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Abstract: Ontic Structural Realism (OSR) holds that structure is ontologically fundamental, yet it
lacks a precise metaphysical account of structure. Returning to the insight that originally
motivated structural realism, I develop a new basis for OSR grounded in the metaphysical
foundations of mathematics. This approach draws on the principles of ante rem structuralism and
their formal axiomatizations to define Structure Theory (ST), the view that structures exist sui
generis and constitute the subject matter of mathematics. ST compels OSR to confront its “collapse
problem” of distinguishing physical from mathematical structure. I argue for embracing the
collapse by adopting the Mathematical Universe Hypothesis (MUH), which identifies our
physical universe as an ante rem structure. This yields the Universal Theory of Structure (UTS),
providing a fundamental ontology of structures for both mathematical and physical reality. The
theory refines OSR’s fundamentality thesis from the vague “physical reality is structural” to the
metaphysically substantive “physical reality is an ante rem structure,” thereby strengthening
responses to criticisms concerning representation, objecthood, and causation. The UTS also
illuminates important foundational problems concerning the applicability of mathematics, the
particular form of our universe, and the nature of existence. I conclude that the theory’s unifying
and explanatory virtues support an inference to the best explanation.

Keywords: Ontic structural realism, Ante rem structuralism, Mathematical universe hypothesis,
Structure theory, Universal theory of structure

1 Introduction

Ontic structural realism (OSR) holds that structure is ontologically fundamental, yet even its
foremost proponents acknowledge that the appropriate characterization of structure remains an
ongoing challenge (French & Ladyman, 2010). While structure is typically characterized as giving
ontological priority to relations over objects, this remains too vague to secure OSR’s realist
ambitions. What precise metaphysical account of structure can OSR adopt? Motivated by
Worrall’s (1989) insight that the mathematical content of physical theories survives theory
change, I propose a new basis for OSR by turning to the structuralist foundations of mathematics.
Previous inquiries in this direction have focused on unifying foundational frameworks for



mathematics, such as set theory, category theory, and univalent foundations. While these
unifying frameworks offer valuable representational tools, they do not by themselves specify the
required ontology.

I turn instead to the metaphysical foundations of mathematics, specifically to ante rem
structuralism: the view that structures exist independently of instantiation and that mathematics
is the language we use to describe them. I refer to the principles of ante rem structuralism and
their formal axiomatizations as Structure Theory (ST). Adopting ST compels OSR to confront its
“collapse problem” of distinguishing physical from mathematical structure (French, 2014). I
argue not to resist the collapse, but to embrace it. If we accept that structures exist, and that
physical reality is exactly mathematically describable (what I term the weak MUH), then we have
strong reason to identify the physical universe with an ante rem structure (the strong MUH). The
adoption of the strong MUH should be understood as the universalization of ST, because it
recognizes that ST's existing ontology accounts for a larger domain. To reflect this, I term the
broad ontological package the Universal Theory of Structure (UTS). I conclude that the UTS
delivers precisely the metaphysical clarity that OSR needs to secure its realist ambitions.

This approach remedies the shortcomings of prior engagements with ante rem
structuralism. Some OSR theorists (Busch, 2003; Psillos, 2006; French, 2006) considered the view,
but they did not sufficiently explore the identification of our physical universe with an ante rem
structure, leading to dismissals that warrant reconsideration. My previous defense (Hamlin, 2017)
of a universal ontology of ante rem structures was based on Shapiro’s (1997) specific formalization,
whereas the present account remains neutral regarding competing formalizations. I also include
a novel evaluation of the ontology’s suitability as a foundation for OSR, while arriving at distinct
conclusions concerning its epistemic status.

The argument proceeds as follows: Section 2 traces the original impetus for structural
realism, arguing that it suggests turning to the metaphysical foundations of mathematics for
clarity regarding the central notion of structure. Section 3 establishes that ST provides a
fundamental ontology of ante rem structures for mathematical discourse. Section 4 deconstructs
Tegmark’s MUH into three component parts, outlining their mutual entailments before
reconstituting them as the UTS. Section 5 shows how the UTS sharpens the notion of structure
and thereby strengthens responses to several criticisms of OSR. Section 6 demonstrates how the
theory illuminates further foundational problems, providing independent support for the
universalization. Section 7 outlines the explanatory benefits that universalization confers upon
ST itself. Section 8 addresses conceptual, empirical, and methodological objections to the
identification of physical and mathematical structure. Section 9 evaluates the theory according to
the classic theoretical virtues of unification, explanatory power, and simplicity, demonstrating
how it compares favorably to alternatives.

2 Motivating realism about structure

John Worrall (1989) introduced structural realism by noting that the mathematical content of
physical theories survives even radical theory change. He pointed to the equations governing
refraction and reflection, which persisted from Fresnel’s wave theory of light into Maxwell’s
electromagnetic theory, and the equations of Newtonian mechanics that can be recovered as a



limiting case from the newer relativistic theory. Drawing implicitly on the structuralist
philosophy of mathematics then gaining prominence, Worrall held that this mathematical content
expressed structural relations. He therefore concluded that scientific realists should be structural
realists.

This realism about structure was later extended by Ladyman (1998) to the metaphysical
thesis that physical reality is fundamentally ontologically structural, a position known as OSR.
However, subsequent discussions by OSR theorists have tended to characterize structure
autonomously, often in incompatible ways, with little anchoring in the theoretical considerations
that motivated realism about structure in the first place. These persistent ambiguities concerning
the nature of structure have weakened OSR’s claim to be a genuine realism (Arenhart & Bueno,
2015; Bueno, 2019; Muller, 2010).

The problem, I argue, stems from OSR adopting the terminology of the philosophy of
mathematics without also considering its metaphysical implications. Chakravartty (2004) rightly
emphasizes that securing a metaphysical foundation for structural realism requires moving
beyond structure as a mere label for mathematical content and toward a substantive account of
what metaphysical realism about structure entails. While McKenzie (2017) highlights that OSR
has recently benefited from an increased engagement with a priori metaphysics, I argue for a
pivot back to the philosophy of mathematics, the very field that inspired talk of structure in the
first place, and where the concept remains most thoroughly developed.

3 The structuralist foundations of mathematics

This section outlines mathematical structuralism and distinguishes unifying foundations from
metaphysical foundations. It details the principles of ante rem structuralism and their
formalizations in various axiomatic theories, collectively referring to them as ST. This theory
furnishes a fundamental ontology of ante rem structures whose explanatory reach is subsequently
shown to extend well beyond mathematics.

3.1 Mathematical structuralism

The prevailing framework in the philosophy of mathematics is structuralism, whose motto is
“mathematics is the science of structure.” Structures are a novel type of entity, distinct from
familiar physical objects and even unique among abstract entities, making them particularly
challenging for our intuitions to grasp. Mathematical structuralism posits that the primary subject
of mathematics is not individual objects, but the broader relational structures they constitute. For
example, mathematics is about the natural number structure, whose individual objects, the
numbers, have properties that are determined by their relations to the other numbers. If
mathematical structuralism is correct, it seems that Worrall was on solid ground when he referred
to the preserved mathematical content of physical theories as “structure.” However, key issues
remain: what is the ontological status of structures, and what metaphysical conclusions can be
drawn from realism about them?

3.2 The inadequacy of unifying foundations



OSR theorists have often turned to set theory (Arenhart & Bueno, 2015), category theory (Bain,
2013; Lam & Wiithrich, 2015), and most recently the univalent foundations program (Chen, 2024)
for insight into the nature of structure. While each of these frameworks has been argued to inform
a philosophical analysis of mathematical structuralism, they do not, on their own, specify the
nature or existence of structures. Shapiro (2004) argues they are best understood as unifying
foundations for mathematics. These foundations seek to provide a single framework within which
all of mathematics can be derived. They do provide tools by which the mathematical structure of
physical theories can be represented,' but on their own, they do not supply the metaphysical
clarity that OSR needs. Noting this gap, Arenhart and Bueno (2015, p. 128) ask: “perhaps the
defender of OSR will claim that there is a metaphysical notion of structure underlying every kind
of mathematical representation, something that the relevant mathematical tools simply are
unable to grasp adequately.” This inadequacy is precisely the case for the unifying foundational
frameworks, which motivates a shift to the metaphysical foundations project for answers.

3.3 Metaphysical foundations

Shapiro (2004) describes the distinct task of providing a metaphysical foundation for mathematics.
A central concern guiding this project is defining the relationship between structures and their
instantiations in physical or abstract systems. A view called non-eliminativism holds that
structures exist as real entities, which cannot be eliminated in favor of their instantiations. Within
non-eliminativism, the ante rem variant offers a stronger realism: structures exist regardless of
whether they are instantiated in physical or abstract systems. Ante rem structures exist sui generis,
in their own right, not reducible to the existence of anything else.? Drawing from Shapiro (1997)
and Calinoiu (2020), the principles of ante rem structuralism can be summarized:

Existence: Structures exist, sui generis.

Positionalism: Structures are constituted of positions and relations between them.
Restricted Structuralist Thesis (RST): Positions have a principled subclass of structural
properties.

Formality: The relations of a structure are formal.*

Freestandingness: The positions of structures can be instantiated by any other objects.
Coherence: Coherent mathematical theories successfully characterize structures.

! Ladyman and French (2010), Landry (2007), and Proszewska (2022) have rightly advocated a pluralist and pragmatic
approach to representing physical structure.

2 The contrasting in re version of non-eliminative structuralism holds that structures depend on their instantiations for
their existence, which would result in a vicious regress of structure and instantiation if it were to supply a fundamental
ontology.

3 Shapiro (1997) originally defined the structuralist thesis as the idea that positional objects in structures have only
structural properties. Burgess (1999) quickly showed this formulation was inconsistent, because having no non-
structural properties was itself a non-structural property. The RST states that positional objects have a principled
subclass of structural properties, and defining that principled class has guided recent discussions.

4 Relations are defined using only logical terminology and other objects and relations of the structure.

5 The method of demonstrating coherence depends on the specific axiomatization of the principles of ante rem
structuralism. According to Shapiro’s and Leitgeb’s accounts, coherent theories are those that are both deductively



Semantics: Mathematical discourse is about structures and their positional objects.®

These principles have been formalized into several axiomatic theories that precisify and
systematize our understanding of ante rem structures. A formal axiomatic theory of structure, as
opposed to a unifying foundational framework, would specify its own primitives, and use them
to express identity and existence conditions for structures and their positions. It would provide
an ontology and illuminate how mathematical languages are understood to be about that
ontology. Table 1 summarizes the basic features of the currently available formal axiomatic

theories of ante rem structures:

Table 1: Formal axiomatizations of the principles of ante rem structuralism.”

Theory / Formal logic / Features Restricted Structuralist
Proponents Thesis
Sui generis structure | Second-order logic; re-axiomatization of model  Properties definable using the
theory by Shapiro theory. The theory directly describes structures | relations of a structure are
(1997, 2008) and their positions, using analogues of ZFC structural.

axioms to express the richness of mathematics.
Encoding structure Second-order quantified S5 modal logic; abstract | Encoded properties (a special
theory by Nodelman | object theory + ante rem principles. The theory mode of predication, whose
and Zalta (2014) and | imports a mathematical theory and produces an = properties are those required to
amended by Murphy | abstract object (structure) encoding all the truths | make the defining theory’s
(2021)8 of that theory. theorems true) are structural.
Unlabeled graph Second-order logic with identity; graph axioms. | Isomorphism-invariant
theory by Leitgeb Takes a theory of graphs, and produces an ante properties are structural.
(2020)° rem structure without relying on sets.
Fregean First-order logic; Fregean abstraction principles. = Defines instantiation, purity,
abstractionist The theory imports a mathematical model (set- | and uniqueness, showing how
structure theory by model) and abstracts away all non-structural the abstraction operator
Linnebo and properties to produce the ante rem structure. produces an ante rem structure
Pettigrew (2014)1° satisfying them.

consistent and model-theoretically satisfiable. Abstractionism presupposes coherence because it takes a mathematical

model as an input. Murphy (2021) imports a coherence principle into object-theoretic structuralism, requiring that an

abstract object (structure) cannot encode contradictory properties.

¢ If a mathematical theory is categorical, it describes a single intended ante rem structure. If a mathematical theory is
algebraic, it intends to describe a class of ante rem structures. Singular terms of mathematical theories refer to positions
in structures.

7 Horsten’s (2019) generic structure approach, which imports an arbitrary-object semantics into structuralism, offers an
interesting perspective on ante rem structures, but does not yet furnish a dedicated formal axiomatization. Célinoiu
(2020) provides a useful review of the advantages and objections to the various formalizations of ST.

8 Murphy (2021) imports the principles of coherence, freestandingness, and formality that characterize ante rem
structures into the abstract object theory of Nodelman and Zalta (2014). This limits the ontology to ante rem structures
instead of all abstracta in abstract object theory.

% The framework is limited to unlabeled graphs, but Leitgeb argues that the overall approach may be generalizable to

the rest of mathematics.

10 Abstractionist structure theories are sometimes classified as in re as opposed to ante rem, because the method of
defining a structure begins with a model. However, Linnebo and Pettigrew (2014) suggest that abstractionism is
compatible with ante rem structuralism because once the structure is abstracted, it exists sui generis, no longer dependent



I use Structure Theory (ST) as a label for the broad metaphysical package encompassing the
informal principles of ante rem structuralism and their various axiomatizations. This is novel
terminology that requires justification. Some logicians may expect a label like ST to denote a
specific formalization, but this need not be the case. Consider the analogous case of set theory,
which does not single out a specific theory of sets, but instead serves as an umbrella term for the
principles of collection, membership, and iteration that are common to various formalizations
such as ZFC, NBG, and NF. I will use ST in the same flexible way.

I maintain neutrality regarding specific axiomatizations because there is no uniquely best
formal axiomatization of the principles of ante rem structuralism. While it is important that ST can
be formalized, the universalization of a fundamental ontology of structures depends largely on
the informal principles that characterize that ontology. Whereas Muller (2010) and Lam and
Wiithrich (2015) suggested that OSR should be based on a formal axiomatic theory of structure,
my argument is a forerunner to that project. This should not be read as a retreat from
formalization; instead, the approach applies to the entire class of formal theories. I will return to
discuss where the specific formalization may matter for the universalization argument.

ST is a leading view in the metaphysical foundations of mathematics that provides a
realist ontology of structures for mathematical discourse. Its key advantages over its eliminativist
rivals are that it preserves a face-value semantics, and is not hostage to a canonical (physical or
abstract) background ontology. ST still faces significant challenges, most notably the
epistemological access problem, its handling of non-trivial automorphisms, and concerns about
ontological extravagance. I will therefore adopt ST provisionally, and then show that once it is
universalized to account for both mathematical and physical reality, it will gain a more powerful
physical justification.

4 The universalization of a fundamental ontology of structures

ST can provide a fundamental ontology for OSR once it is universalized to include the physical
universe in its domain. I decompose Tegmark’s (1998, 2008) MUH into three elements: a weak
(descriptive) MUH, a strong (identity) MUH, and a structure-theoretic component (updated to
ST). The weak MUH leads directly to OSR'’s collapse problem, and the strong MUH dissolves the
problem by embracing the identification rather than resisting it. This universalizes ST to account
for all fundamental ontology, both mathematical and physical.

4.1 The weak (descriptive) MUH

Scientists and philosophers have long marveled at the extraordinary success of the
mathematization of physical theory. Let the weak MUH denote the hypothesis that physical
reality is exactly and completely describable by mathematics, such that a mathematical
description of physical reality can exhaust the role of physics. It holds that mathematical theories
can be not just approximate or idealized descriptions of physical systems, but exact ones. The

on a system that instantiates it. The abstraction is therefore an epistemic route to metaphysically autonomous
structures.



weak MUH implies the existence of a “Theory of Everything” (TOE) set of equations, which
would, in principle, allow one to predict any physical outcome that can be predicted. The
mathematical describability of the dynamical laws also extends to the actual states of reality.

The weak MUH shares with Epistemic Structural Realism (ESR) the assertion that the
physical universe is amenable to mathematical description, but it differs in two key respects.
Firstly, the weak MUH strengthens the claim of fidelity by asserting that the mathematical
description is exact and complete. Secondly, the weak MUH remains neutral on the nature of
mathematical ontology, avoiding ESR's commitment that the scientifically knowable part of
reality is structural.

There are several motivations for considering the weak MUH. The first is the remarkable
success of the mathematization of physical theory. The second is the survival of mathematical
content through theory change. Finally, it is supported by Tegmark’s (2008) External Reality
Hypothesis, which holds that an observer-independent world demands a “baggage-free”
language (mathematical) to describe it. These considerations motivate the weak MUH, but they
do not strictly entail it. It is conceivable that the idealizations pervasive in physics provide space
between the mathematical description and reality itself. However, the view is relatively
uncontroversial, and is almost a working assumption in physics. An acceptance of the weak
MUH, in the context of mathematical structuralism, leads directly to OSR'’s collapse problem.

4.2 The collapse problem

The relationship between physical and mathematical reality has been the source of much debate
and controversy. Several commentators have pointed out difficulties in determining whether the
theoretical terms of our physical theories refer to physical entities or to mathematical
constructions (see for example Resnik, 1997). Reflecting on this issue, French and Ladyman
(2003a, p. 45) note that OSR “blurs” the boundary between the physical and the mathematical,
though they were quick to clarify that “blurring does not imply identity” (French & Ladyman,
2003b, p. 75)."' This blurring of the mathematical and the physical culminates in what French
(2014, p. 195) has called the “collapse problem” for OSR:

If intrinsic natures are taken out of the picture and a ‘purely’ (however that is
understood) structural description advocated, then it may become hard to discern any
difference between the physical world and the mathematical world. Indeed, given the
mathematization of science, and physics in particular, the structural description of the
physical world may appear to be entirely mathematical... Hence, the concern runs, the
structural realist must conclude that the world is a mathematical structure.

11 Philosophical responses to this ambiguity vary. One strategy is to simply refuse to answer what distinguishes the
physical from the mathematical, as Ladyman and Ross (2007) do. Esfeld (2011) and Psillos (2012) both highlight the
problems for realism of not sufficiently clarifying the relationship. Cao (2003) argues that OSR is already committed to
the identification of the physical with the mathematical, but Saunders (2003, p. 129) responds by taking issue with the
commitment that physical structure is “merely” mathematical. French (2014) highlights several potential ways to
distinguish physical from mathematical structure, finding causality the most promising, but none of them compelling,
several of which I will return to in Section 8.1.



French acknowledges that the most natural way to solve OSR’s collapse problem would be to
identify the physical and the mathematical. However, he refers to this as “biting the bullet,” and
warns that it risks “falling prey to Platonism.” Rather than viewing this identification as a
concession to be feared, I argue that embracing the universal reality of a fundamental ontology
of structures results in substantial explanatory and unificatory advantages.

4.3 The strong (identity) MUH

The collapse problem pressures the structural realist to clarify the relationship between
mathematical description and physical reality. The strong MUH provides a direct solution by
proposing the ontological identification of our physical universe with an ante rem structure. Once
ST and the weak MUH are accepted, the strong MUH becomes a highly motivated conjecture in
multiple ways. First, given that fundamental ontological kinds are scarce, it is rational to utilize
the sui generis ontology of structures that ST already provides. Additionally, the weak MUH
constrains our search to entities that admit of exact mathematical description, and ante rem
structures uniquely satisfy this condition. Finally, ante rem structures are unbounded in
complexity and size, so the ontology necessarily contains large, world-like structures consistent
with our physical universe.

There are of course other interpretations of the weak MUH that posit that the physical
universe is isomorphic to an ante rem structure, but possesses additional, non-structural features
that make it ‘physical.””? The inference from ST and the weak MUH to the strong MUH is therefore
not a strict logical entailment, but an abductive one. It is now only provisionally adopted and will
ultimately be justified by an inference to the best explanation. This will require a detailed
consideration of its theoretical virtues, which the subsequent sections will develop. For now, the
strong MUH emerges as a highly motivated hypothesis to consider.

4.4 The Universal Theory of Structure (UTS)

The adoption of the strong MUH results in the universalization of ST. The strong MUH does not
add to the ontology of ST, but instead recognizes the physical universe as an entity already
present in the ontology. This universalization expands ST’s reach from the ontology of
mathematics to include physical reality. This expanded reach comes at no additional complexity
cost as the models of ST and the UTS are the same; there is only a difference in philosophical
commitment.

Tegmark's MUH implicitly contained several distinct theoretical posits that I make
explicit: a weak (descriptive) MUH, a theory of structure, and the strong (identity) MUH.' Several

12 This would align with ESR, where all we can know about the physical universe is its structure, but that it may also
contain unknowable individual objects. This, however, is a complication that does no explanatory work. If the ante
rem structures already exist and are sufficient to account for physics, why add another unexplained layer? One is
welcome to defend the added ideology, but I am not motivated to do so. I will further discuss alternatives that accept
the weak MUH but deny the strong MUH in Section 9.4.

13 The main point of difference between the UTS and Tegmark’s account concerns the structure-theoretic component.
Notably, Tegmark (1998) did not reference Shapiro’s (1997) first formal theory of structure. He clearly expressed an
ante rem structuralist view of mathematics, but the structure-theoretic was informal and somewhat underdeveloped.



considerations motivate a re-labeling of the main idea. First, the result of combining ST with the
strong MUH is no longer a hypothesis; it is better characterized as a theory. Second, the ontology
is structural, not mathematical per se. It goes beyond the claim that the physical universe is
described by mathematics to the claim that it is an ante rem structure. Finally, formulating the
weak MUH without a dependence on ST allows it to stand on its own independently of our
philosophy of mathematics. For these reasons, I will refer to the overall metaphysical package as
the UTS, and reserve the weak/strong MUH labels for the specific hypotheses they denote. A
definitional recap may prove helpful:

ST: Structures exist sui generis; mathematics is the language that describes them.
Weak MUH: The mathematical description of the physical universe is exact and
complete.

ST + Weak MUH -> Strong MUH: Our physical universe is an ante rem structure.
UTS = ST + Strong MUH: Only ante rem structures exist fundamentally; our physical
universe is one of them.

The central conjecture can now be summarized. In the context of mathematical structuralism, the
weak MUH generates the collapse problem for OSR. If one already accepts a vast ontology of
mathematically describable and world-like structures, a direct solution to the collapse problem is
to identify the physical universe with one of them. This identification universalizes ST to become
the UTS, expanding its reach to account for the fundamental ontology of both mathematical and
physical reality. Since each ante rem structure is understood as a universe unto itself, I refer to the
class of all structures as the structural multiverse. Having established the theory, I now
demonstrate how it provides a theoretical foundation for OSR.

5 Applying the UTS to the problems of OSR

The UTS sharpens OSR’s vague slogan “structure is all there is” into a precise identity thesis that
our physical universe is an ante rem structure. This allows for improved responses to a number of
criticisms of OSR regarding the collapse problem, representation and realism, the status of
objects, intrinsic properties, and causality. Ultimately, the UTS helps secure OSR’s status as a
substantive metaphysical doctrine. While French (2014, p. 207) warned that “the advocate of OSR
cannot simply adopt the strategies of mathematical structuralism,” I argue that a careful adoption
is both possible and beneficial.'

5.1 Collapse

His (2008) paper did include formal modelling tools for a large class of finite and computable structures, but in his
appendix, he deferred to model theory for precision, which as discussed is not itself a theory of structure. Overall, his
account reads more like a descriptive inventory of structures than a metaphysical theory of structure. This motivates
our turning to the metaphysical foundations of mathematics, and specifically to formal theories of ante rem structures.
14 Morganti (2011) suggests that applying the strong MUH to solve problems with OSR is “revisionary.” However, I
argue that blocking its adoption requires extra, unmotivated moves. Furthermore, there are abundant reasons to
consider the strong MUH independent of its benefits to OSR; indeed, these benefits were not central to Tegmark’s (1998)
original proposal, which was conjectured concurrently with OSR (Ladyman, 1998).



The strong MUH dissolves OSR’s collapse problem by embracing its conclusion. According to the
UTS, the physical universe is what it appears to be, namely an ante rem structure. Physicality is
no longer understood as an objective property of a structure, but is instead understood as an
indexical property of an observer. An ante rem structure is physical from the perspective of an
observer within it. This allows us to distinguish the physical from the mathematical without
recognizing an objective difference, which French (2014) points out may be necessary lest OSR
fall on the wrong side of the boundary. This reveals that the collapse problem did not stem from
OSR’s core tenets, but from unmotivated attempts to distinguish physical and mathematical
reality. I will return in Section 8.1 to various attempts to distinguish mathematical from physical
reality and thereby avoid the collapse problem. Even if the collapse is embraced, OSR must still
clarify the relationship between reality and its mathematical representations.

5.2 Representation and reality

A central challenge for OSR is clarifying what exactly it is realist about. Chakravartty (2007) and
Bueno (2019) have both argued that it is insufficient to say we are realists about structure without
explaining what structure actually is. Instead of directly characterizing structure in realist terms,
OSR theorists often only speak of structure in terms of its mathematical representations. For
example, Ladyman and Ross (2007, p. 158) suggest that the “world-structure” simply exists and
can be mathematically represented, and Wallace (2022, p. 28) likewise states that fundamental
reality can be “exactly and completely” represented by a mathematical structure. These
representational claims leave them without a clear realist account of the fundamental ontology.
The core problem, as Muller (2010) emphasizes, is that without an actual theory of structure, OSR
risks going without a viable account of reference, leaving it unable to say what the physical
universe is beyond ‘that which is represented.’

Ladyman, Ross, and Wallace complicate the ontological picture by relying on a two-step
representational hierarchy, where mathematical models (like set-models) represent structures,
which in turn represent physical reality. However, the lesson of the collapse problem is that there
is no way to distinguish physical reality from a mathematical structure, implying a relationship
of identity, not one of representation. The UTS offers a more direct account by making a crucial
distinction: mathematical models do the representing, while ante rem structures, including our
physical universe, constitute the reality that is represented.’> This move avoids circularity because
ante rem structures are independently characterized by ST. Identifying our physical universe with
an ante rem structure is precisely what allows us to distinguish metaphysical reality from its
mathematical representations, thereby strengthening OSR’s status as a genuine realism.

The sense in which the UTS supports OSR’s claim to be a realism about physical theory
can now be stated. A physical TOE (implied by the weak MUH) should be understood as a
mathematical model that exemplifies, and thereby represents, the ante rem structure that is our

15> Mathematical models can represent ante rem structures because of the freestandingness of the structures. What is an
object from one perspective can be an office from another (Shapiro, 1997). These offices can be occupied by any
system of objects that satisfies the relations, including the sets of a mathematical model. The mathematical model
therefore represents the structure by providing a system that exemplifies it.



physical universe. According to Wallace’s (2022) “math-first” physics, which is a natural
companion to the UTS, the relationship between the TOE and physical theories such as the
Standard Model of Particle Physics (SM) is one of instantiation. This is a mathematical relationship
where a substructure of the TOE’s models realizes the structure of the models of the SM.'
According to this account of inter-theoretic relations, the SM succeeds in (approximately)
representing our ante rem structure. So, the SM is non-fundamental in the sense that its
representational success is domain restricted and approximate. However, we should be realists
about the SM in the sense that it successfully represents what is fundamental (our ante rem
structure), including its unobservable features. The UTS thereby grounds scientific realism about
physical theories in a robust realism of the fundamental ontology.

5.3 The status of objects

The status of objects in OSR has long been debated. French (2010) maintains that objects can be
eliminated altogether in favor of a purely relational metaphysic, while others like Ladyman and
Ross (2007) and Esfeld and Lam (2008) argue that OSR only requires that its objects be “thin” in
the sense that all their properties are determined by the relations they take part in. I argue that
ST clearly aligns with a non-eliminativism about objects. I then distinguish fundamental
positional objects from familiar scientific ontology such as quantum fields, which likely belong to
non-fundamental ontology.

According to ST, structures are constituted of positions and relations between them, and
positions are treated as bona fide logical objects by each of ST’s formalizations. This entails a face-
value semantics: when we refer to the number ‘3, we are referring to a genuine object, namely
the third position in the natural number structure. While van Fraassen (2006) was concerned that
eliminativism about objects risked collapsing the mathematics/physics divide, the UTS implies
the opposite: that identifying physical and mathematical reality actually secures a non-
eliminativism about objects. It is important to clarify that just because structures have objects does
not imply that they have metaphysical individuals. Metaphysical individuals are a particular
kind of object, one that is self-subsistent and has an intrinsic nature. On the contrary, positional
objects such as the numbers are metaphysically “thin” in the sense required by the RST.

Having established the existence of fundamental positional objects, we must address the
status of familiar scientific entities like genes or electrons, which likely occupy a non-fundamental
ontology. The UTS is strictly a theory of fundamental ontology, and is not committed to any
specific account of the non-fundamental. However, mentioning a promising account will help
clarify the distinction and the stakes.

It has become popular for OSR theorists to appeal to the concept of a real pattern in order
to characterize the ontology of scientific theories. Ladyman and Ross (2007) combine their
structuralist metaphysics with a real pattern account of scientific ontology, and more recently

16 Wallace (2022, p. 16) goes on to clarify: “In the important case of state-space instantiation... the lower-level theory
instantiates the higher-level one if (roughly) there is a map from the lower-level state space to the higher-level state
space that commutes with the dynamics and leaves invariant any commonly-interpreted structures (for instance,
spacetime structure) in the two theories.”



Wallace (2022) has done the same in a way that is highly compatible with the UTS.'” Wallace
describes familiar scientific ontology such as particles and fluids as derivative entities that are the
result of “predicate precisifications” of mathematized theories. These ontologies are pragmatic
constructs used to speak about the theory in the language of the predicate logic, rather than in
the native (mathematical) language of the theory. High-level ontologies of the special sciences are
understood as real patterns in the behavior of the low-level ontologies of physics, and the entire
ontology is unified at the level of the fundamental mathematically represented structure. What
makes a real pattern real is that it successfully carries compressed information about what is
fundamental, namely the lower-level theory, by way of an inter-theoretic instantiation
relationship mentioned in Section 5.2. This framework allows us to distinguish between two types
of objects:

Fundamental objects: the positions that constitute ante rem structures.
Non-fundamental objects: such as real patterns, that exist within and depend on
structures.

Consider an application of this distinction. Some OSR theorists treat quantum fields as if they
were fundamental positional objects, but this is not necessarily the case, and we have some
reasons to suspect they are not fundamental. In the mathematics of, for example, the Wightman
axiomatization of Quantum Field Theory (QFT), quantum fields are defined as operator-valued
distributions. However, operator-valued distributions are too complex to be positional objects.
ST tells us that singular terms of mathematical theories refer to fundamental positional objects,
and operator-valued fields are not singular terms in the mathematics of QFT. An alternative
understanding of quantum fields is given by Wallace’s (2022) account, where quantum fields are
understood as derivative entities resulting from predicate precisifications of the more
fundamental mathematized theory (QFT). While these considerations do not definitively reject
the fundamentality of quantum fields, they are suggestive enough to bear upon the intrinsic
property objection to OSR.

5.4 Intrinsic properties

A persistent objection to OSR targets what McKenzie (2016) terms “fundamental kind
properties.” These properties such as mass, charge, and spin have been argued to be intrinsic
properties of objects, violating even a moderate OSR’s commitment to “thin” objects. For
example, Berghofer (2018) argues that quantum fields have non-relational, intrinsic properties,
and therefore that OSR is refuted. The UTS provides new ways to counter this objection by
questioning the fundamental status of the objects involved and clarifying the appropriate
standard of relationality.

For Berghofer’'s objection to work in the present context, quantum fields must be
understood to be fundamental positional objects. The RST applies strictly to positional objects,
requiring them to have a principled subclass of relational properties. While Berghofer (2018) may

17 Wallace (2022) deploys the real pattern concept originally developed by Dennett (1991), and expanded upon by
Ladyman and Ross (2007), Sunié and Martinez (2021), Millhouse (2022), and Wallace (2024).



be justified in his claim that quantum fields are the most fundamental objects according to physical
theory, that does not mean that they can be equated with fundamental positional objects. As
previously discussed, it is far from certain that quantum fields are positional objects.

Even if quantum fields were fundamental positional objects, Berghofer (2018) applies an
inappropriate standard of relationality. He cites Langton and Lewis’ (1998) “standard” definition
of intrinsic properties as those that exist “independent of accompaniment or loneliness,” and uses
that standard to argue that quantum fields have non-relational properties.'® Yet this is an example
of OSR theorists using an autonomous definition of relationality, unmoored from the relevant
theoretical considerations that motivated structural realism in the first place. We are concerned
with structural relations because it is the mathematical content of physical theories that survives
theory change. This mathematical content, by the core principles of mathematical structuralism,
expresses structural relations, as classically evidenced by the fact that mathematics only
characterizes its subject matter up to isomorphism."” It follows that if a physical theory is
mathematical, then the reality it describes must be relational in the relevant sense. If this were not
the case, then we would be debating whether ante rem structures are sufficiently relational.

When this mathematically definable standard of relationality is applied, Berghofer's (2018,
pp. 7, 14) examples cease to be a problem for OSR. While the Higgs field’s non-zero vacuum
expectation value "is what it is," it is nonetheless a mathematically defined value (246 GeV) within
the theory. Similarly, while a field’s spin has its value "irrespective of whether there are other
fields," it also takes specific well-defined mathematical values (0, %2, 1). Non-relational properties
would be those that are not mathematically defined by the relevant physical theories, and since

Berghofer’s examples are not of that kind, his argument poses no problems for an OSR based on
the UTS.

5.5 Causality

The ambiguity of the slogan “structure is all there is” allows for the interpretation that physical
reality is composed of a plurality of distinct structures that must be causally related. Since ante
rem structures are typically understood to be non-causal, this presents a dilemma. For example,
Chakravartty (2007, p. 155) claims that OSR supplies no “causal links” between structures, and
Psillos (2006, p. 568) argues that OSR has no ability to bind together a world of “free floating
structures.”

The UTS resolves this dilemma by clarifying the domain of causation. No causal links are
required between structures because structures are not the causal relata. Consider that all of
physical reality, including all of spacetime, its particles, fields, and initial conditions, are aspects
of a single ante rem structure. Therefore, the fact that structures are non-causal with respect to
each other is not problematic because no one is claiming that our physical universe causally

18 Several defenders of OSR such as French and Ladyman (2010) and Esfeld and Lam (2011) have argued that intuitively
intrinsic properties can still be understood through various notions of relationality.
19 Mathematical structuralists have debated the definition of a relational (structural) property, but Langton and Lewis’
definition is not viewed as appropriate for this context. Korbmacher and Schiemer (2018) distinguish between two
general approaches to defining a structural property of invariance and definability, and conclude that there is no single
correct definition. See also Schiemer and Wigglesworth (2019) and Assadian (2025).



interacts with other universes (other ante rem structures). The relevant question is how causality
operates within structures, not between them.

The UTS helps neutralize the causality objection to OSR, but it does not itself commit to a
positive theory of how causality should be understood. I will mention an interesting proposal by
Andersen (2017), who argues that real patterns can serve as causal relata, where causal
relationships are informational relationships between real patterns. The informational
relationships stem from a “rich causal nexus,” which in this case is the relational structure upon
which those real patterns depend and carry information about. An advantage of this approach is
that the causal relata are decidedly not “free floating,” because these non-fundamental real
pattern objects depend on and exist within the more fundamental relational web. This aligns with
French’s (2006) proposed defense of OSR that structural relations themselves yield the causal
power.?0

5.6 The philosophical status of OSR

McKenzie (2024) raises the concern that OSR has struggled to establish itself as a robust
metaphysical doctrine. She argues that OSR often characterizes its notions of structure and object
in vague, flexible ways that undermine our ability to substantiate its claims. She argues that OSR
risks being better viewed as a mere philosophical stance, whereby OSR theorists abide by the
general principle that “the language of physics is mathematics.” The UTS offers relief by shifting
OSR’s fundamentality thesis from “physical reality is structural” to the more metaphysically
substantive “physical reality is an ante rem structure.” This gives much needed clarity concerning
what is at stake in the metaphysical picture.

The theory also provides a response to McKenzie’s (2024) specific challenge that OSR take
a position on whether quantum fields are objects or structures. Tegmark (2008, p. 3) points out
that despite the unfinished business in axiomatic field theory, one can view the SM as a whole as
describing a structure of “operator-valued fields on R* obeying certain Lorentz-invariant partial
differential equations and commutation relationships, acting on an abstract Hilbert space.” It is
widely believed that this structure is notisomorphic to our physical universe, but Tegmark argues
that this is a case of a simple structure (the SM) providing a good approximation of a more
complex structure, namely our physical universe. So, the SM describes an ante rem structure, but
what of the status of quantum fields?

The UTS implies that quantum fields are not structures, because quantum fields are
entities that exist within the structure of the SM itself. This means we can give a definitive answer
to McKenzie’s challenge: quantum fields must be objects. I have argued that they are more likely
to be non-fundamental real pattern objects than fundamental positional objects, but this question
is properly addressed by a theory of the non-fundamental. Even without settling this score, OSR

20 It is not clear that causality is a necessary desideratum for a metaphysical account of the fundamental ontology.
Ladyman and Ross (2007) note that causal notions become less important to science the closer to fundamental physics
one gets. Our most fundamental physical theories like the SM do not employ causal notions at all. Ladyman and Ross
instead hold that causation is better understood as a notional-world concept that is (potentially indispensably) useful
for tracking the entities of the special sciences. On this reading, an account of causality is properly owed by a theory
of non-fundamental ontology.



theorists are no longer merely enjoined to take the mathematics of physical theories seriously, but
can now provide substantive answers about what structures and their objects are, and are not.
This helps secure OSR’s standing as a consequential metaphysical doctrine.

6 Addressing foundational problems

Beyond fortifying OSR against criticism, the UTS also offers additional insights into important
foundational problems. These include the applicability of mathematics to the empirical sciences,
the particular form of our physical universe, and the existential question of why anything exists
at all.

6.1 Applicability (or, why math?)

The applicability of mathematics to the empirical sciences has long been marveled at, with Wigner
(1960) famously calling it “unreasonably effective.” A recent analysis by Baker (2011, p. 255)
highlights the “indispensable and explanatory” aspects of applicability that have most resisted
satisfactory explanation. The UTS offers the most direct solution:

Premise 1: Mathematical theories describe ante rem structures (ST).
Premise 2: Our physical universe is an ante rem structure (strong MUH).
Conclusion: Mathematical theories describe our physical universe.

OSR already suggests that because physical reality is structural, and mathematics is the science
of structure, mathematics naturally applies to the physical universe. The UTS grounds this partial
solution by explaining why reality is structural, by identifying the physical universe as a specific
ante rem structure, no different in kind from those studied in mathematics. Consider also
Maudlin’s (2014, p. 52) comments on the problem: “The most satisfying possible answer to such
a question is: Because the physical world literally has a mathematical structure.” However, this
raises the question of what has the structure and why it does. An even more definitive answer is
that the physical world literally is an ante rem structure. From this perspective, the unreasonable
effectiveness of mathematics can be put another way: why does our universe appear to be a
structure? Answer: because it is one. This explanation for the “‘why math’ problem naturally leads
to the ‘why this math” problem.

6.2 Particularity (or, why this math?)

We now understand that there are many different sets of equations that could describe a universe
similar to our own. This raises the question, which Tegmark (2008, p. 127) attributes to John
Wheeler: “Why these particular equations, and not others?” A second, related problem of
particularity concerns why our particular equations appear fine-tuned for the existence of life.
The UTS solves the first particularity problem by pointing out that our physical universe
is not the only structure. Other structures exist as well, and they are described by different sets of
equations. This means the particularity of the equations that describe our physical reality does



not signify anything profound, but is merely our “cosmic address” (Tegmark, 2008). If there are
physicists living in other structures, they too are wondering why their laws have the particular
forms that they do. Importantly, the structural multiverse is not postulated ad hoc in order to
explain particularity; rather, it is a direct consequence of ST, which was adopted in Section 3 for
independent reasons. The benefit is a case of explanatory consilience.

The second particularity problem concerns why we live in a structure that is improbably
suited for life. Conventional fine-tuning arguments such as those reviewed in Barnes (2012) center
on the claim that the constants and initial conditions of our physical laws seem delicately
balanced to allow for the emergence of life. Proposals like a physical multiverse?! offer a partial
explanation, but they do not address why the global structure, or what Tegmark (2008, p. 128)
calls the “master laws,” also appears fine-tuned. In the class of all structures, few support life.
Why are we so lucky? The fact that our structure supports life is unproblematic because our
existence as observers is effectively paid for by an overwhelming emptiness in the rest of the
structural multiverse. An anthropic argument of this kind often stirs controversy over what
exactly is being explained. It does not imply that our universe is typical of life-supporting ones.
That is a stronger assertion, and one whose validity I will contest in Section 7.2. It also does not
on its own explain the existence of the relevant multiverse; that is the subject of the next
subsection. This explanation simply acknowledges the weak anthropic principle: within a vast
structural multiverse, the existence of a life-supporting structure, however rare, is unsurprising.

If particularity is explained by the existence of other structures, then the improbability of
life is explained by the existence of many others. This response leads to the question of the existence
of the structural multiverse, which I address in the following section.

6.3 Existence (or, why any math?)

The existential problem is often dismissed as meaningless or claimed to be beyond the scope of
reason. Leibniz took the problem seriously, arguing there must be some reason for its existence,
and Heidegger understood it to be the central problem for metaphysics. The UTS allows for a
reframing of the problem that eases the explanatory burden while opening up promising
explanatory avenues.

The UTS proposes a unified fundamental ontology where everything that exists is, or
depends upon, a structure. The ‘why anything’ existential problem is therefore recast as a ‘why
do structures exist” problem. This is an easier problem, because we only have to explain why one
fundamental kind exists. This already represents progress on the existential problem compared
to dualist (or worse) fundamental ontologies. Furthermore, of all the theoretical kinds that one
might claim to exist, structures are perhaps the least difficult to accept. Shapiro (1997) notes that
almost all mathematicians are “working realists,” in that they act and talk as if structures exist,
regardless of whether they claim to be philosophical realists; and there are also plenty of those as
well.

21 The physical multiverse exists within the single ante rem structure we call our universe. It includes observer bubbles,
quantum worlds, and inflationary pockets. The structural multiverse refers to the class of completely disconnected ante
rem structures.



Part of the reason that structures are easier to accept into one’s ontology is that a structural
metaphysic reduces the existential burden. While a materialist metaphysic can be said to be
constituted of metaphysical individuals (not reducible to relations) together with relations, a
structuralist metaphysic rejects the individuals, requiring only relations and “thin” positional
objects that connect them. While structuralism is criticized for its lack of individuals, it has a clear
existential benefit: there is simply less to account for ontologically, and self-subsistent individuals
were the more difficult part, given their independent and irreducible nature. Explaining the
existence of a structure of relations is easier than explaining the existence of a world of material
individuals.

This deflates the existential problem, but does not yet offer a positive account as to why
structures exist. One possible line of argument appeals to the necessity of their existence. The
logicists Hale and Wright (2001) and Hale (2013) have put forward arguments that structures exist
necessarily because of certain logical properties that themselves exist of necessity. More recently,
Leitgeb et al. (2025) have suggested that structures exist necessarily because the truths that
organize their elements and relations can be reduced to logic and analytic truths alone.?? Shapiro
(1997, p. 82) has also argued that the existence of mathematical structures is necessary, because
to deny the existence of a structure is effectively to deny the existence of its coherent description.
Reflecting on the necessary existence of mathematical truth, Rickles (2009) argues that the
existence of the physical universe is best explained by its identification with a mathematical
structure. This is only a sketch of a plausible account, but it does support the idea that ante rem
structures are more amenable to existential explanation.?

The three foundational problems of applicability, particularity, and existence should not
be dismissed as intractable "pseudo-problems." Instead, they should serve as crucial standards
for evaluating any candidate metaphysical theory. The challenges faced by empirical science and
philosophy in addressing these problems should not diminish their importance; nor should they
dissuade us from pursuing new modes of explanation that can better address them.

22 Jannes (2009) objects to the strong MUH on the grounds that mathematical truth may not be objective. Yet one
wonders what is objective if not mathematics, and Shapiro (2007) argues that mathematical truth meets a broad range
of criteria for objectivity.

2 Further arguments for the existence of ante rem structures appeal to the objective coherence of mathematical truth.
Shapiro (1997) distinguishes between two forms of mathematical realism: realism in truth-value and realism in
ontology. Interestingly, one can hold that mathematical statements are objectively true without committing to the
independent existence of the entities those truths are supposedly about. This foregrounds the significance of the
objectivity of mathematical truth, which Penrose (2004) suggests is the very essence of mathematical reality: “Platonic
existence... is really just the objectivity of mathematical truth”. This implies that mathematical truth itself has a
metaphysical quality, a perspective echoed by Nodelman and Zalta (2014): “While traditional understandings of
structuralism focus on mathematical entities, our view is that a structure is composed of the truths that organize its
elements and relations”. This focus on mathematical truth lends support to a coherentist framework, where what makes
mathematical truths true is not a correspondence to a separate prior existing reality, but instead their coherence within
self-contained structures of truths. Some structures of truths simply are objectively coherent, while others are not. This
perspective has a key advantage: it is easier to accept the necessary existence of a structure of truth than it is to accept
the necessary existence of a corresponding abstract entity. The dictum of the prominent coherence theorist Bradley
(1907) seems prescient from this perspective: “Our one hope lies in taking courage to embrace the result that reality is
not outside truth”. The UTS points to a conception of reality that is not outside truth, but instead to one that identifies
reality with the very structure of truth.



7 The benefits of universalization for ST

Having established how the UTS provides explanatory benefits for problems concerning the
physical universe, I now turn to how the universalization of ST also helps to address problems
internal to ST itself. These concern motivating the ante rem existence of structures and responding
to the epistemological challenge to mathematical realism.

7.1 Motivating ante rem existence

The indispensability of mathematics to the empirical sciences has long been a central argument
for mathematical realism. However, the indispensability argument does not specifically support
ante rem realism over its in re counterpart. Consequently, proponents of ante rem structuralism
have looked to the philosophy of mathematics, rather than physics, for further support.

The strongest argument in favor of ante rem realism emphasized by Shapiro (1997) centers
on its semantic advantages. He argues that ante rem structuralism allows us to treat positions
within structures as bona fide objects referred to by singular terms. This avoids the vacuity
problem faced by in re structuralism. However, Assadian (2018) argues that the semantic
argument faces significant challenges of its own, and concludes that proposed solutions to the
problem of singular reference fail to privilege ante rem structuralism over its eliminativist rivals,
undercutting the view's primary motivation.

The UTS shifts the argument for ante rem realism from semantic grounds to physical ones.
On the one hand, we know the physical universe exists, though we struggle to explain why it
does. On the other, we are not sure whether ante rem structures exist, though we would not be
surprised if they did. By identifying our physical universe with an ante rem structure, we exploit
this asymmetry to gain a unique explanatory benefit: the certain existence of our physical
universe confirms the existence of at least one ante rem structure. This specifically supports an
ante rem realism, and offers a physically motivated argument, and indeed requirement, for the
existence of structures beyond the contested semantic considerations.

7.2 Epistemological access

The epistemological access challenge has long been a central challenge for any realist ontology
for mathematics, and the UTS offers new resources to address it. Shapiro (1997, 2011) argues that
mathematical structuralism provides significant epistemological advantages over standard
Platonist ontologies. He describes a three-component epistemology for ante rem structures. It
begins with pattern recognition, where a subject observes systems of physical objects arranged in
various ways and abstracts a structure from the systems, yielding knowledge of small, finite
structures. The second component is a faculty of projection, where the subject notices that finite
structures themselves exhibit a pattern, and they project beyond their experience, eventually
yielding knowledge of infinite structures like the natural numbers. The most powerful technique
is implicit definition, where a subject grasps large or complex structures through implicit
definitions, which successfully characterizes a structure if the description is coherent. MacBride
(2008) acknowledges that Shapiro gives a largely adequate descriptive account of mathematical



epistemology, but argues that Shapiro fails to account for our warranted belief in that knowledge.
MacBride (2008, p. 156) highlights the unexplained challenge being that mathematicians are said
to be producing knowledge about a causally disconnected realm: “it appears that mathematicians
must do the impossible: they must transcend their own concrete natures to pass over to the
abstract domain.”

Shapiro (2011) responds by pointing out that ante rem structures are not located elsewhere,
because they are not located anywhere. The UTS strengthens the argument against the need for a
causal (or otherwise) interaction with a separate abstract realm. The theory holds that we literally
live inside an ante rem structure, allowing us to know at least our own structure through direct
empirical methods. While living within an ante rem structure does not guarantee knowledge of it,
it does make the acquisition of that knowledge far less mysterious. No ‘transcendence’ is
required, because physical observation is already the receipt of signals from the domain in
question. Our beliefs are warranted because the source of our knowledge (the physical universe)
is identical to the object of our knowledge (ante rem structures).?* Consequently, the access
problem is solved not by bridging a metaphysical gap, but is dissolved by the recognition that no
such gap exists. This demonstrates that no clear separation exists between the ontology or
epistemology of mathematics and the empirical sciences.

8 Responding to objections

The strong MUH often faces summary dismissal due to conceptual, empirical, and
methodological objections; this section addresses them.?

8.1 Conceptual objections

There are several ways used to distinguish physical reality from mathematical reality and thereby
avoid the conclusion of the collapse problem. This section responds to the proposed distinctions
of abstractness, instantiation, interpretation, surplus, and suitability.

8.1.1 Abstractness

Abstract entities are typically defined in contrast to concrete entities by negation; specifically, by

their lack of spatiotemporal and causal properties. Abstract entities are ‘nowhere,” ‘nowhen,” and
they ‘do nothing.” I argue that the lack of concrete properties is exactly what qualifies ante rem

2 Beni (2019) argues that the epistemological challenge extends to OSR, contending that the causal separation between
mathematical structures and physical reality precludes an "intelligible account” of their relation, rendering their
correspondence a "massive coincidence". The UTS dissolves this problem by identifying the physical universe with the
ante rem structure, thereby eliminating the causal gap.

% A formal objection that does not fit into these categories is that Godel's incompleteness theorems might pose a
problem for the strong MUH (see Hut, Alford and Tegmark, 2006). However, Godel's theorems are about the limitations
of formal systems; they are not about the existence or coherence of structures. The various formalizations of ST have
no qualms with Godel incomplete structures. Furthermore, Godel himself viewed his theorems as suggestive of
realism, because they showed there is more to truth than provability. In that sense, we have more evidence for the
existence of structures defined by incomplete theories, not less.



structures to be identified with our physical universe, and that the intuitive rejection of
abstractness is the result of conflating two distinct perspectives on structures.

In terms of causality, when Busch (2003) and Pooley (2005) discuss Shapiro’s formal
theory of structure as a potential basis for OSR, they reject it because the non-causal nature of ante
rem structures supposedly disqualifies them from accounting for a physical world full of
causation. French and Ladyman (2003b) and Esfeld (2009) each explore the possibility that
physical structure has causal properties over and above its mathematically defined ones.
However, this additional causal ideology is not necessary, because as argued in Section 5.5,
causality is best understood to occur within structures, not between them. Until an argument is
presented that establishes that causality cannot happen within an ante rem structure, causality
cannot be used to leverage a distinction in kind between the physical universe and ante rem
structures.

The second feature used to distinguish the abstract from the concrete is spatiotemporality.
Markosian (2000) defines physical objects as those that possess a spatial location, distinguishing
them from abstract objects that do not. However, if physical objects must exist in spacetime, then
spacetime itself, which is undeniably physical, would not count as physical, since spacetime
cannot exist ‘within” itself. The UTS resolves this tension by clarifying that our ante rem structure
does not exist in spacetime, but instead that spacetime exists within our ante rem structure. This
entails a commitment to what has been called the adynamical model of reality, the block
interpretation of time, or simply the B-theory. The core idea of this adynamical model is that
structures do not change; instead, they contain change. On this reading, spatiotemporality is a
property applicable to objects within our physical universe, but not to the universe as a whole.
Consequently, it also cannot serve to distinguish our physical universe from ante rem structures.

Critics who demand that ante rem structures possess spatiotemporal or causal properties
should be careful what they wish for. If ante rem structures were located in our spacetime, or if
they did occasionally bump into us, they would cease to be viable candidates to identify with our
physical universe because they would instead be objects within our universe. The fact that ante
rem structures are ‘nowhere,” ‘nowhen’ and they ‘do nothing’ is precisely what qualifies them to
constitute the fundamental ontology. To explain the persistent intuition that there is a
disqualifying distinction, Tegmark (2008) distinguishes two perspectives on structures:

The external, adynamical, "Bird's-eye" perspective: The perspective of a mathematician
studying the ante rem structure from the outside. The structure is a static, immutable,
unchanging entity, with the entire history of the universe existing within it. Observers are
understood as complex information processing patterns in the structure. From this
perspective, structures are characterized as abstract.

The internal, dynamical, "Frog's-eye" perspective: This is the perspective of an observer
living within the ante rem structure. The observer experiences themselves as a time-
traveler, flowing from one moment to the next in a constantly changing state of reality.
From the perspective of such an observer, their own structure will feel uniquely concrete.?

% In a classical reality, what would appear as point-mass particles moving about in R3 according to Newton’s laws in
the dynamical model would appear as coupled curves in R4 in the adynamical model. More generally, the continuous



Our physical universe feels concrete to us simply because we are frog-eyed observers embedded
within its structure. We are bound to our structure, inseparable from it, and caught up in its
relational web. We call our structure concrete because it is more consequential to us than other
structures are. Concreteness is revealed to be perspectival, applicable to entities within one’s own
structure but not to structures themselves, and is therefore unable to mark an objective
physical/mathematical distinction.

8.1.2 Interpretation

Some have claimed that what distinguishes physical structure from mathematical structure is the
presence of a suitable interpretation. As French and Bueno (2018) put it, physical content enters
when we relate abstract structures to observation, experiment and measurement. However, the
ability to interpret an ante rem structure in a testable manner is an epistemic, not an ontological
requirement. Tegmark (2008) acknowledges that physicists are not satisfied knowing the
structure alone; they also seek an interpretation connecting it to observables. For example, if
someone did produce a mathematical model that was claimed to be isomorphic to our physical
reality, physicists would be unable to evaluate it without an additional set of coordination rules.
However, there still would be a fact of the matter as to whether that model was isomorphic to our
physical universe. The interpretation allows us to do physics and test the structure, but it is not
an ontic feature of the structure itself. Reality is surely indifferent to our quest to understand it.

Physics might even be able to proceed without an external interpretation. Tegmark
proposed a method of using the automorphism group of a structure, which encodes the
structure’s internal symmetries, to compute the dynamical laws of the structure.?” This method
highlights where the specific formalization of ST may prove physically significant, because the
various formal theories handle non-trivial automorphisms in starkly different ways. Some may
be incompatible with Tegmark’s method, while others might explain the symmetries with
different ontological commitments. The UTS therefore brings new physical urgency to this
problem, while also offering a potential physical constraint to evaluate the formal theories of
structure.

8.1.3 Instantiation

A common objection, raised by Psillos (2006) and Cao (2003), is that ante rem structures are not
instantiated and so cannot be identified with our instantiated physical universe. This objection
relies on an in re conception of structure that holds that structures exist but not sui generis.
However, the whole point of ante rem structuralism, and the formal theories of structure that
express its principles, is that structures exist independent of instantiation. For ante rem structures,
instantiation is also an epistemic rather than an ontological requirement. Instantiation is
analogous to representation or modeling. When we instantiate an ante rem structure, we model it

global symmetries of the adynamical action correspond, via Noether’s first theorem, to conservation laws in the
dynamical picture.
27 See Bernal, Sanchez, and Soler Gil (2008) for work in this direction.



as a physical or abstract system that we can manipulate and study. For example, we might model
a finite number structure with a collection of physical objects, or we might model the entire
natural number structure as a set-model of Zermelo ordinals. Likewise, physicists instantiate
aspects of our physical universe in their mathematical models. In both cases, the instantiation
serves as a way to represent and study the ante rem structure, not as a means to bring it into
existence. Ante rem structures exist sui generis, in their own right, whether or not we have
constructed models of them. This is precisely what makes them suitable candidates for a
fundamental ontology.

8.1.4 Surplus structure

Another conceptual distinction between physical and mathematical reality concerns an apparent
mismatch in scope. French and Ladyman (2003b) suggest that the realm of mathematics appears
far broader than what is required to describe physical reality. There are two readings of this
surplus structure objection to consider - representational and ontological - and neither one proves
problematic for the UTS. On the contrary, I argue that they help illustrate an important distinction
between the mathematical descriptions and the metaphysical reality.

The first reading of surplus structure concerns features like classic gauge redundancies.
French and Ladyman (2003b) cite Redhead’s (1975) notion of surplus structure, which highlights
that many gauge-variant features of a theory do not result in observable differences. However,
these features are widely viewed, including by Redhead himself, as representational
redundancies. Rickles (2017) extends the analysis of representational surplus to “dual theories”
involving non-trivial mappings. Rickles argues that dualities are effectively gauge symmetries of
a deeper theory, and that we must quotient out these differences just like we quotient out gauge
redundancy. The actual reality is the structure shared by the dual theories, determined by the
invariants under the duality map.

Rickles uses dual theories to emphasize an important distinction between the
mathematical description and the structural reality it describes, warning against a literal reading
of the mathematical theory. This is a salient point in the present context, because despite its name,
the MUH does not identify physical reality with a specific mathematical description. This point
addresses the concerns of Butterfield (2014), who criticizes the strong MUH on the basis that
mathematics is merely a descriptive tool. While true, what mathematics describes are structures,
one of which can be identified with our physical universe. To clarify the dispute: reality is
perfectly described by mathematics (weak MUH), but is metaphysically structural (strong MUH).
The existence of multiple equivalent descriptions for a single structure does not undermine the
claim that we inhabit that structure; it simply requires we distinguish the description from the
described.

Turning to an ontological reading of surplus, French and Ladyman (2003b, p. 75) point to
the sheer volume of mathematical structures that have no bearing on physical reality: "there is
more mathematics than we know what to (physically) do with." However, this objection fails in
the context of the strong MUH, where each structure is understood as a universe unto itself. The
abundance of structures that have no bearing on our physical reality is a simple result of our
universe being one particular structure in a vast disjoint ensemble. The UTS is therefore entirely



consistent with the fact that most mathematics does not describe our physical universe, a point
that also speaks to the suitability objection.

8.1.5 Suitable structure

A related concern, expressed by Bueno (2019), holds that mathematical possibility is too
permissive a guide to physical possibility. He points to the Banach-Tarski theorem, which tells
us, among other things, that in some structures a sphere can be decomposed and reassembled
into a larger one. He argues that this is mathematically possible but physically impossible.
However, Bueno implicitly equates “physical possibility” with what is possible in our structure,
which is governed by specific symmetries and conservation laws that preclude Banach-Tarski-
like operations. What counts as “physically possible” is not universally fixed, but varies from one
structure to another. It is only required that at least one ante rem structure be compatible with
observed physical possibility, not all of them.

8.2 Empirical objections

Beyond conceptual distinctions, critics have also attempted to reject the identification of physical
and mathematical reality on empirical grounds. This subsection rebuts “typical observer” based
predictions by showing that the requisite probability measure is undefined, and will likely remain
so due to the open-endedness of mathematics. The UTS survives falsification by these arguments,
but at the cost of being presently non-predictive.

The most discussed method for generating novel predictions from a multiverse theory
such as the UTS involves calculating what a typical observer should experience. Deutsch (2011)
argues that if the strong MUH were correct, then the vast majority of universes containing
observers would be chaotic outside a typical observer's own brain, leading to a prediction of
instant death. He argues that because life goes on as usual, the strong MUH must be false.
Vilenkin (2007) similarly argues that because mathematical structures can be arbitrarily complex,
a typical observer should predict that they live in a universe with “horrendously complex”
physical laws. He suggests this is in conflict with the simplicity of our laws of physics. However,
neither prediction is well-defined, as both attempt to quantify and compare infinite classes of
observers. This is known as the measure problem: without a well-defined and principled method
to compare the infinities, we cannot compute probabilities about what we should expect to
observe. The challenge is common to all theories that posit an infinite ensemble, because any
conclusion about typicality depends entirely on the chosen method for comparing the infinite
sets.?

Several approaches to taming these infinities have been proposed, with each so far
proving inadequate. Tegmark’s (2008) idea to restrict the structural multiverse to computable or
finite structures is ad hoc and revisionary to both physics and mathematics. Similarly, applying
a complexity weight (Schmidhuber, 2000; Tegmark, 2008) lacks a principled motivation relative

28 While typicality reasoning may not be valid across the structural multiverse, it does seem to be valid within our
structure, otherwise physics would have trouble predicting anything, quantum or otherwise. How to ensure
metaphysical consistency of these two facts remains to be better understood.



to other weightings.?” Finally, I previously (Hamlin, 2017) appealed to Bostrom’s (2002) Self-
Indication Assumption (SIA) to weight structures by observer count, but the SIA is highly
contested and, as Adelstein (2024) notes, cannot on its own yield a defined probability measure.

A potential reason to doubt even the future possibility of solving the measure problem
arises from the Principle of Indefinite Extendibility.** This principle implies that no formal theory
can encompass the entirety of structural reality. In Hellman’s (2003, p. 19) words, “There is an
open-endedness, incompleteability, or indefinite extendibility that is an essential aspect of
mathematics.” One can always add axioms to a formal theory of structure to describe structures
not previously recognized. This poses a serious challenge for the measure problem, because it is
unclear how we could possibly form a measure on a quantity not only larger than a set, but larger
than any formal theory can express.?!

The measure problem remains the most significant barrier preventing novel, testable
predictions. Read and Le Bihan (2021) nonetheless argue that philosophical multiverses like those
implied by the strong MUH may be amenable to empirical testing and falsification. They
distinguish between two notions of predictivity. They acknowledge that while the strong MUH
is not “decision-theoretically” predictive due to the measure problem, it may still be falsifiable
in a weaker sense of being subject to a future empirical inadequacy. One possibility of the latter
kind is raised by Tegmark (2008), who argues that the strong MUH makes a mathematical
regularity prediction. This holds that we should continue to discover more mathematical
regularities in nature, which effectively amounts to the claim that the weak MUH will continue
to be confirmed. However, Hossenfelder (2022) points out that it is not clear what we would have
to observe in order to demonstrate the empirical inadequacy, because an inability to incorporate
empirical data may simply mean we have not yet considered the correct theoretical structure.®
For now, the strong MUH remains non-predictive tout court, although not necessarily so in
principle.®* Even if it is not rejected for failing predictions, the strong MUH has been ignored
altogether on methodological grounds.

8.3 Methodological objections

» Schmidhuber’s (2000) “Speed Prior” complexity weighting could be motivated in principle, but it requires
additional problematic assumptions about the existence of a “Great Programmer” who is trying to optimize the
efficiency of simulating universes.

% For a detailed discussion, see Rayo and Uzquiano (2006) and Hellman and Shapiro (2018).

31 Whereas Godel’s theorems discovered the limits to formalization of truths about individual structures, indefinite
extendibility concerns the limits to formalization of truths about the entire structural multiverse. The principle implies
that all formal theories of structure will necessarily have to balance incompleteness with universality.

32 Decision-theoretic predictions require a well-defined measure on the space of solutions to quantify one likelihood
against alternatives.

3 The difficulty of imagining empirical data that cannot be fitted into a mathematical model suggests the weak MUH
is on solid ground.

3% Read and Le Bihan (2021) define predictivity tout court essentially as empirical adequacy, namely that a theory has
“at least one solution compatible with the empirical data gathered thus far.” I read their definition as one of successful
prediction tout court, whereas predictivity tout court itself should be understood as the possibility that the theory
might one day encounter empirical data for which it does not have a compatible solution (model).



A common objection to the strong MUH is that it is not even worth considering in the first place.
These methodological objections fall into two main categories. First, critics argue it fails the
standards of empirical science due to its lack of novel predictions. Second, some naturalistic
metaphysicians argue that it violates constraints on appropriate metaphysical inquiry. However,
I argue that both criticisms apply inappropriate standards to a metaphysical proposal of this
scope.

8.3.1 Empirical relevance

Ellis and Silk (2014) criticize multiverse theories for failing to make novel predictions, claiming
that without them we have no reliable way of assessing their epistemic status. Hossenfelder (2022)
contends that the absence of novel predictions relegates the strong MUH to the realm of ‘opinion
or aesthetic preference.” It may be that predictivity is a good demarcation criterion for science,
and that on this basis the UTS should not be classified as a scientific theory. However, to say that
non-predictive theories are empirically and therefore epistemically idle is to inappropriately
project the normative evidential standards within physics to the broader quest for knowledge.
We might not be able to falsify a theory with predictions, but we can criticize it on other empirical
grounds, and the theoretical virtues that Ellis and Silk deride are essential to doing so. Deutsch
(1998) points out that most scientific theories are rejected not for failing predictions, but for
lacking the theoretical virtues that make them worth testing in the first place. Our knowledge,
even our scientific and physical knowledge, could not possibly grow without acknowledging
these virtues.®

The UTS is currently non-predictive, but that does not make it empirically vacuous. The
UTS is already empirically adequate, not only in the weak sense of being compatible with all our
current observations, but also in a strong sense of actually having models in which all results of
physics can be embedded. It is also inconsistent with some physical theories (or interpretations
thereof) involving irreducible randomness that have otherwise been taken seriously, such as
collapse quantum theories (GRW/CSL).* The foundational problems can also be construed as
being about observations that the theory is motivated to explain: we observe that our universe is
described by mathematics, that it has its specific form, and that it exists in the first place. These
observations are not empirical in the sense of being measurements of contingent magnitudes that
are characteristic of the physical sciences, but that does not make them any less important to
explain. The UTS is motivated by empirical content in multiple ways; just not by novel

% While novel predictions provide the most potent means of falsification, they are not the only criteria for evaluation.
Eddington would not have organized an expedition to test General Relativity without independent grounds for
valuing the theory. Mere testability was not the primary appeal, as testable hypotheses are trivially easy to construct.
Rather, General Relativity commanded attention because it unified and explained known phenomena, virtues that
are rare to achieve and which justify the effort of empirical testing.

% The UTS is consistent with apparent randomness in state histories, just not with fundamental and irreducible
randomness in the metaphysics. It might be true that we live in a structure composed of many states that are not related
by unitary dynamics. In this case it would be quite the coincidence that the dynamical laws relating the states obeyed
the probabilities of quantum mechanics as opposed to any other random progression. By contrast, the metaphysical
picture given by Everettian quantum theory is straightforwardly consistent with the UTS.



predictions. The charge of empirical vacuity might apply to ST itself, but certainly not to its
universalization.

There are two notable consequences of the lack of novel predictions. The first is that it
limits the degree to which the UTS can be corroborated. While this does not preclude confidence
in the truth of the theory, it does place the UTS at a major epistemic disadvantage relative to any
hypothetical rival capable of equivalent explanatory power that is predictive. However, the
current absence of such rivals mitigates this limitation. The second significance is that the theory
will likely evolve slowly, because we cannot subject it to repeated rounds of variation and
empirical testing. We can only evaluate it as an explanation of what we already observe, and we
are short on foundational problems that it has not already solved. This is all the more reason to
be careful in our assessment of the available evidence.

The lack of novel predictions leads critics like Stoeger et al. (2004) to argue that the strong
MUH should be understood as a part of metaphysics. While I agree that it is indeed a piece of
metaphysics, it is not for that reason. Metaphysics is not untestable physics. The theory is a part
of metaphysics because of the types of problems it is concerned with. It does not ask about the
particular form of our physical reality, but instead speaks to more fundamental questions about
its nature. If a metaphysical theory did make a testable prediction, that would not make it a part
of physics; it would instead be understood as predictively constrained (scientific) metaphysics.
For now, the UTS is properly classified as a non-predictive metaphysical theory. Before assessing
the theory by its theoretical virtues, we must address a final methodological objection regarding
the appropriate standards for metaphysical inquiry.

8.3.2 Naturalistic metaphysics?

Some commentators refuse to consider the strong MUH because it does not meet scientific
standards, while others refuse to consider such hypotheses because they are claimed to not even
meet appropriate metaphysical standards. Ladyman and Ross (2007) argue that metaphysical
claims should be motivated by their ability to show how multiple scientific hypotheses, including
at least one drawn from fundamental physics, can jointly offer greater explanatory power than
they would individually. They call this the Principle of Naturalistic Closure (PNC), which
effectively limits metaphysics and tasks it with developing consilience relations among the
empirical sciences. It is on this basis that Ladyman and Ross (2007, p. 158) advocate silence
concerning the relationship between the mathematical and the physical: “In our view, there is
nothing more to be said about this that doesn’t amount to empty words and venture beyond what
the PNC allows.”

Ladyman and Ross (2007) argue that the PNC is a good normative heuristic because it
efficiently indicates whether any given metaphysical hypothesis stands a chance of contributing
to objective knowledge. These efficiency gains, however, are necessarily paid for by a loss in
accuracy. Their normative heuristic limits metaphysics to the task of unifying empirical science,
highlighting the epistemic reliability of hypotheses that attempt to explain and unify the “web of
empirical knowledge.” However, this definition problematically excludes mathematics from the
target domain of unification. While I agree that mathematics is not an empirical science, Ladyman
and Ross acknowledge it “indispensably and irreducibly” figures in the empirical sciences, and



enjoys a similar epistemic reliability. It is fine for Ladyman and Ross to argue that mathematics
is not a part of the natural world, but it would be premature to restrict metaphysics with a
normative heuristic based on that belief.?” Recent decades have seen a resurgence of naturalism
in the philosophy of mathematics, with Baker (2009) arguing that any consistent naturalism must
include mathematics in its scope. Indeed, mathematics and physics are so intimately bound that
it would be a difficult surgery to try to separate them, and metaphysics should not attempt, much
less enforce, such revisions.

To better account for the indispensability of mathematics for explaining the natural world,
we might propose an amendment to the PNC, one that expands its scope to explicitly allow for,
though not require, the unification of mathematics with the empirical sciences.*® Given that the
principle is a normative heuristic, the question becomes whether including mathematics in the
domain of unification provides a more accurate and efficient filter. I contend that it does, as it
would still block vast swaths of “neo-scholastic metaphysics,” but it would do so without
imposing a painful separation between empirical science and the mathematics it indispensably
relies on. This revised PNC would also highly motivate rather than block the UTS, a point that
itself suggests that excluding mathematics results in a loss of heuristic accuracy.

The rejection on methodological grounds is premature. Demands for novel predictions
mischaracterize the role of a metaphysical theory, and normative heuristics are not strong enough
to force a dismissal. The charge of 'empty words' seems unfitting, given that empty words are
precisely those that fail to explain or unify, and the UTS does both at a remarkable level. The
argument will now turn to the theory’s virtues, as they are the ideal standards of evaluation.

9 Theoretical virtues

The UTS is assessed according to the classic theoretical virtues of explanatory power, unification,
and simplicity. The goal is to support an inference to the best explanation. I will conclude with a
brief comparison with alternatives.

9.1 Explanatory power

Good explanations typically give you back more understanding than you ask for, and the UTS is
no exception. While ST was originally motivated by the work it did in providing a metaphysical
foundation for mathematics, a striking fact is that once universalized, this same theory provides
powerful insights into diverse and important problems that have long been a challenge for both
science and philosophy. The theory offers broad explanatory benefits: it improves responses to
several objections to OSR, it addresses three foundational metaphysical problems, and it even
fortifies ST itself. This is a case of consilience: it shows that we have not merely fit the theory to

% Ladyman and Ross (2007, p. 33) admit that their principle has the status of a “normative heuristic” and is not the
result of a “logical analysis,” and therefore cannot be “applied algorithmically.” Taking lessons from the failures of
logical positivism, they recognize that the boundaries will not always be sharp, and allow for some permissiveness in
the principle’s application.

3 Their original principle might be more suitably named the Principle of Empirical Closure (PEC).



explain one set of problems, but that we tapped into a deeper explanatory structure. Explanatory
power is the most important theoretical virtue and is also the greatest strength of the UTS.

9.2 Unification

Many advancements in our understanding of reality have resulted from unifications of
previously disparate domains. The UTS continues this trend, which results in the unification of
the ontology of mathematics and the physical sciences. We have long divided our best theories
into two categories: physical theories that actually describe reality, and mathematical theories
that are merely useful in describing reality. This treats mathematics instrumentally and then
struggles to account for its applicability. Instead, the UTS reveals that both mathematical and
physical theories are about a common domain of ante rem structures, just different parts of it and
using different methods. Mathematicians operate at a level external to any particular structure
they study. They typically consider structures as completed wholes, with perfect axiomatic
information about them, and therefore have access to deductive methods. Physicists on the other
hand exist within as integral parts of the structure they are studying. They only have incomplete
information about their structure, gathered by observation and experimentation. They use this
information to establish relationships among observable phenomena, creating empirical
substructures that are used to whittle down the set of structures they may inhabit into a class that
is empirically adequate. According to the UTS, the key difference between mathematics and
physics lies not in subject matter (they both study structures), but in perspective and
methodology. It reveals that mathematicians are mapping the structural multiverse and
physicists are determining our location within it. This unification is significant, extending beyond
traditional unifications within or even between empirical science domains, and is another major
virtue of the theory.

9.3 Simplicity

Multiverse theories have often been criticized for being ontologically extravagant, but I argue that
considerations of simplicity strongly support the UTS. Baker (2022) characterizes simplicity as a
complex theoretical virtue, distinguishing between syntactic simplicity (elegance) and ontological
parsimony (number and kinds of entities). In terms of syntactic simplicity, the UTS is clearly
theoretically elegant: ST provides a vast ontology using minimal principles, and universalizing it
via the strong MUH adds no new primitives. The theory does not require additional ideology to
unify the physical with the mathematical; it simply takes an existing formalism and expands its
reach.

While syntactic simplicity is naturally viewed as a pragmatic virtue because elegant
theories are easier to use, ontological parsimony is more often considered an epistemic virtue.
Ontological parsimony can be further analyzed in terms of quantitative parsimony (the number
of individual entities) and qualitative parsimony (the number of kinds of entities). French (2014)
appeals to considerations of quantitative parsimony to characterize the strong MUH as
“ontologically inflationary,” because it holds that a vast number of structures exist. However,
such an objection actually targets ST itself rather than its universalization, and one is free to argue



that there are fewer structures than mathematicians suppose there are. The ontology of ST is large,
but not too large; it is just the right size, by design, to provide an ontology for mathematics.*® We
certainly should not hold the fact that the UTS is universal over all fundamental ontology against
the theory.

The UTS scores even better on qualitative parsimony, because it holds that only one
fundamental kind of entity exists, namely ante rem structures. This is advantageous because we
only need a single existential explanation for that fundamental kind, not a separate one for each
entity of that kind. This is especially significant because existential explanations have proven hard
to come by. From this perspective, a unified fundamental ontology of structures is absolutely
minimally inflationary.* The charge of ontological extravagance appears to be exactly backwards;
the UTS is instead shown to be syntactically elegant, quantitatively commensurate, and
qualitatively optimal.

This analysis suggests a further re-evaluation of the MUH's reputation, which has often
been characterized as radical, even by Tegmark himself. While the strong MUH may be radical in
its implications, it is conservative in its ontological load. The real ontological heavy lifting is done
by ST. The strong MUH is conservative in other respects as well. It makes no problematic
distinctions between mathematical and physical structure, and is, after all, the result of “accepting
the conclusion’ of the collapse problem. Doing so allows for a uniform and non-revisionary
semantics for both mathematical and physical theories. It also recognizes only one fundamental
ontological kind (structures), and a minimalist metaphysic (relations without irreducible
individuals). If the strong MUH is considered radical, then one wonders how its alternatives fare.

9.4 Alternatives

An inference to the best explanation requires a consideration of competitors. While a
comprehensive survey is infeasible, we can evaluate how the UTS compares to several general
classes of alternatives, using the theoretical virtues of explanatory power, unification, and
simplicity as evaluative criteria. I start with nominalism and dualism, which reject the unification
of mathematical and physical reality, and then consider two variants that accept unification but
restrict or expand the size of the fundamental ontology.

9.4.1 Nominalism

The first option is to reject ST altogether by adopting anti-realism toward mathematics, alongside
some form of structural realism about physical reality (French & Ladyman, 2003b; Arenhart &
Bueno, 2015). This approach could be summarized by the motto: reality is structural; there are no
(ante rem) structures. This combination surpasses the UTS in terms of ontological simplicity,
because it recognizes only a single instance of a single fundamental ontological kind. However,

% Shapiro (1997) argues against efforts to trade away quantitative parsimony for added (modal) ideology.

40 This trend toward accepting vast ensembles of a single kind is also supported by the historical progression of science.
Again and again, we have learned that what we once took to be unique turns out to be one member of a far larger class.
Berenstain (2020) draws from this trend the conclusion that there is no prior reason to assume that our universe is the
only one.



this simplicity betrays more significant explanatory challenges concerning the foundational
problems. It cannot explain the particularity of the single ontological instance (our physical
universe), and it also denies the physical universe the existential explanation available to ante rem
structures. The problem of applicability is especially acute, because it holds that mathematics is
not about real entities, except in the unexplained case of the physical universe. While the collapse
problem can be responded to with “representation-as” claims, these are question begging, and
they threaten structural realism’s status as a genuine realism. These challenges are in addition to
the classical vacuity problem with nominalist mathematics. While scoring well on simplicity, this
view suffers from more significant explanatory and unificatory deficits.*!

9.4.2 Dualism

If the rejection of mathematical realism is deemed too costly, one might instead propose a dualism
where we accept ST but deny the strong MUH (for example, Deutsch, 1998; Linsky & Zalta, 1995).
This position would accept the existence of the structural multiverse, with one ante rem structure
being scientifically indistinguishable from our physical universe, but it would deny the
identification. The primary challenge to this approach is captured by the collapse problem: what
distinguishes the physical world from its structurally identical (and already existing)
mathematical counterpart. The applicability problem benefits from mathematical realism, but the
solution remains incomplete, as it must still explain the correspondence between the physical and
mathematical reality. The problems of particularity also remain completely unaddressed.
Another significant challenge with this approach is that its dualist fundamental ontology requires
two existential explanations. This is perhaps the most difficult position to maintain; once ST is
accepted, its universalization becomes difficult to deny.*?

9.4.3 Restricted structural multiverses

Given the significant explanatory and unificatory costs of rejecting the identification of physical
and mathematical reality, a promising alternative is likely a variant of the UTS. One might hold
that the structural multiverse is smaller than mathematical practice would suggest it is. The Finite
Universe Hypothesis (Tegmark, 2008) restricts structures to those with finite positions, and the
Computable Universe Hypothesis (Tegmark, 2008; Schmidhuber, 2000) restricts structures to
those with computable relations. Both succeed in addressing the foundational problems in a
similar way. A restricted structural multiverse has the potential advantage of taming the infinities
that result in the measure problem; however, this itself is not evidence for the restriction, as reality
is certainly indifferent to our ability to test it. The approach also introduces new difficulties. It
fails to account for the entirety of mathematics as it is actually practiced, which goes against the

4 A related view does not reject the existence of structures altogether, but instead views their existence as dependent
upon physical systems that instantiate them. This is in re mathematical structuralism, and is often associated with the
Aristotelian realism of Franklin (2011). It similarly struggles to account for physical particularity and existence. It does
accommodate applicability, though it does not fully explain it.

4 This is further evidenced by the rarity of philosophers who accept both OSR and ante rem structuralism, as this
combination is highly tenuous without also adopting the strong MUH.



faithfulness principle that guides the philosophy of mathematics. It also faces difficulties with our
most successful physical theories, such as General Relativity, because the theory’s reliance on the
continuum makes it consistent with an infinite and non-computable class of structures. While
potentially testable, restricting the structural multiverse faces serious challenges to its consistency
with existing knowledge.

9.4.4 Expansive ontologies

One might instead argue that ST does not recognize a big enough ontology. David Lewis’s (1986)
modal realism posits the reality of all logical possibilities, which is a looser constraint than
mathematical coherence. Likewise, Nodelman and Zalta’s (2014) object-theoretic approach
admits a broader ontology of abstracta, some of which are not purely structural, including
inconsistent, informal, and fictional objects. However, we have better reasons to believe in the
existence of ante rem structures than we do for these other more general forms of abstracta. Such
broader ontologies are not necessary to account for mathematics or the empirical sciences, and as
such they are not PNC-motivated even in our revised sense.®* The extra abstracta also do not
contribute to solving any of the foundational problems already addressed by a pure structural
ontology, nor do they support a realism about physical structure. The broader ontology is also
incompatible with the proposed existential solution, to the extent that it appeals to the objective
coherence of mathematical truth. Ultimately, we must draw the line somewhere, and faithfulness
to mathematical practice offers the least problematic boundary to draw.

The various alternatives considered appear to incur significant trade-offs in explanatory
power, unification, or simplicity. Some uncertainty remains regarding the exact size of the
structural multiverse; yet, what matters for the universalization argument is not the structural
multiverse’s exact cardinality, but the more defensible claim that it exists and is extraordinarily
vast.

10 Conclusion

The UTS is offered not as a radical departure, but as a natural homecoming for OSR. Structural
realism originated with the insight that the mathematical content of physical theories survives
theory change. While it successfully adopted the structuralist terminology from the philosophy
of mathematics, it subsequently took a detour by attempting to characterize structure
autonomously, leading to much confusion and disagreement about what structure actually is.
The present work adjusts this course, returning to the metaphysical foundations of mathematics
to secure the precise ontological basis that OSR has long required.

The principles of ante rem structuralism and their formalizations into axiomatic theories
of structure were collectively recognized as ST, which provides a vast ontology of ante rem
structures. These structures exist sui generis and are exactly mathematically describable, and some
of them are suggestively world-like. In this context the identification of the physical universe with

# This is a point that demonstrates that our revised PNC is not toothless. It is also why I recognized Murphy’s (2021)
modification of abstract object theory that limits the comprehension axiom to ante rem structures alone (they are
motivated by the revised PNC).



one such ante rem structure is highly motivated. This identification results in the universalization
of ST, because the theory expands its reach to account for all fundamental ontology, both
mathematical and physical.

This universalization offers deep and diverse explanatory advantages. It sharpens OSR’s
fundamentality thesis from the vague “physical reality is structural” to the substantive claim that
“physical reality is an ante rem structure.” This precision enables improved responses to several
criticisms of OSR, offers powerful insights into foundational metaphysical problems, and
simultaneously addresses difficulties internal to ST itself. These benefits are delivered by
reframing the relationship between mathematics and the empirical sciences, rationalizing their
indispensable relationship by revealing them as complementary methods of exploring a unified
fundamental reality of structures. This is achieved with remarkable simplicity, by merely
recognizing the full universality of ST’s existing ontology. While the theory does not currently
yield novel predictions, its theoretical virtues jointly support an inference to the best explanation.
This inference to the UTS then provides new, physical justification for the original adoption of
ST, completing a bootstrapping argument that vindicates the theory’s own ontological
foundation.

The UTS offers a fundamental ontology, which is only one component of a comprehensive
metaphysical system, and open questions abound. While I argued that the universalization of ST
proceeds largely independently of its formalization, further analysis of specific formal theories of
structure in the context of the strong MUH is a logical next step. A focal point for these
investigations will likely be how the various formalisms treat non-trivial automorphisms and
their compatibility with Tegmark’s proposal for computing dynamics from pure structural
descriptions. Another important task is forging a stronger bridge between the UTS and empirical
science. This will require supplementing the fundamental ontology of structures with an account
of non-fundamental ontology, most promisingly with a theory of real patterns. Addressing these
issues will require significant interdisciplinary collaboration, but is essential for the pursuit of a
truly naturalistic metaphysics.

The UTS is inspired by the idea that the physical universe appears to be a structure for the
simple reason that it is a structure. Seen in this light, the theory sheds its radical reputation to
reveal a conservative core, offering a natural standard against which more complex alternatives
can be compared. Ultimately, this ontological identification dissolves the perceived gulf between
our best methods of understanding reality, pointing toward a renewed unity in the family of
objective inquiry.
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