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abstract 

Although epistemic values have become widely accepted as part of scientific reasoning, non-

epistemic values have been largely relegated to the “external” parts of science (the selection 

of hypotheses, restrictions on methodologies, and the use of scientific technologies).  I argue 

that because of inductive risk, or the risk of error, non-epistemic values are required in 

science wherever non-epistemic consequences of error should be considered.  Illustrated with 

examples from dioxin studies, I show how non-epistemic consequences of error can and 

should be considered in the internal stages of science: choice of methodology, 

characterization of data, and interpretation of results. 
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1.  Introduction.  Despite its central importance to the philosophy of science, the issue of 

whether, which, and how values have a role to play in science has been discussed little in the 

past 50 years.  With some exceptions (see below), the common wisdom of philosophers of 

science has been that only epistemic values have a legitimate role to play in science.  While 

many have claimed that non-epistemic (i.e. social, ethical, political) values in fact do play a 

role in science, the normative standard of “value-free” (read “non-epistemic value free”) 

science remains.   
 

In this paper, I will challenge that normative standard for large areas of science.  I will argue 

that non-epistemic values are a required part of the internal aspects of scientific reasoning for 

cases where inductive risk includes risk of non-epistemic consequences.  In these cases, 

value-free science is inadequate science; the reasoning is flawed and incomplete.  Thus the 

normative standard needs to be reconsidered.  For science which has clear non-epistemic 

impacts, being “value-free” is not a laudable goal.  As I will note at the end of my paper, this 

does not mean any argument whatsoever is a good argument in science.  Accepting the role 

of values in science does not eliminate the requirement for good arguments.  It only modifies 

the understanding of what can count as a good argument. 
 
 

It must be noted that this challenge to the normative standard is obviously not the only one 

set forth recently.  In the past ten years, feminist philosophers of science have challenged the 

normative standard, primarily by challenging the epistemic/non-epistemic distinction on 

which it rests.  (Rooney 1992; Longino 1996)  I find their arguments largely persuasive and I 

have written elsewhere on the porousness of this distinction.  (Machamer and Douglas 1999 )  

While the distinction cannot do the boundary work many philosophers would like it to (i.e., 
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maintaining the boundary between legitimate uses of values and illegitimate uses that would 

threaten the objectivity of science), the distinction can serve to remind us which goals the 

values primarily serve within a particular context.  This is how I will use it for the remainder 

of this paper. 

   

My focus for the role of values in science centers on Hempel’s concept of “inductive risk.”  

Hempel’s articulation of inductive risk encapsulates the main arguments over values in 

science from the debates on that issue from 1945-1965.  After using Hempel’s work to 

provide the necessary background on inductive risk, I will discuss how inductive risk fits in 

with other work on the legitimate use of non-epistemic values in science.  To illustrate how 

consideration of inductive risk can require the use of non-epistemic values, I will discuss 

examples from recent laboratory animal studies of dioxin’s ability to induce cancer.1,2  It is 

precisely such contentious areas as this that have caused public questioning of science and 

that generate much heat but little light on the values in science question.  With these 

examples, I hope to convince the reader that a decision by the scientists in the examples 

would not be complete without a consideration of non-epistemic values through inductive 

risk. 

 

2.  Inductive Risk.  From 1948-1965, a series of papers3 raised the issue of whether values 

could be a legitimate part of scientific reasoning.  All those that argued for the legitimate use 

of values in science did so on the basis of the concept of inductive risk.  Inductive risk, a 

term first used by Hempel (1965)4, is the chance that one will be wrong in accepting (or 

rejecting) a scientific hypothesis.  While papers such as Churchman 1948 and Rudner 1953 

argued that the risk of inductive error meant that values must play a role in science generally, 
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other papers, such as Jeffrey 1956 and Levi 1962, sought to limit the influence of non-

epistemic values in science.  Because Hempel’s views encapsulate considerations from both 

sides of this debate, I will focus on Hempel to introduce the concept of inductive risk.  A 

more in-depth historical examination of this material must await a future paper. 

 

In his 1965 essay, “Science and Human Values,” Hempel articulates the traditional view of 

philosophers regarding the possibility that values could act as presuppositions for scientific 

arguments.  (Hempel 1965)   According to Hempel, value statements have no logical role to 

play when one is trying to support a scientific statement.  Judgments of value lack “all logical 

relevance to the proposed hypothesis since they can contribute neither to its support nor to its 

disconfirmation.”  (ibid., 91)  This traditional view does not encapsulate the entirety of 

Hempel’s thinking on science and values, however.  Hempel holds that values can serve as 

presuppositions to what he calls scientific method.  Because no evidence can establish a 

hypothesis with certainty, “acceptance (of a hypothesis) carries with it the ‘inductive risk’” 

that the hypothesis may turn out to be incorrect.  (ibid., 92)  Inductive risk is the risk of error 

in accepting or rejecting hypotheses. 

 

Hempel then considers what rules should be used by a scientist when accepting or rejecting 

hypotheses, arguing that  values do have an important role to play in the rules of acceptance. 

(ibid., 92)  Hempel considers rules of acceptance to be “special instances of decision rules” 

(such as maximizing expected utility), which must consider both the possibility that the 

decision to accept a hypothesis (or reject a hypothesis) proves right and the possibility that it 

proves wrong.  As Hempel states:   
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When a scientific rule of acceptance is applied to a specified 

hypothesis on the basis of a given body of evidence, the possible 

‘outcomes’ of the resulting decision may be divided into four major 

types:  (1) the hypothesis is accepted (as presumably true) in 

accordance with the rule and is in fact true;  (2) the hypothesis is 

rejected (as presumably false) in accordance with the rule and is in fact 

false; (3) the hypothesis is accepted in accordance with the rule, but is 

in fact false;  (4) the hypothesis is rejected in accordance with the rule 

but is in fact true.  The former two cases are what science aims to 

achieve; the possibility of the latter two represents the inductive risk 

that any acceptance rule must involve. (ibid., 92) 

In order to formulate the acceptance rules properly, Hempel suggests, one must decide how 

one values the various outcomes:  “The problem of formulating adequate rules of acceptance 

and rejection has no clear meaning unless standards of adequacy have been provided by 

assigning definite values or disvalues to those different possible ‘outcomes’ of acceptance or 

rejection.”  It is in this way that value statements act as legitimate premises in whether or not 

to accept or reject a scientific hypothesis.  Values are needed to weigh the consequences of 

the possible errors one makes in accepting or rejecting a hypothesis, i.e. the consequences 

that follow from the inductive risk. 

 

Depending on the outcomes, different kinds of values will be required for the justification of 

an acceptance rule.  For some cases, acceptance (or rejection) of a hypothesis will lead to a 

particular course of action and outcomes with non-epistemic effects.  In these cases, the 

outcomes of the potential actions need to be evaluated using non-epistemic values in order to 
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formulate rules of acceptance.  In other cases, where the acceptance of a hypothesis will not 

lead clearly to any particular course of action, Hempel believes the question of how to assign 

values to the outcomes to be considerably more difficult.5  Instead of valuing the practical 

outcomes, one must instead consider the outcomes in terms of the goals of science, which 

Hempel describes as “the attainments of an increasingly reliable, extensive, and theoretically 

systematized body of knowledge.” (ibid., 93)  In current terms, Hempel is providing a 

potential set of epistemic values with which to determine what our rules of acceptance ought 

to be:  reliability, extensiveness, and systematization.6   

 

Although inductive risk is present in scientists’ decisions to accept a theory, it is not obvious 

that scientists should consider all the consequences entailed by inductive risk.  One might 

argue, as both Richard Jeffrey and Ernan McMullin have, that we should not expect or 

demand that scientists consider the consequences of accepting a theory erroneously.  (Jeffrey 

1956; McMullin 1983)  Such considerations, McMullin argued in his 1982 Presidential 

Address to the Philosophy of Science Association, should be made by those using or 

applying the science.  Under this view, the value judgments attached to various outcomes, or 

“utilities,” are not the concern of the scientists.  As McMullin stated:  “Such utilities are 

irrelevant to theoretical science proper and the scientist is not called upon to make value-

judgments in their regard as part of his scientific work.”  (McMullin 1983, 8)   

 

This argument, however, overlooks the authority science and scientists have in our culture 

and the important role scientists play in practical decision-making.  Where science is “useful” 

it will have effects beyond the development of a body of knowledge.  In many contexts, if a 

scientist affirms something as true, or accepts a certain theory, that statement is taken as 
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authoritative and will have effects, potentially damaging ones, if the scientist is wrong.    

And, as I will argue below, scientists also take inductive risks in stages of science before 

acceptance or rejection of theories, thus considering risks never brought to the light of public 

decision-making.   Public decision-makers thus have no ability to consider McMullin’s 

“utilities,” leaving the job to the scientists.  To claim that scientists ought not consider the 

predictable consequences of error (or inductive risk) is to argue that scientists are somehow 

not morally responsible in for their actions as scientists.  To defend a completely “value-free” 

science would require such a move, one which seems to be far more dangerous than openly 

grappling with the role of values in science.  Arguing that scientists have the same moral 

responsibilities as the rest of us is beyond the scope of this paper. 

 

3.  The Structure of Values in Science.  Inductive risk provides just one way for values to 

play a role in science.  It is a critical way, I believe, both for the dismantling of a value-free 

normative standard for science and for a clearer understanding of how and why scientific 

disputes occur.  In this section, I will place inductive risk into the context of other views on 

science and values, showing the general structure of how and where values play a role in 

science.  In the process, I will expand on Hempel’s limited view of inductive risk for 

acceptance of hypotheses, arguing that inductive risk is relevant throughout the scientific 

process.7 

 

To place the idea of inductive risk in context, it should be noted that there are three decision 

points in the scientific process where non-epistemic values are widely recognized as having a 

legitimate role. (Here, I follow Longino 1990, 83-85)  First, values (both epistemic and non-

epistemic) play important roles in the selection of problems to pursue.  Second, the direct use 
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to which scientific knowledge is put in society requires the consideration of non-epistemic 

values. For example, if science enables the development of a new technology, values are (or 

should be) consulted to determine whether such a technology is desirable.  Third, non-

epistemic values place limitations on methodological options, such as limitations on how we 

can use humans in experimentation.   

 

In all of these cases where non-epistemic values are recognized as legitimate, those values 

play a direct role in the decision-making.  One is not considering the consequences of error, 

as one is with inductive risk, but considering the direct consequences of a particular course of 

action.  Performing experiments on humans without their consent is unethical not because of 

the chance that the methodological choice will lead to inaccurate and misused results, but 

because of the direct consequences of the methodology on the human subjects.  Similarly the 

use of science to develop an unwanted technology is unethical not because of the potential 

unintended consequences of the technology (although those might also be a problem), but 

because of the intended consequences.  In these cases, moral concerns over the direct 

consequences of actions override any potential epistemic benefits, thus limiting choices.  

Longino has pointed out that these three roles for values in science are compatible with an 

“externality” picture of values in science. (Longino 1990, 85-86)  Under this model, the 

“internal” process of scientific reasoning can go forward without the necessary inclusion of 

non-epistemic values.  Non-epistemic values serve as constraints for some scientific choices, 

but do not interfere with internal scientific reasoning.    

 

Consideration of values through inductive risk does not fit with the “externality” model, 

however.  First, the role of values is indirect, instead of direct.  As Hempel rightly pointed 
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out, value judgments have no direct place in the argument for what should be taken to be 

true.  However, because error is always a possibility, we are required to consider the 

consequences of error alongside the arguments concerning evidence. And the consideration 

of the consequences of error require the consideration of values, both epistemic and non-

epistemic.  The role for values is there, even if it is not direct. 

 

Second, with inductive risk, the places in the scientific process where the values play a role 

are not limited to the outskirts of science.8  In the externality model, the internal stages of 

science remain free of the values.  Consideration of inductive risk, however, occurs 

throughout the scientific process.  Although Hempel focused entirely on inductive risk at the 

point of theory acceptance, there are other places in the scientific process where inductive 

risk is relevant.  If one follows the general schema of the methodology from a scientific 

research paper, significant inductive risk is present at each of the three “internal” stages of 

science:  choice of methodology, gathering and characterization of the data, and 

interpretation of the data.  At each point, one can make a wrong choice (i.e. epistemically 

incorrect), with consequences following from that choice.  A chosen methodology assumed 

to be reliable may not be.  A piece of data accepted as sound may be the product of error.  An 

interpretation may rely on a selected background assumption that is erroneous.  Thus, just as 

there is inductive risk for accepting theories, there is inductive risk for accepting 

methodologies, data, and interpretations. 

 

By expanding where we see relevant inductive risk, the potential role for non-epistemic 

values has also expanded.  Hempel was right in asserting that whether or not a piece of 

evidence is confirmatory of a hypothesis (given a set of background assumptions) is a 
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relationship in which value judgments have no role.  What evidence is available to support a 

theory or which background assumptions we chose to hold, however, does involve value 

judgments through the consideration of inductive risk.  In cases where the consequences of 

making a choice and being wrong are clear, the inductive risk of the choice should be 

considered by the scientists making the choice.  In the cases I discuss below, the 

consequences of the choices include clear non-epistemic consequences, requiring non-

epistemic values in the decision-making.  Thus, where the weighing of inductive risk requires 

the consideration of non-epistemic consequences, non-epistemic values have a legitimate role 

to play in the internal stages of science.  The externality model is overthrown by a normative 

requirement for the consideration of non-epistemic values, i.e., non-epistemic values are 

required for good reasoning. 

 

In these cases where inductive risk is involved, non-epistemic values are not the sole 

determinant of whether to accept a given option.  The scientist will need to consider both the 

quantity of evidence or degree of confirmation to estimate the magnitude of inductive risk 

and the valuation of the consequences that would result from error to estimate the seriousness 

or desirability of the consequences.  The weighing of these consequences, in combination 

with the perceived magnitude of the inductive risk (i.e. how likely one is to be wrong), 

determines which choice is more acceptable.  Where non-epistemic consequences follow 

from error, non-epistemic values are essential for deciding which inductive risks we should 

accept, or which choice we should make.    

 

4.  Inductive Risk in Methodological Choice:  Statistical Significance.  As noted in the 

previous section, that non-epistemic values have a role to play in the making of 
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methodological choices is little disputed.  When a methodological option has direct 

consequences that are ethically unacceptable, that methodology is not considered a viable 

choice.  Such is the case particularly for studies with human subjects, which must be 

performed with a constant eye towards the appropriate treatment of the subjects.  Valuing 

direct consequences are not the only way in which non-epistemic values play a role in 

methodological choice, however.  In this section, I describe how inductive risks are taken 

when making the methodological choice of the appropriate level for statistical significance, 

and how these risks entail non-epistemic consequences.  Under most circumstances, the 

choice of a level of statistical significance is not made through the explicit consideration of 

arguments for different statistical choices, but by the tradition of an area of research or the 

choice of a computer statistical package.  I will not argue that such conventions have not 

worked reasonably well.9  Instead I will examine the reasoning required to make a deliberate 

and explicit choice of a level of statistical significance for conducting toxicological studies, 

showing how non-epistemic values would play a role in such a choice. 

 

The deliberate choice of a level of statistical significance requires that one consider which 

kind of errors one is willing to tolerate.  For any given test, one must find an appropriate 

balance between two types of error:  false positives and false negatives.  False positives occur 

when one accepts an experimental hypothesis as true and it is not.  False negatives occur 

when one rejects an experimental hypothesis as false and it is not.  Changing the level of 

statistical significance changes the balance between false positives and false negatives.  If 

one wishes to avoid more false negatives and one is willing to accept more false positives, 

one should lower the standard for statistical significance.  If one wishes, on the other hand, to 

avoid false positives more, one should raise the standard for statistical significance.  For any 
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given experimental test, one cannot lower both types of error; one can only make trade-offs 

from one to the other.  In order to reduce both types of error, one must devise a new, more 

accurate experimental test (such as increasing the population size examined or developing a 

new technique for collecting data). 

 

In laboratory animal studies, tests for statistical significance are used to determine when the 

response of the dosed or exposed animals is significantly different from the non-dosed or 

control animals.  Because of the control exerted in the lab over the conditions of the animals, 

if there is a response that is significantly different between the exposed and the control 

animals, that difference can generally be attributed to the dose given to the animals.  The 

statistical comparison between exposed and control animals is particularly important for 

cancer studies, where both control animals and exposed animals will usually exhibit some 

cancer.  What must be determined is whether the exposed animals exhibit significantly more 

cancer than the control animals.  Only when a cancer rate is significantly different from the 

control cancer rate is it considered a genuine result of the dosing.  Thus, setting the standard 

for statistical significance will impact what is considered a response caused by the dosing.  

The stricter the standards for statistical significance, the greater the difference between dosed 

animals and control animals will need to be for the response to be considered significant.  

Stricter standards lead to a reduction in the rate of false positives, and an increase in the rate 

of false negatives.  On the other hand, if one has a laxer standard for statistical significance, a 

smaller difference in cancer rates between exposed and control populations will be 

considered significant and attributed to the dosing regimen.  This increases the likelihood of 

false positives, but lowers the likelihood of false negatives. 
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In setting the standard for statistical significance, one must decide what balance between 

false positives and false negatives is optimal.  In making this decision, one ought to consider 

the consequences of the false positives and false negatives, both epistemic and non-

epistemic.  I will focus here on the non-epistemic consequences.  In laboratory animal studies 

testing the potential harms of environmentally pervasive chemicals (such as dioxins), the 

results are used to determine both whether the chemical has a particular effect and what the 

dose-response relationship is for the chemical and the effect.  The results are then 

extrapolated to humans (a controversial subject I will not address here) and used to set 

regulatory standards for the chemical.   

 

In testing whether dioxins have a particular effect or not, an excess of false positives in such 

studies will mean that dioxins will appear to cause more harm to the animals than they 

actually do, leading to overregulation of the chemicals.  An excess of false negatives will 

have the opposite result, causing dioxins to appear less harmful than they actually are, 

leading to underregulation of the chemicals.  Thus, in general, false positives are likely to 

lead to stronger regulation than is warranted (or overregulation);  false negatives are likely to 

lead to weaker regulation than is warranted (or underregulation).  Overregulation presents 

excess costs to the industries that would bear the costs of regulations.  Underregulation 

presents costs to public health and to other areas affected by damage to public health.  

Depending on how one values these effects, an evaluation that requires the consultation of 

non-epistemic values, different balances between false positives and false negatives will be 

preferable. 
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In addition to whether a substance has a particular effect, laboratory animal studies also are 

used to determine the dose-response relationship for the effect.  Two different models are 

used when interpreting dose-response data:  the threshold model and the linear extrapolation 

model.  (The choice of a model is discussed further below.)  The threshold model assumes 

that there is no response or effect caused by the chemical under study below a certain dose.  

The dose below which there is no effect is called the threshold.  The linear extrapolation 

model, on the other hand, assumes that the chemical under study is capable of producing 

biological effects with decreasing rates at ever decreasing doses.  Thus one must extrapolate 

a curve back from the tested doses, usually a linear extrapolation through the origin.   

 

Deciding whether an exposed group’s response differs significantly from the control group’s 

response is essential for determining the details of either dose-response model.   The 

statistical significance test tells us whether or not the difference in response is significant and 

attributable to the dose.  Thus, the standard for statistical significance will affect both what is 

considered a response and the shape of the dose-response curve.  For the threshold model, the 

no-response level is determined by where there is no statistically significant response, i.e., 

the threshold is defined in terms of observable response and observability is defined in terms 

of statistical significance.  Thus a false negative generally means that the “safe” dose is set 

higher than it should be, which will be less protective of public health.  Because dose levels 

in animal studies are usually set one order of magnitude apart, the “safe dose” resulting from 

a false negative will be at least one order of magnitude less protective than it should be.  For 

a dose-response extrapolation curve, a false negative will have varied results, depending on 

the shape of the curve, but it will in general produce a less dangerous looking curve, leading 

to laxer regulations.  False positives, on the other hand, will produce excessively protective 
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safe doses (in the threshold model) or more dangerous looking dose-response curves (in the 

extrapolation model), generating stricter than necessary regulation. 

 

In finding the appropriate balance between false positive and false negative errors, we must 

decide what the appropriate balance is in the consequences of those errors:  overregulation 

and underregulation.  Selecting an appropriate balance will depend on how we value the 

effects of those two consequences, whether we are more concerned about protecting public 

health from dioxin pollution or whether we are more concerned about protecting industries 

that produce dioxins from increased regulation.  To value one objective and not to value the 

other at all does not seem to be a plausible position; we would not want to choose to have 

only false positives or only false negatives.  Finding the balance requires, among other 

things, weighing the non-epistemic valuations of the potential consequences. 

 

Reducing the possibility of any error by increasing the power of the study would help 

mitigate the dilemma here, but doing so is extremely difficult.  For example, one way to 

reduce the risk of both false positives and false negatives is to increase the animal 

populations under study.  Currently, most studies use 50-100 animals in each dose group.  

Increasing those numbers would decrease the chance of false positives and false negatives.  

However, it is extremely expensive and difficult to do larger studies.  A single two-year 

cancer study using 200 rats (50 at three dose levels and 50 controls) costs roughly $3 million.  

(Graham and Rhomberg 1996, 18) The cost and logistics of increased dose groups can be 

overwhelming.  Perhaps some other solutions to strengthen studies will present itself, but in 

the meantime, some balance must be struck.  Where the balance should lie for dioxin studies 
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is currently unclear.  Regardless, determining the balance clearly requires an ethical value 

judgment in the internal stages of a scientific study. 

 

5. Inductive Risk in Evidence Characterization:  Rat Liver Tumors.  Once one has 

implemented the method chosen for the study, the data must be gathered and characterized.  

Evidence characterization occurs late in the studies I examine here, after the laboratory 

animals have been dosed for many months.  One can encounter difficulties in evidence 

characterization that are unforeseen when one is selecting a methodological approach.  

Deciding how to grapple with ambiguities in data sources that are not expected is my concern 

in this section.  I will show how, as with the other stages in science, there is inductive risk in 

making choices, and one must decide what amounts (or levels) and kinds of inductive risk are 

acceptable.  Some of the consequences of the risks are non-epistemic, and thus non-epistemic 

values are needed to weigh the consequences and to make the choice. 

 

In dioxin cancer studies, rodents (the animal group of choice because of their relatively short 

lifespan and rapid breeding cycles) are dosed for two years, close to a natural life-span.  At 

the end of those two years, full body autopsies are performed on the animals to gather the 

endpoint data.   Because dioxins appear to affect more than one organ site, all potential areas 

for cancerous growths are checked.  In the studies relied upon by regulators for making 

decisions about dioxins, tissue and organ samples have been mounted on slides to be 

evaluated by toxicologists.  One particular study, published in 1978 by Richard Kociba and 

other toxicologists at Dow Chemical, has been central to regulators in setting acceptable 

levels for dioxins in the environment.  (Greenlee et al. 1991, 567;  Huff et al. 1991, 72)  The 

first long term cancer study performed for dioxins, the Kociba study focused attention on 
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cancers of the liver in female rats. (Kociba et al. 1978)  The female rat liver slides have 

undergone at least three evaluations by pathologists, with different results. 

 

In table 1, three different evaluations of the rat liver slides from the Kociba studies are given.  

The first evaluation, from 1978, was originally reported in the Kociba study.  The second 

evaluation, from 1980, was performed at the behest of the EPA by Dr. Robert Squire.  The 

third evaluation, from 1990, was performed by a team of seven pathologists assembled by a 

private contracting company PATHCO, Inc. at the request of the paper industry.  (EPA 1994, 

6-5)   The table reports the numbers of benign (B), malignant (M) and total (T) tumorous 

livers as a fraction of the total livers examined from female rats at each of the three dose 

levels plus the control group.  Note the changing numbers of rats at each dose perceived to 

have liver tumors under the different evaluations.  These evaluations are of precisely the 

same slides; the total experiment was not being re-performed. Only the classification of the 

rat liver slides was reevaluated. 

 

The third slide evaluation in 1990 was precipitated by a reconsideration of the understanding 

and evaluation of rat liver changes.  In the mid-1980s, the basic categories for rat liver 

anomalies came into question and a new system was put into place that was supposed to add 

clarity to rat liver abnormality evaluations.  (Maronpot et al. 1986)  Yet when these new 

standards were used by the seven pathologists in the 1990 re-evaluation, agreement was not 

readily achieved on how the various abnormalities should be classified.  The seven experts 

resorted to majority voting to reach an opinion about the slides.  (The article describing the 

voting claimed that  “consensus was reached when at least four out of seven pathologists 

agreed.”  (Goodman and Sauer 1992)  This is not a consensus as normally understood, but a 
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simple majority.)  That the pathologists resorted to voting indicates that there is still a 

significant degree of judgment required in the evaluation of the rat liver slides.  Even with 

the new standards, how the standards are to be implemented is viewed differently among 

experts. 

 

As evidenced by the lack of agreement among expert pathologists, the judgment of whether a 

tissue sample has a cancerous lesion or not has proven to be more subtle than one might 

initially suppose.  Thus, for a slide evaluation, there is significant uncertainty in whether a 

judgment is correct.  With this uncertainty comes significant inductive risk and the need to 

evaluate consequences of potential errors.  Although not as formal as setting a level for 

statistical significance, the pathologists must be similarly concerned with false positives and 

false negatives.  Suppose a pathologist chooses to take all borderline cases and judge them to 

be non-cancerous lesions.  Such an approach will insure few false positives, but will likely 

lead to several false negatives.  The consequences for such an approach will be an 

underestimation of malignancies and thus an underestimation of risk.  Because the Kociba 

studies have been so important in regulation, a lowered estimate of risk arising from a 

reinterpretation of the studies will likely lead to a relaxed regulation (as the 1990 

reevaluation did in the state of Maine). (Brown 1991, 17)  If the regulation has been lowered 

on the basis of erroneous judgments (false negatives), then the lowered regulation may cause 

increased harm to the public.  In choosing to judge all borderline cases as non-cancerous, the 

pathologists must judge this an acceptable risk. 

 

Another pathologist may take a different approach, judging all borderline cases to be 

malignancies.  This approach, in contrast, will reduce false negatives, but will likely produce 
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several false positives.  Such false positives will increase the apparent rate of malignancies in 

the rats, thus increasing the appearance of risk.  For a data set as important as the Kociba 

studies, such a (false) appearance would lead to a more stringent (than necessary) regulation.  

Although choosing to judge borderline cases as malignancies will more amply protect public 

health, the approach does so at the economic costs of potentially unnecessary regulation.  

When pathologists view the slides, borderline cases will occur (as evidenced by the lack of 

agreement among pathologists).  Some judgments must be made by the pathologists 

regarding how to classify the liver slides.  Depending on how one values these consequences 

of false positives and false negatives, one would want to make questionable judgments in 

favor of one direction or another. 

 

One might argue that blinding the pathologists to which dose groups the slides belong could 

alleviate the need to consider the consequences of the errors in judgment.  If pathologists 

have a tendency towards avoiding false positives and thus produce more false negatives (or 

vice versa) but distribute that tendency evenly among control and dosed slides, then the 

difference between control and dosed slides will be roughly the same (assuming the number 

of borderline slides in each group is the same).  In addition, the consequences of errors on 

particular slides cannot be determined if one doesn’t know to which dose group the slide 

belongs, thus shielding individual judgments from such consequences.  Such blinding 

techniques are particularly useful to prevent the unacceptable direct use of non-epistemic 

values in the characterization of data, i.e. the seeing of something because one wants to see it.  

The argument that one ought to consider the consequences of error in making judgments 

should not be construed as an argument against blinding techniques used to prevent blatant 

errors.  However, before such blinding techniques are used, one should be sure to consider 
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how successful they will be in a particular case (whether there are other clues that will offset 

the blinding) and whether potential errors will be distributed evenly among study groups.  If 

the chance of errors are not distributed evenly among study groups, one is still required to 

consider inductive risk because the consequences of error are foreseeable.  For example, if 

borderline cases are likely to be found only in dosed groups, then false positives or false 

negatives will have predictable consequences. 

 

In the dioxin rat liver case, complete blinding is not possible with these slides.  At the two 

higher dose levels, signs of acute liver toxicity were also visible in the slides, signs with 

which the pathologists are familiar.  Thus, the two higher dose levels are identifiable through 

the microscope which pathologists use to examine the slides for cancerous lesions.  And it is 

in these higher dose levels (10 ng/kg/day and 100 ng/kg/day) that the most cancerous 

growths were found and the most borderline cases were observed and evaluated.  Thus, the 

pathologists were aware of the non-epistemic consequences of their decisions in categorizing 

the slides.  They are thus required to consider those consequences using non-epistemic values 

when making the judgment call on how to categorize the slides. 

 

This case demonstrates that there is inductive risk in how one applies categories used in data 

characterization and that such inductive risk can be linked to non-epistemic consequences.  A 

tendency to either overestimate or underestimate the number of cancerous growths in these 

slides will have an impact on how dangerous dioxins appear.     The consequences of the 

errors are identifiable and need to be weighed in order to determine which errors are more 

acceptable.   In other cases, inductive risk may be present in the selection of the categories to 

be used as well as the application of the categories in the characterization of the data.  In 
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addition, judgments are made in science concerning whether to keep data or whether to 

discard the data as unreliable.  At all these decision points, there is the risk of error, and with 

that risk, the need to consider both the epistemic and non-epistemic consequences of error.   

 

6. Values in the Interpretation of Results: Are there Thresholds?  In the preceding 

sections, I have described how non-epistemic values can serve a legitimate function in 

making choices for methodology and evidence characterization.  Once the methodology has 

been implemented, the data gathered and characterized, what the data means must be 

deciphered.  Much debate and controversy among scientists has centered on the correct 

interpretation of the dioxin studies.  In particular, prolonged debate has centered on the issue 

of whether the lab animal studies show that there is a threshold for dioxins’ carcinogenic 

effects.  Arguments can be made either for or against the idea of a threshold.  Depending on 

which aspects of the evidence one chooses to emphasize or, more generally, which 

background assumptions one adopts, different interpretations are plausible.  I will present the 

background assumptions and reasoning for the basic positions taken by scientists.  Both 

interpretations I present are plausible, and there is significant uncertainty in adopting either 

interpretation.  The uncertainty and the different consequences of adopting either 

interpretation create a decision context with considerable inductive risk.  Because some of 

the relevant consequences are non-epistemic, non-epistemic values are needed to evaluate the 

risks of adopting either position and their accompanying background assumptions.    

 

As noted above, animal studies are particularly important in risk regulation for helping 

determine the dose-response curves for chemicals.  Human epidemiological studies, unable 

to be performed under controlled conditions for ethical reasons, rarely exhibit clear dose-
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response relationships for environmental or occupational exposures.  Thus, controlled animal 

studies have been used in place of human studies to estimate the shape of the curve for 

regulatory purposes.  Particular debate has centered on whether certain effects, especially 

cancer, have a threshold.  The cancer endpoint has historical significance for regulatory 

purposes because cancer was thought to be the most sensitive endpoint for any chemical 

throughout the 1970s and most of the 1980s.10  If dioxin’s carcinogenic potential has a 

threshold and cancer is the most sensitive endpoint, then there is an absolutely safe dose to 

which one can regulate, below which there will be no detrimental effects.  Unfortunately, 

little agreement has been reached on whether such a threshold exists.   

 

Two opposing general background assumptions lay the groundwork for the arguments over 

whether there is a threshold for dioxins’ carcinogenic effects.  For the endpoint of cancer, 

two competing basic assumptions in toxicology are plausible:  that there is always a threshold 

for toxic effects and that there is no safe dose or threshold for carcinogenic effects.  On one 

side, one can argue that a threshold for toxic effects should be the basic assumption.  For 

toxicologists in general, one of the first maxims is “the dose determines the poison.”  Or as 

Paracelsus said more eloquently:  “All substances are poisons; there is none which is not a 

poison.  The right dose differentiates a poison and a remedy.”  (as quoted in Timbrell 1989, 

9)  Under this view, it is generally assumed that every poison has some threshold for its toxic 

effects; nothing is biologically potent at any dose whatsoever.   

 

The opposing basic assumption, that no threshold exists, arises from work on cancer 

formation, particularly cancer due to radiation.  In the 1960s, scientists came to understand 

that a tumor could arise from just one mutant cell, and a mutant cell could arise from just one 
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stray hit of radiation (e.g., one beta or alpha particle).  For cancer caused by radiation, 

therefore, the dose does not determine the poison.  Any amount of radiation, no matter how 

small, has the ability to cause cancer.  It just isn’t likely.  Instead, a cell damaged by radiation 

is more likely to self-destruct, or to be destroyed by the immune system, if the cell threatens 

uncontrolled cancerous growth.  But there is no threshold for radiation’s ability to produce 

cancer.  One then needs to have a curve of the likelihood of cancer plotted against the dose.  

An acceptable dose is determined not by a threshold but by what risk one is willing to take.  

This no-threshold model for radiation’s carcinogenic effects has been adopted by U.S. 

regulatory agencies for chemicals that are mutagenic, as evidenced by the use of no threshold 

linear extrapolation model by agencies when performing risk assessments for mutagenic 

chemicals.  A mutagenic chemical is one that can damage the DNA such that cancerous cells 

result.  Mutagenic chemicals are thought to act in roughly the same way as radiation; and 

thus it is thought that no dose of a mutagen is “safe,” just as with radiation.  One is either 

above or below an acceptable risk level, currently set at 1 in 1,000,000 lifetime cancer risk.   

 

These two opposing intuitions on whether there is a threshold in the dose-response curves of 

cancer-causing chemicals are complicated by the fact that not all cancer causing chemicals 

are mutagens. Some chemicals do not damage or alter the DNA, but instead promote the 

growth of cancerous cells once the mutations are already present.  In lab tests, these 

chemicals will not promote cancer on their own.  One must first place a mutagen into the cell 

culture.  Then, the addition of the promoter greatly increases the incidence of cancer 

compared with the mutagen alone.  Dioxin appears to be a very potent promoter of cancer in 

this way, while not being mutagenic.  For the remainder of this discussion, I will assume that 

dioxin is a promoter only and not a mutagen.  It is unclear whether we should assume that 
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such promoters have thresholds similar to other toxic effects or that they are more like 

mutagens, with no threshold for their potential damage, only decreasing likelihood with 

decreasing dose.  Which general background assumption, that toxins always have thresholds 

or that carcinogens do not, should be adopted in the dioxin case is open for debate. 

 

Against this backdrop of competing general assumptions, interpretations more specific to the 

dioxin case must be made.  The Kociba female rat liver data, discussed in the previous 

section, has been central to debates over a threshold in dioxin’s cancer promoting ability.  

Recall from the discussion above that three separate evaluations have been made of the 

female rat liver slides from the Kociba study.  Regardless of which evaluation one chooses to 

consider reliable, there appears to be a significant increase in tumor rates among the rats 

given 10-100 ng/kg/day, whereas the animals given 1 ng/kg/day do not have a response 

significantly different from the control animals.  (See Table 1.)  Is this data evidence that 

there is a threshold in the ability of dioxins to produce cancer in rats?  Depending on which 

aspects of the data one chooses to emphasize and which assumptions one adopts, different 

interpretations arise. 

 

For those critical of the threshold interpretation, the issue of the statistical power of the 

studies is crucial.  The sample size for the Kociba rat liver slides is 50 female rats at each 

dose level.  If the dose level of 1 ng/kg/day produces cancer in 1% more of the dosed rats 

than the control rats, this study will not be able to detect that effect.  A one in one hundred 

effect is not statistically detectable in the sample size of 50 rats.  And whether an effect is 

“observed” is determined by whether an effect is statistically significant.11  Thus, a 1% 

increase in cancer rate is not observable in the Kociba study.  Suppose dosing the rats at 1 
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ng/kg/day causes an elevation in the cancer rate to this small degree.  Then the “threshold” is 

only in our ability to observe the effects given our limited resources (only 50 female rats); it 

represents a limit of detection, not a limit in the activity of dioxins.  It is not a threshold that 

can be relied upon by the regulators, who must be concerned with the 1% and even lower 

chance effects, when applied across a human population of millions.  In sum, if there is a 

threshold, and that threshold is at a dose which produces fairly high rates of responses, then 

the threshold should be easily detectable.  For example, if there is a threshold for effects and 

at that threshold, 10% or more of the animals will be effected, we should be able to detect 

this a Kociba-type study.  If, on the other hand, the threshold is a low probability threshold, 

we won’t be able to detect this with such a study.  If there is no threshold, we won’t be able 

to detect this with such a study either.    

 

While the relatively weak statistical power of the animal studies lends support to the no-

threshold interpretation, other aspects of the study bolster the threshold model.  One crucial  

argument arises from the possibility that the rat liver tumors were caused not by dioxin tumor 

promotion directly, but indirectly through dioxin’s acute toxic effects to the liver.  As argued 

recently in the rat liver slide evaluation debate, the increase in liver cancer rates among the 

female rats could be due to the acute toxicity dioxin causes in the liver, which results in cell 

death in the liver, forcing the liver to attempt a rapid regeneration of cells. (Brown 1991; 

Goodman and Sauer 1992)  At the highest dose level, all livers with cancer showed signs of 

acute toxicity.  At the intermediate dose level, 8 of the 9 livers with confirmed cancer showed 

signs of acute toxicity.  At the lowest dose and in the control groups, which had 1 and 2 

cancers respectively, the livers showed no sign of toxicity. (See Table 1, far right column.) 
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Liver toxicity is generally thought to be a threshold effect, following the classic toxicology 

intuition that a dose determines the poison for such acute toxic effects.  If one considers the 

liver toxicity to be a threshold effect and if the cancer found in rat livers is merely a by-

product of that toxicity, it would be reasonable to presume that there is a threshold for 

dioxin’s cancer promoting ability in the rat livers.  Under this line of reasoning, one could 

argue that the threshold for cancers should be placed just above the level where liver toxicity 

ceases, i.e. that no increased risk of cancer occurs at the dose of 1 ng/kg/day.    If liver 

toxicity causes the cancer, and is not simply concurrent with it, the cancer promotion in the 

liver is plausibly a threshold effect.  On the other hand, one might argue that the acute liver 

toxicity, while perhaps assisting dioxin’s tumor promoting abilities, is not the cause of the 

cancer.  Instead, one could argue that dioxin’s tumor promoting abilities are separate from 

the acute liver damage, pointing to evidence that dioxin promotes tumors in other animals 

organs as well. 

 

In sum, one can present two opposing and plausible interpretations of the Kociba rat liver 

data, depending on one’s choice of background assumptions and emphasis.  The background 

assumptions that lead to the threshold position include that the toxicity seen in the livers is a 

likely cause of the cancers and that such cancer promotion is likely to be a threshold 

phenomenon, making it more plausible that an apparent threshold in the data is an actual 

threshold.  The background assumptions that lead to the opposing viewpoint include that the 

statistical sensitivity of the studies is not sufficient to detect a threshold and that the link 

between toxicity and cancer promotion is correlation but not necessarily causation. 
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In making a choice between these positions, scientists must consider the consequences of 

their choice, particularly if they are wrong (the inductive risk).  Different selections of 

background assumptions and interpretations of dioxin data has had a significant impact on 

the stringency of dioxin regulation.  Countries that have assumed a threshold model have set 

acceptable levels of dioxins in the environment about 100X higher than countries such as the 

U.S. that have relied on non-threshold extrapolation models.  (Finkel 1988; Greenlee et al. 

1991)  If one adopts a threshold model and one is wrong, the regulations will likely be 

inadequately protective of public health.  If one adopts a non-threshold model and one is 

wrong, the regulations will likely be overly stringent.  How one values these two possible 

errors should play an important role in determining which inductive risk one is more willing 

to take, and thus which assumptions one is more willing to adopt.   

 

7.  Conclusion.  The three examples in the previous sections serve to illustrate how non-

epistemic values play a role in the internal stages of dioxin science through consideration of 

inductive risk.   The legitimate and required role of non-epistemic values is not a direct role, 

as with the constraints ethical and societal values place on the external aspects of science.  

Instead, it is through the consideration of the consequences of error.  This means that not all 

scientific decisions in the internal stages of science will require the consultation of non-

epistemic values.  When there is very low uncertainty, such that a scientist believes there is 

virtually no chance of being wrong, there is little gained by considering the consequences of 

being wrong-- the chance of error is so small that consequences of being wrong become 

insignificant.  This parallels everyday thinking, where, for example, the chance of being 

struck by a meteorite is so small, it is not worth considering the consequences of such an 
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event.  Nor does understanding the importance of inductive risk mean that scientists should 

cease to attempt to reduce the chance of error.  If anything, it should increase that motivation. 

 

In addition, there are some areas of science where making a wrong choice has no impact on 

anything outside of that area of research.  One may think, for example, of research into the 

coherence properties of atom beams.12  It is very difficult to fathom how errors in such 

research could have non-epistemic consequences.  Hence, scientists doing such research need 

not consider non-epistemic values.  However, this type of research is rapidly becoming a 

minority in modern science, as most funding goes toward “applied” research and funding that 

goes toward “basic” research increasingly needs to justify itself in terms of some eventual 

applicability or use. 

 

Finally, there are cases where the science will likely be useful but the potential consequences 

of error may be difficult to foresee.  This gray area would have to be debated case by case, 

but the fact that such a gray area exists does not negate the basic argument:  that when non-

epistemic consequences of error can be foreseen, non-epistemic values are a necessary part of 

scientific reasoning.  What this means for the “objectivity” of science must await future 

work.  As a closing comment, it must be noted however, that, as Hempel pointed out, the 

argument “I want X to be true, therefore X is true” remains a bad argument, both within and 

without science. 



  30 
 
 

 
 
 

REFERENCES 

Brown, W. Ray (1991), “Implication of the Reexamination of the Liver Sections from the 
TCDD Chronic Rat Bioassay”, in Michael Gallo, Robert J. Scheuplein and Kees A. 
Van der Heijden, (ed.), Biological  Basis for Risk Assessment of Dioxins and Related 
Compounds.  Cold Spring Harbor, New York: Cold Spring Harbor Laboratory Press, 
13-26.  

Churchman, C. West (1948), “Statistics, Pragmatics, and Induction”, Philosophy of Science  
15: 249-268. 

———(1956), “Science and Decision-Making”, Philosophy of Science  22: 247-249. 

Cranor, Carl F. (1993), Regulating Toxic Substances: A Philosophy of Science and the Law.  
New York:  Oxford University Press. 

Environmental Protection Agency (1994), Health Assessment Document for  2,3,7,8-
tetrachlorodibenzo-p-dioxin  (TCDD) and Related Compounds.  Washington, D.C.: 
U.S. Environmental Protection Agency. 

Finkel, Adam M. (1988), “Dioxin:  Are We Safer Now Than Before?”, Risk Analysis   8:  
161-165. 

Goodman, Dawn G., and Robert M. Sauer (1992), “Hepatoxicity and Carcinogenicity in 
Female Sprague-Dawley Rats Treated with 2,3,7,8-Tetrachlorodibenzo-p-dioxin 
(TCDD): A Pathology Working Group Reevaluation”, Regulating Toxicology and 
Pharmacology  15: 245-252. 

Graham, John D., and Lorenz Rhomberg (1996), “How Risks are Identified and Assessed”, 
The Annals of the American Academy of Political and Social Science  545: 15-24. 

Greenlee, William F., Melvin E. Anderson, and George W. Lucier  (1991), “A Perspective on 
Biologically-Based Approaches to Dioxin Risk Assessment”, Risk Analysis  11: 565-
568. 

Hempel, Carl G. (1965), “Science and Human Values”, in Aspects of Scientific Explanation 
and other Essays in the Philosophy of Science.  New York:  The Free Press, 81-96. 



  31 
 
 

Huff, J. E., A. G. Salmon, N. K. Hooper, and L. Zeise (1991), “Long-Term Carcinogenesis 
Studies on 2,3,7,8-Tetrachlorodibenzo-p-dioxin and Hexachlorodibenzo-p-dioxins”, 
Cell Biology and Toxicology  7: 67-94. 

Jeffrey, Richard C. (1956),  “Valuation and Acceptance of Scientific Hypotheses”,  
Philosophy of Science  22: 237-246. 

Kociba, Richard (1991), “Rodent Bioassays for Assessing Chronic Toxicity and 
Carcinogenic Potential of TCDD”, in Michael Gallo, Robert J. Scheuplein and Kees 
A. Van der Heijden, (ed.), Biological  Basis for Risk Assessment of Dioxins and 
Related Compounds.  Cold Spring Harbor, New York: Cold Spring Harbor 
Laboratory Press, 3-12. 

Kociba, R. J., D. G. Keyes, J. E. Beyer, R. M. Carreon, C. E. wade, D. A. Dittenber, R. P. 
Kalnins, L. E. Frauson, C. N. Park, S. D. Barnard, R. A. Hummel, and C. G. 
Humiston (1978), “Results of a Two-Year Chronic Toxicity and Oncogenicity Study 
of 2,3,7,8-Tetrachlorodibenzo-p-Dioxin in Rats”, Toxicology and Applied 
Pharmacology  46: 279-303. 

Kuhn, Thomas (1977), “Objectivity, Value, and Theory Choice”, in Metahistorical Studies, 
320-339. 

Levi, Isaac (1962),  “On the Seriousness of Mistakes”, Philosophy of Science  29: 47-65. 

Longino, Helen E. (1990), Science as Social Knowledge; Values and Objectivity in Scientific 
Inquiry.   Princeton:  Princeton University Press  

——— (1996),  “Cognitive and Non-Cognitive Values in Science:  Rethinking the 
Dichotomy”, in Lynn Hankinson Nelson and Jack Nelson, (ed.), Feminism, Science, 
and the Philosophy of Science.  Dordrecht: Kluwer, 39-58. 

Machamer, Peter and Heather Douglas (1999),  “Cognitive and Social Values,”  Science and 
Education  8: 45-54. 

Maronpot, Robert R., Charles A. Mongomery Jr., Gary A Boorman, and Ernest E. 
McConnell (1986),  “National Toxicology Program Nomenclature for 
Hepatoproliferative Lesions of Rats”, Toxicologic Pathology  14: 263-273. 

McMullin, Ernan (1983), “Values in Science”, in Peter D. Asquith and Thomas Nickles, 
(ed.),  Proceedings of the 1982 Biennial Meeting of the Philosophy of Science 
Association, Volume 1.  East Lansing:  Philosophy of Science Association, 3-28. 



  32 
 
 

Rooney, Phyllis (1992), “On Values in Science:  Is the Epistemic/Non-Epistemic Distinction 
Useful?”, in David Hull, Micky Forbes, and Kathleen Okruhlik, (ed.), Proceedings of 
the 1992 Biennial Meeting of the Philosophy of Science Association, Volume 2.  East 
Lansing: Philosophy of Science Association, 13-22. 

Rudner, Richard (1953), “The Scientist Qua Scientist Makes Value Judgments”, Philosophy 
of Science  20: 1-6. 

Timbrell, John A. (1989), Introduction to Toxicology.  New York:  Taylor and Francis. 

 

 

 
                                                

FOOTNOTES 

 

1  By “dioxin” I will be referring to the most toxic congener of the class of chemicals known 

as dioxins, 2,3,7,8-tetrochlorodibenzo-p- dioxin (or 2,3,7,8-TCDD), which is also the best 

studied.   

2   The case studies on dioxin are drawn from my dissertation, The Use of Science in Policy-

making: a Study of Values in Dioxin Science, The University of Pittsburgh, 1998.  I thank 

Donald Mattison for assisting me with understanding dioxin studies. 

3  Thanks to John Beatty for making aware of this work. 

4  My thanks to Eric Angner for bringing this article to my attention. 

5  A point made by Jeffrey (1956, 242). 

6  Levi (1962) emphasized the use of epistemic values to the exclusion of all others. 
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7  Churchman (1956, 247) recognizes the many places where scientists make decisions.  My 

work can be seen as a clarification and further development of his views. 

8  Longino (1990, 86 and 128-132) also grapples with the role of values in the internal 

processes of science, but she does not argue that non-epistemic values are required of 

internal science.  Instead, she argues that values can affect science through background 

assumptions, a non-normative argument.  Nor does her account make clear how background 

assumptions, ostensibly epistemic statements, carry ethical or societal values with them.  

This gap spurred me to deeper consideration of the problem. 

9  In Regulating Toxic Substances, Carl Cranor argues that the standard assumptions have not 

been serving us well, leaving us with too many false negatives compared to false positives.  

He estimates that false negatives are in fact more costly to society than false positives.  (see 

Cranor 1993, 71-78, 122-129, 135-137, and 153-157) 

10   “Most sensitive endpoint” means that if you regulate to prevent or acceptably reduce risk 

from that endpoint (e.g. cancer), all other toxic effects will also be adequately prevented.  

Whether cancer is the most sensitive endpoint for dioxins is a matter of debate.   

11  Choice of a level for statistical significance is discussed above.  In these studies, 

“significant” results must be significant to the 95% level, i.e. the false positive rate will be 

5% or less. 

12  I thank my colleague at the University of Puget Sound, Greg Elliott, for this example. 


