(v) = ϕ(w)

This equivalence relation partitions the abstract space. The set of states indistinguishable

from the vacuum (0) forms a closed linear subspace called the Dark Kernel:

NΨ = {v ∈ V | v ∼Ψ 0} =
⋂
ϕ∈Ψ

ker(ϕ)

Definition 4.7 (The Physical Quotient). The Physically Realized State Space is the quotient

space VΨ := V/NΨ, equipped with the canonical quotient norm:

∥[v]∥ = inf
z∈NΨ

∥v − z∥

This construction is the functional-analytic dual to the Kolmogorov quotient. Just as T0
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separation forces points to be distinguished by open sets, the Quotient Norm forces vectors to

be distinguished by the energy accessible to the probes.

Proposition 4.2 (Operational Separability). For any abstract Banach space V , the restriction

to a countable instrument set Ψ allows us to define the physical theory on the closed linear span

of the topological duals of Ψ. The resulting effective state space VΨ is a Separable Banach

Space. Consequently, VΨ admits an isometric embedding into the standard operational target

C[0, 1].

Proof. See Appendix C.2 for the proof that the quotient by the kernel of a countable functional

set is always separable.

This completes the reduction. The “surplus structure” of non-separability is exactly the

kernel NΨ. By quotienting it out, we ensure the theory fits the Separability Axiom. We can

now explicitly define the representation functor.

Definition 4.8 (The Banach-Mazur Construction). Let (Bansep,Ψ) be the category of separable

Banach spaces equipped with a fixed operational instrument set Ψ. The Banach-Mazur

Representation is the composition of three structure-preserving maps:

1. Canonical Evaluation (J ): The isometric embedding into the function space of the

dual ball, J : V → C(BV ∗), defined naturally by v 7→ v̂.

2. Cantor Pullback (C∗Ψ): The isometric embedding induced by the instrument-dependent

surjection ψ : ∆ ↠ BV ∗ . This maps the complex signal space C(BV ∗) into the universal

digital space C(∆).

3. Borsuk Extension (E): The linear isometric embedding C(∆) ↪→ C[0, 1], guaranteed

by the universality of C[0, 1] for separable Banach spaces, representing the interpolation

of the digital signal into a continuous analog waveform.

ΦBM := E ◦ C∗Ψ ◦ J

Theorem 4.3 (Banach-Mazur Representation Theorem). The functor ΦBM is a faithful,

isometric embedding. Consequently, for any space V in Bansep, the space is linearly isometric

to its spectral image:

V ∼= Φ(V ) ⊆ C[0, 1]
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This isomorphism confirms that the axioms of Banach spaces, once purged of non-physical

density (via the Separability constraint), are fully realizable within the Operational Context

defined by the continuous signal target.

Proof. See Appendix C.3 for the step-by-step construction of the isometry.

Remark 4.2 (Ontological Distinction vs. Structural Equivalence). Analogous to Remark

3.2, while Theorem 4.3 allows us to treat a separable Banach space V and its signal profile

Φ(V ) ⊂ C[0, 1] as mathematically interchangeable, we maintain the distinction: V is the

abstract vector configuration, while Φ(V ) is the realized analog signal. The Separability

condition ensures that the information content of V does not exceed the channel capacity of

the standard continuum.

5 Case Study IV: The Algebraic Apex (Quantum Ob-

servables)

The Banach-Mazur theorem characterizes the state space (the Schrödinger picture). However,

the modern algebraic approach (the Heisenberg picture) treats the Algebra of Observables as

fundamental. In this framework, a physical system is defined by the structural relations between

measurements—commutation, spectra, and involution—rather than the specific vector space

on which they act [Haag(1992)]. Recent works in algebraic quantum field theory emphasize

that this shift is not merely mathematical, but necessary to resolve conceptual difficulties in

the thermodynamic and classical limits [Feintzeig(2017)].

To formalize this, we identify the necessary operational constraints on the abstract set of

measuring devices A:

Definition 5.1 (Operational Observable Algebra). Let A be the set of physical procedures

(filters, gates, detectors). The Operational Algebra is structured by the following axiomatic

constraints derived from the logic of interaction:

1. Algebraic Structure (The Principle of Composition): Sequential measurement

defines an associative product A · B. The inherent interference of quantum measure-
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ments necessitates Non-Commutativity (AB ̸= BA). The existence of reversible

transformations implies the algebra contains a unit 1.

2. Involution (The Principle of Reality): Physical observables yield real-valued spec-

tra. This requires an involution map A 7→ A∗ (adjoint) such that physically realizable

observables are identified with the self-adjoint elements (A = A∗).

3. Metric-Algebraic Consistency (The C∗-Condition): The metric structure (norm) is

strictly coupled to the algebraic structure. We postulate the C∗-identity:

∥A∗A∥ = ∥A∥2

This ensures that the “magnitude” of an observable is intrinsic to its algebraic properties.

These operational constraints recover the standard axioms of the abstract category:

Definition 5.2 (Abstract Associative Algebra). An associative algebra A over the complex field

C is a structure that simultaneously satisfies the axioms of a vector space and a ring, representing

a system that supports both superposition and sequential composition.Formally, A is a

vector space equipped with a binary product · : A× A→ A satisfying:

1. Associativity: (A ·B) · C = A · (B · C). Operationally, this implies that the sequence of

measurements is grouping-independent.

2. Distributivity: The product distributes over addition:

A · (B + C) = A ·B + A · C

Operationally, acting on a superposition is equivalent to the superposition of the actions.

3. Bilinearity (Scalar Compatibility): The algebraic structure respects the linear scaling

of intensities:

λ(A ·B) = (λA) ·B = A · (λB) ∀λ ∈ C

If the algebra possesses a multiplicative identity 1 (where 1 · A = A · 1 = A), it is a unital

algebra, representing the “transparent” filter that passes all states unchanged.
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5.1 Identification of the Operational Context

We now validate the abstract definition through the Representation Method. We seek an

Operational Context C capable of representing any system satisfying the C∗-axioms.

We identify the Operational Context C as the algebra of Bounded Operators on a Hilbert

Space, B(H). This is a direct consequence of the Interference Condition. If we restricted

ourselves to the commutative target C[0, 1] (as in the Banach case), we would force AB = BA,

thereby erasing all quantum mechanical phenomena (uncertainty relations, superposition). To

preserve the algebraic structure defined in Axiom 1, the target object must itself be non-

commutative.

This object serves as the Standard Quantum Context:

• Observables as Operators: Each abstract element A is realized as a linear operator Â

acting on a vector space of states.

• States as Vectors: The functionals are realized as vector rays |ψ⟩.

• Probability as Projection: The interaction is modeled by the inner product structure

⟨ψ|Â|ψ⟩.

Definition 5.3 (The Operational Context OpH). We define the Operational Context OpH as

the category of concrete operator algebras.

• Objects: The objects are closed ∗-subalgebras of B(H) for some Hilbert space H.

• Morphisms: Isometric ∗-homomorphisms (maps preserving structure and magnitude).

5.2 The Representation Theorem: Gelfand-Naimark

We now arrive at the central challenge: formalizing the mapping between abstract algebraic

relations and concrete operators.

Thesis: The Commutative Ideal (The Gelfand Hypothesis). The instinct of the

physicist is to interpret an “observable” as a function over some state space. This is the

Classical Paradigm: a system is defined by a manifold of microstates X (the phase space),

and physical quantities are continuous functions f : X → C.
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Mathematically, this corresponds to the hypothesis that every C∗-algebra is isomorphic to

a function algebra C(X). For Abelian algebras, this intuition is vindicated by the Gelfand

Representation.

Theorem 5.1 (Gelfand Isomorphism). If A is a commutative unital C∗-algebra, there exists a

compact Hausdorff space Σ (the Gelfand Spectrum) such that:

A ∼= C(Σ)

Proof. See Appendix D.1 for the construction of the spectrum from the algebra’s multiplicative

functionals.

Operationally, the “points” of the spectrum Σ correspond to the pure states (definite

outcomes), and the algebra is merely the catalog of values on these points. In this regime, the

logic of the world is Boolean, and measurement is non-invasive.

Classical Algebra Acomm Function Space C(Phase Space)Gelfand
∼=

Antithesis: The Non-Commutative Obstruction. However, empirical reality refutes

the Commutative Ideal. The existence of Complementary Variables (e.g., Position and

Momentum) implies that the order of measurement matters (AB ̸= BA).

Since function multiplication is inherently commutative (f · g = g · f), no Hausdorff space

X exists such that a non-commutative algebra A can be faithfully represented as a subalgebra

of C(X).

Theoretically, this signifies a Loss of Points. The “state space” of a quantum system

cannot be resolved into a set of simultaneous micro-truths (points in a spectrum) because the

observables cannot be simultaneously diagonalized. The Commutative Ideal fails because it

attempts to squeeze the rich, order-dependent structure of quantum interaction into the flat,

static logic of classical functions. To save the phenomena, we must abandon the Function Space

for the Operator Space.

Synthesis: The GNS Quotient. How do we resolve the tension between the abstract,

non-commutative syntax of the algebra A and the need for a concrete semantic realization in
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B(H)? Dialectically, we must demonstrate that the Hilbert space is not a pre-existing container

for the theory, but an emergent structure derived entirely from the interaction between the

observables and the state.

If we fix a reference state ω (representing a specific preparation procedure or observer

context), the algebra contains redundant degrees of freedom. There exist operations that, while

mathematically distinct, are statistically invisible to this specific observer.

Definition 5.4 (The Gelfand Ideal). Let ω be a state on A. The Gelfand Ideal (or Null

Kernel) is the set of observables that yield zero mean-square intensity in this specific context:

Nω = {A ∈ A | ω(A∗A) = 0}

This ideal functions as the algebraic analogue to the “Dark Kernel” in the Banach analysis.

It represents Operational Indistinguishability relative to the observer ω. The elements of

Nω are the “blind spots” of the state.

To construct a rigorous metric space, we must excise this redundancy. We define the physical

state space not by the raw observables, but by their distinguishable equivalence classes.

Definition 5.5 (The Local Hilbert Space). The Physically Realized State Space for a given

observer ω is constructed by quotienting the algebra by its null ideal and completing the

resulting metric space:

Hω := A/Nω

The inner product structure is not imposed from without, but is induced intrinsically by the

state’s statistics:

⟨[A], [B]⟩ω := ω(A∗B)

This construction yields the GNS Representation. Just as the Kolmogorov quotient

removed “ghost points” to generate a T0 space, and the Banach quotient removed “dark

dimensions” to yield a separable space, the GNS quotient removes “statistically vacuous”

operators to construct a rigorous Hilbert space.

Definition 5.6 (The GNS Functor). Let C∗Alg be the category of abstract C∗-algebras. The

Gelfand-Naimark-Segal (GNS) Representation is the functor ΠGNS : C∗Alg → OpH
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defined by the Universal Direct Sum. To recover the full algebraic structure, we must

aggregate the perspectives of all possible maximal observers:

1. State Selection: Let S be the set of all pure states of A (the maximal resolution

instruments).

2. Local Construction: For each ω ∈ S, construct the local Hilbert space Hω and the

cyclic representation πω(A)[B] = [AB].

3. Global Synthesis: The universal representation is the direct sum over a separating

family of pure states S:

ΠGNS(A) :=
⊕
ω∈S

πω : A→ B

(⊕
ω∈S

Hω

)

Theorem 5.2 (Gelfand-Naimark Representation Theorem [Gelfand and Naimark(1943)]). The

functor ΠGNS constitutes a faithful, isometric ∗-embedding. Consequently, for any abstract

C∗-algebra A, the algebra is isometrically isomorphic to its operator image:

A ∼= ΠGNS(A) ⊆ B(Huniv)

This isomorphism confirms that the axioms of Quantum Mechanics (abstract Observables), once

grounded in the totality of possible states (via the GNS quotient), are fully realizable within the

Operational Context of Hilbert space operators.

Proof. See Appendix D.2 for the step-by-step derivation of the Hilbert space structure and the

proof of isometry.

Remark 5.1 (Ontological Distinction vs. Structural Equivalence). Analogous to Remark 4.2,

while Theorem 5.2 allows us to treat the abstract algebra A and the operator algebra B(H)

as mathematically interchangeable, we maintain the distinction: A represents the intrinsic

logic of the system (Haag-Kastler perspective) [Haag(1992)], while H represents a contingent

representation (Wightman perspective) [Streater and Wightman(1964)]. The GNS construction

proves that the Hilbert space is not a primitive container of reality, but a derived structure

generated by the algebra’s internal states.
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6 The General Theory: The Yoneda Embedding as the

Operational Reconstruction

In the preceding case studies, we observed a persistent isomorphism: the abstract structure

of a system (Group, Space, Algebra) is recoverable from its spectrum of interactions with a

standard probe. We have seen:

• A Group G is defined by its permutations on a set (Cayley).

• A Space X is defined by its continuous maps into a target space (Sierpiński/Tychonoff).

• An Algebra A is defined by its representation on a Hilbert space (GNS).

From a categorical perspective, this pattern is not accidental; it is structurally inevitable. It

is the physical manifestation of the Yoneda Lemma, the fundamental theorem regarding the

representation of abstract objects [Mac Lane(1998)].

In the Introduction, we distinguished between two modes of indistinguishability: the

Identification Problem (surplus structure within a theory) and Duality (equivalence between

distinct theories, see Remark 1.1). We now provide the rigorous resolution for both phenomena.

We explicate the Operational Reconstruction itself as a Faithful Functor into a category of

observational data, showing that Yoneda resolves the former, while Morita Equivalence resolves

the latter.

6.1 The Experimental Logbook: Presheaves as Data Clouds

If we strip physics of its specific sub-disciplines, the general structure of experimentation is the

recording of outcomes across various contexts.

Let C be a category representing our Theoretical Context (the abstract laws and configu-

rations). We define the Experimental Data Cloud as the collection of all possible results

gathered from this context. Mathematically, this is the category of Presheaves.

Definition 6.1 (The Category of Experimental Data). The category of data, denoted as SetC
op

,

consists of contravariant functors F : Cop → Set.
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• The Functor (The Logbook): For every test configuration U ∈ C, the set F (U)

represents the recorded outcomes of the experiment in that configuration.

• The Contravariance (Data Pullback): If f : V → U is a refinement of the experimental

setup (e.g., zooming in), there is a corresponding map F (f) : F (U)→ F (V ) that restricts

the data to the refined view.

In this view, a physical object is not a “thing” living in C; it is the coherent cloud of data it

generates in SetC
op

. This formalizes the operationalist intuition: a physical entity is defined not

by what it is, but by how it responds to measurement [Bridgman(1927)].

6.2 Intra-Theoretical Resolution: The Yoneda Embedding

We first address the Identification Problem. Within a single theoretical framework C, can

we distinguish two objects A,B purely by their external behavior?

We probe A using other objects X in the category. The set of all possible structural

interactions from X to A is the hom-set HomC(X,A). This defines the Representable

Presheaf, denoted hA:

hA(−) := HomC(−, A)

Operationally, hA is the “Array of Probes.” It records how the system A responds to every

possible ‘stimulus’ X. The Yoneda Lemma asserts that this array is exhaustive.

Theorem 6.1 (The Perfect Detector Theorem). The assignment A 7→ hA defines a fully faithful

embedding Y : C ↪→ SetC
op

. Consequently, for any two systems A,B within the same category

C:

hA ∼= hB ⇐⇒ A ∼= B

Abstract Reality Empirical Data

A hA

B hB

Y

Observation

∼= ∼=

Resolution of the Identification Problem: This theorem guarantees that if two systems

generate identical experimental columns in the logbook (hA ∼= hB), they are isomorphic in the
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abstract theory (A ∼= B). There is no “ontological residue” or hidden variable left behind. The

“thing in itself” is fully captured by the “thing as observed.”

6.3 Inter-Theoretical Resolution: Morita Equivalence and Sakai

Duality

We now turn to the concept of Theoretical Duality. As noted in the Introduction, physics

frequently encounters scenarios where two distinct categories C and D describe the same physical

reality.

A salient conflict arises from our own case studies:

• The Schrödinger Picture (Section 4): The theory is constructed from the category

of States (Banach Spaces Ban), with a commutative operational context of continuous

signals C[0, 1].

• The Heisenberg Picture (Section 5): The theory is constructed from the category

of Observables (C∗-Algebras C∗Alg), with a non-commutative operational context of

operators B(H).

Are these distinct theories? Syntactically, yes: the category of Banach spaces is not the

category of Algebras. Their objects differ, and their operational targets differ. Yet, physically,

they are widely regarded as identical [Strocchi(2008)]. As argued by De Haro [De Haro(2019)],

theoretical duality is best understood as an isomorphism of semantic models despite a non-

isomorphism of syntactic formulations.

This presents a paradox. In the Local Yoneda framework (Section 6.2), we argued that an

object is defined by its operational profile. Yet here, the operational contexts appear distinct

(C[0, 1] ̸= B(H)). How can two theories be physically identical if they map to different target

domains?

6.3.1 The Resolution: Intermediate vs. Ultimate Contexts

The resolution lies in distinguishing between the levels of operational access. While the

Sophisticate might argue that the Banach and C∗-algebraic formulations are simply isomorphic
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descriptions of the same reality, we contend that the choice of duality matters operationally as

it defines the concrete experimental interface.

The physical identity is established by a Bilinear Pairing:

⟨·, ·⟩ : Ban×C∗Alg→ C

This pairing represents the expectation value. The duality is defined by the invariance of

this scalar outcome under the transfer of dynamics. Whether we evolve the state ρ(t) (Banach

view) or the observable A(t) (Algebraic view), the empirical reality remains the scalar invariant:

⟨ρ(t), A⟩ = ⟨ρ,A(t)⟩

6.3.2 Formalization: Categorical Morita Equivalence

Category Theory formalizes this “identity of semantics” through Morita Equivalence. Two

distinct categories are Morita equivalent if they possess equivalent categories of representations.

In the language of Section 6, this means that while the categories C and D are disjoint, their

Data Clouds are isomorphic.

Definition 6.2 (Morita Equivalence). Two abstract theories C and D are Morita Equivalent if

their presheaf categories (categories of models) are equivalent:

SetC
op ∼= SetD

op

The “physics” does not reside in the specific choice of state vectors or the specific algebra,

but in the invariant structure of the Data Cloud.

6.3.3 The Mechanism: Sakai Duality

To demonstrate that Quantum Mechanics satisfies this condition with full mathematical rigor,

we must refine the general C∗-algebraic picture to that of Von Neumann Algebras (W ∗-

algebras). While C∗-algebras define the logic of locality, Von Neumann algebras define the

logic of measurement and probability. In this regime, the formal mechanism validating the

equivalence is Sakai’s Theorem [Sakai(1971)].
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We define the two relevant physical categories:

• W∗Alg (Heisenberg): The category of Von Neumann algebras with normal ∗-homomorphisms.

• Banpre (Schrödinger): The category of Banach spaces V which are uniquely predual to

Von Neumann algebras (V ∗ ∼= A).

Theorem 6.2 (Sakai Duality). The contravariant functor O : V 7→ V ∗ defines an equivalence

of categories:

Banoppre
∼= W∗Alg

Schrödinger (States) Heisenberg (Observables)

Banoppre W∗Alg

V A

∼=
Sakai

Dynamics T Dynamics T ∗

(·)∗
∼=

Sakai proved that a C∗-algebra is a Von Neumann algebra if and only if it possesses a

predual Banach space A∗. Crucially, this predual is unique.

This establishes a rigid categorical duality: the geometry of the state space (A∗) is not an

auxiliary structure, but is entirely determined by the algebraic structure of the observables (A).

This result confirms that the geometry of the state space uniquely determines the algebraic

structure of the observables, and vice versa. Thus, the choice between defining the theory via

states (Schrödinger) or observables (Heisenberg) is shown to be a choice of coordinate system

for the same underlying Presheaf of Observations.

6.4 Summary: The Ladder of Representation

We conclude by summarizing the hierarchical application of this categorical method across

modern physics. In every instance, the ”Physical Theory” is constructed by taking the abstract

syntax and embedding it into a concrete semantic dual.

The “mystery” of why mathematics describes the physical world is resolved by realizing

that the Operational Reconstruction is, formally, the construction of the Yoneda embedding.

We probe the unknown (A) with the known (X), and trust that the resulting data (hA) is a

faithful mirror of reality.
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Physics Domain Abstract Syn-
tax (A)

Operational Se-
mantics (C)

Representation Theorem

Symmetry Groups (Grp) Permutations
(Set)

Cayley’s Theorem

Topology Spaces (Top) Sierpiński Profiles
(Sτ )

Tychonoff Embedding

Classical Fields Banach Spaces
(Ban)

Analog Signals
(C[0, 1])

Banach-Mazur

Quantum Mechanics C∗-Algebras Hilbert Operators
(B(H))

Gelfand-Naimark (GNS)

General Theory Category (C) Data Cloud
(SetC

op

)
Yoneda Embedding

Table 3: The Unification of Physical Representation. Each major domain of physics relies on a
specific instance of the structure-preserving embedding of syntax into semantics.

7 Conclusion

This work has sought to resolve the persistent tension in the philosophy of physics between

ontological parsimony and mathematical tractability. While we acknowledge the warning

of ’Sophistication’—that the excision of surplus structure can be mathematically hostile in

geometric contexts—we have argued that the Representation Theorem provides a rigorous

mechanism for a Constructive Reductionism.

By shifting the methodological focus from geometric quotients to Spectral Quotients, we

demonstrated that the axioms of Groups, Topology, and Quantum Mechanics are not arbitrary

definitions, but the inevitable syntactic shadows of specific Operational Cogenerators (Set,

S, B(H)). In these domains, the reduction of the theory (via GNS or Banach–Mazur) does not

lead to topological pathology; rather, it generates the concrete workspaces (Hilbert spaces, L2

spaces) required for calculation.

Consequently, we arrive at a nuanced position regarding the recent literature on theoretical

equivalence. While we affirm the semantic criterion championed by Weatherall and Dewar

[Weatherall(2018), Dewar(2019)]—that physical identity resides in the isomorphism of models

(the Yoneda view)—we reject the extension of their skepticism regarding quotienting to the

algebraic domain. We contend that this skepticism stems from a reliance on geometric intuition;

for the broad class of algebraic and functional theories, we have shown that one can eliminate

surplus structure without sacrificing mathematical power.
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Limits and Future Outlook. We acknowledge that this Spectral Resolution is strictly

established here for algebraic and functional theories. The extension of this program to purely

geometric theories, such as General Relativity—where the quotient by the diffeomorphism

group induces genuine singularities—remains a formidable challenge. However, the success of

the categorical approach in Quantum Mechanics suggests that the path forward lies not in

abandoning reduction, but in identifying the correct categorical dual for geometry.

Finally, while this work focused on the descent from Syntax to Semantics (A ↪→ C), the

inverse trajectory offers fertile ground. The Tannaka–Krein Duality [Joyal and Street(1991)]

presents the logical inverse of our thesis: the reconstruction of the abstract symmetry group

solely from the tensor category of its representations, suggesting that the “surplus” structure

may itself be emergent from the relations between observables.
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A Proofs for Section 2 (Group Theory)

A.1 Proof of Proposition 2.1

Objective: We verify that the subobject classifier Ω = {⊥,⊤} satisfies the Operational

Cogenerator Axiom for the category Set.

Proof. 1. Hypothesis of Divergence: Let f, g : X → Y be two parallel morphisms in Set

such that f ≠ g. By the definition of set equality, there exists a witness state x0 ∈ X

such that f(x0) ̸= g(x0).

2. Construction of the Probe: We define a measurement probe k : Y → Ω as the indicator

function centered at the image of the witness under f :

k(y) := χ{f(x0)}(y) =


⊤ if y = f(x0)

⊥ if y ̸= f(x0)

3. Operational Discrimination: We evaluate the composition of the probe with the

dynamics at the witness state x0:
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• For the process f : (k ◦ f)(x0) = k(f(x0)) = ⊤.

• For the process g: (k ◦ g)(x0) = k(g(x0)) = ⊥ (since g(x0) ̸= f(x0)).

Since the outcomes differ, k ◦ f ̸= k ◦ g.

4. Conclusion: The object Ω distinguishes any pair of distinct morphisms in Set. Thus, it

is a cogenerator.

A.2 Proof of Theorem 2.2 (Categorical Cayley Theorem)

Objective: We verify that the functor Φ : BG→ Setiso defined by the Left Regular Represen-

tation is well-defined, functorial, and faithful.

Proof. 1. Functoriality (Conservation of Structure): Let g, h be morphisms in BG

(elements of the group). We must show Φ(g · h) = Φ(g) ◦ Φ(h). Acting on an arbitrary

state x ∈ |G|:

Φ(g · h)(x) = Lg·h(x) = (g · h) · x

(Φ(g) ◦ Φ(h))(x) = Lg(Lh(x)) = Lg(h · x) = g · (h · x)

By the associativity axiom of the abstract group, these expressions are identical. Thus,

the diagram commutes.

2. Preservation of Identity: We verify Φ(e) = id|G|. For any x ∈ |G|:

Φ(e)(x) = e · x = x = id|G|(x)

3. Faithfulness (Injectivity on Morphisms): Suppose Φ(g) = Φ(h). This implies the

operators are identical: Lg(x) = Lh(x) for all x. Evaluating at the identity element e (the

witness state):

g · e = h · e =⇒ g = h

Since the map on hom-sets is injective, the functor is faithful.
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A.3 Proof of Lemma 2.3 (Linearization)

Objective: We verify that the Quantum Regular Representation Ψreg corresponds to the

composite functor L ◦ Φ and retains faithfulness.

Proof. 1. Faithfulness of the Linearization Functor (L): Let σ, τ be distinct permuta-

tions on a set X. There exists x0 such that σ(x0) ̸= τ(x0). The functor L lifts these to

unitary operators Uσ, Uτ on ℓ2(X).

Uσ|x0⟩ = |σ(x0)⟩, Uτ |x0⟩ = |τ(x0)⟩

Since basis vectors corresponding to distinct elements are orthogonal, |σ(x0)⟩ ≠ |τ(x0)⟩.

Thus Uσ ̸= Uτ .

2. Composition of Functors: The composite action on a group element g is:

(L ◦ Φ)(g) = L(Lg) = ULg

The action on the Hilbert space basis is:

ULg |h⟩ = |Lg(h)⟩ = |g · h⟩

This matches the standard definition of the Left Regular Representation.

3. Conclusion: Since both Φ and L are faithful functors, their composition Ψreg is faithful.

B Proofs for Section 3 (Topology)

B.1 Proof of Theorem 3.1 (Topological Cogenerator)

Objective: We verify that the Sierpiński space S is a cogenerator for the category of Observation

Spaces CTop.

Proof. 1. Hypothesis of Divergence: Let f, g : X → Y be distinct continuous maps in

CTop. By definition, there exists a point x ∈ X such that f(x) ̸= g(x).
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2. Structure of the Codomain: Objects in CTop are subspaces of SΛ. Thus, f(x) and

g(x) are sequences of binary outcomes. Distinctness implies they differ in at least one

coordinate λ0:

(f(x))λ0 ̸= (g(x))λ0

3. Construction of the Probe: Let πλ0 : SΛ → S be the canonical projection. In the

product topology, projections are continuous. We define the probe h as the restriction of

this projection to Y :

h := πλ0
∣∣
Y
: Y → S

4. Operational Discrimination: Evaluating the composition:

h(f(x)) = (f(x))λ0 ̸= (g(x))λ0 = h(g(x))

Thus, h ◦ f ̸= h ◦ g. The space S separates morphisms.

B.2 Proof of Proposition 3.2 (The Kolmogorov Reflection)

Objective: We demonstrate that the quotient map X → XKQ yields a T0 space and satisfies

the universal property of a reflection.

Proof. 1. Verification of T0 Separation: Let [x] ̸= [y] be points in XKQ. This implies the

representatives x, y are empirically distinguishable in X. WLOG, there exists U ∈ τX

such that x ∈ U and y /∈ U . Let U = π(U). By the definition of the quotient topology, U

is open in XKQ because π−1(U) = U is open. Since [x] ∈ U and [y] /∈ U , the open set U

distinguishes the points. Thus XKQ is T0.

2. Universal Property (Factorization): Let Y be any T0 space and f : X → Y be

continuous. We define f̃([x]) = f(x).

• Well-definedness: If x ∼ x′, then x and x′ share all open sets. Since f is continuous,

f(x) and f(x′) must share all open sets in Y . Since Y is T0, indistinguishable points

must be identical. Thus f(x) = f(x′).
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• Continuity: By the universal property of quotients, f̃ is continuous iff f̃ ◦ π = f is

continuous, which holds by hypothesis.

3. Conclusion: The construction defines the left adjoint to the inclusion functor TopT0 ↪→

Top.

B.3 Proof of Theorem 3.3 (Sierpiński Embedding)

Objective: We show that Φ̃ : TopT0 ↪→ CTop is a faithful functor and a topological embedding

on objects.

Proof. 1. Injectivity on Objects (T0 Check): Let x ≠ y in a T0 space X. There exists

U ∈ τ such that χU (x) ̸= χU (y). Since Φ̃(x) is the sequence (χU (x))U∈τ , the images differ.

The map is injective.

2. Continuity: The map into a product space is continuous iff its component maps are

continuous. The components are exactly the characteristic functions χU , which are

continuous because U is open.

3. Homeomorphism onto Image (Openness): We must show that the map is open onto

its image. Let U be open in X. The image set is Φ̃(U) = {s ∈ Im(Φ̃) | sU = 1}. This

is equivalent to Im(Φ̃) ∩ π−1
U ({1}). Since π−1

U ({1}) is open in the product topology (a

sub-basis element), the image of U is open in the subspace topology. Thus, X ∼= Im(Φ̃).

4. Faithfulness on Morphisms: Let f ≠ g. There exists x such that f(x) ̸= g(x). Since

the codomain is T0, there exists an observable V separating these points. Φ̃(f) and Φ̃(g)

will differ at the component corresponding to V . Thus, the functor is faithful.
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C Proofs for Section 4 (Banach Spaces)

C.1 Proof of Theorem 4.1 (Operational Cogenerator)

Objective: We verify that Ω = C[0, 1] is a cogenerator for the category of concrete signal

spaces CC[0,1].

Proof. 1. Hypothesis of Divergence: Let W1,W2 be objects (subspaces of C[0, 1]) and

T, S : W1 → W2 be distinct operators. There exists a state x ∈ W1 such that T (x) ̸= S(x)

as vectors in W2.

2. Construction of the Probe: Let ι : W2 ↪→ C[0, 1] be the inclusion map. Since W2

carries the induced norm, ι is an isometry and thus a valid morphism in the category. We

select k = ι.

3. Operational Discrimination:

(k ◦ T )(x) = T (x)

(k ◦ S)(x) = S(x)

Since T (x) ̸= S(x) in the ambient space, the compositions are distinct.

4. Conclusion: The space of continuous signals Ω separates all morphisms in the context.

C.2 Proof of Proposition 4.2 (Separable Quotient)

Objective: We prove that quotienting a Banach space by the kernel of a countable instrument

set yields a separable space.

Proof. 1. Dual Identification: Let NΨ =
⋂
ϕ∈Ψ ker(ϕ). The dual of the quotient space

Y = V/NΨ is isometrically isomorphic to the annihilator N⊥
Ψ ⊂ V ∗.

2. Characterizing the Annihilator: The annihilator N⊥
Ψ coincides with the weak-* closure

of the linear span of Ψ. Since Ψ is countable, the set of linear combinations with rational

coefficients spanQ(Ψ) is a countable dense subset of the closed span.
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3. Conclusion: Since the dual space Y ∗ contains a countable dense subset, Y ∗ is separable.

By standard functional analysis, if the dual space Y ∗ is separable, the primal space Y

must be separable.

C.3 Proof of the Banach-Mazur Representation

Objective: We construct the isometric embedding of a separable Banach space into C[0, 1] in

two steps: the Cantor surjection and the Borsuk extension.

C.3.1 Step 1: The Cantor Universality

Proof. 1. Setup: Let K = BV ∗ (the unit ball of the dual). Since V is separable, K is a

compact metric space in the weak-* topology.

2. Construction: We construct a continuous surjection ψ : ∆→ K from the Cantor set

∆. This is achievable because every compact metric space is a continuous image of the

Cantor set (via the standard ”addressing” construction).

3. Pullback: The composition map ψ∗ : C(K)→ C(∆) defined by f 7→ f ◦ψ is an isometry

because ψ is surjective (the sup-norm is preserved).

C.3.2 Step 2: The Borsuk Extension

Proof. 1. Setup: We seek a map E : C(∆)→ C[0, 1] that embeds the digital signal space

into the analog continuum.

2. Construction (Linear Interpolation): Since ∆ ⊂ [0, 1] is obtained by removing open

intervals (ak, bk), we define E(f) to equal f on ∆ and to be linear on each gap (ak, bk).

3. Isometry: By the Maximum Modulus Principle for linear functions, the maximum of

|E(f)| on any interval [ak, bk] is achieved at the endpoints. Thus:

sup
t∈[0,1]

|E(f)(t)| = sup
t∈∆
|f(t)|
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The map is a linear isometry.

D Proofs for Section 5 (Algebraic Observables)

D.1 Proof of Theorem 5.1 (Gelfand Isomorphism)

Objective: We show that a commutative unital C∗-algebra A is isomorphic to C(Σ).

Proof. 1. Spectrum Construction: Let Σ be the set of non-zero characters (multiplicative

functionals) on A. Equipped with the weak-* topology, Σ is a compact Hausdorff space.

2. The Gelfand Map: Define Γ : A → C(Σ) by Γ(A)(χ) = χ(A). This is a ∗-

homomorphism.

3. Isometry (The C∗ Condition): The range of Γ(A) is the spectrum σ(A). Thus

∥Γ(A)∥∞ is the spectral radius r(A). For normal operators (which all elements are, since

A is commutative), the C∗-identity implies r(A) = ∥A∥. Thus Γ is isometric.

4. Surjectivity: The image Γ(A) separates points in Σ and is closed under conjugation. By

the Stone-Weierstrass Theorem, the image is dense in C(Σ). Since it is isometric (hence

closed), Γ(A) = C(Σ).

D.2 Proof of Theorem 5.2 (GNS Representation)

Objective: We construct a faithful isometric embedding of any C∗-algebra into B(H).

Proof. 1. Local Hilbert Space Construction: Fix a state ω. Define the pre-inner product

⟨A,B⟩ω = ω(A∗B). Let Nω = {A | ω(A∗A) = 0} be the null ideal. The quotient space

Dω = A/Nω carries a strictly positive inner product. Its completion is Hω.

2. Representation Definition: Define πω(A)[B] = [AB]. Using the C∗-property (A∗A ≤

∥A∥21), we derived in the main text that ∥πω(A)∥ ≤ ∥A∥. Thus, the representation is

bounded.
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3. Global Faithfulness: Let Π =
⊕

ω∈S πω be the direct sum over all pure states. For any

self-adjoint A, the norm is determined by its pure states:

∥A∥2 = sup
ω∈S

ω(A∗A) = sup
ω∈S
∥πω(A)∥2 = ∥Π(A)∥2

Since the map preserves the norm of self-adjoint elements, it is an isometry for the whole

algebra.
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