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Abstract: Ontic Structural Realism (OSR) holds that structure is ontologically fundamental, yet it 

lacks a precise metaphysical account of structure. Returning to the insight that originally 

motivated structural realism, I develop a new basis for OSR grounded in the metaphysical 

foundations of mathematics. This approach draws on the principles of ante rem structuralism and 

their formal axiomatizations to define Structure Theory (ST), the view that structures exist sui 

generis and constitute the subject matter of mathematics. ST compels OSR to confront its “collapse 

problem” of distinguishing physical from mathematical structure. I argue for embracing the 

collapse by adopting the Mathematical Universe Hypothesis (MUH), which identifies our 

physical universe as an ante rem structure. This yields the Universal Theory of Structure (UTS), 

providing a fundamental ontology of structures for both mathematical and physical reality. The 

theory refines OSR’s fundamentality thesis from the vague “physical reality is structural” to the 

metaphysically substantive “physical reality is an ante rem structure,” thereby strengthening 

responses to criticisms concerning representation, objecthood, and causation. The UTS also 

illuminates important foundational problems concerning the applicability of mathematics, the 

particular form of our universe, and the nature of existence. I conclude that the theory’s unifying 

and explanatory virtues support an inference to the best explanation. 
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1 Introduction 
 

Ontic structural realism (OSR) holds that structure is ontologically fundamental, yet even its 

foremost proponents acknowledge that the appropriate characterization of structure remains an 

ongoing challenge (French & Ladyman, 2010). While structure is typically characterized as giving 

ontological priority to relations over objects, this remains too vague to secure OSR’s realist 

ambitions. What precise metaphysical account of structure can OSR adopt? Motivated by 

Worrall’s (1989) insight that the mathematical content of physical theories survives theory 

change, I propose a new basis for OSR by turning to the structuralist foundations of mathematics. 

Previous inquiries in this direction have focused on unifying foundational frameworks for 



mathematics, such as set theory, category theory, and univalent foundations. While these 

unifying frameworks offer valuable representational tools, they do not by themselves specify the 

required ontology.  

I turn instead to the metaphysical foundations of mathematics, specifically to ante rem 

structuralism: the view that structures exist independently of instantiation and that mathematics 

is the language we use to describe them. I refer to the principles of ante rem structuralism and 

their formal axiomatizations as Structure Theory (ST). Adopting ST compels OSR to confront its 

“collapse problem” of distinguishing physical from mathematical structure (French, 2014). I 

argue not to resist the collapse, but to embrace it. If we accept that structures exist, and that 

physical reality is exactly mathematically describable (what I term the weak MUH), then we have 

strong reason to identify the physical universe with an ante rem structure (the strong MUH). The 

adoption of the strong MUH should be understood as the universalization of ST, because it 

recognizes that ST’s existing ontology accounts for a larger domain. To reflect this, I term the 

broad ontological package the Universal Theory of Structure (UTS). I conclude that the UTS 

delivers precisely the metaphysical clarity that OSR needs to secure its realist ambitions. 

This approach remedies the shortcomings of prior engagements with ante rem 

structuralism. Some OSR theorists (Busch, 2003; Psillos, 2006; French, 2006) considered the view, 

but they did not sufficiently explore the identification of our physical universe with an ante rem 

structure, leading to dismissals that warrant reconsideration. My previous defense (Hamlin, 2017) 

of a universal ontology of ante rem structures was based on Shapiro’s (1997) specific formalization, 

whereas the present account remains neutral regarding competing formalizations. I also include 

a novel evaluation of the ontology’s suitability as a foundation for OSR, while arriving at distinct 

conclusions concerning its epistemic status. 

The argument proceeds as follows: Section 2 traces the original impetus for structural 

realism, arguing that it suggests turning to the metaphysical foundations of mathematics for 

clarity regarding the central notion of structure. Section 3 establishes that ST provides a 

fundamental ontology of ante rem structures for mathematical discourse. Section 4 deconstructs 

Tegmark’s MUH into three component parts, outlining their mutual entailments before 

reconstituting them as the UTS. Section 5 shows how the UTS sharpens the notion of structure 

and thereby strengthens responses to several criticisms of OSR. Section 6 demonstrates how the 

theory illuminates further foundational problems, providing independent support for the 

universalization. Section 7 outlines the explanatory benefits that universalization confers upon 

ST itself. Section 8 addresses conceptual, empirical, and methodological objections to the 

identification of physical and mathematical structure. Section 9 evaluates the theory according to 

the classic theoretical virtues of unification, explanatory power, and simplicity, demonstrating 

how it compares favorably to alternatives. 

 

2 Motivating realism about structure 
 

John Worrall (1989) introduced structural realism by noting that the mathematical content of 

physical theories survives even radical theory change. He pointed to the equations governing 

refraction and reflection, which persisted from Fresnel’s wave theory of light into Maxwell’s 

electromagnetic theory, and the equations of Newtonian mechanics that can be recovered as a 



limiting case from the newer relativistic theory. Drawing implicitly on the structuralist 

philosophy of mathematics then gaining prominence, Worrall held that this mathematical content 

expressed structural relations. He therefore concluded that scientific realists should be structural 

realists. 

This realism about structure was later extended by Ladyman (1998) to the metaphysical 

thesis that physical reality is fundamentally ontologically structural, a position known as OSR. 

However, subsequent discussions by OSR theorists have tended to characterize structure 

autonomously, often in incompatible ways, with little anchoring in the theoretical considerations 

that motivated realism about structure in the first place. These persistent ambiguities concerning 

the nature of structure have weakened OSR’s claim to be a genuine realism (Arenhart & Bueno, 

2015; Bueno, 2019; Muller, 2010). 

The problem, I argue, stems from OSR adopting the terminology of the philosophy of 

mathematics without also considering its metaphysical implications. Chakravartty (2004) rightly 

emphasizes that securing a metaphysical foundation for structural realism requires moving 

beyond structure as a mere label for mathematical content and toward a substantive account of 

what metaphysical realism about structure entails. While McKenzie (2017) highlights that OSR 

has recently benefited from an increased engagement with a priori metaphysics, I argue for a 

pivot back to the philosophy of mathematics, the very field that inspired talk of structure in the 

first place, and where the concept remains most thoroughly developed. 

 

3 The structuralist foundations of mathematics 
 

This section outlines mathematical structuralism and distinguishes unifying foundations from 

metaphysical foundations. It details the principles of ante rem structuralism and their 

formalizations in various axiomatic theories, collectively referring to them as ST. This theory 

furnishes a fundamental ontology of ante rem structures whose explanatory reach is subsequently 

shown to extend well beyond mathematics. 

 

3.1 Mathematical structuralism 

 

The prevailing framework in the philosophy of mathematics is structuralism, whose motto is 

“mathematics is the science of structure.” Structures are a novel type of entity, distinct from 

familiar physical objects and even unique among abstract entities, making them particularly 

challenging for our intuitions to grasp. Mathematical structuralism posits that the primary subject 

of mathematics is not individual objects, but the broader relational structures they constitute. For 

example, mathematics is about the natural number structure, whose individual objects, the 

numbers, have properties that are determined by their relations to the other numbers. If 

mathematical structuralism is correct, it seems that Worrall was on solid ground when he referred 

to the preserved mathematical content of physical theories as “structure.” However, key issues 

remain: what is the ontological status of structures, and what metaphysical conclusions can be 

drawn from realism about them? 

 

3.2 The inadequacy of unifying foundations 



 

OSR theorists have often turned to set theory (Arenhart & Bueno, 2015), category theory (Bain, 

2013; Lam & Wüthrich, 2015), and most recently the univalent foundations program (Chen, 2024) 

for insight into the nature of structure. While each of these frameworks has been argued to inform 

a philosophical analysis of mathematical structuralism, they do not, on their own, specify the 

nature or existence of structures. Shapiro (2004) argues they are best understood as unifying 

foundations for mathematics. These foundations seek to provide a single framework within which 

all of mathematics can be derived. They do provide tools by which the mathematical structure of 

physical theories can be represented,1 but on their own, they do not supply the metaphysical 

clarity that OSR needs. Noting this gap, Arenhart and Bueno (2015, p. 128) ask: “perhaps the 

defender of OSR will claim that there is a metaphysical notion of structure underlying every kind 

of mathematical representation, something that the relevant mathematical tools simply are 

unable to grasp adequately.” This inadequacy is precisely the case for the unifying foundational 

frameworks, which motivates a shift to the metaphysical foundations project for answers. 

 

3.3 Metaphysical foundations 

 

Shapiro (2004) describes the distinct task of providing a metaphysical foundation for mathematics. 

A central concern guiding this project is defining the relationship between structures and their 

instantiations in physical or abstract systems. A view called non-eliminativism holds that 

structures exist as real entities, which cannot be eliminated in favor of their instantiations. Within 

non-eliminativism, the ante rem variant offers a stronger realism: structures exist regardless of 

whether they are instantiated in physical or abstract systems. Ante rem structures exist sui generis, 

in their own right, not reducible to the existence of anything else.2 Drawing from Shapiro (1997) 

and Călinoiu (2020), the principles of ante rem structuralism can be summarized: 
 

Existence: Structures exist, sui generis. 

Positionalism: Structures are constituted of positions and relations between them. 

Restricted Structuralist Thesis (RST): Positions have a principled subclass of structural 

properties.3 

Formality: The relations of a structure are formal.4 

Freestandingness: The positions of structures can be instantiated by any other objects. 

Coherence: Coherent mathematical theories successfully characterize structures.5 

 
1 Ladyman and French (2010), Landry (2007), and Proszewska (2022) have rightly advocated a pluralist and pragmatic 

approach to representing physical structure. 
2 The contrasting in re version of non-eliminative structuralism holds that structures depend on their instantiations for 

their existence, which would result in a vicious regress of structure and instantiation if it were to supply a fundamental 

ontology. 
3 Shapiro (1997) originally defined the structuralist thesis as the idea that positional objects in structures have only 

structural properties. Burgess (1999) quickly showed this formulation was inconsistent, because having no non-

structural properties was itself a non-structural property. The RST states that positional objects have a principled 

subclass of structural properties, and defining that principled class has guided recent discussions.  
4 Relations are defined using only logical terminology and other objects and relations of the structure. 
5 The method of demonstrating coherence depends on the specific axiomatization of the principles of ante rem 

structuralism. According to Shapiro’s and Leitgeb’s accounts, coherent theories are those that are both deductively 



Semantics: Mathematical discourse is about structures and their positional objects.6 
 

These principles have been formalized into several axiomatic theories that precisify and 

systematize our understanding of ante rem structures. A formal axiomatic theory of structure, as 

opposed to a unifying foundational framework, would specify its own primitives, and use them 

to express identity and existence conditions for structures and their positions. It would provide 

an ontology and illuminate how mathematical languages are understood to be about that 

ontology. Table 1 summarizes the basic features of the currently available formal axiomatic 

theories of ante rem structures: 

 

Table 1: Formal axiomatizations of the principles of ante rem structuralism.7 

Theory / 

Proponents 

Formal logic / Features Restricted Structuralist 

Thesis 
Sui generis structure 

theory by Shapiro 

(1997, 2008) 

Second-order logic; re-axiomatization of model 

theory. The theory directly describes structures 

and their positions, using analogues of ZFC 

axioms to express the richness of mathematics. 

Properties definable using the 

relations of a structure are 

structural. 

Encoding structure 

theory by Nodelman 

and Zalta (2014) and 

amended by Murphy 

(2021)8 

Second-order quantified S5 modal logic; abstract 

object theory + ante rem principles. The theory 

imports a mathematical theory and produces an 

abstract object (structure) encoding all the truths 

of that theory. 

Encoded properties (a special 

mode of predication, whose 

properties are those required to 

make the defining theory’s 

theorems true) are structural. 

Unlabeled graph 

theory by Leitgeb 

(2020)9 

Second-order logic with identity; graph axioms. 

Takes a theory of graphs, and produces an ante 

rem structure without relying on sets. 

Isomorphism-invariant 

properties are structural. 

Fregean 

abstractionist 

structure theory by 

Linnebo and 

Pettigrew (2014)10 

First-order logic; Fregean abstraction principles. 

The theory imports a mathematical model (set-

model) and abstracts away all non-structural 

properties to produce the ante rem structure. 

Defines instantiation, purity, 

and uniqueness, showing how 

the abstraction operator 

produces an ante rem structure 

satisfying them. 

 
consistent and model-theoretically satisfiable. Abstractionism presupposes coherence because it takes a mathematical 

model as an input. Murphy (2021) imports a coherence principle into object-theoretic structuralism, requiring that an 

abstract object (structure) cannot encode contradictory properties. 
6 If a mathematical theory is categorical, it describes a single intended ante rem structure. If a mathematical theory is 

algebraic, it intends to describe a class of ante rem structures. Singular terms of mathematical theories refer to positions 

in structures. 
7 Horsten’s (2019) generic structure approach, which imports an arbitrary-object semantics into structuralism, offers an 

interesting perspective on ante rem structures, but does not yet furnish a dedicated formal axiomatization. Călinoiu 

(2020) provides a useful review of the advantages and objections to the various formalizations of ST. 
8 Murphy (2021) imports the principles of coherence, freestandingness, and formality that characterize ante rem 

structures into the abstract object theory of Nodelman and Zalta (2014). This limits the ontology to ante rem structures 

instead of all abstracta in abstract object theory. 
9 The framework is limited to unlabeled graphs, but Leitgeb argues that the overall approach may be generalizable to 

the rest of mathematics. 
10 Abstractionist structure theories are sometimes classified as in re as opposed to ante rem, because the method of 

defining a structure begins with a model. However, Linnebo and Pettigrew (2014) suggest that abstractionism is 

compatible with ante rem structuralism because once the structure is abstracted, it exists sui generis, no longer dependent 



 

I use Structure Theory (ST) as a label for the broad metaphysical package encompassing the 

informal principles of ante rem structuralism and their various axiomatizations. This is novel 

terminology that requires justification. Some logicians may expect a label like ST to denote a 

specific formalization, but this need not be the case. Consider the analogous case of set theory, 

which does not single out a specific theory of sets, but instead serves as an umbrella term for the 

principles of collection, membership, and iteration that are common to various formalizations 

such as ZFC, NBG, and NF. I will use ST in the same flexible way. 

I maintain neutrality regarding specific axiomatizations because there is no uniquely best 

formal axiomatization of the principles of ante rem structuralism. While it is important that ST can 

be formalized, the universalization of a fundamental ontology of structures depends largely on 

the informal principles that characterize that ontology. Whereas Muller (2010) and Lam and 

Wüthrich (2015) suggested that OSR should be based on a formal axiomatic theory of structure, 

my argument is a forerunner to that project. This should not be read as a retreat from 

formalization; instead, the approach applies to the entire class of formal theories. I will return to 

discuss where the specific formalization may matter for the universalization argument. 

ST is a leading view in the metaphysical foundations of mathematics that provides a 

realist ontology of structures for mathematical discourse. Its key advantages over its eliminativist 

rivals are that it preserves a face-value semantics, and is not hostage to a canonical (physical or 

abstract) background ontology. ST still faces significant challenges, most notably the 

epistemological access problem, its handling of non-trivial automorphisms, and concerns about 

ontological extravagance. I will therefore adopt ST provisionally, and then show that once it is 

universalized to account for both mathematical and physical reality, it will gain a more powerful 

physical justification. 

 

4 The universalization of a fundamental ontology of structures 
 

ST can provide a fundamental ontology for OSR once it is universalized to include the physical 

universe in its domain. I decompose Tegmark’s (1998, 2008) MUH into three elements: a weak 

(descriptive) MUH, a strong (identity) MUH, and a structure-theoretic component (updated to 

ST). The weak MUH leads directly to OSR’s collapse problem, and the strong MUH dissolves the 

problem by embracing the identification rather than resisting it. This universalizes ST to account 

for all fundamental ontology, both mathematical and physical. 

 

4.1 The weak (descriptive) MUH 

 

Scientists and philosophers have long marveled at the extraordinary success of the 

mathematization of physical theory. Let the weak MUH denote the hypothesis that physical 

reality is exactly and completely describable by mathematics, such that a mathematical 

description of physical reality can exhaust the role of physics. It holds that mathematical theories 

can be not just approximate or idealized descriptions of physical systems, but exact ones. The 

 
on a system that instantiates it. The abstraction is therefore an epistemic route to metaphysically autonomous 

structures. 



weak MUH implies the existence of a “Theory of Everything” (TOE) set of equations, which 

would, in principle, allow one to predict any physical outcome that can be predicted. The 

mathematical describability of the dynamical laws also extends to the actual states of reality. 

The weak MUH shares with Epistemic Structural Realism (ESR) the assertion that the 

physical universe is amenable to mathematical description, but it differs in two key respects. 

Firstly, the weak MUH strengthens the claim of fidelity by asserting that the mathematical 

description is exact and complete. Secondly, the weak MUH remains neutral on the nature of 

mathematical ontology, avoiding ESR's commitment that the scientifically knowable part of 

reality is structural. 

There are several motivations for considering the weak MUH. The first is the remarkable 

success of the mathematization of physical theory. The second is the survival of mathematical 

content through theory change. Finally, it is supported by Tegmark’s (2008) External Reality 

Hypothesis, which holds that an observer-independent world demands a “baggage-free” 

language (mathematical) to describe it. These considerations motivate the weak MUH, but they 

do not strictly entail it. It is conceivable that the idealizations pervasive in physics provide space 

between the mathematical description and reality itself. However, the view is relatively 

uncontroversial, and is almost a working assumption in physics. An acceptance of the weak 

MUH, in the context of mathematical structuralism, leads directly to OSR’s collapse problem. 

 

4.2 The collapse problem 

 

The relationship between physical and mathematical reality has been the source of much debate 

and controversy. Several commentators have pointed out difficulties in determining whether the 

theoretical terms of our physical theories refer to physical entities or to mathematical 

constructions (see for example Resnik, 1997). Reflecting on this issue, French and Ladyman 

(2003a, p. 45) note that OSR “blurs” the boundary between the physical and the mathematical, 

though they were quick to clarify that “blurring does not imply identity” (French & Ladyman, 

2003b, p. 75).11 This blurring of the mathematical and the physical culminates in what French 

(2014, p. 195) has called the “collapse problem” for OSR: 

 

If intrinsic natures are taken out of the picture and a ‘purely’ (however that is 

understood) structural description advocated, then it may become hard to discern any 

difference between the physical world and the mathematical world. Indeed, given the 

mathematization of science, and physics in particular, the structural description of the 

physical world may appear to be entirely mathematical… Hence, the concern runs, the 

structural realist must conclude that the world is a mathematical structure. 

 

 
11 Philosophical responses to this ambiguity vary. One strategy is to simply refuse to answer what distinguishes the 

physical from the mathematical, as Ladyman and Ross (2007) do. Esfeld (2011) and Psillos (2012) both highlight the 

problems for realism of not sufficiently clarifying the relationship. Cao (2003) argues that OSR is already committed to 

the identification of the physical with the mathematical, but Saunders (2003, p. 129) responds by taking issue with the 

commitment that physical structure is “merely” mathematical. French (2014) highlights several potential ways to 

distinguish physical from mathematical structure, finding causality the most promising, but none of them compelling, 

several of which I will return to in Section 8.1. 



French acknowledges that the most natural way to solve OSR’s collapse problem would be to 

identify the physical and the mathematical. However, he refers to this as “biting the bullet,” and 

warns that it risks “falling prey to Platonism.” Rather than viewing this identification as a 

concession to be feared, I argue that embracing the universal reality of a fundamental ontology 

of structures results in substantial explanatory and unificatory advantages. 

 

4.3 The strong (identity) MUH 

 

The collapse problem pressures the structural realist to clarify the relationship between 

mathematical description and physical reality. The strong MUH provides a direct solution by 

proposing the ontological identification of our physical universe with an ante rem structure. Once 

ST and the weak MUH are accepted, the strong MUH becomes a highly motivated conjecture in 

multiple ways. First, given that fundamental ontological kinds are scarce, it is rational to utilize 

the sui generis ontology of structures that ST already provides. Additionally, the weak MUH 

constrains our search to entities that admit of exact mathematical description, and ante rem 

structures uniquely satisfy this condition. Finally, ante rem structures are unbounded in 

complexity and size, so the ontology necessarily contains large, world-like structures consistent 

with our physical universe. 

There are of course other interpretations of the weak MUH that posit that the physical 

universe is isomorphic to an ante rem structure, but possesses additional, non-structural features 

that make it ‘physical.’12 The inference from ST and the weak MUH to the strong MUH is therefore 

not a strict logical entailment, but an abductive one. It is now only provisionally adopted and will 

ultimately be justified by an inference to the best explanation. This will require a detailed 

consideration of its theoretical virtues, which the subsequent sections will develop. For now, the 

strong MUH emerges as a highly motivated hypothesis to consider.  

 

4.4 The Universal Theory of Structure (UTS) 

 

The adoption of the strong MUH results in the universalization of ST. The strong MUH does not 

add to the ontology of ST, but instead recognizes the physical universe as an entity already 

present in the ontology. This universalization expands ST’s reach from the ontology of 

mathematics to include physical reality. This expanded reach comes at no additional complexity 

cost as the models of ST and the UTS are the same; there is only a difference in philosophical 

commitment. 

Tegmark's MUH implicitly contained several distinct theoretical posits that I make 

explicit: a weak (descriptive) MUH, a theory of structure, and the strong (identity) MUH.13 Several 

 
12 This would align with ESR, where all we can know about the physical universe is its structure, but that it may also 

contain unknowable individual objects. This, however, is a complication that does no explanatory work. If the ante 

rem structures already exist and are sufficient to account for physics, why add another unexplained layer? One is 

welcome to defend the added ideology, but I am not motivated to do so. I will further discuss alternatives that accept 

the weak MUH but deny the strong MUH in Section 9.4. 
13 The main point of difference between the UTS and Tegmark’s account concerns the structure-theoretic component. 

Notably, Tegmark (1998) did not reference Shapiro’s (1997) first formal theory of structure. He clearly expressed an 

ante rem structuralist view of mathematics, but the structure-theoretic was informal and somewhat underdeveloped. 



considerations motivate a re-labeling of the main idea. First, the result of combining ST with the 

strong MUH is no longer a hypothesis; it is better characterized as a theory. Second, the ontology 

is structural, not mathematical per se. It goes beyond the claim that the physical universe is 

described by mathematics to the claim that it is an ante rem structure. Finally, formulating the 

weak MUH without a dependence on ST allows it to stand on its own independently of our 

philosophy of mathematics. For these reasons, I will refer to the overall metaphysical package as 

the UTS, and reserve the weak/strong MUH labels for the specific hypotheses they denote. A 

definitional recap may prove helpful: 

 

ST: Structures exist sui generis; mathematics is the language that describes them. 

Weak MUH: The mathematical description of the physical universe is exact and 

complete. 

ST + Weak MUH → Strong MUH: Our physical universe is an ante rem structure. 

UTS = ST + Strong MUH: Only ante rem structures exist fundamentally; our physical 

universe is one of them. 

 

The central conjecture can now be summarized. In the context of mathematical structuralism, the 

weak MUH generates the collapse problem for OSR. If one already accepts a vast ontology of 

mathematically describable and world-like structures, a direct solution to the collapse problem is 

to identify the physical universe with one of them. This identification universalizes ST to become 

the UTS, expanding its reach to account for the fundamental ontology of both mathematical and 

physical reality. Since each ante rem structure is understood as a universe unto itself, I refer to the 

class of all structures as the structural multiverse. Having established the theory, I now 

demonstrate how it provides a theoretical foundation for OSR. 

 

5 Applying the UTS to the problems of OSR 

 

The UTS sharpens OSR’s vague slogan “structure is all there is” into a precise identity thesis that 

our physical universe is an ante rem structure. This allows for improved responses to a number of 

criticisms of OSR regarding the collapse problem, representation and realism, the status of 

objects, intrinsic properties, and causality. Ultimately, the UTS helps secure OSR’s status as a 

substantive metaphysical doctrine. While French (2014, p. 207) warned that “the advocate of OSR 

cannot simply adopt the strategies of mathematical structuralism,” I argue that a careful adoption 

is both possible and beneficial.14 

 

5.1 Collapse  

 
His (2008) paper did include formal modelling tools for a large class of finite and computable structures, but in his 

appendix, he deferred to model theory for precision, which as discussed is not itself a theory of structure. Overall, his 

account reads more like a descriptive inventory of structures than a metaphysical theory of structure. This motivates 

our turning to the metaphysical foundations of mathematics, and specifically to formal theories of ante rem structures. 
14 Morganti (2011) suggests that applying the strong MUH to solve problems with OSR is “revisionary.” However, I 

argue that blocking its adoption requires extra, unmotivated moves. Furthermore, there are abundant reasons to 

consider the strong MUH independent of its benefits to OSR; indeed, these benefits were not central to Tegmark’s (1998) 

original proposal, which was conjectured concurrently with OSR (Ladyman, 1998). 



 

The strong MUH dissolves OSR’s collapse problem by embracing its conclusion. According to the 

UTS, the physical universe is what it appears to be, namely an ante rem structure. Physicality is 

no longer understood as an objective property of a structure, but is instead understood as an 

indexical property of an observer. An ante rem structure is physical from the perspective of an 

observer within it. This allows us to distinguish the physical from the mathematical without 

recognizing an objective difference, which French (2014) points out may be necessary lest OSR 

fall on the wrong side of the boundary. This reveals that the collapse problem did not stem from 

OSR’s core tenets, but from unmotivated attempts to distinguish physical and mathematical 

reality. I will return in Section 8.1 to various attempts to distinguish mathematical from physical 

reality and thereby avoid the collapse problem. Even if the collapse is embraced, OSR must still 

clarify the relationship between reality and its mathematical representations. 

 

5.2 Representation and reality 

 

A central challenge for OSR is clarifying what exactly it is realist about. Chakravartty (2007) and 

Bueno (2019) have both argued that it is insufficient to say we are realists about structure without 

explaining what structure actually is. Instead of directly characterizing structure in realist terms, 

OSR theorists often only speak of structure in terms of its mathematical representations. For 

example, Ladyman and Ross (2007, p. 158) suggest that the “world-structure” simply exists and 

can be mathematically represented, and Wallace (2022, p. 28) likewise states that fundamental 

reality can be “exactly and completely” represented by a mathematical structure. These 

representational claims leave them without a clear realist account of the fundamental ontology. 

The core problem, as Muller (2010) emphasizes, is that without an actual theory of structure, OSR 

risks going without a viable account of reference, leaving it unable to say what the physical 

universe is beyond ‘that which is represented.’ 

Ladyman, Ross, and Wallace complicate the ontological picture by relying on a two-step 

representational hierarchy, where mathematical models (like set-models) represent structures, 

which in turn represent physical reality. However, the lesson of the collapse problem is that there 

is no way to distinguish physical reality from a mathematical structure, implying a relationship 

of identity, not one of representation. The UTS offers a more direct account by making a crucial 

distinction: mathematical models do the representing, while ante rem structures, including our 

physical universe, constitute the reality that is represented.15 This move avoids circularity because 

ante rem structures are independently characterized by ST. Identifying our physical universe with 

an ante rem structure is precisely what allows us to distinguish metaphysical reality from its 

mathematical representations, thereby strengthening OSR’s status as a genuine realism. 

The sense in which the UTS supports OSR’s claim to be a realism about physical theory 

can now be stated. A physical TOE (implied by the weak MUH) should be understood as a 

mathematical model that exemplifies, and thereby represents, the ante rem structure that is our 

 
15 Mathematical models can represent ante rem structures because of the freestandingness of the structures. What is an 

object from one perspective can be an office from another (Shapiro, 1997). These offices can be occupied by any 

system of objects that satisfies the relations, including the sets of a mathematical model. The mathematical model 

therefore represents the structure by providing a system that exemplifies it. 



physical universe. According to Wallace’s (2022) “math-first” physics, which is a natural 

companion to the UTS, the relationship between the TOE and physical theories such as the 

Standard Model of Particle Physics (SM) is one of instantiation. This is a mathematical relationship 

where a substructure of the TOE’s models realizes the structure of the models of the SM.16 

According to this account of inter-theoretic relations, the SM succeeds in (approximately) 

representing our ante rem structure. So, the SM is non-fundamental in the sense that its 

representational success is domain restricted and approximate. However, we should be realists 

about the SM in the sense that it successfully represents what is fundamental (our ante rem 

structure), including its unobservable features. The UTS thereby grounds scientific realism about 

physical theories in a robust realism of the fundamental ontology. 

 

5.3 The status of objects 

 

The status of objects in OSR has long been debated. French (2010) maintains that objects can be 

eliminated altogether in favor of a purely relational metaphysic, while others like Ladyman and 

Ross (2007) and Esfeld and Lam (2008) argue that OSR only requires that its objects be “thin” in 

the sense that all their properties are determined by the relations they take part in. I argue that 

ST clearly aligns with a non-eliminativism about objects. I then distinguish fundamental 

positional objects from familiar scientific ontology such as quantum fields, which likely belong to 

non-fundamental ontology. 

According to ST, structures are constituted of positions and relations between them, and 

positions are treated as bona fide logical objects by each of ST’s formalizations. This entails a face-

value semantics: when we refer to the number ‘3,’ we are referring to a genuine object, namely 

the third position in the natural number structure. While van Fraassen (2006) was concerned that 

eliminativism about objects risked collapsing the mathematics/physics divide, the UTS implies 

the opposite: that identifying physical and mathematical reality actually secures a non-

eliminativism about objects. It is important to clarify that just because structures have objects does 

not imply that they have metaphysical individuals. Metaphysical individuals are a particular 

kind of object, one that is self-subsistent and has an intrinsic nature. On the contrary, positional 

objects such as the numbers are metaphysically “thin” in the sense required by the RST. 

Having established the existence of fundamental positional objects, we must address the 

status of familiar scientific entities like genes or electrons, which likely occupy a non-fundamental 

ontology. The UTS is strictly a theory of fundamental ontology, and is not committed to any 

specific account of the non-fundamental. However, mentioning a promising account will help 

clarify the distinction and the stakes. 

It has become popular for OSR theorists to appeal to the concept of a real pattern in order 

to characterize the ontology of scientific theories. Ladyman and Ross (2007) combine their 

structuralist metaphysics with a real pattern account of scientific ontology, and more recently 

 
16 Wallace (2022, p. 16) goes on to clarify: “In the important case of state-space instantiation... the lower-level theory 

instantiates the higher-level one if (roughly) there is a map from the lower-level state space to the higher-level state 

space that commutes with the dynamics and leaves invariant any commonly-interpreted structures (for instance, 

spacetime structure) in the two theories." 



Wallace (2022) has done the same in a way that is highly compatible with the UTS.17 Wallace 

describes familiar scientific ontology such as particles and fluids as derivative entities that are the 

result of “predicate precisifications” of mathematized theories. These ontologies are pragmatic 

constructs used to speak about the theory in the language of the predicate logic, rather than in 

the native (mathematical) language of the theory. High-level ontologies of the special sciences are 

understood as real patterns in the behavior of the low-level ontologies of physics, and the entire 

ontology is unified at the level of the fundamental mathematically represented structure. What 

makes a real pattern real is that it successfully carries compressed information about what is 

fundamental, namely the lower-level theory, by way of an inter-theoretic instantiation 

relationship mentioned in Section 5.2. This framework allows us to distinguish between two types 

of objects: 

 

Fundamental objects: the positions that constitute ante rem structures. 

Non-fundamental objects: such as real patterns, that exist within and depend on 

structures. 

 

Consider an application of this distinction. Some OSR theorists treat quantum fields as if they 

were fundamental positional objects, but this is not necessarily the case, and we have some 

reasons to suspect they are not fundamental. In the mathematics of, for example, the Wightman 

axiomatization of Quantum Field Theory (QFT), quantum fields are defined as operator-valued 

distributions. However, operator-valued distributions are too complex to be positional objects. 

ST tells us that singular terms of mathematical theories refer to fundamental positional objects, 

and operator-valued fields are not singular terms in the mathematics of QFT. An alternative 

understanding of quantum fields is given by Wallace’s (2022) account, where quantum fields are 

understood as derivative entities resulting from predicate precisifications of the more 

fundamental mathematized theory (QFT). While these considerations do not definitively reject 

the fundamentality of quantum fields, they are suggestive enough to bear upon the intrinsic 

property objection to OSR. 

 

5.4 Intrinsic properties 

 

A persistent objection to OSR targets what McKenzie (2016) terms “fundamental kind 

properties.” These properties such as mass, charge, and spin have been argued to be intrinsic 

properties of objects, violating even a moderate OSR’s commitment to “thin” objects. For 

example, Berghofer (2018) argues that quantum fields have non-relational, intrinsic properties, 

and therefore that OSR is refuted. The UTS provides new ways to counter this objection by 

questioning the fundamental status of the objects involved and clarifying the appropriate 

standard of relationality. 

For Berghofer’s objection to work in the present context, quantum fields must be 

understood to be fundamental positional objects. The RST applies strictly to positional objects, 

requiring them to have a principled subclass of relational properties. While Berghofer (2018) may 

 
17 Wallace (2022) deploys the real pattern concept originally developed by Dennett (1991), and expanded upon by 

Ladyman and Ross (2007), Suñé and Martínez (2021), Millhouse (2022), and Wallace (2024). 



be justified in his claim that quantum fields are the most fundamental objects according to physical 

theory, that does not mean that they can be equated with fundamental positional objects. As 

previously discussed, it is far from certain that quantum fields are positional objects. 

Even if quantum fields were fundamental positional objects, Berghofer (2018) applies an 

inappropriate standard of relationality. He cites Langton and Lewis’ (1998) “standard” definition 

of intrinsic properties as those that exist “independent of accompaniment or loneliness,” and uses 

that standard to argue that quantum fields have non-relational properties.18 Yet this is an example 

of OSR theorists using an autonomous definition of relationality, unmoored from the relevant 

theoretical considerations that motivated structural realism in the first place. We are concerned 

with structural relations because it is the mathematical content of physical theories that survives 

theory change. This mathematical content, by the core principles of mathematical structuralism, 

expresses structural relations, as classically evidenced by the fact that mathematics only 

characterizes its subject matter up to isomorphism.19 It follows that if a physical theory is 

mathematical, then the reality it describes must be relational in the relevant sense. If this were not 

the case, then we would be debating whether ante rem structures are sufficiently relational. 

When this mathematically definable standard of relationality is applied, Berghofer's (2018, 

pp. 7, 14) examples cease to be a problem for OSR. While the Higgs field’s non-zero vacuum 

expectation value "is what it is," it is nonetheless a mathematically defined value (246 GeV) within 

the theory. Similarly, while a field’s spin has its value "irrespective of whether there are other 

fields," it also takes specific well-defined mathematical values (0, ½, 1). Non-relational properties 

would be those that are not mathematically defined by the relevant physical theories, and since 

Berghofer’s examples are not of that kind, his argument poses no problems for an OSR based on 

the UTS. 

 

5.5 Causality 

 

The ambiguity of the slogan “structure is all there is” allows for the interpretation that physical 

reality is composed of a plurality of distinct structures that must be causally related. Since ante 

rem structures are typically understood to be non-causal, this presents a dilemma. For example, 

Chakravartty (2007, p. 155) claims that OSR supplies no “causal links” between structures, and 

Psillos (2006, p. 568) argues that OSR has no ability to bind together a world of “free floating 

structures.” 

The UTS resolves this dilemma by clarifying the domain of causation. No causal links are 

required between structures because structures are not the causal relata. Consider that all of 

physical reality, including all of spacetime, its particles, fields, and initial conditions, are aspects 

of a single ante rem structure. Therefore, the fact that structures are non-causal with respect to 

each other is not problematic because no one is claiming that our physical universe causally 

 
18 Several defenders of OSR such as French and Ladyman (2010) and Esfeld and Lam (2011) have argued that intuitively 

intrinsic properties can still be understood through various notions of relationality. 
19 Mathematical structuralists have debated the definition of a relational (structural) property, but Langton and Lewis’ 

definition is not viewed as appropriate for this context. Korbmacher and Schiemer (2018) distinguish between two 

general approaches to defining a structural property of invariance and definability, and conclude that there is no single 

correct definition. See also Schiemer and Wigglesworth (2019) and Assadian (2025). 



interacts with other universes (other ante rem structures). The relevant question is how causality 

operates within structures, not between them. 

The UTS helps neutralize the causality objection to OSR, but it does not itself commit to a 

positive theory of how causality should be understood. I will mention an interesting proposal by 

Andersen (2017), who argues that real patterns can serve as causal relata, where causal 

relationships are informational relationships between real patterns. The informational 

relationships stem from a “rich causal nexus,” which in this case is the relational structure upon 

which those real patterns depend and carry information about. An advantage of this approach is 

that the causal relata are decidedly not “free floating,” because these non-fundamental real 

pattern objects depend on and exist within the more fundamental relational web. This aligns with 

French’s (2006) proposed defense of OSR that structural relations themselves yield the causal 

power.20 

 

5.6 The philosophical status of OSR 

 

McKenzie (2024) raises the concern that OSR has struggled to establish itself as a robust 

metaphysical doctrine. She argues that OSR often characterizes its notions of structure and object 

in vague, flexible ways that undermine our ability to substantiate its claims. She argues that OSR 

risks being better viewed as a mere philosophical stance, whereby OSR theorists abide by the 

general principle that “the language of physics is mathematics.” The UTS offers relief by shifting 

OSR’s fundamentality thesis from “physical reality is structural” to the more metaphysically 

substantive “physical reality is an ante rem structure.” This gives much needed clarity concerning 

what is at stake in the metaphysical picture. 

The theory also provides a response to McKenzie’s (2024) specific challenge that OSR take 

a position on whether quantum fields are objects or structures. Tegmark (2008, p. 3) points out 

that despite the unfinished business in axiomatic field theory, one can view the SM as a whole as 

describing a structure of “operator-valued fields on ℝ4 obeying certain Lorentz-invariant partial 

differential equations and commutation relationships, acting on an abstract Hilbert space.” It is 

widely believed that this structure is not isomorphic to our physical universe, but Tegmark argues 

that this is a case of a simple structure (the SM) providing a good approximation of a more 

complex structure, namely our physical universe. So, the SM describes an ante rem structure, but 

what of the status of quantum fields? 

The UTS implies that quantum fields are not structures, because quantum fields are 

entities that exist within the structure of the SM itself. This means we can give a definitive answer 

to McKenzie’s challenge: quantum fields must be objects. I have argued that they are more likely 

to be non-fundamental real pattern objects than fundamental positional objects, but this question 

is properly addressed by a theory of the non-fundamental. Even without settling this score, OSR 

 
20 It is not clear that causality is a necessary desideratum for a metaphysical account of the fundamental ontology. 

Ladyman and Ross (2007) note that causal notions become less important to science the closer to fundamental physics 

one gets. Our most fundamental physical theories like the SM do not employ causal notions at all. Ladyman and Ross 

instead hold that causation is better understood as a notional-world concept that is (potentially indispensably) useful 

for tracking the entities of the special sciences. On this reading, an account of causality is properly owed by a theory 

of non-fundamental ontology. 



theorists are no longer merely enjoined to take the mathematics of physical theories seriously, but 

can now provide substantive answers about what structures and their objects are, and are not. 

This helps secure OSR’s standing as a consequential metaphysical doctrine. 

 

6 Addressing foundational problems 
 

Beyond fortifying OSR against criticism, the UTS also offers additional insights into important 

foundational problems. These include the applicability of mathematics to the empirical sciences, 

the particular form of our physical universe, and the existential question of why anything exists 

at all. 

 

6.1 Applicability (or, why math?) 

 

The applicability of mathematics to the empirical sciences has long been marveled at, with Wigner 

(1960) famously calling it “unreasonably effective.” A recent analysis by Baker (2011, p. 255) 

highlights the “indispensable and explanatory” aspects of applicability that have most resisted 

satisfactory explanation. The UTS offers the most direct solution: 

 

Premise 1: Mathematical theories describe ante rem structures (ST). 

Premise 2: Our physical universe is an ante rem structure (strong MUH). 

Conclusion: Mathematical theories describe our physical universe. 

 

OSR already suggests that because physical reality is structural, and mathematics is the science 

of structure, mathematics naturally applies to the physical universe. The UTS grounds this partial 

solution by explaining why reality is structural, by identifying the physical universe as a specific 

ante rem structure, no different in kind from those studied in mathematics. Consider also 

Maudlin’s (2014, p. 52) comments on the problem: “The most satisfying possible answer to such 

a question is: Because the physical world literally has a mathematical structure.” However, this 

raises the question of what has the structure and why it does. An even more definitive answer is 

that the physical world literally is an ante rem structure. From this perspective, the unreasonable 

effectiveness of mathematics can be put another way: why does our universe appear to be a 

structure? Answer: because it is one. This explanation for the ‘why math’ problem naturally leads 

to the ‘why this math’ problem. 

 

6.2 Particularity (or, why this math?) 

 

We now understand that there are many different sets of equations that could describe a universe 

similar to our own. This raises the question, which Tegmark (2008, p. 127) attributes to John 

Wheeler: “Why these particular equations, and not others?” A second, related problem of 

particularity concerns why our particular equations appear fine-tuned for the existence of life. 

The UTS solves the first particularity problem by pointing out that our physical universe 

is not the only structure. Other structures exist as well, and they are described by different sets of 

equations. This means the particularity of the equations that describe our physical reality does 



not signify anything profound, but is merely our “cosmic address” (Tegmark, 2008). If there are 

physicists living in other structures, they too are wondering why their laws have the particular 

forms that they do. Importantly, the structural multiverse is not postulated ad hoc in order to 

explain particularity; rather, it is a direct consequence of ST, which was adopted in Section 3 for 

independent reasons. The benefit is a case of explanatory consilience. 

The second particularity problem concerns why we live in a structure that is improbably 

suited for life. Conventional fine-tuning arguments such as those reviewed in Barnes (2012) center 

on the claim that the constants and initial conditions of our physical laws seem delicately 

balanced to allow for the emergence of life. Proposals like a physical multiverse21 offer a partial 

explanation, but they do not address why the global structure, or what Tegmark (2008, p. 128) 

calls the “master laws,” also appears fine-tuned. In the class of all structures, few support life. 

Why are we so lucky? The fact that our structure supports life is unproblematic because our 

existence as observers is effectively paid for by an overwhelming emptiness in the rest of the 

structural multiverse. An anthropic argument of this kind often stirs controversy over what 

exactly is being explained. It does not imply that our universe is typical of life-supporting ones. 

That is a stronger assertion, and one whose validity I will contest in Section 7.2. It also does not 

on its own explain the existence of the relevant multiverse; that is the subject of the next 

subsection. This explanation simply acknowledges the weak anthropic principle: within a vast 

structural multiverse, the existence of a life-supporting structure, however rare, is unsurprising. 

If particularity is explained by the existence of other structures, then the improbability of 

life is explained by the existence of many others. This response leads to the question of the existence 

of the structural multiverse, which I address in the following section. 

 

6.3 Existence (or, why any math?) 

 

The existential problem is often dismissed as meaningless or claimed to be beyond the scope of 

reason. Leibniz took the problem seriously, arguing there must be some reason for its existence, 

and Heidegger understood it to be the central problem for metaphysics. The UTS allows for a 

reframing of the problem that eases the explanatory burden while opening up promising 

explanatory avenues. 

The UTS proposes a unified fundamental ontology where everything that exists is, or 

depends upon, a structure. The ‘why anything’ existential problem is therefore recast as a ‘why 

do structures exist’ problem. This is an easier problem, because we only have to explain why one 

fundamental kind exists. This already represents progress on the existential problem compared 

to dualist (or worse) fundamental ontologies. Furthermore, of all the theoretical kinds that one 

might claim to exist, structures are perhaps the least difficult to accept. Shapiro (1997) notes that 

almost all mathematicians are “working realists,” in that they act and talk as if structures exist, 

regardless of whether they claim to be philosophical realists; and there are also plenty of those as 

well. 

 
21 The physical multiverse exists within the single ante rem structure we call our universe. It includes observer bubbles, 

quantum worlds, and inflationary pockets. The structural multiverse refers to the class of completely disconnected ante 

rem structures. 



Part of the reason that structures are easier to accept into one’s ontology is that a structural 

metaphysic reduces the existential burden. While a materialist metaphysic can be said to be 

constituted of metaphysical individuals (not reducible to relations) together with relations, a 

structuralist metaphysic rejects the individuals, requiring only relations and “thin” positional 

objects that connect them. While structuralism is criticized for its lack of individuals, it has a clear 

existential benefit: there is simply less to account for ontologically, and self-subsistent individuals 

were the more difficult part, given their independent and irreducible nature. Explaining the 

existence of a structure of relations is easier than explaining the existence of a world of material 

individuals. 

This deflates the existential problem, but does not yet offer a positive account as to why 

structures exist. One possible line of argument appeals to the necessity of their existence. The 

logicists Hale and Wright (2001) and Hale (2013) have put forward arguments that structures exist 

necessarily because of certain logical properties that themselves exist of necessity. More recently, 

Leitgeb et al. (2025) have suggested that structures exist necessarily because the truths that 

organize their elements and relations can be reduced to logic and analytic truths alone.22 Shapiro 

(1997, p. 82) has also argued that the existence of mathematical structures is necessary, because 

to deny the existence of a structure is effectively to deny the existence of its coherent description. 

Reflecting on the necessary existence of mathematical truth, Rickles (2009) argues that the 

existence of the physical universe is best explained by its identification with a mathematical 

structure. This is only a sketch of a plausible account, but it does support the idea that ante rem 

structures are more amenable to existential explanation.23 

The three foundational problems of applicability, particularity, and existence should not 

be dismissed as intractable "pseudo-problems." Instead, they should serve as crucial standards 

for evaluating any candidate metaphysical theory. The challenges faced by empirical science and 

philosophy in addressing these problems should not diminish their importance; nor should they 

dissuade us from pursuing new modes of explanation that can better address them. 

 

 
22 Jannes (2009) objects to the strong MUH on the grounds that mathematical truth may not be objective. Yet one 

wonders what is objective if not mathematics, and Shapiro (2007) argues that mathematical truth meets a broad range 

of criteria for objectivity. 
23 Further arguments for the existence of ante rem structures appeal to the objective coherence of mathematical truth. 

Shapiro (1997) distinguishes between two forms of mathematical realism: realism in truth-value and realism in 

ontology. Interestingly, one can hold that mathematical statements are objectively true without committing to the 

independent existence of the entities those truths are supposedly about. This foregrounds the significance of the 

objectivity of mathematical truth, which Penrose (2004) suggests is the very essence of mathematical reality: “Platonic 

existence… is really just the objectivity of mathematical truth”. This implies that mathematical truth itself has a 

metaphysical quality, a perspective echoed by Nodelman and Zalta (2014): “While traditional understandings of 

structuralism focus on mathematical entities, our view is that a structure is composed of the truths that organize its 

elements and relations”. This focus on mathematical truth lends support to a coherentist framework, where what makes 

mathematical truths true is not a correspondence to a separate prior existing reality, but instead their coherence within 

self-contained structures of truths. Some structures of truths simply are objectively coherent, while others are not. This 

perspective has a key advantage: it is easier to accept the necessary existence of a structure of truth than it is to accept 

the necessary existence of a corresponding abstract entity. The dictum of the prominent coherence theorist Bradley 

(1907) seems prescient from this perspective: “Our one hope lies in taking courage to embrace the result that reality is 

not outside truth”. The UTS points to a conception of reality that is not outside truth, but instead to one that identifies 

reality with the very structure of truth. 



7 The benefits of universalization for ST 
 

Having established how the UTS provides explanatory benefits for problems concerning the 

physical universe, I now turn to how the universalization of ST also helps to address problems 

internal to ST itself. These concern motivating the ante rem existence of structures and responding 

to the epistemological challenge to mathematical realism. 

 

7.1 Motivating ante rem existence 

 

The indispensability of mathematics to the empirical sciences has long been a central argument 

for mathematical realism. However, the indispensability argument does not specifically support 

ante rem realism over its in re counterpart. Consequently, proponents of ante rem structuralism 

have looked to the philosophy of mathematics, rather than physics, for further support. 

The strongest argument in favor of ante rem realism emphasized by Shapiro (1997) centers 

on its semantic advantages. He argues that ante rem structuralism allows us to treat positions 

within structures as bona fide objects referred to by singular terms. This avoids the vacuity 

problem faced by in re structuralism. However, Assadian (2018) argues that the semantic 

argument faces significant challenges of its own, and concludes that proposed solutions to the 

problem of singular reference fail to privilege ante rem structuralism over its eliminativist rivals, 

undercutting the view's primary motivation.  

The UTS shifts the argument for ante rem realism from semantic grounds to physical ones. 

On the one hand, we know the physical universe exists, though we struggle to explain why it 

does. On the other, we are not sure whether ante rem structures exist, though we would not be 

surprised if they did. By identifying our physical universe with an ante rem structure, we exploit 

this asymmetry to gain a unique explanatory benefit: the certain existence of our physical 

universe confirms the existence of at least one ante rem structure. This specifically supports an 

ante rem realism, and offers a physically motivated argument, and indeed requirement, for the 

existence of structures beyond the contested semantic considerations. 

 

7.2 Epistemological access 

 

The epistemological access challenge has long been a central challenge for any realist ontology 

for mathematics, and the UTS offers new resources to address it. Shapiro (1997, 2011) argues that 

mathematical structuralism provides significant epistemological advantages over standard 

Platonist ontologies. He describes a three-component epistemology for ante rem structures. It 

begins with pattern recognition, where a subject observes systems of physical objects arranged in 

various ways and abstracts a structure from the systems, yielding knowledge of small, finite 

structures. The second component is a faculty of projection, where the subject notices that finite 

structures themselves exhibit a pattern, and they project beyond their experience, eventually 

yielding knowledge of infinite structures like the natural numbers. The most powerful technique 

is implicit definition, where a subject grasps large or complex structures through implicit 

definitions, which successfully characterizes a structure if the description is coherent. MacBride 

(2008) acknowledges that Shapiro gives a largely adequate descriptive account of mathematical 



epistemology, but argues that Shapiro fails to account for our warranted belief in that knowledge. 

MacBride (2008, p. 156) highlights the unexplained challenge being that mathematicians are said 

to be producing knowledge about a causally disconnected realm: “it appears that mathematicians 

must do the impossible: they must transcend their own concrete natures to pass over to the 

abstract domain.”  

Shapiro (2011) responds by pointing out that ante rem structures are not located elsewhere, 

because they are not located anywhere. The UTS strengthens the argument against the need for a 

causal (or otherwise) interaction with a separate abstract realm. The theory holds that we literally 

live inside an ante rem structure, allowing us to know at least our own structure through direct 

empirical methods. While living within an ante rem structure does not guarantee knowledge of it, 

it does make the acquisition of that knowledge far less mysterious. No ‘transcendence’ is 

required, because physical observation is already the receipt of signals from the domain in 

question. Our beliefs are warranted because the source of our knowledge (the physical universe) 

is identical to the object of our knowledge (ante rem structures).24 Consequently, the access 

problem is solved not by bridging a metaphysical gap, but is dissolved by the recognition that no 

such gap exists. This demonstrates that no clear separation exists between the ontology or 

epistemology of mathematics and the empirical sciences. 

 

8 Responding to objections 

 

The strong MUH often faces summary dismissal due to conceptual, empirical, and 

methodological objections; this section addresses them.25 

 

8.1 Conceptual objections 

 

There are several ways used to distinguish physical reality from mathematical reality and thereby 

avoid the conclusion of the collapse problem. This section responds to the proposed distinctions 

of abstractness, instantiation, interpretation, surplus, and suitability. 

 

8.1.1 Abstractness 

 

Abstract entities are typically defined in contrast to concrete entities by negation; specifically, by 

their lack of spatiotemporal and causal properties. Abstract entities are ‘nowhere,’ ‘nowhen,’ and 

they ‘do nothing.’ I argue that the lack of concrete properties is exactly what qualifies ante rem 

 
24 Beni (2019) argues that the epistemological challenge extends to OSR, contending that the causal separation between 

mathematical structures and physical reality precludes an "intelligible account" of their relation, rendering their 

correspondence a "massive coincidence". The UTS dissolves this problem by identifying the physical universe with the 

ante rem structure, thereby eliminating the causal gap. 
25 A formal objection that does not fit into these categories is that Gödel's incompleteness theorems might pose a 

problem for the strong MUH (see Hut, Alford and Tegmark, 2006). However, Gödel's theorems are about the limitations 

of formal systems; they are not about the existence or coherence of structures. The various formalizations of ST have 

no qualms with Gödel incomplete structures. Furthermore, Gödel himself viewed his theorems as suggestive of 

realism, because they showed there is more to truth than provability. In that sense, we have more evidence for the 

existence of structures defined by incomplete theories, not less. 



structures to be identified with our physical universe, and that the intuitive rejection of 

abstractness is the result of conflating two distinct perspectives on structures. 

In terms of causality, when Busch (2003) and Pooley (2005) discuss Shapiro’s formal 

theory of structure as a potential basis for OSR, they reject it because the non-causal nature of ante 

rem structures supposedly disqualifies them from accounting for a physical world full of 

causation. French and Ladyman (2003b) and Esfeld (2009) each explore the possibility that 

physical structure has causal properties over and above its mathematically defined ones. 

However, this additional causal ideology is not necessary, because as argued in Section 5.5, 

causality is best understood to occur within structures, not between them. Until an argument is 

presented that establishes that causality cannot happen within an ante rem structure, causality 

cannot be used to leverage a distinction in kind between the physical universe and ante rem 

structures. 

The second feature used to distinguish the abstract from the concrete is spatiotemporality. 

Markosian (2000) defines physical objects as those that possess a spatial location, distinguishing 

them from abstract objects that do not. However, if physical objects must exist in spacetime, then 

spacetime itself, which is undeniably physical, would not count as physical, since spacetime 

cannot exist ‘within’ itself. The UTS resolves this tension by clarifying that our ante rem structure 

does not exist in spacetime, but instead that spacetime exists within our ante rem structure. This 

entails a commitment to what has been called the adynamical model of reality, the block 

interpretation of time, or simply the B-theory. The core idea of this adynamical model is that 

structures do not change; instead, they contain change. On this reading, spatiotemporality is a 

property applicable to objects within our physical universe, but not to the universe as a whole. 

Consequently, it also cannot serve to distinguish our physical universe from ante rem structures. 

Critics who demand that ante rem structures possess spatiotemporal or causal properties 

should be careful what they wish for. If ante rem structures were located in our spacetime, or if 

they did occasionally bump into us, they would cease to be viable candidates to identify with our 

physical universe because they would instead be objects within our universe. The fact that ante 

rem structures are ‘nowhere,’ ‘nowhen’ and they ‘do nothing’ is precisely what qualifies them to 

constitute the fundamental ontology. To explain the persistent intuition that there is a 

disqualifying distinction, Tegmark (2008) distinguishes two perspectives on structures: 

 

The external, adynamical, "Bird's-eye" perspective: The perspective of a mathematician 

studying the ante rem structure from the outside. The structure is a static, immutable, 

unchanging entity, with the entire history of the universe existing within it. Observers are 

understood as complex information processing patterns in the structure. From this 

perspective, structures are characterized as abstract. 

 

The internal, dynamical, "Frog's-eye" perspective: This is the perspective of an observer 

living within the ante rem structure. The observer experiences themselves as a time-

traveler, flowing from one moment to the next in a constantly changing state of reality. 

From the perspective of such an observer, their own structure will feel uniquely concrete.26 

 
26 In a classical reality, what would appear as point-mass particles moving about in ℝ3 according to Newton’s laws in 

the dynamical model would appear as coupled curves in ℝ4 in the adynamical model. More generally, the continuous 



 

Our physical universe feels concrete to us simply because we are frog-eyed observers embedded 

within its structure. We are bound to our structure, inseparable from it, and caught up in its 

relational web. We call our structure concrete because it is more consequential to us than other 

structures are. Concreteness is revealed to be perspectival, applicable to entities within one’s own 

structure but not to structures themselves, and is therefore unable to mark an objective 

physical/mathematical distinction. 

 

8.1.2 Interpretation 

 

Some have claimed that what distinguishes physical structure from mathematical structure is the 

presence of a suitable interpretation. As French and Bueno (2018) put it, physical content enters 

when we relate abstract structures to observation, experiment and measurement. However, the 

ability to interpret an ante rem structure in a testable manner is an epistemic, not an ontological 

requirement. Tegmark (2008) acknowledges that physicists are not satisfied knowing the 

structure alone; they also seek an interpretation connecting it to observables. For example, if 

someone did produce a mathematical model that was claimed to be isomorphic to our physical 

reality, physicists would be unable to evaluate it without an additional set of coordination rules. 

However, there still would be a fact of the matter as to whether that model was isomorphic to our 

physical universe. The interpretation allows us to do physics and test the structure, but it is not 

an ontic feature of the structure itself. Reality is surely indifferent to our quest to understand it. 

Physics might even be able to proceed without an external interpretation. Tegmark 

proposed a method of using the automorphism group of a structure, which encodes the 

structure’s internal symmetries, to compute the dynamical laws of the structure.27 This method 

highlights where the specific formalization of ST may prove physically significant, because the 

various formal theories handle non-trivial automorphisms in starkly different ways. Some may 

be incompatible with Tegmark’s method, while others might explain the symmetries with 

different ontological commitments. The UTS therefore brings new physical urgency to this 

problem, while also offering a potential physical constraint to evaluate the formal theories of 

structure. 

 

8.1.3 Instantiation 

 

A common objection, raised by Psillos (2006) and Cao (2003), is that ante rem structures are not 

instantiated and so cannot be identified with our instantiated physical universe. This objection 

relies on an in re conception of structure that holds that structures exist but not sui generis. 

However, the whole point of ante rem structuralism, and the formal theories of structure that 

express its principles, is that structures exist independent of instantiation. For ante rem structures, 

instantiation is also an epistemic rather than an ontological requirement. Instantiation is 

analogous to representation or modeling. When we instantiate an ante rem structure, we model it 

 
global symmetries of the adynamical action correspond, via Noether’s first theorem, to conservation laws in the 

dynamical picture. 
27 See Bernal, Sánchez, and Soler Gil (2008) for work in this direction. 



as a physical or abstract system that we can manipulate and study. For example, we might model 

a finite number structure with a collection of physical objects, or we might model the entire 

natural number structure as a set-model of Zermelo ordinals. Likewise, physicists instantiate 

aspects of our physical universe in their mathematical models. In both cases, the instantiation 

serves as a way to represent and study the ante rem structure, not as a means to bring it into 

existence. Ante rem structures exist sui generis, in their own right, whether or not we have 

constructed models of them. This is precisely what makes them suitable candidates for a 

fundamental ontology. 

 

8.1.4 Surplus structure 

 

Another conceptual distinction between physical and mathematical reality concerns an apparent 

mismatch in scope. French and Ladyman (2003b) suggest that the realm of mathematics appears 

far broader than what is required to describe physical reality. There are two readings of this 

surplus structure objection to consider - representational and ontological - and neither one proves 

problematic for the UTS. On the contrary, I argue that they help illustrate an important distinction 

between the mathematical descriptions and the metaphysical reality. 

The first reading of surplus structure concerns features like classic gauge redundancies. 

French and Ladyman (2003b) cite Redhead’s (1975) notion of surplus structure, which highlights 

that many gauge-variant features of a theory do not result in observable differences. However, 

these features are widely viewed, including by Redhead himself, as representational 

redundancies. Rickles (2017) extends the analysis of representational surplus to “dual theories” 

involving non-trivial mappings. Rickles argues that dualities are effectively gauge symmetries of 

a deeper theory, and that we must quotient out these differences just like we quotient out gauge 

redundancy. The actual reality is the structure shared by the dual theories, determined by the 

invariants under the duality map. 

Rickles uses dual theories to emphasize an important distinction between the 

mathematical description and the structural reality it describes, warning against a literal reading 

of the mathematical theory. This is a salient point in the present context, because despite its name, 

the MUH does not identify physical reality with a specific mathematical description. This point 

addresses the concerns of Butterfield (2014), who criticizes the strong MUH on the basis that 

mathematics is merely a descriptive tool. While true, what mathematics describes are structures, 

one of which can be identified with our physical universe. To clarify the dispute: reality is 

perfectly described by mathematics (weak MUH), but is metaphysically structural (strong MUH). 

The existence of multiple equivalent descriptions for a single structure does not undermine the 

claim that we inhabit that structure; it simply requires we distinguish the description from the 

described. 

Turning to an ontological reading of surplus, French and Ladyman (2003b, p. 75) point to 

the sheer volume of mathematical structures that have no bearing on physical reality: "there is 

more mathematics than we know what to (physically) do with." However, this objection fails in 

the context of the strong MUH, where each structure is understood as a universe unto itself. The 

abundance of structures that have no bearing on our physical reality is a simple result of our 

universe being one particular structure in a vast disjoint ensemble. The UTS is therefore entirely 



consistent with the fact that most mathematics does not describe our physical universe, a point 

that also speaks to the suitability objection. 

 

8.1.5 Suitable structure 

 

A related concern, expressed by Bueno (2019), holds that mathematical possibility is too 

permissive a guide to physical possibility. He points to the Banach-Tarski theorem, which tells 

us, among other things, that in some structures a sphere can be decomposed and reassembled 

into a larger one. He argues that this is mathematically possible but physically impossible. 

However, Bueno implicitly equates “physical possibility” with what is possible in our structure, 

which is governed by specific symmetries and conservation laws that preclude Banach-Tarski-

like operations. What counts as “physically possible” is not universally fixed, but varies from one 

structure to another. It is only required that at least one ante rem structure be compatible with 

observed physical possibility, not all of them. 

 

8.2 Empirical objections 

 

Beyond conceptual distinctions, critics have also attempted to reject the identification of physical 

and mathematical reality on empirical grounds. This subsection rebuts ‘typical observer’ based 

predictions by showing that the requisite probability measure is undefined, and will likely remain 

so due to the open-endedness of mathematics. The UTS survives falsification by these arguments, 

but at the cost of being presently non-predictive. 

The most discussed method for generating novel predictions from a multiverse theory 

such as the UTS involves calculating what a typical observer should experience. Deutsch (2011) 

argues that if the strong MUH were correct, then the vast majority of universes containing 

observers would be chaotic outside a typical observer's own brain, leading to a prediction of 

instant death. He argues that because life goes on as usual, the strong MUH must be false. 

Vilenkin (2007) similarly argues that because mathematical structures can be arbitrarily complex, 

a typical observer should predict that they live in a universe with “horrendously complex” 

physical laws. He suggests this is in conflict with the simplicity of our laws of physics. However, 

neither prediction is well-defined, as both attempt to quantify and compare infinite classes of 

observers. This is known as the measure problem: without a well-defined and principled method 

to compare the infinities, we cannot compute probabilities about what we should expect to 

observe. The challenge is common to all theories that posit an infinite ensemble, because any 

conclusion about typicality depends entirely on the chosen method for comparing the infinite 

sets.28  

Several approaches to taming these infinities have been proposed, with each so far 

proving inadequate. Tegmark’s (2008) idea to restrict the structural multiverse to computable or 

finite structures is ad hoc and revisionary to both physics and mathematics. Similarly, applying 

a complexity weight (Schmidhuber, 2000; Tegmark, 2008) lacks a principled motivation relative 

 
28 While typicality reasoning may not be valid across the structural multiverse, it does seem to be valid within our 

structure, otherwise physics would have trouble predicting anything, quantum or otherwise. How to ensure 

metaphysical consistency of these two facts remains to be better understood. 



to other weightings.29 Finally, I previously (Hamlin, 2017) appealed to Bostrom’s (2002) Self-

Indication Assumption (SIA) to weight structures by observer count, but the SIA is highly 

contested and, as Adelstein (2024) notes, cannot on its own yield a defined probability measure. 

A potential reason to doubt even the future possibility of solving the measure problem 

arises from the Principle of Indefinite Extendibility.30 This principle implies that no formal theory 

can encompass the entirety of structural reality. In Hellman’s (2003, p. 19) words, “There is an 

open-endedness, incompleteability, or indefinite extendibility that is an essential aspect of 

mathematics.” One can always add axioms to a formal theory of structure to describe structures 

not previously recognized. This poses a serious challenge for the measure problem, because it is 

unclear how we could possibly form a measure on a quantity not only larger than a set, but larger 

than any formal theory can express.31 

The measure problem remains the most significant barrier preventing novel, testable 

predictions. Read and Le Bihan (2021) nonetheless argue that philosophical multiverses like those 

implied by the strong MUH may be amenable to empirical testing and falsification. They 

distinguish between two notions of predictivity. They acknowledge that while the strong MUH 

is not “decision-theoretically” predictive due to the measure problem,32 it may still be falsifiable 

in a weaker sense of being subject to a future empirical inadequacy. One possibility of the latter 

kind is raised by Tegmark (2008), who argues that the strong MUH makes a mathematical 

regularity prediction. This holds that we should continue to discover more mathematical 

regularities in nature, which effectively amounts to the claim that the weak MUH will continue 

to be confirmed. However, Hossenfelder (2022) points out that it is not clear what we would have 

to observe in order to demonstrate the empirical inadequacy, because an inability to incorporate 

empirical data may simply mean we have not yet considered the correct theoretical structure.33 

For now, the strong MUH remains non-predictive tout court, although not necessarily so in 

principle.34 Even if it is not rejected for failing predictions, the strong MUH has been ignored 

altogether on methodological grounds. 

 

8.3 Methodological objections 

 

 
29 Schmidhuber’s (2000) “Speed Prior” complexity weighting could be motivated in principle, but it requires 

additional problematic assumptions about the existence of a “Great Programmer” who is trying to optimize the 

efficiency of simulating universes. 
30 For a detailed discussion, see Rayo and Uzquiano (2006) and Hellman and Shapiro (2018). 
31 Whereas Gödel’s theorems discovered the limits to formalization of truths about individual structures, indefinite 

extendibility concerns the limits to formalization of truths about the entire structural multiverse. The principle implies 

that all formal theories of structure will necessarily have to balance incompleteness with universality. 
32 Decision-theoretic predictions require a well-defined measure on the space of solutions to quantify one likelihood 

against alternatives. 
33 The difficulty of imagining empirical data that cannot be fitted into a mathematical model suggests the weak MUH 

is on solid ground. 
34 Read and Le Bihan (2021) define predictivity tout court essentially as empirical adequacy, namely that a theory has 

“at least one solution compatible with the empirical data gathered thus far.” I read their definition as one of successful 

prediction tout court, whereas predictivity tout court itself should be understood as the possibility that the theory 

might one day encounter empirical data for which it does not have a compatible solution (model). 



A common objection to the strong MUH is that it is not even worth considering in the first place. 

These methodological objections fall into two main categories. First, critics argue it fails the 

standards of empirical science due to its lack of novel predictions. Second, some naturalistic 

metaphysicians argue that it violates constraints on appropriate metaphysical inquiry. However, 

I argue that both criticisms apply inappropriate standards to a metaphysical proposal of this 

scope. 

 

8.3.1 Empirical relevance 

 

Ellis and Silk (2014) criticize multiverse theories for failing to make novel predictions, claiming 

that without them we have no reliable way of assessing their epistemic status. Hossenfelder (2022) 

contends that the absence of novel predictions relegates the strong MUH to the realm of ‘opinion 

or aesthetic preference.’ It may be that predictivity is a good demarcation criterion for science, 

and that on this basis the UTS should not be classified as a scientific theory. However, to say that 

non-predictive theories are empirically and therefore epistemically idle is to inappropriately 

project the normative evidential standards within physics to the broader quest for knowledge. 

We might not be able to falsify a theory with predictions, but we can criticize it on other empirical 

grounds, and the theoretical virtues that Ellis and Silk deride are essential to doing so. Deutsch 

(1998) points out that most scientific theories are rejected not for failing predictions, but for 

lacking the theoretical virtues that make them worth testing in the first place. Our knowledge, 

even our scientific and physical knowledge, could not possibly grow without acknowledging 

these virtues.35 

The UTS is currently non-predictive, but that does not make it empirically vacuous. The 

UTS is already empirically adequate, not only in the weak sense of being compatible with all our 

current observations, but also in a strong sense of actually having models in which all results of 

physics can be embedded. It is also inconsistent with some physical theories (or interpretations 

thereof) involving irreducible randomness that have otherwise been taken seriously, such as 

collapse quantum theories (GRW/CSL).36 The foundational problems can also be construed as 

being about observations that the theory is motivated to explain: we observe that our universe is 

described by mathematics, that it has its specific form, and that it exists in the first place. These 

observations are not empirical in the sense of being measurements of contingent magnitudes that 

are characteristic of the physical sciences, but that does not make them any less important to 

explain. The UTS is motivated by empirical content in multiple ways; just not by novel 

 
35 While novel predictions provide the most potent means of falsification, they are not the only criteria for evaluation. 

Eddington would not have organized an expedition to test General Relativity without independent grounds for 

valuing the theory. Mere testability was not the primary appeal, as testable hypotheses are trivially easy to construct. 

Rather, General Relativity commanded attention because it unified and explained known phenomena, virtues that 

are rare to achieve and which justify the effort of empirical testing. 
36 The UTS is consistent with apparent randomness in state histories, just not with fundamental and irreducible 

randomness in the metaphysics. It might be true that we live in a structure composed of many states that are not related 

by unitary dynamics. In this case it would be quite the coincidence that the dynamical laws relating the states obeyed 

the probabilities of quantum mechanics as opposed to any other random progression. By contrast, the metaphysical 

picture given by Everettian quantum theory is straightforwardly consistent with the UTS. 



predictions. The charge of empirical vacuity might apply to ST itself, but certainly not to its 

universalization. 

There are two notable consequences of the lack of novel predictions. The first is that it 

limits the degree to which the UTS can be corroborated. While this does not preclude confidence 

in the truth of the theory, it does place the UTS at a major epistemic disadvantage relative to any 

hypothetical rival capable of equivalent explanatory power that is predictive. However, the 

current absence of such rivals mitigates this limitation. The second significance is that the theory 

will likely evolve slowly, because we cannot subject it to repeated rounds of variation and 

empirical testing. We can only evaluate it as an explanation of what we already observe, and we 

are short on foundational problems that it has not already solved. This is all the more reason to 

be careful in our assessment of the available evidence. 

The lack of novel predictions leads critics like Stoeger et al. (2004) to argue that the strong 

MUH should be understood as a part of metaphysics. While I agree that it is indeed a piece of 

metaphysics, it is not for that reason. Metaphysics is not untestable physics. The theory is a part 

of metaphysics because of the types of problems it is concerned with. It does not ask about the 

particular form of our physical reality, but instead speaks to more fundamental questions about 

its nature. If a metaphysical theory did make a testable prediction, that would not make it a part 

of physics; it would instead be understood as predictively constrained (scientific) metaphysics. 

For now, the UTS is properly classified as a non-predictive metaphysical theory. Before assessing 

the theory by its theoretical virtues, we must address a final methodological objection regarding 

the appropriate standards for metaphysical inquiry. 

 

8.3.2 Naturalistic metaphysics? 

 

Some commentators refuse to consider the strong MUH because it does not meet scientific 

standards, while others refuse to consider such hypotheses because they are claimed to not even 

meet appropriate metaphysical standards. Ladyman and Ross (2007) argue that metaphysical 

claims should be motivated by their ability to show how multiple scientific hypotheses, including 

at least one drawn from fundamental physics, can jointly offer greater explanatory power than 

they would individually. They call this the Principle of Naturalistic Closure (PNC), which 

effectively limits metaphysics and tasks it with developing consilience relations among the 

empirical sciences. It is on this basis that Ladyman and Ross (2007, p. 158) advocate silence 

concerning the relationship between the mathematical and the physical: “In our view, there is 

nothing more to be said about this that doesn’t amount to empty words and venture beyond what 

the PNC allows.” 

Ladyman and Ross (2007) argue that the PNC is a good normative heuristic because it 

efficiently indicates whether any given metaphysical hypothesis stands a chance of contributing 

to objective knowledge. These efficiency gains, however, are necessarily paid for by a loss in 

accuracy. Their normative heuristic limits metaphysics to the task of unifying empirical science, 

highlighting the epistemic reliability of hypotheses that attempt to explain and unify the “web of 

empirical knowledge.” However, this definition problematically excludes mathematics from the 

target domain of unification. While I agree that mathematics is not an empirical science, Ladyman 

and Ross acknowledge it “indispensably and irreducibly” figures in the empirical sciences, and 



enjoys a similar epistemic reliability. It is fine for Ladyman and Ross to argue that mathematics 

is not a part of the natural world, but it would be premature to restrict metaphysics with a 

normative heuristic based on that belief.37 Recent decades have seen a resurgence of naturalism 

in the philosophy of mathematics, with Baker (2009) arguing that any consistent naturalism must 

include mathematics in its scope. Indeed, mathematics and physics are so intimately bound that 

it would be a difficult surgery to try to separate them, and metaphysics should not attempt, much 

less enforce, such revisions. 

To better account for the indispensability of mathematics for explaining the natural world, 

we might propose an amendment to the PNC, one that expands its scope to explicitly allow for, 

though not require, the unification of mathematics with the empirical sciences.38 Given that the 

principle is a normative heuristic, the question becomes whether including mathematics in the 

domain of unification provides a more accurate and efficient filter. I contend that it does, as it 

would still block vast swaths of “neo-scholastic metaphysics,” but it would do so without 

imposing a painful separation between empirical science and the mathematics it indispensably 

relies on. This revised PNC would also highly motivate rather than block the UTS, a point that 

itself suggests that excluding mathematics results in a loss of heuristic accuracy. 

The rejection on methodological grounds is premature. Demands for novel predictions 

mischaracterize the role of a metaphysical theory, and normative heuristics are not strong enough 

to force a dismissal. The charge of 'empty words' seems unfitting, given that empty words are 

precisely those that fail to explain or unify, and the UTS does both at a remarkable level. The 

argument will now turn to the theory’s virtues, as they are the ideal standards of evaluation. 

 

9 Theoretical virtues 

 

The UTS is assessed according to the classic theoretical virtues of explanatory power, unification, 

and simplicity. The goal is to support an inference to the best explanation. I will conclude with a 

brief comparison with alternatives.  

 

9.1 Explanatory power 

 

Good explanations typically give you back more understanding than you ask for, and the UTS is 

no exception. While ST was originally motivated by the work it did in providing a metaphysical 

foundation for mathematics, a striking fact is that once universalized, this same theory provides 

powerful insights into diverse and important problems that have long been a challenge for both 

science and philosophy. The theory offers broad explanatory benefits: it improves responses to 

several objections to OSR, it addresses three foundational metaphysical problems, and it even 

fortifies ST itself. This is a case of consilience: it shows that we have not merely fit the theory to 

 
37 Ladyman and Ross (2007, p. 33) admit that their principle has the status of a “normative heuristic” and is not the 

result of a “logical analysis,” and therefore cannot be “applied algorithmically.” Taking lessons from the failures of 

logical positivism, they recognize that the boundaries will not always be sharp, and allow for some permissiveness in 

the principle’s application. 
38 Their original principle might be more suitably named the Principle of Empirical Closure (PEC). 



explain one set of problems, but that we tapped into a deeper explanatory structure. Explanatory 

power is the most important theoretical virtue and is also the greatest strength of the UTS. 

 

9.2 Unification 

 

Many advancements in our understanding of reality have resulted from unifications of 

previously disparate domains. The UTS continues this trend, which results in the unification of 

the ontology of mathematics and the physical sciences. We have long divided our best theories 

into two categories: physical theories that actually describe reality, and mathematical theories 

that are merely useful in describing reality. This treats mathematics instrumentally and then 

struggles to account for its applicability. Instead, the UTS reveals that both mathematical and 

physical theories are about a common domain of ante rem structures, just different parts of it and 

using different methods. Mathematicians operate at a level external to any particular structure 

they study. They typically consider structures as completed wholes, with perfect axiomatic 

information about them, and therefore have access to deductive methods. Physicists on the other 

hand exist within as integral parts of the structure they are studying. They only have incomplete 

information about their structure, gathered by observation and experimentation. They use this 

information to establish relationships among observable phenomena, creating empirical 

substructures that are used to whittle down the set of structures they may inhabit into a class that 

is empirically adequate. According to the UTS, the key difference between mathematics and 

physics lies not in subject matter (they both study structures), but in perspective and 

methodology. It reveals that mathematicians are mapping the structural multiverse and 

physicists are determining our location within it. This unification is significant, extending beyond 

traditional unifications within or even between empirical science domains, and is another major 

virtue of the theory. 

 

9.3 Simplicity 

 

Multiverse theories have often been criticized for being ontologically extravagant, but I argue that 

considerations of simplicity strongly support the UTS. Baker (2022) characterizes simplicity as a 

complex theoretical virtue, distinguishing between syntactic simplicity (elegance) and ontological 

parsimony (number and kinds of entities). In terms of syntactic simplicity, the UTS is clearly 

theoretically elegant: ST provides a vast ontology using minimal principles, and universalizing it 

via the strong MUH adds no new primitives. The theory does not require additional ideology to 

unify the physical with the mathematical; it simply takes an existing formalism and expands its 

reach. 

While syntactic simplicity is naturally viewed as a pragmatic virtue because elegant 

theories are easier to use, ontological parsimony is more often considered an epistemic virtue. 

Ontological parsimony can be further analyzed in terms of quantitative parsimony (the number 

of individual entities) and qualitative parsimony (the number of kinds of entities). French (2014) 

appeals to considerations of quantitative parsimony to characterize the strong MUH as 

“ontologically inflationary,” because it holds that a vast number of structures exist. However, 

such an objection actually targets ST itself rather than its universalization, and one is free to argue 



that there are fewer structures than mathematicians suppose there are. The ontology of ST is large, 

but not too large; it is just the right size, by design, to provide an ontology for mathematics.39 We 

certainly should not hold the fact that the UTS is universal over all fundamental ontology against 

the theory. 

The UTS scores even better on qualitative parsimony, because it holds that only one 

fundamental kind of entity exists, namely ante rem structures. This is advantageous because we 

only need a single existential explanation for that fundamental kind, not a separate one for each 

entity of that kind. This is especially significant because existential explanations have proven hard 

to come by. From this perspective, a unified fundamental ontology of structures is absolutely 

minimally inflationary.40 The charge of ontological extravagance appears to be exactly backwards; 

the UTS is instead shown to be syntactically elegant, quantitatively commensurate, and 

qualitatively optimal. 

This analysis suggests a further re-evaluation of the MUH’s reputation, which has often 

been characterized as radical, even by Tegmark himself. While the strong MUH may be radical in 

its implications, it is conservative in its ontological load. The real ontological heavy lifting is done 

by ST. The strong MUH is conservative in other respects as well. It makes no problematic 

distinctions between mathematical and physical structure, and is, after all, the result of ‘accepting 

the conclusion’ of the collapse problem. Doing so allows for a uniform and non-revisionary 

semantics for both mathematical and physical theories. It also recognizes only one fundamental 

ontological kind (structures), and a minimalist metaphysic (relations without irreducible 

individuals). If the strong MUH is considered radical, then one wonders how its alternatives fare. 

 

9.4 Alternatives 

 

An inference to the best explanation requires a consideration of competitors. While a 

comprehensive survey is infeasible, we can evaluate how the UTS compares to several general 

classes of alternatives, using the theoretical virtues of explanatory power, unification, and 

simplicity as evaluative criteria. I start with nominalism and dualism, which reject the unification 

of mathematical and physical reality, and then consider two variants that accept unification but 

restrict or expand the size of the fundamental ontology. 

 

9.4.1 Nominalism 

 

The first option is to reject ST altogether by adopting anti-realism toward mathematics, alongside 

some form of structural realism about physical reality (French & Ladyman, 2003b; Arenhart & 

Bueno, 2015). This approach could be summarized by the motto: reality is structural; there are no 

(ante rem) structures. This combination surpasses the UTS in terms of ontological simplicity, 

because it recognizes only a single instance of a single fundamental ontological kind. However, 

 
39 Shapiro (1997) argues against efforts to trade away quantitative parsimony for added (modal) ideology. 
40 This trend toward accepting vast ensembles of a single kind is also supported by the historical progression of science. 

Again and again, we have learned that what we once took to be unique turns out to be one member of a far larger class. 

Berenstain (2020) draws from this trend the conclusion that there is no prior reason to assume that our universe is the 

only one. 



this simplicity betrays more significant explanatory challenges concerning the foundational 

problems. It cannot explain the particularity of the single ontological instance (our physical 

universe), and it also denies the physical universe the existential explanation available to ante rem 

structures. The problem of applicability is especially acute, because it holds that mathematics is 

not about real entities, except in the unexplained case of the physical universe. While the collapse 

problem can be responded to with “representation-as” claims, these are question begging, and 

they threaten structural realism’s status as a genuine realism. These challenges are in addition to 

the classical vacuity problem with nominalist mathematics. While scoring well on simplicity, this 

view suffers from more significant explanatory and unificatory deficits.41 

 

9.4.2 Dualism 

 

If the rejection of mathematical realism is deemed too costly, one might instead propose a dualism 

where we accept ST but deny the strong MUH (for example, Deutsch, 1998; Linsky & Zalta, 1995). 

This position would accept the existence of the structural multiverse, with one ante rem structure 

being scientifically indistinguishable from our physical universe, but it would deny the 

identification. The primary challenge to this approach is captured by the collapse problem: what 

distinguishes the physical world from its structurally identical (and already existing) 

mathematical counterpart. The applicability problem benefits from mathematical realism, but the 

solution remains incomplete, as it must still explain the correspondence between the physical and 

mathematical reality. The problems of particularity also remain completely unaddressed. 

Another significant challenge with this approach is that its dualist fundamental ontology requires 

two existential explanations. This is perhaps the most difficult position to maintain; once ST is 

accepted, its universalization becomes difficult to deny.42 

 

9.4.3 Restricted structural multiverses 

 

Given the significant explanatory and unificatory costs of rejecting the identification of physical 

and mathematical reality, a promising alternative is likely a variant of the UTS. One might hold 

that the structural multiverse is smaller than mathematical practice would suggest it is. The Finite 

Universe Hypothesis (Tegmark, 2008) restricts structures to those with finite positions, and the 

Computable Universe Hypothesis (Tegmark, 2008; Schmidhuber, 2000) restricts structures to 

those with computable relations. Both succeed in addressing the foundational problems in a 

similar way. A restricted structural multiverse has the potential advantage of taming the infinities 

that result in the measure problem; however, this itself is not evidence for the restriction, as reality 

is certainly indifferent to our ability to test it. The approach also introduces new difficulties. It 

fails to account for the entirety of mathematics as it is actually practiced, which goes against the 

 
41 A related view does not reject the existence of structures altogether, but instead views their existence as dependent 

upon physical systems that instantiate them. This is in re mathematical structuralism, and is often associated with the 

Aristotelian realism of Franklin (2011). It similarly struggles to account for physical particularity and existence. It does 

accommodate applicability, though it does not fully explain it.  
42 This is further evidenced by the rarity of philosophers who accept both OSR and ante rem structuralism, as this 

combination is highly tenuous without also adopting the strong MUH.  



faithfulness principle that guides the philosophy of mathematics. It also faces difficulties with our 

most successful physical theories, such as General Relativity, because the theory’s reliance on the 

continuum makes it consistent with an infinite and non-computable class of structures. While 

potentially testable, restricting the structural multiverse faces serious challenges to its consistency 

with existing knowledge. 

 

9.4.4 Expansive ontologies 

 

One might instead argue that ST does not recognize a big enough ontology. David Lewis’s (1986) 

modal realism posits the reality of all logical possibilities, which is a looser constraint than 

mathematical coherence. Likewise, Nodelman and Zalta’s (2014) object-theoretic approach 

admits a broader ontology of abstracta, some of which are not purely structural, including 

inconsistent, informal, and fictional objects. However, we have better reasons to believe in the 

existence of ante rem structures than we do for these other more general forms of abstracta. Such 

broader ontologies are not necessary to account for mathematics or the empirical sciences, and as 

such they are not PNC-motivated even in our revised sense.43 The extra abstracta also do not 

contribute to solving any of the foundational problems already addressed by a pure structural 

ontology, nor do they support a realism about physical structure. The broader ontology is also 

incompatible with the proposed existential solution, to the extent that it appeals to the objective 

coherence of mathematical truth. Ultimately, we must draw the line somewhere, and faithfulness 

to mathematical practice offers the least problematic boundary to draw. 

The various alternatives considered appear to incur significant trade-offs in explanatory 

power, unification, or simplicity. Some uncertainty remains regarding the exact size of the 

structural multiverse; yet, what matters for the universalization argument is not the structural 

multiverse’s exact cardinality, but the more defensible claim that it exists and is extraordinarily 

vast. 

 

10 Conclusion 
 

The UTS is offered not as a radical departure, but as a natural homecoming for OSR. Structural 

realism originated with the insight that the mathematical content of physical theories survives 

theory change. While it successfully adopted the structuralist terminology from the philosophy 

of mathematics, it subsequently took a detour by attempting to characterize structure 

autonomously, leading to much confusion and disagreement about what structure actually is. 

The present work adjusts this course, returning to the metaphysical foundations of mathematics 

to secure the precise ontological basis that OSR has long required. 

The principles of ante rem structuralism and their formalizations into axiomatic theories 

of structure were collectively recognized as ST, which provides a vast ontology of ante rem 

structures. These structures exist sui generis and are exactly mathematically describable, and some 

of them are suggestively world-like. In this context the identification of the physical universe with 

 
43 This is a point that demonstrates that our revised PNC is not toothless. It is also why I recognized Murphy’s (2021) 

modification of abstract object theory that limits the comprehension axiom to ante rem structures alone (they are 

motivated by the revised PNC). 



one such ante rem structure is highly motivated. This identification results in the universalization 

of ST, because the theory expands its reach to account for all fundamental ontology, both 

mathematical and physical. 

This universalization offers deep and diverse explanatory advantages. It sharpens OSR’s 

fundamentality thesis from the vague “physical reality is structural” to the substantive claim that 

“physical reality is an ante rem structure.” This precision enables improved responses to several 

criticisms of OSR, offers powerful insights into foundational metaphysical problems, and 

simultaneously addresses difficulties internal to ST itself. These benefits are delivered by 

reframing the relationship between mathematics and the empirical sciences, rationalizing their 

indispensable relationship by revealing them as complementary methods of exploring a unified 

fundamental reality of structures. This is achieved with remarkable simplicity, by merely 

recognizing the full universality of ST’s existing ontology. While the theory does not currently 

yield novel predictions, its theoretical virtues jointly support an inference to the best explanation. 

This inference to the UTS then provides new, physical justification for the original adoption of 

ST, completing a bootstrapping argument that vindicates the theory’s own ontological 

foundation. 

The UTS offers a fundamental ontology, which is only one component of a comprehensive 

metaphysical system, and open questions abound. While I argued that the universalization of ST 

proceeds largely independently of its formalization, further analysis of specific formal theories of 

structure in the context of the strong MUH is a logical next step. A focal point for these 

investigations will likely be how the various formalisms treat non-trivial automorphisms and 

their compatibility with Tegmark’s proposal for computing dynamics from pure structural 

descriptions. Another important task is forging a stronger bridge between the UTS and empirical 

science. This will require supplementing the fundamental ontology of structures with an account 

of non-fundamental ontology, most promisingly with a theory of real patterns. Addressing these 

issues will require significant interdisciplinary collaboration, but is essential for the pursuit of a 

truly naturalistic metaphysics. 

The UTS is inspired by the idea that the physical universe appears to be a structure for the 

simple reason that it is a structure. Seen in this light, the theory sheds its radical reputation to 

reveal a conservative core, offering a natural standard against which more complex alternatives 

can be compared. Ultimately, this ontological identification dissolves the perceived gulf between 

our best methods of understanding reality, pointing toward a renewed unity in the family of 

objective inquiry. 
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