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MUCH ADO ABOUT ‘N’OTHING!

ABSTRACT

This article argues that a core area of the philosophy of biology—the philosophy of fitness—has
for decades rested on fundamental conceptual and mathematical errors. These errors have been
leveraged to support the position in the philosophy of biology known as statisticalism, which
holds that biological fitness does not cause evolution, but is merely a kind of statistical summary
of evolutionary outcomes. This is opposed to causalism, which holds that fitness is based on
(causally efficacious) probabilistic propensities, a position known as the propensity interpretation
of fitness. The error I focus on is the idea that fitness depends on population size, n, and because
population size is not a causal quantity, fitness cannot be causal. In this paper, I show that fitness

is not dependent on n and therefore a central critique of the propensity interpretation of fitness is

11l founded.
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Here is the story of the philosophy of biological fitness. In the beginning Brandon, alongside
Mills and Beatty, created the propensity interpretation of fitness (PIF).? This account, as the
name suggests, takes fitness to be a propensity of organisms to survive and reproduce, as
opposed to an outcome—a tally of offspring—as it was sometimes assumed to be. The PIF did
two important things. One is that it offered a way out of the tautology problem. The tautology
problem is a kind of reductio that goes like this: (1) The theory of evolution by natural selection
holds that evolutionary outcomes are caused by variation in fitness. (2) Fitnesses are
reproductive outcomes. Conclusion: Since outcomes cannot cause themselves, the theory of
evolution by natural selection is tautologous. One could quibble about whether ‘tautology’ is the
right pejorative here, but in any event, the central claim of the theory of evolution by natural

selection seems to be eviscerated by one of its foundational concepts.

Hence fitness as a propensity. This rendering appears to save the theory of natural
selection by making the PIF a claim about what sort of effects a particular propensity has. Causal
explanations are possible, at least as long as one agrees that propensities are causally efficacious.

Let us assume they are and see what else the PIF has on offer.

I said that the PIF did two important things. The other was that it provided a framework
for quantifying the fitness of organisms.® The PIF helps to quantify fitness by dividing the
propensity’s outcomes into discrete chunks, allowing these chunks to be tallied and fed into

mathematical models. The chunks are based on offspring production. The idea is that an

2 Robert N. Brandon, “Adaptation and evolutionary theory, ” Studies in History and Philosophy of Science
Part 4, 9(3) (September 1978): 181-206; and Susan K. Mills and John Beatty, “The propensity
interpretation of fitness.” Philosophy of Science, 46(2) (June 1979): 263-286.

* While organisms are not the only entities that may be bearers of fitness—genes or groups or even
species are sometimes considered to bear (and vary in) fitness—I will here focus on organisms and thus
avoid wading through the morass of problems in the debates over the “levels” of selection. If you want a
peek at these problems, read Markus Eronen and Grant Ramsey, “What are the ‘levels’ in levels of

selection?,” The British Journal for the Philosophy of Science 72, 2 (June 2025): 495-518.
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organism has a probability of having zero offspring, one offspring, two offspring, and so on.
These probabilities can then be tallied to quantify the fitness of the organism. The quantification
originally offered by Brandon is the expected number of offspring. If a wildebeest has a 0.3
probability of having 0 offspring, a 0.2 probability of having 1, a 0.3 probability of having 2, and
a 0.2 probability of having 3, then its expected number of offspring—its fitness—will be (0.3 x
0)+(02x1)+(03x2)+(02x3)=14.

This is thus “expected” in the purely mathematical sense. The expectation value of a
distribution is its arithmetic mean. Technically speaking, it is the distribution’s first moment. It is
thus not the outcome we expect: 1.4 is not the number of offspring we would expect from any

actual organism.

Fitness calculated in this way allows for evolutionary predictions and explanations. If we
have a population consisting of two types of organisms—shade-tolerant and intolerant variants of
a plant species, say—if the shade-tolerant variant is fitter than the other, and if the types breed
true, then we expect the growth rate of the shade-tolerant type to be higher than that of the shade-

intolerant type.

So far so good. The PIF makes the theory of evolution by natural selection non-trivial (or
non-tautologous) and provides a way of quantifying this propensity, thereby connecting it to
population growth rates. It might seem that this would be the end of the story. The PIF solved the
problem—time to move on. This is not what happened, however. Instead, a tide of skepticism
about the PIF (as originally formulated) swelled, setting the course for decades of work on the

philosophy of fitness.

This skepticism has its roots in some mathematical work that biologist John Gillespie*
published in the 1970s but was discovered by philosophers a decade later. Recall that the PIF
was originally quantified by the first moment of the offspring distribution. Gillespie’s work
seemed to imply that the offspring distribution’s first moment does not completely capture
fitness. Instead, the second moment—variance—appears to affect fitness. Variance is the spread

of the distribution. You can change the variance in a distribution without changing its mean, and

* E.g., John H. Gillespie, “Natural selection for within-generation variance in offspring number,” Genetics

76 (March 1974): 601-606.
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vice versa. The mean of the offspring distribution surely affects fitness, but what about variance?
On the face of it, it seems like variance would be irrelevant to fitness: what matters is offspring
production on average, not variance in offspring production. This, I will later argue, is exactly
right: variance does not matter. Nevertheless, philosophers became convinced that variance
affects fitness and started to chisholm the original fitness definition in order to accommodate

variance effects.

Gillespie’s work also implied something more radical. Under some circumstances, the
fitness of an organism can be changed by changing n, the size of the population in which it
resides. This appears causally mysterious. It is like the fragility of a vase depending on how
many vases there are (in your city or in the world). This worry about #n triggered a fusillade of
work and helped support an entirely new camp in the philosophy of biology, “statisticalism,”

which argues that fitness (as well as selection and drift) are not causally efficacious.®

This worry about n, I will argue here, is much ado about nothing. Fitness is not
modulated by population size, nor affected by variance. This is a radical argument. If sound, it
implies that much of the work on the philosophy of fitness over more than four decades rests on

a faulty foundation and is rife with conceptual and mathematical errors. As we will see, the belief

> For foundational papers by the statisticalists, see: Mohan Matthen and André Ariew, “Two ways of
thinking about fitness and natural selection.” The Journal of Philosophy 99, 2 (February 2002): 55-83;
Denis M. Walsh, Tim Lewens, and André Ariew, “The trials of life: Natural selection and random drift,”
Philosophy of Science 69, 3 (September 2002): 452-473.

® While dependence on n has helped support statisticalism, it is not the only reason offered in its support.
See Denis M. Walsh, André Ariew, and Mohan Matthen, “Four pillars of statisticalism,” Philosophy,
Theory, and Practice in Biology 9, 1 (2017): 1-18. For an early argument for the epiphenomenal character
of fitness, see Denis M. Walsh, “Chasing shadows: natural selection and adaptation,” Studies in History
and Philosophy of Science Part C: Studies in History and Philosophy of Biological and Biomedical
Sciences 31, 1 (2000): 135-153. For a critique of fitness epiphenomenalism, see Lawrence A. Shapiro and
Elliott Sober, “Epiphenomenalism-the do’s and the don’ts’,” in Peter K. Machamer and Gereon Wolters,
eds., Thinking about Causes: From Greek Philosophy to Modern Physics (Pittsburgh: University of
Pittsburgh Press, 2006), pp. 235-264.
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that n affects fitness is based on the idea that variance affects fitness. Let us thus begin by

considering variance before moving on to 7.
I. VESTIGES OF VARIANCES

In the late 1980s, philosophers, such as Beatty and Finsen’ and Brandon®, became convinced that
variance in the offspring distribution has a negative effect on fitness: hold the arithmetic mean of
the distribution constant, increase the distribution’s variance, and the result will be a decrease in
fitness. In light of this, Brandon modified his 1978 account of fitness as expected number of
offspring to expected number of offspring minus some function of variance. He did not specify

what that function was but nevertheless felt certain that variance has a negative effect on fitness.

While the source of the idea that variance depresses fitness came from Gillespie’s
articles, philosophers have typically not engaged with Gillespie’s math and instead used toy
examples to purportedly illustrate that growth rates decrease with increased variance. Here is a
frequently offered example: Take a population composed to two types, 4 and B. Every 4
individual invariantly produces two offspring each generation. Thus, each subsequent generation
is calculated by multiplying the number of 4s by 2. By contrast, B individuals all produce 1
offspring, or all produce 3 offspring (with equal probability). Each subsequent B generation is
thus calculated by multiplying the number of Bs by either 1 or 3. Each A4 has the same expected
number of offspring as each B (since the arithmetic mean of 1 and 3 is 2), but do they have the

same fitness? Here are ten generations of the A type (starting with a population size of 1):
254->8—>16—>32—> 64— 128 — 256 — 512 — 1024

Since B is stochastic, a legitimate comparison would include all possible sequences of

generations (producing 1 or 3 offspring) and then average over these possibilities. In the

7 John Beatty and Susan Finsen, “Rethinking the Propensity Interpretation: A Peek Inside Pandora’s Box,”
in: Michael Ruse, ed., What the Philosophy of Biology Is. Nijhoff International Philosophy Series, vol 32.
(Springer, Dordrecht, 1989).

¥ Robert N. Brandon, Adaptation and Environment (Princeton University Press, 1990).
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philosophical literature, however, single trajectories are often used.” Here is one such trajectory,

which starts with 3 then deterministically alternates between 1 and 3:
3535959527527 —->81—>81>243 > 243

After ten generations, there is more than four times the number of 4 individuals as B
individuals. This trajectory is not a fluke: on average the growth rate of the B type will be much
lower than that of the 4 type. It seems to follow from this that variance decreases fitness, that

Brandon and others were right to see variance as a fitness-depressing factor.

What is clear in this case is that 4s are fitter than Bs. What is less certain is whether this
fitness difference is because of variance. To justify the claim that variance is responsible for the
fitness difference, one must compare low and high variance types that are fair comparisons.
Consider a clearly unfair comparison. If the low variance type always produces 2 offspring,
while the high variance type produces 0 or 1 (with equal probability), the high variance type will
have lower fitness, but its lower fitness can be attributed to its low average reproductive rate.
Even if the low variance type gets lucky and always produces 1 offspring, it will necessarily have
a lower growth rate than the low variance type. We obviously judge this to be an unfair
comparison. To make this judgment, we are using some kind of criterion of fairness. But what is

this criterion?

Is always 2 vs. 1 or 3 (with equal probability) a fair comparison? It seems fair because the
arithmetic mean of 1 and 3 is 2. Thus, one proposal for a criterion of fairness is to control for the
arithmetic mean. But this only leads us to question whether the arithmetic mean is the
appropriate criterion. If fairness comes from controlling for a mean, why is the arithmetic mean
the correct one to control for in this case? There are other means. In particular, there is the
geometric mean. The arithmetic mean is an additive mean: you add n values then divide by 7.
The geometric mean is a multiplicative mean: you multiply n values then take the n™ root. Which

mean should we control for?

? This undermines the comparison, but I will keep to the norms of the literature. I have made sure that the

trajectory used here is close to the average, allowing for the desired inferences in this case.
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The answer is: it depends. It depends on which kind of model is used for population
growth (and, as we will see, different kinds of models are appropriate for different kinds of
variance). In the examples above, population growth is modeled as a multiplicative process: the
population size for the subsequent generation is calculated by multiplying the current population
size by a number. This contrasts with additive processes, for which subsequent generation
population sizes are calculated by adding the current population size to a number. For example,
we might always add 2 individuals to the population. Or we could flip a coin and add 1 or 3. For
a comparison to be fair, I will now argue, one must control for the mean that is appropriate to the

model at hand.

In the above trajectories, we created the high variance comparison by controlling for the
additive (arithmetic) mean, but calculated population growth by multiplying the population by a
number. Here is what happens when we do this. Start with a zero-variance type—always
multiply by x—and create a high variance type by adding and subtracting a value, y, from x. This
gives us a comparison between always x vs. (x — y) or (x + y) (with equal probability). Using a
multiplicative model to calculate growth rates, the increase in the low variance type across two
generations can be calculated by x x x, which is x?. The high variance type can (on average) be
calculated by (x + y) x (x — y), which is x?> — y%. Because )? is always positive, the high variance
type automatically has a lower growth rate if we control for the additive mean with a
multiplicative process. Because of this, 1 or 3 (with equal probability) is not a fair comparison

with always 2 in the case of a multiplicative model.

By comparison, see what happens when we control for additive means for additive
processes and multiplicative means for multiplicative processes. For the additive case, the low
variance type involves always adding x individuals to the population, whereas for the high
variance comparison, either (x + y) or (x — y) (with equal probability) is added. Over two
generations of the low variance type, we have x + x, which is 2x. If we sum (x + y) and (x — y),
we also get 2x. Here are sample trajectories (again, starting with a population of 1) where x is 2

and y is 1. The low variance (always add 2) case is:
3555759115135 15->17->19->21

And a high variance case (add 1 or 3 with equal probability) sample trajectory is:
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4-55-58—>59—>512>513>16—>17—>20—>21

The high and low variance types have the same growth rates, implying that growth rates are not

affected by variance.!°

For the multiplicative process in which the low variance type is always multiply by 2, a
high variance fair comparison would be multiply by I or 4 with equal probability (since the
geometric mean of 1 and 4 is 2). The low variance trajectory is the same as the one above, which

resulted in a population size of 1042. The high variance type would go like this:
4—>4—->16—>16—> 64 —> 64 - 256 — 256 — 1024— 1024

The high and low variance trajectories have the same outcome. Variances leave no

vestiges in growth rates.
II. GILLISPIE’S VITAL DISTINCTION

Because the idea that fitness values can be changed by changing variances or n traces back to
Gillespie’s work, we should pause to consider how he achieved his conclusions. To understand
Gillespie, we need to start by introducing a distinction important to his work, that between
within-generation variance and between-generation variance. In the multiplicative examples
above, all the organisms of the same type within each generation had the same number of
offspring. If one B had 3 offspring, every B in that generation did so. All the variance is between
generations, not within generations. This synchronized variance, also known as aggregate
variance, contrasts with cases in which each organism effectively flips a coin and has 1 or 3
offspring. Such unsynchronized, within-generation variance is also known as idiosyncratic

variance.

These two kinds of variance have important implications for how population growth can
be calculated. With between-generation variance, we can calculate the subsequent generation by

simply multiplying the population size by a single number. In the low-variance example above,

10 Again, this is a single trajectory of a stochastic process and thus a comprehensive comparison would
need to take into account all possible trajectories, not merely a sample trajectory. Like in the above
example, I will not bother with this complication—but rest assured that the sample trajectory has the same

qualitative outcome as the average over all trajectories.
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we multiplied the population size by 2 to generate the size of the next generation. But for within-
generation variance, we cannot do this. If each organism flips a coin to decide if it will produce 1
or 3 offspring, we cannot multiply the population size by a number to generate the subsequent
generation’s population size. Instead, we need to add individuals to the population—in this case

adding 1 or 3 for each B individual.

What Gillespie argues is that for cases of between-generation variance, fitness is modeled
by a multiplicative mean: the geometric mean.!! For between-generation variance, then, we can
use multiplicative models—and to create a fair comparison to see how variance affects
population growth, we should control for the geometric mean. The 2 vs. 1 or 4 (with equal
probability) case above exemplifies the fact that between-generation variance in offspring
number does not affect fitness. Similarly, for within-generation variance, we should use an
additive model (and thus the arithmetic mean) to make fair comparisons. As we saw above,
within-generation variance has no effect on growth rates (as demonstrated by controlling for the

arithmetic mean).

This is not the end of the story, however. For the case of within-generation variance,
Gillespie argued that fitness is modeled by the arithmetic mean minus variance divided by n.
How can population size possibly have anything to do with growth rates? The answer is it does
not. But to see this, we need to understand what biologists sometimes term relative fitness and

how it is connected to what I am calling enrichment and dilution.
III. ENRICHMENT AND DILUTION

Put a drop of ink into a glass of water. Put a second drop in and you doubled the amount of ink.
Put a third drop in and you have increased the amount by only 1.5x. Continue adding ink. The

100™ drop increases the amount of ink by a mere 1%, a quantity too small to notice. The effect of

' The equation he uses to represent the geometric mean—the arithmetic mean minus variance divided by
two—is in fact an approximation of the geometric mean. This is an approximation developed before the
time of computers in order to predict the performance of stocks in the stock market using arithmetic
means and variance alone. (See, William H. Jean and Billy P. Helms, “Geometric mean approximations,”
Journal of Financial and Quantitative Analysis 18:3 (September 1983): 287-293.) It is important to

realize that the geometric mean is not a function of variance, as this approximation seems to imply.
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the ink thus changes depending on how much has already been added. This creates an

asymmetry: adding a drop has a smaller effect than taking one away (if this were possible).

The same phenomenon is true of collections of items. If you have a jar of coins, which
contains mostly pennies but a few dimes, adding a dime will make a larger difference to dime
frequency than adding a penny will make to penny frequency. And the loss of a dime has a larger
effect on dime frequency than the addition of one. If you were to put one dime and one penny
into the jar each day, the frequency of the dimes would increase rapidly at first but then
eventually converge toward the frequency of the pennies. Analogizing this to biological
organisms, one should not interpret the dimes as having a fitness advantage (an advantage of
being rare). To do this is to conflate the growth process (a new dime each day) and the frequency
changes due to dilution and enrichment. Frequency changes are a function of both causal

components (tied to population growth) and noncausal (dilution and enrichment) effects.

Now consider a population of organisms composed of 4s and Bs. In the case of within-
generation variance, the asymmetry of dilution and enrichment—dilution having a larger effect
than enrichment—can give the illusion that variance in offspring number is disadvantageous.
When an organism has an offspring, it enriches the population with its type, just like with the
coin example. If Bs produces 1 or 3 with equal probability, if we compare this with always
producing 2 offspring, then it seems like always producing 2 carries a fitness advantage. The
reason is that having one more than 2 (i.e., having a third) will produce less of a frequency effect
than the loss entailed from having 1 fewer. (Again, dilution is more significant for frequency
changes than is enrichment.) Thus, 4s appear fitter than Bs. But to conclude that 4s are fitter is to
conflate fitness (and the associated growth rates) with dilution and enrichment (and the

associated frequency changes).

To bring this distinction into focus, consider fragility. The glass tumbler you drank from
this morning has some degree of fragility. If it breaks, it turns into shards. We could quantify the
fragility of the tumbler in terms of its expected number of shards after some time (a decade, say).
The expected number of shards for the tumbler is due to an array of causally relevant factors,
including its intrinsic features (such as its shape and thickness) and features of its environment

(how and how frequently it is used).

10
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Now consider the impact the tumbler will have on the global frequency of shards. If the
tumbler is clear, it will have an insignificant impact on global clear glass shard frequency. But if
the glass is an extremely rare shade of chartreuse called c21, the glass could have a significant
impact on c21 shard frequency. The impact the glass has on global c21 shard frequency is not a
causal impact. It is simply a numerical impact, one based on three numbers: the global number
shards (of any color), the global number of ¢21 shards, and the number of shards from your
tumbler. The causal underpinning of the expected shard frequency of the tumbler is in no way
called into question by the fact that the impact it has on shard frequency is due to the number of
shards the world over. The mistake of thinking it is, as we will see, is precisely the mistake made

by many philosophers of biology.
IV.MUCH ADO ABOUT ‘N’OTHING

The position in the philosophy of biology known as statisticalism became established more than
two decades ago. Statisticalists reject the idea that the core concepts in evolutionary theory—
fitness, selection, drift—pick out causal properties or processes. For statisticalists, it is not true
that albino forms of animals are rare because albinism is selected against (where ‘because’ is
understood causally). And elephants are not large because of the fitness advantages conferred by
their massive size. Instead, fitness and selection denote mere statistical descriptions of
evolutionary outcomes. Statisticalists are distinguished from causalists, who tend to view fitness

as a probabilistic propensity to survive and reproduce.

An important line of support for statisticalism is based on Gillespie’s equation for fitness
in the case of within-generation variance (fitness as the arithmetic mean of the offspring
distribution minus variance divided by 7). Statisticalists argue that fitness is not causal since
“facts such as population size—which is not a causal property of an individual at all—may
influence whether a trait’s frequency will increase or decrease. [...] For a large fraction of
organisms, the explanation for why a trait will increase or decrease depends in part on factors
that are extrinsic to the causal properties of [the] individual.”!? How are these populational

changes related to individual-level propensities? They hold that “these evolutionary dynamics

12 André Ariew, and Zachary Ernst, “What fitness can’t be,” Erkenntnis 71, 3 (July 2009): 289-301, here
page 296, emphasis added.

11
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13 Thus, they use

are, in fact, counterexamples to the propensity interpretation of fitness.
features of (populational) trait frequency changes to argue against underlying (organismic)

dispositions.

Using populational frequency dynamics to argue against the PIF is like claiming that
shard frequency’s dependence on n—global shard number—serves as a counterexample to the
fragility propensity. Frequency changes necessarily have noncausal components since they
depend on nonlocal factors. Glass shards in rural Indiana, Parisian nightclubs, and Mumbai
dumps all bear on global shard frequencies. But they do not serve as counterexamples to the
fragility of your tumbler. Part of the diagnosis for why statisticalists appear to think they do is the
fact that they do not always clearly distinguish noncausal frequency effects from the causal
effects of individual propensities. The first quote in the previous paragraph starts by discussing
trait frequency changes, but then claims that “why a trait will increase or decrease depends in
part on factors that are extrinsic to the causal properties of [the] individual.” This quote is
ambiguous. If it refers to increases or decreases in frequencies, it is trivially true. If it is about the
number of individuals with the trait, it is false. The changes in the absolute numbers of pennies
and dimes stay the same (one coin added per day) even as relative frequencies change with each
additional coin. The fact that frequencies depend on total coin number does not imply that the

growth in the number of coins has the same dependence.

In other examples, the statisticalists clearly make the unwarranted leap from frequency to
number. For instance, they note that, “demographic factors, such as population size [...] also
affect the rate of change in frequency of a trait type.”'* Two paragraphs later, they conclude that
“these considerations and others [...] suggest that the rate of growth of a trait type is dependent
upon all manner of causal, demographic, and statistical factors that are extraneous to the average
reproductive output of the individuals possessing a given trait.” While the first quote is an
observation about trait frequencies, the second is about the growth of number of individuals
bearing the trait. The truth that frequencies depend on global parameters such as » in no way

implies that changes in the number of individuals with the trait is similarly affected. This

3 Ibid, p. 289.

'4 Walsh, Ariew, and Matthen, “Four pillars of statisticalism,” op. cit., here page 10, emphasis added.

12
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conflation of frequency changes and populational growth allows them to take truths about

frequencies and apply them to growth rates, converting them to falsehoods.

To see the absurdity of this conflation, think back to the coin example. The growth of the
pennies and dimes is one per day. Because of dilution and enrichment, the equality of growth in
absolute coin number will not be reflected by an equality of frequency changes. The rare type
will increase in frequency and the dominant type will decrease in frequency—all in the face of an

equivalent number of added coins.
V. EXCUSES

Why is there so much confusion about fitness? Why do philosophers fail to clearly distinguish
frequency changes from absolute number changes? These are fundamentally different—and only
the former depends on n. Part of the problem stems from inconsistencies in biological treatments
of fitness. Biologists often label fitness as ‘absolute fitness’ and the metric linked frequency
changes as ‘relative fitness’.!> This makes it seem as though there are simply two flavors of
fitness, absolute and relative. This is highly misleading. Absolute fitness is causal. It concerns
growth rates and that which causes them. Relative fitness is a combination of (causal) absolute
fitness and (noncausal) populational components. Even more confusing, sometimes biologists

label absolute fitness as reproductive success and relative fitness as fitness.'®

The fact that Gillespie used the term ‘fitness’ and the label ‘F’ made it seem like he was
talking about the same quantity that the PIF theorists were trying to explicate. But Gillespie’s

equations were concerned with relative, not absolute fitness. Biologists also talk of ‘fitness in

15 ‘Relative fitness’ is variously defined in the literature, depending on what absolute fitness is measured
relative to. For instance, it could be relative to the absolute fitness of the fittest individual or to the
average absolute fitness. Note that with the latter, relative fitness is based on the fitness values of all the
individuals in the population and is thus sensitive to frequency changes. It is this way of characterizing
relative fitness that is assumed here. However, no matter how relative fitness is defined, it is important to
see that it is a statistic based on absolute fitness values.

' For example, Steven A. Frank “Natural selection. I. Variable environments and uncertain returns on

investment,” Journal of Evolutionary Biology 24, 11 (November 2011): 2299-2309.

13
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finite populations’ as though fitness has a different character depending on the population size.

Again, this is about relative fitness, not absolute fitness.

Had it been clear to philosophers that Gillespie was concerned with relative fitness, not
the absolute fitness of the PIF, perhaps the history of the philosophy of biology would have taken
a very different course. Consider again his equation for fitness in the case of within-generation
variance. Gillespie holds that fitness is the arithmetic mean of the offspring distribution minus
variance over n. This equation clearly contains the causal component (the expected number of
offspring, exactly as described by the original rendering of the PIF) and a noncausal component
(the negative effect of the dilution-enrichment asymmetry). This negative factor is an attempt to
translate absolute fitnesses into relative fitnesses. The existence of this factor does not serve as a
counterexample to the causal fitness component any more than expected shard frequency serves

as a counterexample to fragility.

Some biologists are clearer about the relationship between the PIF and the noncausal
factors needed to derive expected frequency changes. Hansen,!” for instance, analyzes the
within-generation fitness equation of Gillespie and concludes that the left component (the
expectation value) is absolute fitness. The whole factor—including the variance over n
component—aims to capture relative fitness. However, Hansen shows that the equation is
mistaken, that it does not include the variances of all the individuals in the population. This is a
fixable problem, however. The details of the fix need not concern us here, but what is clear is that
one can subtract the noncausal dilution-enrichment asymmetries from absolute fitness to deduce
relative fitness. Again, this does not undercut the causal nature of fitness. All it shows is that

relative fitness takes into account populational (or global) factors.

Thus, there are good excuses for confusing changes to global quantities (like relative
fitness or frequencies) and absolute number changes. With this diagnosis, it is easy to see that the
statisticalist presupposition that Gillespie’s within-generation equation serves as a
counterexample to the PIF rests on fundamental errors. Nor does Gillespie’s work mean that

fitness is somehow “holistic”’—that it depends on the properties of the whole population, even

7 Thomas F. Hansen “On the definition and measurement of fitness in finite populations,”

Journal of Theoretical Biology 419 (April 2017): 36-43.

14
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ones with no causal influence, as Sober famously suggested.!® One needs to carefully distinguish
the causal from the noncausal properties and acknowledge that the causal, fitness-based

component is not called into question by the vagaries of population size or frequency changes.
VII. CAUSES, REAL AND PHANTOM

Some species are polymorphic, meaning that they possess distinct types, such as wing pattern
types in a butterfly species. This fact was assumed in the toy examples above, which considered
the fitnesses of types 4 and B belonging to the same species. In these examples, there was a fixed
fitness consequence to being an 4 or B and it was argued that this fitness consequence was
independent of the frequencies of the types. The nature of dilution and enrichment makes it seem
that rare types gain a fitness advantage merely by being rare, but this is an illusion. The
advantage of being rare is a phantom cause, not a real one. It is due merely to the numerical

asymmetry of dilution and enrichment.

By pointing out this illusion, it might seem that I am arguing against the possibility (or
even coherency) of frequency-dependent selection, in which the fitness values of the types
depend on their frequency. This is not the case, however. I admit the possibility—and even the
importance—of frequency-dependent selection in nature. How does this not contradict the
argument above that expected frequencies and fitness should not be conflated? Being rare gives
you a frequency advantage in the sense that an offspring of a rare type makes a larger impact on
frequencies than does an offspring of a common type. But this is not an absolute fitness
advantage: it has no impact on growth rates and is not causal. Frequency-dependent selection, by

contrast, involves a causal dependency on frequencies.

One phenomenon that frequency-dependent selection is invoked to explain is the
maintenance over time of polymorphisms. Stable polymorphisms are evolutionary puzzles. If the
types vary in fitness, then the polymorphism should be short-lived, since the higher fitness type
will displace the others. If they are selectively neutral, we expect random drift to eventually lead

to one type alone remaining. There are, however, many stable polymorphic species and in some

18 Elliott Sober “The Two Faces of Fitness,” in Diane B. Paul, Costas B. Krimbas, John Beatty, and Rama
S. Singh, eds., Thinking about Evolution. Historical, Philosophical, and Political Perspectives
(Cambridge: Cambridge University Press 2001), pp. 309-21.
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cases scientists have offered apostatic selection as an explanation of their maintenance. Apostatic
selection is negative frequency-dependent selection, meaning that there is a selective advantage
to being rare. How is apostatic selection causal and not merely an artifact of the dilution-

enrichment asymmetry?

Rareness seems to carry an advantage since if we focus on frequency changes, an
offspring of a rare type will have a larger frequency impact than will the offspring of a common
type. However, what is important for maintaining polymorphisms is the growth rate of each type.
Growth rates are about the growth of each type, not their relative frequencies, and they do not
depend on n. How, then, is it that growth rates can be partially determined by apostatic selection?

Let us consider a concrete case to see this clearly.

Many species of salamander exhibit polymorphisms. Scientists have proposed that
apostatic selection explains the persistence of the multiplicity of types in these species. Birds are
a major predator for salamanders. When birds search for prey, they do so based on a search
image. The search image for a type is like a concept built from experience with the type. What
scientists have found is that birds more easily find common salamander types, and that this is
because they have had more exposure to individuals of these types and thus have developed a

more robust search image.!” The causal flow thus goes like this:
exposure to salamanders — search image — predation

Frequencies are causally important since they determine the relative robustness of the
search images. For each bird, the total number of salamander exposures of each type helps
determine the robustness of the search image of that type. More exposure will lead to a more
robust search image, which will allow the birds to more easily find the salamanders, which leads

to them prey on the more common type at a disproportionally higher rate.

This example makes clear what frequency-dependent selection is and how this form of
selection in no way undermines my argument that we must be careful to distinguish fitness from

expected frequency changes. More importantly, it shows that to understand frequency-dependent

' Benjamin M Fitzpatrick, Kim Shook, and Reuben Izally “Frequency-dependent selection by wild birds
promotes polymorphism in model salamanders.” BMC Ecology 9, 12 (May 2009).
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selection, we need to see that rareness alone does not confer a selective advantage. Simply being
rare does not trigger apostatic selection. Apostatic selection occurs only when being rare triggers

a causal chain that disproportionately selects against the common form.
VIII. THE TYPE TRAP

Many species, such as the salamanders just discussed, are polymorphic. Polymorphisms occur
when there are discrete trait types in the population. When traits come in discrete types, they are
labeled qualitative traits. Such traits are distinguished from quantitative traits, which are
continuously variable. It is not that Darwin had a height, it is that his height was 183cm.
Variables like height and weight are common in nature and are selectively important. In some
cases there can be a linear selective gradient (taller is better), while at other times the Goldilocks
scenario is realized (average height is best). A selective gradient can prompt directional
evolutionary change, whereas with the Goldilocks scenario, selection is said to be stabilizing and
can help prevent evolution from occurring. In either case, this is selection and an evolutionary

response—all in the absence of types. And without types, we do not have frequencies.

This implies that one should avoid falling into the trap of thinking that all evolution
concerns selection on types, and that fitness is cashed out only in terms of type frequency
changes.?’ The PIF posits that organisms have probabilistic propensities of having offspring, and
that this serves as the basis for natural selection. Heritable variation in fitness values can cause
evolutionary responses—there is no need to resort to types or their frequencies in modeling,

explaining, and understanding evolution.

This is not to deny that types play useful roles. They can, especially when the focus is on
a phenotypic difference due to a single genetic difference. In the absence of such monogenetic
traits, types can also be useful. In some cases, we can sort tokens into types to simplify
evolutionary modeling or to more easily generalize. For instance, we could create various types

of height. Every 10 cm span (starting at 0 cm) could be a type. Darwin would be height type 19

2% For a recent defense of the idea that types, not tokens, are foundational to natural selection, see
Marshall Abrams, Evolution and the Machinery of Chance: Philosophy, Probability, and Scientific
Practice in Biology (Chicago: University of Chicago Press, 2023).
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in this case. But to theorize the selective advantage of belonging to one height type instead of

another (19 vs. 18, say) is merely to coarse grain a continuous variable.

Similarly, glasses vary continuously in their thickness. In general, thicker glasses will
carry a lower expected number of shards. Like with height, we could create types of glasses.
Ones 0-1 mm thick, 1-2 mm thick, and so on. We can then track the frequency of these types. We
might gain some degree of predictive accuracy by knowing what type a glass falls into, but there
is no certain link between thickness and fragility. Other factors, such as shape and kind of
glass—borosilicate, soda-lime, lead crystal—bear on fragility. It is only the full package of

specific traits that determines fragility.

The same is true with organisms. Being aggressive without the strength to back it up may
be a liability, whereas with the strength, it may be an advantage. This again points to fitness
being a property of token organisms, one based on their suite of traits and the environment they
find themselves in. While sorting organisms into types can be useful in some circumstances,
especially in polymorphic species, it needs to be understood that this is merely for metrological

and modeling convenience.

The secondary nature of types further undermines the statisticalist’s argument that
because the expected frequencies of types depend on #, fitness cannot be understood to be a
probabilistic propensity of organisms to survive and reproduce. Sorting organisms into types has
many uses—but leveraging features of type frequency changes to attempt to undermine the

causal effectiveness of the underlying tokens is not one of them.
IX. CONCLUSIONS

Philosophers of biology have for decades been convinced that the fitness of organisms is not
fully captured by their expected number of offspring. Some have been persuaded that variance in
the offspring distribution depresses fitness and have offered modified mathematical formulae to
accommodate offspring variances. And some have been persuaded that », population size, affects
fitness, and have proposed a new metaphysics for evolution by natural selection, one that takes
fitness and selection to be causally ineffective: ‘fitness’ is the name for a kind of statistical

summary of evolutionary outcomes, not an identifier of that which causes evolution.
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I have argued that neither variance in the offspring distribution nor » has any effect on
fitness. They do impact frequencies, but this is not surprising. Frequencies automatically include
n (since frequencies necessarily concern the total number of items) and the dilution-enrichment
asymmetry links variances with frequency changes. But frequencies are not fitnesses. Realizing
this leads to the conclusion that what is true of frequencies is not necessarily true of fitnesses.
Total population size is not a fitness component. The same with fragility understood as expected
number of shards. Global shard frequencies will be changed upon breaking a glass, but the

fragility of the glass is not determined in any way by its impact on global shard frequency.

This article thus shows the fragility of a key pillar of the statisticalists’s position. The
causalists, however, do not go unscathed. Their efforts to chisolm fitness definitions to fit
Gillespie’s math fracture upon carefully distinguishing relative frequencies from the absolute
fitnesses. My purposes here are not merely destructive, however. My hope is that these insights
can be used not just to smash old arguments, but to forge a new understanding of fitness and

selection and their place in the theory of evolution by natural selection.
GRANT RAMSEY

KU Leuven
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