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MUCH ADO ABOUT ‘N’OTHING1 

 

 

ABSTRACT 

This article argues that a core area of the philosophy of biology—the philosophy of fitness—has 

for decades rested on fundamental conceptual and mathematical errors. These errors have been 

leveraged to support the position in the philosophy of biology known as statisticalism, which 

holds that biological fitness does not cause evolution, but is merely a kind of statistical summary 

of evolutionary outcomes. This is opposed to causalism, which holds that fitness is based on 

(causally efficacious) probabilistic propensities, a position known as the propensity interpretation 

of fitness. The error I focus on is the idea that fitness depends on population size, n, and because 

population size is not a causal quantity, fitness cannot be causal. In this paper, I show that fitness 

is not dependent on n and therefore a central critique of the propensity interpretation of fitness is 

ill founded. 
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Here is the story of the philosophy of biological fitness. In the beginning Brandon, alongside 

Mills and Beatty, created the propensity interpretation of fitness (PIF).2 This account, as the 

name suggests, takes fitness to be a propensity of organisms to survive and reproduce, as 

opposed to an outcome—a tally of offspring—as it was sometimes assumed to be. The PIF did 

two important things. One is that it offered a way out of the tautology problem. The tautology 

problem is a kind of reductio that goes like this: (1) The theory of evolution by natural selection 

holds that evolutionary outcomes are caused by variation in fitness. (2) Fitnesses are 

reproductive outcomes. Conclusion: Since outcomes cannot cause themselves, the theory of 

evolution by natural selection is tautologous. One could quibble about whether ‘tautology’ is the 

right pejorative here, but in any event, the central claim of the theory of evolution by natural 

selection seems to be eviscerated by one of its foundational concepts. 

 Hence fitness as a propensity. This rendering appears to save the theory of natural 

selection by making the PIF a claim about what sort of effects a particular propensity has. Causal 

explanations are possible, at least as long as one agrees that propensities are causally efficacious. 

Let us assume they are and see what else the PIF has on offer. 

I said that the PIF did two important things. The other was that it provided a framework 

for quantifying the fitness of organisms.3 The PIF helps to quantify fitness by dividing the 

propensity’s outcomes into discrete chunks, allowing these chunks to be tallied and fed into 

mathematical models. The chunks are based on offspring production. The idea is that an 

 
2 Robert N. Brandon, “Adaptation and evolutionary theory,” Studies in History and Philosophy of Science 

Part A, 9(3) (September 1978): 181-206; and Susan K. Mills and John Beatty, “The propensity 

interpretation of fitness.” Philosophy of Science, 46(2) (June 1979): 263-286. 
3 While organisms are not the only entities that may be bearers of fitness—genes or groups or even 

species are sometimes considered to bear (and vary in) fitness—I will here focus on organisms and thus 

avoid wading through the morass of problems in the debates over the “levels” of selection. If you want a 

peek at these problems, read Markus Eronen and Grant Ramsey, “What are the ‘levels’ in levels of 

selection?,” The British Journal for the Philosophy of Science 72, 2 (June 2025): 495-518. 
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organism has a probability of having zero offspring, one offspring, two offspring, and so on. 

These probabilities can then be tallied to quantify the fitness of the organism. The quantification 

originally offered by Brandon is the expected number of offspring. If a wildebeest has a 0.3 

probability of having 0 offspring, a 0.2 probability of having 1, a 0.3 probability of having 2, and 

a 0.2 probability of having 3, then its expected number of offspring—its fitness—will be (0.3 ´ 

0) + (0.2 ´ 1) + (0.3 ´ 2) + (0.2 ´ 3) = 1.4. 

This is thus “expected” in the purely mathematical sense. The expectation value of a 

distribution is its arithmetic mean. Technically speaking, it is the distribution’s first moment. It is 

thus not the outcome we expect: 1.4 is not the number of offspring we would expect from any 

actual organism. 

Fitness calculated in this way allows for evolutionary predictions and explanations. If we 

have a population consisting of two types of organisms—shade-tolerant and intolerant variants of 

a plant species, say—if the shade-tolerant variant is fitter than the other, and if the types breed 

true, then we expect the growth rate of the shade-tolerant type to be higher than that of the shade-

intolerant type. 

So far so good. The PIF makes the theory of evolution by natural selection non-trivial (or 

non-tautologous) and provides a way of quantifying this propensity, thereby connecting it to 

population growth rates. It might seem that this would be the end of the story. The PIF solved the 

problem—time to move on. This is not what happened, however. Instead, a tide of skepticism 

about the PIF (as originally formulated) swelled, setting the course for decades of work on the 

philosophy of fitness. 

This skepticism has its roots in some mathematical work that biologist John Gillespie4  

published in the 1970s but was discovered by philosophers a decade later. Recall that the PIF 

was originally quantified by the first moment of the offspring distribution. Gillespie’s work 

seemed to imply that the offspring distribution’s first moment does not completely capture 

fitness. Instead, the second moment—variance—appears to affect fitness. Variance is the spread 

of the distribution. You can change the variance in a distribution without changing its mean, and 

 
4 E.g., John H. Gillespie, “Natural selection for within-generation variance in offspring number,” Genetics 

76 (March 1974): 601-606. 
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vice versa. The mean of the offspring distribution surely affects fitness, but what about variance? 

On the face of it, it seems like variance would be irrelevant to fitness: what matters is offspring 

production on average, not variance in offspring production. This, I will later argue, is exactly 

right: variance does not matter. Nevertheless, philosophers became convinced that variance 

affects fitness and started to chisholm the original fitness definition in order to accommodate 

variance effects. 

 Gillespie’s work also implied something more radical. Under some circumstances, the 

fitness of an organism can be changed by changing n, the size of the population in which it 

resides. This appears causally mysterious. It is like the fragility of a vase depending on how 

many vases there are (in your city or in the world). This worry about n triggered a fusillade of 

work and helped support an entirely new camp in the philosophy of biology, “statisticalism,”5 

which argues that fitness (as well as selection and drift) are not causally efficacious.6 

This worry about n, I will argue here, is much ado about nothing. Fitness is not 

modulated by population size, nor affected by variance. This is a radical argument. If sound, it 

implies that much of the work on the philosophy of fitness over more than four decades rests on 

a faulty foundation and is rife with conceptual and mathematical errors. As we will see, the belief 

 
5 For foundational papers by the statisticalists, see: Mohan Matthen and André Ariew, “Two ways of 

thinking about fitness and natural selection.” The Journal of Philosophy 99, 2 (February 2002): 55-83; 

Denis M. Walsh, Tim Lewens, and André Ariew, “The trials of life: Natural selection and random drift,” 

Philosophy of Science 69, 3 (September 2002): 452-473. 
6 While dependence on n has helped support statisticalism, it is not the only reason offered in its support. 

See Denis M. Walsh, André Ariew, and Mohan Matthen, “Four pillars of statisticalism,” Philosophy, 

Theory, and Practice in Biology 9, 1 (2017): 1-18. For an early argument for the epiphenomenal character 

of fitness, see Denis M. Walsh, “Chasing shadows: natural selection and adaptation,” Studies in History 

and Philosophy of Science Part C: Studies in History and Philosophy of Biological and Biomedical 

Sciences 31, 1 (2000): 135-153. For a critique of fitness epiphenomenalism, see Lawrence A. Shapiro and 

Elliott Sober, “Epiphenomenalism-the do’s and the don’ts’,” in Peter K. Machamer and Gereon Wolters, 

eds., Thinking about Causes: From Greek Philosophy to Modern Physics (Pittsburgh: University of 

Pittsburgh Press, 2006), pp. 235-264. 
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that n affects fitness is based on the idea that variance affects fitness.  Let us thus begin by 

considering variance before moving on to n. 

I. VESTIGES OF VARIANCES 

In the late 1980s, philosophers, such as Beatty and Finsen7 and Brandon8, became convinced that 

variance in the offspring distribution has a negative effect on fitness: hold the arithmetic mean of 

the distribution constant, increase the distribution’s variance, and the result will be a decrease in 

fitness. In light of this, Brandon modified his 1978 account of fitness as expected number of 

offspring to expected number of offspring minus some function of variance. He did not specify 

what that function was but nevertheless felt certain that variance has a negative effect on fitness. 

While the source of the idea that variance depresses fitness came from Gillespie’s 

articles, philosophers have typically not engaged with Gillespie’s math and instead used toy 

examples to purportedly illustrate that growth rates decrease with increased variance. Here is a 

frequently offered example: Take a population composed to two types, A and B. Every A 

individual invariantly produces two offspring each generation. Thus, each subsequent generation 

is calculated by multiplying the number of As by 2. By contrast, B individuals all produce 1 

offspring, or all produce 3 offspring (with equal probability). Each subsequent B generation is 

thus calculated by multiplying the number of Bs by either 1 or 3. Each A has the same expected 

number of offspring as each B (since the arithmetic mean of 1 and 3 is 2), but do they have the 

same fitness? Here are ten generations of the A type (starting with a population size of 1): 

2 ® 4 ® 8 ® 16 ® 32 ® 64 ® 128 ® 256 ® 512 ® 1024 

Since B is stochastic, a legitimate comparison would include all possible sequences of 

generations (producing 1 or 3 offspring) and then average over these possibilities. In the 

 
7 John Beatty and Susan Finsen, “Rethinking the Propensity Interpretation: A Peek Inside Pandora’s Box,” 

in: Michael Ruse, ed., What the Philosophy of Biology Is. Nijhoff International Philosophy Series, vol 32. 

(Springer, Dordrecht, 1989). 
8 Robert N. Brandon, Adaptation and Environment (Princeton University Press, 1990). 
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philosophical literature, however, single trajectories are often used.9 Here is one such trajectory, 

which starts with 3 then deterministically alternates between 1 and 3: 

3 ® 3 ® 9 ® 9 ® 27 ® 27 ® 81 ® 81 ® 243 ® 243 

After ten generations, there is more than four times the number of A individuals as B 

individuals. This trajectory is not a fluke: on average the growth rate of the B type will be much 

lower than that of the A type. It seems to follow from this that variance decreases fitness, that 

Brandon and others were right to see variance as a fitness-depressing factor. 

What is clear in this case is that As are fitter than Bs. What is less certain is whether this 

fitness difference is because of variance. To justify the claim that variance is responsible for the 

fitness difference, one must compare low and high variance types that are fair comparisons. 

Consider a clearly unfair comparison. If the low variance type always produces 2 offspring, 

while the high variance type produces 0 or 1 (with equal probability), the high variance type will 

have lower fitness, but its lower fitness can be attributed to its low average reproductive rate. 

Even if the low variance type gets lucky and always produces 1 offspring, it will necessarily have 

a lower growth rate than the low variance type. We obviously judge this to be an unfair 

comparison. To make this judgment, we are using some kind of criterion of fairness. But what is 

this criterion? 

Is always 2 vs. 1 or 3 (with equal probability) a fair comparison? It seems fair because the 

arithmetic mean of 1 and 3 is 2. Thus, one proposal for a criterion of fairness is to control for the 

arithmetic mean. But this only leads us to question whether the arithmetic mean is the 

appropriate criterion. If fairness comes from controlling for a mean, why is the arithmetic mean 

the correct one to control for in this case? There are other means. In particular, there is the 

geometric mean. The arithmetic mean is an additive mean: you add n values then divide by n. 

The geometric mean is a multiplicative mean: you multiply n values then take the nth root. Which 

mean should we control for? 

 
9 This undermines the comparison, but I will keep to the norms of the literature. I have made sure that the 

trajectory used here is close to the average, allowing for the desired inferences in this case. 
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The answer is: it depends. It depends on which kind of model is used for population 

growth (and, as we will see, different kinds of models are appropriate for different kinds of 

variance). In the examples above, population growth is modeled as a multiplicative process: the 

population size for the subsequent generation is calculated by multiplying the current population 

size by a number. This contrasts with additive processes, for which subsequent generation 

population sizes are calculated by adding the current population size to a number. For example, 

we might always add 2 individuals to the population. Or we could flip a coin and add 1 or 3. For 

a comparison to be fair, I will now argue, one must control for the mean that is appropriate to the 

model at hand. 

In the above trajectories, we created the high variance comparison by controlling for the 

additive (arithmetic) mean, but calculated population growth by multiplying the population by a 

number. Here is what happens when we do this. Start with a zero-variance type—always 

multiply by x—and create a high variance type by adding and subtracting a value, y, from x. This 

gives us a comparison between always x vs. (x – y) or (x + y) (with equal probability). Using a 

multiplicative model to calculate growth rates, the increase in the low variance type across two 

generations can be calculated by x ´ x, which is x2. The high variance type can (on average) be 

calculated by (x + y) ´ (x – y), which is x2 – y2. Because y2 is always positive, the high variance 

type automatically has a lower growth rate if we control for the additive mean with a 

multiplicative process. Because of this, 1 or 3 (with equal probability) is not a fair comparison 

with always 2 in the case of a multiplicative model. 

By comparison, see what happens when we control for additive means for additive 

processes and multiplicative means for multiplicative processes. For the additive case, the low 

variance type involves always adding x individuals to the population, whereas for the high 

variance comparison, either (x + y) or (x – y) (with equal probability) is added. Over two 

generations of the low variance type, we have x + x, which is 2x. If we sum (x + y) and (x – y), 

we also get 2x. Here are sample trajectories (again, starting with a population of 1) where x is 2 

and y is 1. The low variance (always add 2) case is: 

3 ® 5 ® 7 ® 9 ® 11 ® 13 ® 15 ® 17 ® 19 ® 21 

And a high variance case (add 1 or 3 with equal probability) sample trajectory is: 
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4 ® 5 ® 8 ® 9 ® 12 ® 13 ® 16 ® 17 ® 20 ® 21 

The high and low variance types have the same growth rates, implying that growth rates are not 

affected by variance.10 

For the multiplicative process in which the low variance type is always multiply by 2, a 

high variance fair comparison would be multiply by 1 or 4 with equal probability (since the 

geometric mean of 1 and 4 is 2). The low variance trajectory is the same as the one above, which 

resulted in a population size of 1042. The high variance type would go like this: 

4 ® 4 ® 16 ® 16 ® 64 ® 64 ® 256 → 256 → 1024→ 1024 

 The high and low variance trajectories have the same outcome. Variances leave no 

vestiges in growth rates. 

II. GILLISPIE’S VITAL DISTINCTION 

Because the idea that fitness values can be changed by changing variances or n traces back to 

Gillespie’s work, we should pause to consider how he achieved his conclusions. To understand 

Gillespie, we need to start by introducing a distinction important to his work, that between 

within-generation variance and between-generation variance. In the multiplicative examples 

above, all the organisms of the same type within each generation had the same number of 

offspring. If one B had 3 offspring, every B in that generation did so. All the variance is between 

generations, not within generations. This synchronized variance, also known as aggregate 

variance, contrasts with cases in which each organism effectively flips a coin and has 1 or 3 

offspring. Such unsynchronized, within-generation variance is also known as idiosyncratic 

variance. 

 These two kinds of variance have important implications for how population growth can 

be calculated. With between-generation variance, we can calculate the subsequent generation by 

simply multiplying the population size by a single number. In the low-variance example above, 

 
10 Again, this is a single trajectory of a stochastic process and thus a comprehensive comparison would 

need to take into account all possible trajectories, not merely a sample trajectory. Like in the above 

example, I will not bother with this complication—but rest assured that the sample trajectory has the same 

qualitative outcome as the average over all trajectories.  
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we multiplied the population size by 2 to generate the size of the next generation. But for within-

generation variance, we cannot do this. If each organism flips a coin to decide if it will produce 1 

or 3 offspring, we cannot multiply the population size by a number to generate the subsequent 

generation’s population size. Instead, we need to add individuals to the population—in this case 

adding 1 or 3 for each B individual. 

What Gillespie argues is that for cases of between-generation variance, fitness is modeled 

by a multiplicative mean: the geometric mean.11 For between-generation variance, then, we can 

use multiplicative models—and to create a fair comparison to see how variance affects 

population growth, we should control for the geometric mean. The 2 vs. 1 or 4 (with equal 

probability) case above exemplifies the fact that between-generation variance in offspring 

number does not affect fitness. Similarly, for within-generation variance, we should use an 

additive model (and thus the arithmetic mean) to make fair comparisons. As we saw above, 

within-generation variance has no effect on growth rates (as demonstrated by controlling for the 

arithmetic mean). 

This is not the end of the story, however. For the case of within-generation variance, 

Gillespie argued that fitness is modeled by the arithmetic mean minus variance divided by n. 

How can population size possibly have anything to do with growth rates? The answer is it does 

not. But to see this, we need to understand what biologists sometimes term relative fitness and 

how it is connected to what I am calling enrichment and dilution. 

III. ENRICHMENT AND DILUTION  

Put a drop of ink into a glass of water. Put a second drop in and you doubled the amount of ink. 

Put a third drop in and you have increased the amount by only 1.5´. Continue adding ink. The 

100th drop increases the amount of ink by a mere 1%, a quantity too small to notice. The effect of 

 
11 The equation he uses to represent the geometric mean—the arithmetic mean minus variance divided by 

two—is in fact an approximation of the geometric mean. This is an approximation developed before the 

time of computers in order to predict the performance of stocks in the stock market using arithmetic 

means and variance alone. (See, William H. Jean and Billy P. Helms, “Geometric mean approximations,” 

Journal of Financial and Quantitative Analysis 18:3 (September 1983): 287-293.) It is important to 

realize that the geometric mean is not a function of variance, as this approximation seems to imply. 
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the ink thus changes depending on how much has already been added. This creates an 

asymmetry: adding a drop has a smaller effect than taking one away (if this were possible). 

The same phenomenon is true of collections of items. If you have a jar of coins, which 

contains mostly pennies but a few dimes, adding a dime will make a larger difference to dime 

frequency than adding a penny will make to penny frequency. And the loss of a dime has a larger 

effect on dime frequency than the addition of one. If you were to put one dime and one penny 

into the jar each day, the frequency of the dimes would increase rapidly at first but then 

eventually converge toward the frequency of the pennies. Analogizing this to biological 

organisms, one should not interpret the dimes as having a fitness advantage (an advantage of 

being rare). To do this is to conflate the growth process (a new dime each day) and the frequency 

changes due to dilution and enrichment. Frequency changes are a function of both causal 

components (tied to population growth) and noncausal (dilution and enrichment) effects. 

Now consider a population of organisms composed of As and Bs. In the case of within-

generation variance, the asymmetry of dilution and enrichment—dilution having a larger effect 

than enrichment—can give the illusion that variance in offspring number is disadvantageous. 

When an organism has an offspring, it enriches the population with its type, just like with the 

coin example. If Bs produces 1 or 3 with equal probability, if we compare this with always 

producing 2 offspring, then it seems like always producing 2 carries a fitness advantage. The 

reason is that having one more than 2 (i.e., having a third) will produce less of a frequency effect 

than the loss entailed from having 1 fewer. (Again, dilution is more significant for frequency 

changes than is enrichment.) Thus, As appear fitter than Bs. But to conclude that As are fitter is to 

conflate fitness (and the associated growth rates) with dilution and enrichment (and the 

associated frequency changes). 

To bring this distinction into focus, consider fragility. The glass tumbler you drank from 

this morning has some degree of fragility. If it breaks, it turns into shards. We could quantify the 

fragility of the tumbler in terms of its expected number of shards after some time (a decade, say). 

The expected number of shards for the tumbler is due to an array of causally relevant factors, 

including its intrinsic features (such as its shape and thickness) and features of its environment 

(how and how frequently it is used). 



Forthcoming in The Journal of Philosophy. Please quote only the published version. 
 

 11 

Now consider the impact the tumbler will have on the global frequency of shards. If the 

tumbler is clear, it will have an insignificant impact on global clear glass shard frequency. But if 

the glass is an extremely rare shade of chartreuse called c21, the glass could have a significant 

impact on c21 shard frequency. The impact the glass has on global c21 shard frequency is not a 

causal impact. It is simply a numerical impact, one based on three numbers: the global number 

shards (of any color), the global number of c21 shards, and the number of shards from your 

tumbler. The causal underpinning of the expected shard frequency of the tumbler is in no way 

called into question by the fact that the impact it has on shard frequency is due to the number of 

shards the world over. The mistake of thinking it is, as we will see, is precisely the mistake made 

by many philosophers of biology. 

IV. MUCH ADO ABOUT ‘N’OTHING  

The position in the philosophy of biology known as statisticalism became established more than 

two decades ago. Statisticalists reject the idea that the core concepts in evolutionary theory—

fitness, selection, drift—pick out causal properties or processes. For statisticalists, it is not true 

that albino forms of animals are rare because albinism is selected against (where ‘because’ is 

understood causally). And elephants are not large because of the fitness advantages conferred by 

their massive size. Instead, fitness and selection denote mere statistical descriptions of 

evolutionary outcomes. Statisticalists are distinguished from causalists, who tend to view fitness 

as a probabilistic propensity to survive and reproduce. 

 An important line of support for statisticalism is based on Gillespie’s equation for fitness 

in the case of within-generation variance (fitness as the arithmetic mean of the offspring 

distribution minus variance divided by n). Statisticalists argue that fitness is not causal since 

“facts such as population size—which is not a causal property of an individual at all—may 

influence whether a trait’s frequency will increase or decrease. […] For a large fraction of 

organisms, the explanation for why a trait will increase or decrease depends in part on factors 

that are extrinsic to the causal properties of [the] individual.”12 How are these populational 

changes related to individual-level propensities? They hold that “these evolutionary dynamics 

 
12 André Ariew, and Zachary Ernst, “What fitness can’t be,” Erkenntnis 71, 3 (July 2009): 289-301, here 

page 296, emphasis added. 
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are, in fact, counterexamples to the propensity interpretation of fitness.”13  Thus, they use 

features of (populational) trait frequency changes to argue against underlying (organismic) 

dispositions. 

Using populational frequency dynamics to argue against the PIF is like claiming that 

shard frequency’s dependence on n—global shard number—serves as a counterexample to the 

fragility propensity. Frequency changes necessarily have noncausal components since they 

depend on nonlocal factors. Glass shards in rural Indiana, Parisian nightclubs, and Mumbai 

dumps all bear on global shard frequencies. But they do not serve as counterexamples to the 

fragility of your tumbler. Part of the diagnosis for why statisticalists appear to think they do is the 

fact that they do not always clearly distinguish noncausal frequency effects from the causal 

effects of individual propensities. The first quote in the previous paragraph starts by discussing 

trait frequency changes, but then claims that “why a trait will increase or decrease depends in 

part on factors that are extrinsic to the causal properties of [the] individual.” This quote is 

ambiguous. If it refers to increases or decreases in frequencies, it is trivially true. If it is about the 

number of individuals with the trait, it is false. The changes in the absolute numbers of pennies 

and dimes stay the same (one coin added per day) even as relative frequencies change with each 

additional coin. The fact that frequencies depend on total coin number does not imply that the 

growth in the number of coins has the same dependence. 

In other examples, the statisticalists clearly make the unwarranted leap from frequency to 

number.  For instance, they note that, “demographic factors, such as population size […] also 

affect the rate of change in frequency of a trait type.”14 Two paragraphs later, they conclude that 

“these considerations and others […] suggest that the rate of growth of a trait type is dependent 

upon all manner of causal, demographic, and statistical factors that are extraneous to the average 

reproductive output of the individuals possessing a given trait.” While the first quote is an 

observation about trait frequencies, the second is about the growth of number of individuals 

bearing the trait. The truth that frequencies depend on global parameters such as n in no way 

implies that changes in the number of individuals with the trait is similarly affected. This 

 
13 Ibid, p. 289. 
14 Walsh, Ariew, and Matthen, “Four pillars of statisticalism,” op. cit., here page 10, emphasis added. 
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conflation of frequency changes and populational growth allows them to take truths about 

frequencies and apply them to growth rates, converting them to falsehoods. 

To see the absurdity of this conflation, think back to the coin example. The growth of the 

pennies and dimes is one per day. Because of dilution and enrichment, the equality of growth in 

absolute coin number will not be reflected by an equality of frequency changes. The rare type 

will increase in frequency and the dominant type will decrease in frequency—all in the face of an 

equivalent number of added coins. 

V. EXCUSES  

Why is there so much confusion about fitness? Why do philosophers fail to clearly distinguish 

frequency changes from absolute number changes? These are fundamentally different—and only 

the former depends on n. Part of the problem stems from inconsistencies in biological treatments 

of fitness. Biologists often label fitness as ‘absolute fitness’ and the metric linked frequency 

changes as ‘relative fitness’.15 This makes it seem as though there are simply two flavors of 

fitness, absolute and relative. This is highly misleading. Absolute fitness is causal. It concerns 

growth rates and that which causes them. Relative fitness is a combination of (causal) absolute 

fitness and (noncausal) populational components. Even more confusing, sometimes biologists 

label absolute fitness as reproductive success and relative fitness as fitness.16 

 The fact that Gillespie used the term ‘fitness’ and the label ‘F’ made it seem like he was 

talking about the same quantity that the PIF theorists were trying to explicate. But Gillespie’s 

equations were concerned with relative, not absolute fitness. Biologists also talk of ‘fitness in 

 
15 ‘Relative fitness’ is variously defined in the literature, depending on what absolute fitness is measured 

relative to. For instance, it could be relative to the absolute fitness of the fittest individual or to the 

average absolute fitness. Note that with the latter, relative fitness is based on the fitness values of all the 

individuals in the population and is thus sensitive to frequency changes. It is this way of characterizing 

relative fitness that is assumed here. However, no matter how relative fitness is defined, it is important to 

see that it is a statistic based on absolute fitness values. 
16 For example, Steven A. Frank “Natural selection. I. Variable environments and uncertain returns on 

investment,” Journal of Evolutionary Biology 24, 11 (November 2011): 2299-2309. 
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finite populations’ as though fitness has a different character depending on the population size. 

Again, this is about relative fitness, not absolute fitness. 

Had it been clear to philosophers that Gillespie was concerned with relative fitness, not 

the absolute fitness of the PIF, perhaps the history of the philosophy of biology would have taken 

a very different course. Consider again his equation for fitness in the case of within-generation 

variance. Gillespie holds that fitness is the arithmetic mean of the offspring distribution minus 

variance over n. This equation clearly contains the causal component (the expected number of 

offspring, exactly as described by the original rendering of the PIF) and a noncausal component 

(the negative effect of the dilution-enrichment asymmetry). This negative factor is an attempt to 

translate absolute fitnesses into relative fitnesses. The existence of this factor does not serve as a 

counterexample to the causal fitness component any more than expected shard frequency serves 

as a counterexample to fragility. 

Some biologists are clearer about the relationship between the PIF and the noncausal 

factors needed to derive expected frequency changes. Hansen,17 for instance, analyzes the 

within-generation fitness equation of Gillespie and concludes that the left component (the 

expectation value) is absolute fitness. The whole factor—including the variance over n 

component—aims to capture relative fitness. However, Hansen shows that the equation is 

mistaken, that it does not include the variances of all the individuals in the population. This is a 

fixable problem, however. The details of the fix need not concern us here, but what is clear is that 

one can subtract the noncausal dilution-enrichment asymmetries from absolute fitness to deduce 

relative fitness. Again, this does not undercut the causal nature of fitness. All it shows is that 

relative fitness takes into account populational (or global) factors. 

 Thus, there are good excuses for confusing changes to global quantities (like relative 

fitness or frequencies) and absolute number changes. With this diagnosis, it is easy to see that the 

statisticalist presupposition that Gillespie’s within-generation equation serves as a 

counterexample to the PIF rests on fundamental errors. Nor does Gillespie’s work mean that 

fitness is somehow “holistic”—that it depends on the properties of the whole population, even 

 
17 Thomas F. Hansen “On the definition and measurement of fitness in finite populations,” 

Journal of Theoretical Biology 419 (April 2017): 36-43. 
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ones with no causal influence, as Sober famously suggested.18 One needs to carefully distinguish 

the causal from the noncausal properties and acknowledge that the causal, fitness-based 

component is not called into question by the vagaries of population size or frequency changes. 

VII. CAUSES, REAL AND PHANTOM  

Some species are polymorphic, meaning that they possess distinct types, such as wing pattern 

types in a butterfly species. This fact was assumed in the toy examples above, which considered 

the fitnesses of types A and B belonging to the same species. In these examples, there was a fixed 

fitness consequence to being an A or B and it was argued that this fitness consequence was 

independent of the frequencies of the types. The nature of dilution and enrichment makes it seem 

that rare types gain a fitness advantage merely by being rare, but this is an illusion. The 

advantage of being rare is a phantom cause, not a real one. It is due merely to the numerical 

asymmetry of dilution and enrichment. 

 By pointing out this illusion, it might seem that I am arguing against the possibility (or 

even coherency) of frequency-dependent selection, in which the fitness values of the types 

depend on their frequency. This is not the case, however. I admit the possibility—and even the 

importance—of frequency-dependent selection in nature. How does this not contradict the 

argument above that expected frequencies and fitness should not be conflated? Being rare gives 

you a frequency advantage in the sense that an offspring of a rare type makes a larger impact on 

frequencies than does an offspring of a common type. But this is not an absolute fitness 

advantage: it has no impact on growth rates and is not causal. Frequency-dependent selection, by 

contrast, involves a causal dependency on frequencies. 

One phenomenon that frequency-dependent selection is invoked to explain is the 

maintenance over time of polymorphisms. Stable polymorphisms are evolutionary puzzles. If the 

types vary in fitness, then the polymorphism should be short-lived, since the higher fitness type 

will displace the others. If they are selectively neutral, we expect random drift to eventually lead 

to one type alone remaining. There are, however, many stable polymorphic species and in some 

 
18 Elliott Sober “The Two Faces of Fitness,” in Diane B. Paul, Costas B. Krimbas, John Beatty, and Rama 

S. Singh, eds., Thinking about Evolution: Historical, Philosophical, and Political Perspectives 

(Cambridge: Cambridge University Press 2001), pp. 309-21.  
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cases scientists have offered apostatic selection as an explanation of their maintenance. Apostatic 

selection is negative frequency-dependent selection, meaning that there is a selective advantage 

to being rare. How is apostatic selection causal and not merely an artifact of the dilution-

enrichment asymmetry? 

Rareness seems to carry an advantage since if we focus on frequency changes, an 

offspring of a rare type will have a larger frequency impact than will the offspring of a common 

type. However, what is important for maintaining polymorphisms is the growth rate of each type. 

Growth rates are about the growth of each type, not their relative frequencies, and they do not 

depend on n. How, then, is it that growth rates can be partially determined by apostatic selection? 

Let us consider a concrete case to see this clearly. 

Many species of salamander exhibit polymorphisms. Scientists have proposed that 

apostatic selection explains the persistence of the multiplicity of types in these species. Birds are 

a major predator for salamanders. When birds search for prey, they do so based on a search 

image. The search image for a type is like a concept built from experience with the type. What 

scientists have found is that birds more easily find common salamander types, and that this is 

because they have had more exposure to individuals of these types and thus have developed a 

more robust search image.19 The causal flow thus goes like this: 

exposure to salamanders ® search image ® predation 

Frequencies are causally important since they determine the relative robustness of the 

search images. For each bird, the total number of salamander exposures of each type helps 

determine the robustness of the search image of that type. More exposure will lead to a more 

robust search image, which will allow the birds to more easily find the salamanders, which leads 

to them prey on the more common type at a disproportionally higher rate. 

This example makes clear what frequency-dependent selection is and how this form of 

selection in no way undermines my argument that we must be careful to distinguish fitness from 

expected frequency changes. More importantly, it shows that to understand frequency-dependent 

 
19 Benjamin M Fitzpatrick, Kim Shook, and Reuben Izally “Frequency-dependent selection by wild birds 

promotes polymorphism in model salamanders.” BMC Ecology 9, 12 (May 2009). 
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selection, we need to see that rareness alone does not confer a selective advantage. Simply being 

rare does not trigger apostatic selection. Apostatic selection occurs only when being rare triggers 

a causal chain that disproportionately selects against the common form. 

VIII. THE TYPE TRAP  

Many species, such as the salamanders just discussed, are polymorphic. Polymorphisms occur 

when there are discrete trait types in the population. When traits come in discrete types, they are 

labeled qualitative traits. Such traits are distinguished from quantitative traits, which are 

continuously variable. It is not that Darwin had a height, it is that his height was 183cm. 

Variables like height and weight are common in nature and are selectively important. In some 

cases there can be a linear selective gradient (taller is better), while at other times the Goldilocks 

scenario is realized (average height is best). A selective gradient can prompt directional 

evolutionary change, whereas with the Goldilocks scenario, selection is said to be stabilizing and 

can help prevent evolution from occurring. In either case, this is selection and an evolutionary 

response—all in the absence of types. And without types, we do not have frequencies. 

 This implies that one should avoid falling into the trap of thinking that all evolution 

concerns selection on types, and that fitness is cashed out only in terms of type frequency 

changes.20 The PIF posits that organisms have probabilistic propensities of having offspring, and 

that this serves as the basis for natural selection. Heritable variation in fitness values can cause 

evolutionary responses—there is no need to resort to types or their frequencies in modeling, 

explaining, and understanding evolution. 

This is not to deny that types play useful roles. They can, especially when the focus is on 

a phenotypic difference due to a single genetic difference. In the absence of such monogenetic 

traits, types can also be useful. In some cases, we can sort tokens into types to simplify 

evolutionary modeling or to more easily generalize. For instance, we could create various types 

of height. Every 10 cm span (starting at 0 cm) could be a type. Darwin would be height type 19 

 
20 For a recent defense of the idea that types, not tokens, are foundational to natural selection, see 

Marshall Abrams, Evolution and the Machinery of Chance: Philosophy, Probability, and Scientific 

Practice in Biology (Chicago: University of Chicago Press, 2023). 
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in this case. But to theorize the selective advantage of belonging to one height type instead of 

another (19 vs. 18, say) is merely to coarse grain a continuous variable. 

 Similarly, glasses vary continuously in their thickness. In general, thicker glasses will 

carry a lower expected number of shards. Like with height, we could create types of glasses. 

Ones 0-1 mm thick, 1-2 mm thick, and so on. We can then track the frequency of these types. We 

might gain some degree of predictive accuracy by knowing what type a glass falls into, but there 

is no certain link between thickness and fragility. Other factors, such as shape and kind of 

glass—borosilicate, soda-lime, lead crystal—bear on fragility. It is only the full package of 

specific traits that determines fragility. 

The same is true with organisms. Being aggressive without the strength to back it up may 

be a liability, whereas with the strength, it may be an advantage. This again points to fitness 

being a property of token organisms, one based on their suite of traits and the environment they 

find themselves in. While sorting organisms into types can be useful in some circumstances, 

especially in polymorphic species, it needs to be understood that this is merely for metrological 

and modeling convenience. 

 The secondary nature of types further undermines the statisticalist’s argument that 

because the expected frequencies of types depend on n, fitness cannot be understood to be a 

probabilistic propensity of organisms to survive and reproduce. Sorting organisms into types has 

many uses—but leveraging features of type frequency changes to attempt to undermine the 

causal effectiveness of the underlying tokens is not one of them. 

IX. CONCLUSIONS 

Philosophers of biology have for decades been convinced that the fitness of organisms is not 

fully captured by their expected number of offspring. Some have been persuaded that variance in 

the offspring distribution depresses fitness and have offered modified mathematical formulae to 

accommodate offspring variances. And some have been persuaded that n, population size, affects 

fitness, and have proposed a new metaphysics for evolution by natural selection, one that takes 

fitness and selection to be causally ineffective: ‘fitness’ is the name for a kind of statistical 

summary of evolutionary outcomes, not an identifier of that which causes evolution. 
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I have argued that neither variance in the offspring distribution nor n has any effect on 

fitness. They do impact frequencies, but this is not surprising. Frequencies automatically include 

n (since frequencies necessarily concern the total number of items) and the dilution-enrichment 

asymmetry links variances with frequency changes. But frequencies are not fitnesses. Realizing 

this leads to the conclusion that what is true of frequencies is not necessarily true of fitnesses. 

Total population size is not a fitness component. The same with fragility understood as expected 

number of shards. Global shard frequencies will be changed upon breaking a glass, but the 

fragility of the glass is not determined in any way by its impact on global shard frequency. 

This article thus shows the fragility of a key pillar of the statisticalists’s position. The 

causalists, however, do not go unscathed. Their efforts to chisolm fitness definitions to fit 

Gillespie’s math fracture upon carefully distinguishing relative frequencies from the absolute 

fitnesses. My purposes here are not merely destructive, however. My hope is that these insights 

can be used not just to smash old arguments, but to forge a new understanding of fitness and 

selection and their place in the theory of evolution by natural selection. 

GRANT RAMSEY 

KU Leuven 


