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Abstract2 

In this paper, I assess the explanatory power of four graph‑ and network‑based 

models recently used in the domain of Cultural Evolutionary Theory (CET): 

(a) Phylogenetic Trees, (b) Death–Birth Graphs, (c) Interaction Graphs, and 

(d) Trait Networks. First, I show that Interaction Graphs, Trait Networks and 

(empirically‑calibrated) Death–Birth Graphs can function as genuine mecha-

nistic explanations, while Phylogenies remain largely at the level of correla-

tional evidence. I then broaden the analysis to two non‑mechanistic accounts: 

Kitcher’s unificatory perspective and Kostić’s counterfactual theory of topo-

logical explanation. Interaction graphs excel mechanistically and topologi-

cally, death–birth graphs yield strong topological explanations, phylogenetic 

trees lead in unification, and trait networks offer mixed, moderate strengths. 

Because no single model or mode dominates, explanatory strength in CET is 

to a large extent question relative. I argue for a pluralistic approach in CET: 

rather than competing, these three explanatory axes (“modes of explanation”) 

complement one another and suggest a roadmap for future hybrid network 

models that could combine these complementary virtues and invite closer col-

laboration between CET modellers and philosophers of science. 
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fication 

 

 

1 Network Models in Cultural Evolution: a pluralist introduction 

Cultural Evolutionary Theory (CET) attempts to understand the dynamics and diversity of cul-

ture from an evolutionary perspective. Small-scale transmission of cultural variants results in 

complex population structures, represented by trees and dynamic networks of cultural infor-

mation. Cultural change can be regarded as a process resembling genetic change. This analogy 
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gave rise to a wide range of conceptual and methodological tools, often adapted from evolu-

tionary biology. Pioneers in the field were authors like Boyd & Richerson (1988) and Cavalli-

Sforza & Feldman (1981), but ever since they laid the foundations of CET, much work has been 

added to the framework – last but not least from philosophy of science, see e.g. Mesoudi (2011), 

Lewens (2015; 2020), Sterelny (2017), Boon et al. (2021), and others.  

Recent years saw an increase in the use of graph- and network models within the interdis-

ciplinary research programme of CET. Cultural traits rarely travel in single, well‑defined line-

ages, instead they branch, fuse, hitch‑hike, and recombine across social communities. However, 

the CET-network approaches available on the market make the impression of one big patch-

work, rather than a unified framework. In the study of biological evolution, evolutionary graph 

theory rose in popularity since the works of Nowak (2006) or Doolittle (2009), but it is not clear 

which of its models can fully or partly be applied to CET. I think that four families of models 

now dominate the CET literature: 

1. Phylogenetic Trees (e.g. Evans et al. [2021]), which reconstruct historical descent 

among languages, tool traditions, or ritual practices. 

2. Death–Birth Graphs (e.g. Smolla & Akçay [2019]), which simulate coping and turnover 

in structured populations. 

3. Interaction Graphs (e.g. Marjieh et al. [2025]), which record who interacts with whom 

in real time and with what frequency. 

4. Trait Networks (e.g. Janson et al. [2021]), which map compatibility or incompatibility 

relations among the cultural variants themselves. 

Each type of model carries an (often implicit) promise of explanation, yet the promises 

differ. A tree aims to explain a given distribution of traits by revealing common ancestry. A 

dynamical Death–Birth simulation explains by showing how local coping-relations between 

agents aggregate into long‑run population level outcomes. An Interaction-Graph explains by 

pinpointing the detailed causal pathways along which information flows in network and where 

communities can be distinguished from each other in such a network. Finally, a trait network 

explains by exposing the internal logic of cultural systems that makes some variants co‑occur.  

Across CET, recurring explanatory patterns can be grouped into several canonical3 research 

questions (see Mesoudi 2011), for example:   

Q1. Why do historical lineages branch as they do, and when is apparent similarity due to 

reticulation (horizontal transfer/borrowing across lineages) rather than descent (vertical 

transmission along lineages)? 

 
3 I call these questions “canonical” in a modest sense: they recur (often implicitly) across the whole CET 

network literature and are broad enough to cover the dominant explanatory uses of the four model families dis-

cussed here 
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Q2. Why does a trait fix (or fail to fix) with a particular probability and timescale under a 

given population structure?  

Q3. Why do diffusion paths take the routes and speeds we observe, e.g. who influences 

whom, when, and how strongly?  

Q4. Why do similar macro-patterns recur across domains, and could a common modelling 

schema account for different families of phenomena?  

Q5. Why do specific structural invariants, i.e. network features (e.g., degree heterogeneity, 

modularity) robustly shape evolutionary outcomes?  

I think that these questions do not invite a single style of answer. Some (Q2, Q3) target 

causal-mechanical understanding: identifying components, activities, and organizational rela-

tions that are difference-making for adoption, fixation, and flow of cultural traits. Others (Q4) 

call for unificatory payoffs: showing how a common modelling schema, with reusable variables 

and update rules, subsumes diverse cases. Still others (Q1, Q5) hinge on topological consider-

ations, where structural properties—branching vs. reticulation, constraint networks among 

traits, or invariants like modularity—constrain what outcomes are reachable at all.  

What aspects and features of cultural evolution do which particular network models explain, 

and how well do they do that? Philosophers of science have long debated what counts as a 

“scientific explanation”. Relevant for us are:4  

a. Causal‑mechanical accounts (Craver 2016) demand an organised set of parts and activ-

ities that produce the phenomenon. 

b. Unification accounts (Kitcher 1989) emphasize theoretical economy: one formal pattern 

explaining many cases. 

c. Topological or structural accounts (Huneman 2018; Kostić 2020) contend that a phe-

nomenon can be explained by the structural properties5 of a network’s shape, independ-

ent of mechanism. 

The approach I suggest in this paper is deliberately pluralist: I map question types to model 

families and assess their explanatory contributions in three complementary explanatory modes, 

 
4 I center on causal-mechanical, unificatory, and topological explanations because each comes with clear, op-

erational criteria that can be applied directly to CET network models: (i) organized components/activities/relations 

that are difference-making and testable via admissible interventions (causal-mechanical), (ii) schema reuse that 

confers explanatory economy across cases (unificatory), and (iii) structural invariants of networks that constrain 

reachable outcomes (topological). Other accounts of explanation are either folded into this triad or unsuitable for 

uniform scoring here. In particular, interventionism is treated as the diagnostic within causal-mechanical explana-

tion rather than as a separate mode; dynamical and computational approaches specify how systems evolve or are 

computed, but presently lack domain-general, necessary-and-sufficient evaluative conditions comparable to the 

three modes above; and mathematical/optimality/universality explanations were developed for different targets 

and do not map cleanly onto the heterogeneous network cases I evaluate. The focus on these three therefore reflects 

operational tractability and fit to CET’s network repertoire, not a denial of the value of the other approaches. 
5 I use “structural” in a neutral, practice-oriented sense; nothing in what follows presupposes a strong meta-

physical thesis about the ontological status of mathematical entities.  
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without presuming a single “best” model across all questions – or a single “best” theory of 

(scientific) explanation. No single explanatory mode captures all the virtues of all network 

models, yet each mode has clear normative standards that a model either meets, partly meets, 

or fails to meet. My core aim is to provide a transparent yard‑stick for judging how well each 

of four CET network models explains what, having a certain Why-question in mind, and show 

that no single philosophical account captures all their strengths. 

To achieve this, Section 2 anchors each network type in the causal-mechanical (“mechanis-

tic”) sense of Craver (2016) and Bechtel (2020). I ask: Does the model provide a structural‑con-

nectivity map of real causal interactions? Does it contain causal motifs, i.e. recurrent subgraphs 

that act as “mechanism sketches” (sensu Piccini & Craver [2011])? Does it support Bechtelian 

hierarchical decomposition, linking lower‑level coping or interaction events to higher‑level cul-

tural phenomena?  

Note that a model with, for example, a modest mechanistic profile may still deliver strong 

unificatory or topological payoffs, since all profiles are question-relative. Thus, section 3 intro-

duces two non‑mechanistic modes of explanation. I argue that “unificatory” explanations also 

matter because CET borrows tree and population‑genetic formalisms wholesale from biology, 

promising cross‑domain (as well as CET in-domain) economy. Likewise, “topological expla-

nations” matter because the very promise of network science is that topology constrains behav-

iour, and Kostić’s (2020) counterfactual criterion makes that promise testable. Both, unificatory 

and topological explanations are not reducible to causal-mechanical explanations.  

Section 4 presents the operational rubric. For each of the three modes and four network 

types I define and justify High/Moderate/Poor/None scores, flagging the intrinsic affordances 

and supplement load for each explanatory mode. A model scores “High” in a specific mode 

when its basic structure already fulfils that mode’s criteria; “Moderate” when some auxiliary 

assumptions suffice; “Poor” when extensive supplementation would be needed; and “None” 

when the mode is simply irrelevant. I connect my rubric to the rationale of Woodward (2025). 

Section 5 synthesises the results into a pluralist thesis: explanatory power of the four CET 

network models is question‑relative. If a researcher wants manipulable levers to change cultural 

outcomes, mechanistic strength is decisive. If she seeks theoretical economy across domains, 

unificatory strength dominates. Finally, if she aims to show why certain outcomes are inevitable 

given network structure, topological strength comes in. I outline a research agenda for possible 

hybrid network models that could integrate these virtues, inviting collaboration between CET 

modellers and philosophers of science. 
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2 Four Prominent Network Approaches in Cultural Evolutionary Research: a 

causal-mechanical analysis 

In general, “culture” has a social structure (sensu Blau [1989]), i.e. traits bear structured rela-

tionships that dynamically influence transmission and selection, shaped by individual interac-

tions and higher‐level “agents” like institutions or firms. Graphs and networks (where nodes 

typically represent agents or traits and edges their interactions or relations) offer a natural way 

to capture this evolving structure. Different network types yield distinct long‑run patterns of 

innovation diffusion, convention formation, and population change, raising the question: Which 

of these network models truly explain cultural phenomena, and which merely describe them? 

To answer this question, however, we must clarify what “truly explain” means, and the answer 

is pluralistic. 

For now, we ground our analysis of the four network types (Phylogenetic Trees, Death–

Birth Graphs, Interaction Graphs, and Trait Networks) in Carl Craver’s (2016) theory of how 

network models explain phenomena and in Bechtel’s (2020) notion of “higher and lower” 

mechanisms. Both authors can be situated in the “mechanist” (or causal-mechanical) tradition 

in philosophy of science, i.e. a mode of explanation, which treats explanations as accounts of 

how organized parts and activities produce a phenomenon.  

We begin with the causal-mechanical account because it provides a widely used, network-

friendly baseline—components, activities, and organization as difference-making structures—

against which unificatory and topological virtues can be assessed without implying a single 

“best” model. Although I begin with causal-mechanical explanation, this reflects its role as a 

familiar entry point in discussions on scientific explanations—not any priority claim; the three 

explanatory modes are complementary and non-ordered, and the assessment is ques-tion-rela-

tive throughout. It functions as the baseline vocabulary and diagnostic, and is the most widely 

used explanatory framework in adjacent sciences (cognitive neuroscience, systems biology). 

Craver’s (2016) articulation specifically targets network models (components, activities, and 

organization as difference-making structures) making it a natural entry point for CET network 

analyses. The causal-mechanical provides a “lower bound” on explanatory standing (can the 

model identify components/activities/organization that are difference-making?). The later sec-

tions then evaluate complementary virtues, i.e. unification (schema reuse across domains) and 

topology (structural invariants constraining outcomes), that are not reducible to the mechanistic 

checklist. 

Craver (2016) argues that whether, and how, network models explain depends not on fea-

tures of graph theory or network analysis per se but on the explanandum under consideration, 

i.e. how the model is applied to a concrete system, and which kinds of relations (causal, math-

ematical, correlational) are treated as explanatory. He then distinguishes three distinct explan-

atory roles that any graph representation can play:   
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1. Structural Connectivity: When a network’s nodes and edges accurately map the real 

causal pathways of a system, the model locates which components and interactions are 

difference‑makers for the observed outcome. 

2. Causal‑Motif Connectivity: Certain subgraph patterns (or motifs) act as mechanism pro-

totypes, illustrating how repeated configurations of parts and relations systematically 

generate the explanandum. 

3. Functional Connectivity: Graphs that capture statistical or correlational patterns among 

elements serve as evidence for causal hypotheses but, without further causal interpreta-

tion, do not by themselves reveal how or why an effect occurs. 

According to Craver, only those models fulfilling 1. and/or 2. can genuinely explain; models 

confined to 3. remain at the level of description or merely support mechanistic claims. It is not 

surprising that Craver (being a strong proponent of the causal-mechanical theory of scientific 

explanation) concludes that network analysis in general advances scientific investigation (by 

uncovering modules, hubs, correlational patterns), but:  

“[…] does not seem to fundamentally alter the norms of explanation. The problem 

of directionality and the puzzle of correlational networks signal that, at least in 

many cases, the explanatory power of network models derives from their ability to 

represent how phenomena are situated, […], in the causal and constitutive struc-

tures of our complex world.” cf. Craver 2016: 707. 

For him, explanatory power of networks arises when network representations are embed-

ded within causal‑mechanical frameworks or constrained by ontic commitments that distin-

guish mere description from genuine explanation.6  

Additionally, Bechtel (2020) articulates how mechanisms consist of parts (at a “lower” 

level) whose operations together yield a phenomenon (a “higher” level mechanism). Im-

portantly, these parts can themselves be decomposed into sub‑mechanisms, yielding a hierarchy 

of levels, each defined only relative to the mechanism in question. 

 

2.1. Phylogenetic Trees 

A phylogenetic tree represents each cultural lineage as a node and each directed edge as a hy-

pothesised descent relation, and its specific target feature is the historical branching order and 

timing of divergence events among those lineages. Just like biological organisms or species, 

cultural artifacts, languages and techniques stand in genealogical relationships. To trace such 

 
6 In contrast to Craver (2016), who demands constitutive part–whole mapping for explanatory status, Wood-

ward (2025) requires only interventionist dependence, tolerating macro-level or abstract variables so long as they 

are difference-makers. Both reject purely correlational “functional connectivity” graphs as explanatory per se and 

insist on specifying what relations count as difference-making for the explanandum.  
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historical pathways of cultural transmission, CET researchers frequently apply so called phylo-

genetic methods, which originate in the life sciences (palaeontology or paleogenetics). They 

aim to reconstruct the possible evolutionary history of recent forms, traits and cultural patterns, 

as Figure 1 depicts. For a recent overview, see Evans et al. (2021).  

Phylogenetic trees adapt methods from biological systematics to reconstruct how cultural 

traits branch over time, depicting a uni‑directional flow of information through vertical descent. 

In CET, researchers often employ Bayesian inference with Markov Chain Monte Carlo to sam-

ple from the vast space of possible trees, using metrics such as the Consistency Index (CI) and 

Retention Index (RI) to assess homoplasy and the fit between data and topology.7 They further 

incorporate models like Pagel’s DISCRETE to estimate trait‑gain and loss as a Markov process, 

calibrating divergence dates by combining linguistic evidence with archaeological data (see e.g. 

 
7 The consistency index (CI) quantifies the level of homoplasies (analogies, i.e. convergent evolution or diffu-

sion) in a tree. It is given by 𝐶𝐼 =
𝑚

𝑜
 , where m denotes the minimum number of changes required to get from the 

pool of ancestral traits to the explanandum, which consists in the recent distribution and o is the observed number 

of changes. A CI close to 1 indicates minimal homoplasy. It is to be preferred against a tree with a lower CI as an 

explanation according to the principle of parsimony. The retention index (RI) on the other hand measures how well 

the tree retains the structure of the data while accounting for reversals and parallel changes, given by 𝑅𝐼 =
𝑚𝑎𝑥𝑆−𝑂𝑆

𝑚𝑎𝑥𝑆−𝑚𝑖𝑛𝑆
  , where maxS stands for the maximum possible steps to get from the ancestral to the recent trait distri-

bution, oS is the number of observed steps and minS the number of minimal steps required. Higher RI values 

suggest that the tree preserves much of the original data structure, making it a useful measure despite homoplasy.    
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Mace & Holden 2005). There are extensions to the classical “Tree framework”, deepening and 

introducing tools for statistical analysis, see e.g. Bortolussi et. al. (2006). 

Despite concerns, see e.g. Maynard Smith (1986), that cultural borrowing (i.e. horizontal 

transmission) violates the strictly branching structure, many scholars have shown that phyloge-

netic methods remain robust in their application to sociocultural systems. Biological systems 

themselves exhibit reticulation (e.g. bacterial gene transfer), and advances like “partially retic-

ulated” tree models accommodate both splits and occasional cross‑links (Gray et al. 2007; Ev-

ans et al. 2021). In practice, CET phylogenies successfully model long‑term vertical dynamics 

- such as the spread of pastoralism among Bantu languages (Mace & Holden 2005) - while 

quantifying the impact of horizontal exchange on tree accuracy and inferred adaptive trajecto-

ries.  

Within the mechanistic framework however, phylogenetic trees occupy no strong explan-

atory role. On Craver’s (2016) taxonomy, I think they are not structural‑connectivity maps - 

because their branches depict hypothesised historical ancestry rather than contemporary causal 

interactions. They could be seen as causal‑motif schemas, but in a very weak sense, as they 

contain no recurrent, difference‑making subgraphs beyond generic bifurcations. Mechanistic 

accounts explain a phenomenon by showing how currently organised parts and activities pro-

Figure 1: Two hypothetical phylogenetic trees illustrate two competing theories 

about the ancestral relationships among three recent individuals, each characterized 

by two traits (
𝑥
𝑦). Solid lines indicate vertical transmission, while dashed lines rep-

resent horizontal transmission. Mutation events occur at each branching point (solid 

dots), where one trait transforms into another. The tree on the right requires fewer 

mutation events compared to the tree on the left, suggesting a more parsimonious 

evolutionary path. 
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duce it. They therefore function chiefly as functional connectivity devices: they organise cor-

relational evidence for common descent that must be supplemented by an explicit transmission 

model before a full causal explanation emerges.8  

Bechtel’s (2020) notion of hierarchical mechanisms reinforces this verdict. The ancestor–

descendant links in a tree are temporal successions, not part–whole compositions; a lineage is 

not made of its branches in the mechanistic sense but merely follows them in time. Conse-

quently, phylogenies remain, from a mechanistic standpoint, poor causal representations. 

 

2.2. Death-Birth Graphs 

A death–birth graph represents each agent as a node and each directed edge as a potential coping 

route, and its specific target feature is the population-level fixation or loss of traits as shaped 

by local replacement dynamics (see Nowak 2006 or Smolla & Akçay 2019). It models (cultural) 

microevolution by treating individuals as nodes on a network and transmission as a “death–

birth” update: at each timestep, one node is removed and replaced by an offspring of a randomly 

selected neighbour, with edge weights wij giving the probability that node i copies node j, see 

Figure 2. Smolla & Akçay (2019) extend earlier work (Cantor & Whitehead 2013; Al-

len & Nowak 2014) by allowing networks to rewire dynamically (offspring either inherit or ran-

domly form social ties) and by comparing generalist ecosystems (high fitness = large repertoire 

size) to specialist ones (high fitness = peak proficiency). Their simulations show that dense 

networks foster high proficiency at the cost of diversity, whereas sparse networks produce the 

opposite, illustrating how individual learning dynamics aggregate into population‐level cultural 

 
8 Interestingly, the so-called “Causal Bayes Nets” approach, see e.g. Pearl (2000), bears some structural resem-

blance to “Tree like” approaches, but a key difference between the two lies in explanatory focus. Both frameworks 

impose directed, acyclic graph structures, ensuring that information flows only in one direction: from parent to 

descendant in trees, and from cause to effect in Bayesian networks (where even the terms of causal “parent” or 

“descendant” are being used). Phylogenetic models estimate likelihoods of descent relationships, while Bayesian 

networks quantify conditional probabilities of causal effects. This distinction clarifies why phylogenetic trees are 

not causal models, even though they superficially resemble Bayesian networks. Causal Bayes Nets have explicitly 

suggested in the literature to represent mechanisms, see Gebharter (2014). Phylogenetic trees operate at a macro-

level, explaining historical lineage relationships rather than causal mechanisms and describe which traits descend 

from which ancestors but do not specify how traits are transmitted or why they succeed. The focus is on historical 

reconstruction rather than actual process. 
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structures. The population dynamics are defined by the likelihood proportional to the edge 

weight, which determines whether an offspring node copies an adjacent node.9  

When mapped onto Craver’s (2016) taxonomy, I think that Death–Birth graphs serve as 

structural connectivity models, since their edges represent actual difference‐making transmis-

sion routes (specific agents either coping or not coping other agents), and they can also play a 

causal‑motif role by isolating simple replacement loops or fixation pathways as mechanism 

schemas that explain trait persistence or loss. They go beyond mere functional connectivity by 

pinpointing the “causal skeleton” of cultural change through coping. 

Death–Birth graphs are dynamical networks. They start with individual agents and coping edges 

(lower‑level parts). Aggregating update dynamics over time yields fixation or diversity patterns 

at the population level: a genuine higher‑level phenomenon produced by organized lower‑level 

operations. Because the same update rule applies recursively inside any sub‑population, these 

 
9 Smolla & Akçay (2019) assume that cultural traits are acquired through: (1) asocial learning (innovation), 

where traits are learned independently, with success probability g , or through (2) social learning (coping), where 

traits are copied based on their frequency in the individual's neighbourhood. The probability is quadratic to em-

phasize "complex contagion", given as: 𝑃𝑠(𝑡) = 𝑠 × 𝑝𝑡
2 , where 𝑝𝑡  is the proportion of neighbours exhibiting the 

trait, and s is the coping success rate. 

c 

Figure 2: Two stages (t1/t2) of a dynamic Death-Birth graph, consisting of six indi-

viduals.  At t1 the nodes randomly copy each other (c). At t2, one node (dashed-

white) is chosen to “die” and is replaced by a new one (“birth”). The interesting 

question is then, how the newcomer connects to (copies) which other nodes, and 

this depends on its trait repertoire in comparison to that of its neighbours.   
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graphs naturally support a “Bechtelian hierarchy”: agent‑level replacement loops nest within 

neighbourhoods, which nest within the whole population.  

However, since the edges only depict coping relations and each round only one node “dies” 

and is replaced by a new one (“birth”), any causal analysis (of what actually happens in the real 

world) is quite limited, especially when compared to the next network model. 

 

2.3. Interaction Graphs & Community Discovery 

In contrast to Death-Birth graphs, where the edges always depict coping, another type of net-

work is much more flexible when it comes to the interpretation of the evolving edges. Interac-

tion graphs represent agents as nodes and their social interactions - collaboration, imitation, 

competition, signalling, etc. - as edges, often with dynamic rewiring to reflect evolving ties. Its 

specific target feature is the real-time diffusion pathways and emergent community structure: 

how patterns of interaction generate, sustain, or reorganise cohesive cultural subpopulations, 

see Figure 3. Community‑discovery algorithms like TILES (Rossetti et al. 2017) identify 

“nearly decomposable” clusters in those networks (high internal vs. low external interaction 

rates, see Simon 2002) that correspond to cohesive cultural subpopulations, which can then be 

grouped hierarchically via modularity optimization. For example, Youngblood et al. (2021) 

e 

c 

a 

d c 

Figure 3: Two stages (t1/t2) of an Interaction Graph’s evolution. Nodes 

represent agents, edges (a,…,e) represent any kind of repeatable interac-

tion. At t1  the population can clearly be divided into two distinct group-

ings via “community discovery” (dashed circles), based on the (triangle) 

edge distribution; at t2 however, this pattern changes, since one edge dis-

appears, and a new one is added. 
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used hundreds of artist‐collaborations from the DISCOGS database to trace electronic music 

styles. Extensions that integrate network‑based game theory (Baraghith 2023) or experimental 

melody diffusion (Marjieh et al. 2025) further show how local reproduction and selection bi-

ases, mediated by topology, drive cultural complexity (and even aesthetic outcomes). 

Seen through Craver’s (2016) framework, interaction graphs unambiguously satisfy the 

structural-connectivity criterion: every edge records a real, non-idealized, difference-making 

social interaction. Because common subgraphs (triangles, dense cores, bridging ties) recur 

across the network and reliably shape processes like diffusion, cohesion, or innovation, the 

model also realises the causal-motif role, providing mechanism schemas rather than mere cor-

relations. Thus, interaction graphs offer the granular causal structure required for a fully mech-

anistic explanation of a social network of specific agents, not just functional description. 

Bechtel’s (2020) hierarchy requirement deepens this assessment. Concrete interactions 

form the lowest level; community-detection algorithms compress them into cohesive groups on 

the “meso-level”, and those groups can themselves organise into higher-order institutions or 

conventions. Each layer is defined only relative to the mechanism beneath it, “core” versus 

“peripheral” members within a community, for instance, precisely the context-dependent, 

multi-level decomposition Bechtel identifies as the hallmark of hierarchical mechanisms. Ac-

cordingly, Interaction Graphs deliver the richest mechanistic hierarchy among the four CET 

network types. 

 

 

2.4. Trait Networks or “Cultural Systems” 

A trait network maps individual cultural variants as nodes and their compatibility or incompat-

ibility as weighted edges, and its specific target feature is the self-organisation of trait reper-

toires: how internal compatibility patterns drive the formation, stability, and diversity of coher-

ent cultural packages. Trait networks abstract away from agents to focus on how traits co‑evolve 

within a “cultural system” (Buskell et al. 2019; Janson et al. 2021). Often, these relationships 

represent compatibility, incompatibility or mutual synergy. Therefore, Trait-Networks are 

mostly complete graphs, where every node is connected to all other nodes, because every trait 

has a specific relationship to any other one, see Figure 4.10 Pars pro toto, let us take a closer 

look at a recent Trait-Network model by Janson et al. (2021). In their model, cultural agents are 

more likely to adopt traits that are consistent with their existing beliefs and values (i.e., their 

trait repertoire). The authors evaluate network effects on cultural evolution based on three cri-

teria: diversity, consistency and stability. After drawing a compatibility matrix (see footnote 3), 

 
10 In principle, such a complete graph could also be depicted as a compatibility matrix (w). It would look as 

follows in the case of Figure 4:  𝑤 =

0 1 −1 1
1 0 −1 1
−1
1

−1
1

0 −1
−1 0

  , where 0 indicates, that the trait is neutral towards itself. 
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a logistic function is established to determine the coping probability.11 A filtering mechanism 

makes sure that only traits are copied, which fit in an agent’s existing repertoire. Population 

size (N) and number of traits (T) are fixed, which already provide two strong idealisations of 

the model. The outcome of the simulation measures every agent’s repertoire size as well as 

internal consistency (i.e. the average compatibility within a repertoire)12. Trait filtering deter-

mines which traits are adopted based on their compatibility. Janson et al. (2021) transform a 

static compatibility matrix into a dynamical cultural‐system mechanism: each edge weight 𝑤𝑖𝑗 

(compatible = +1, incompatible = –1) modulates the probability that an agent will copy, display, 

or even invent trait j given its current repertoire. Those probabilities, fed into repeated social 

interactions and population turnover, generate higher-level outcomes such as repertoire size, 

internal consistency, cultural diversity, and system stability. 

From Cravers (2016) perspective, this means the graph furnishes genuine structural con-

nectivity: each edge is a difference-maker for the process of adoption. Self-reinforcing triads, 

cycles of mutual (in)compatibility serve as causal-motif schemas that explain why certain clus-

ters of traits flourish while others are blocked. Bechtel’s (2020) hierarchy requirement is like-

wise satisfied: trait-level compatibilities (lower level) feed into individual learning filters; re-

peated filtering operations aggregate into meso-level cultural niches; and those niches yield 

macro-level outcomes such as repertoire size, internal consistency, and long-term diversity. 

Thus, although trait networks lack agent-to-agent pathways, they still instantiate a multi-level 

mechanism in which organised part-relations (trait compatibilities) generate higher-level cul-

tural structure, warranting a moderate mechanistic score in our evaluation. 

 

11 Their function takes the form: 𝑝(𝑠) =
1

1+𝑒−𝑘×𝑠
 , where s is the average compatibility score of a new trait with 

an agent’s repertoire and k is the strength of preference for compatibility. Population size (N) and number of traits 

(T) are fixed. 

12 Internal consistency (I) is given by: 𝐼 =
1

|𝑅|
∑ 𝑤𝑖𝑗𝑖𝑗∈𝑅  , where R is the set of traits already in an agent’s rep-

ertoire and i and j are two traits.   

Figure 4: A Trait network, where the nodes stand for 

traits and the edges represent compatibility (1) or incom-

patibility (-1). Since two traits are always either compat-

ible or incompatible, such a graph is often complete. 

1 

-1 
-1 

-1 

1 
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Remember that Craver’s taxonomy tells us that any network type will only truly explain if it 

identifies the relevant parts and activities (structural connectivity) and/or isolates the core dif-

ference‐makers or motifs (causal‐motif). Among the four network types, Interaction Graphs 

score highest in this category, because they explicitly model very specific agent-to-agent inter-

actions, allowing for a detailed causal reconstruction of how cultural traits spread within struc-

tured populations. Unlike other models, they can incorporate complex dyadic interactions, mak-

ing them well-suited for mechanistic explanations of cultural transmission on the level of cul-

tural microevolution. By contrast, Phylogenetic Trees rank very bad in this category, since they 

are only to a very limited extend about mechanisms, but about a reconstruction of macro-level 

long term patterns of evolutionary descent. This is so, not because they are “macro-level de-

scriptions”, but because their branches represent historical succession rather than manipulable 

interactions. However, Phylogenetic trees have other explanatory strengths, as I will show in 

the next section. 

 

 

3 Alternative Modes to measure Explanatory Power of CET Network Models 

These four network approaches in CET do play complementary roles. Each model highlights 

different aspects of cultural evolution rather than competing for a single "true" explanation. I 

think that this requires engaging with different notions of “explanation” found in the philosophy 

of science literature, see e.g. Sprenger & Hartmann (2019). There is more than one mode of 

scientific explanation and that explanatory power very likely is not a singular concept but varies 

depending on the kind of explanation under consideration.  

Section 2 assessed each CET network through a  mechanistic lens, asking whether its struc-

ture maps real causal interactions (Craver 2016) and nests into multi-level mechanisms (Bechtel 

2020). Yet mechanistic insight is only one way to “explain” a phenomenon. In this third section, 

I broaden the yard-stick by introducing three further, non-exclusive modes of scientific expla-

nation: Unificatory explanations show how a single argument pattern compresses diverse cases 

and topological explanations derive the phenomenon as a mathematically necessary conse-

quence of the network’s shape. Re-examining the four network models under these lenses will 

reveal explanatory virtues that remain invisible when we focus solely on mechanism, and will 

set the stage for the pluralist synthesis in Section 5. 

 

3.1.  Unification as a Mode of Explanation 

Another explanatory approach I want to look at is unificatory explanation, based on Kitcher 

(1989), where an explanation is considered strong if it integrates diverse phenomena under a 

small set of theoretical principles. Kitcher's main thesis is that explanation is the process of 

describing a wide variety of phenomena using as few argumentative patterns as possible repeat-

edly. Kitcher’s unificatory account regards an explanation as strong to the extent that it sub-
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sumes diverse phenomena under a minimal set of argument patterns or “explanatory argu-

ments”. The key measure is unificatory strength, which has two dimensions: 

a. Breadth: How many distinct explananda are covered by the same schema? 

b. Depth: How many layers of theory (surface patterns versus deeper principles) are linked 

by that schema? 

Network models that perform well in this category should provide broad formal frameworks 

that systematize multiple aspects of cultural evolution under a single, coherent modelling ap-

proach. They would not only explain specific cases of cultural transmission but also provide a 

generalizable structure that applies across different domains, such as language evolution, tech-

nological diffusion, or the spread of social or political norms. The degree of unification 

achieved by a model depends on how well it reduces the number of independent assumptions 

needed to explain diverse cultural processes. In this sense, unificatory explanations favour mod-

els that reveal deep structural similarities across different cultural domains.  

Following Humphreys’ (2001) distinction between analytic and synthetic understanding, 

note that I treat “unification” not as a strict alternative to causal-mechanical or topological ex-

planation but as a synthetic virtue that can accompany either. Analytic understanding targets 

difference-making causal organization; synthetic understanding integrates results by showing 

how diverse cases fall under a reusable modelling schema. A network model may be causally 

informative and unificatory at once (and likewise topologically informative and unificatory), 

because unification concerns scope and schema-reuse, not a distinct “kind” of causal or struc-

tural relation. In other words, “unificatory power” tracks a cross-cutting explanatory virtue: the 

extent to which an explanatory schema is portable across cases and supports understanding by 

integrating diverse phenomena under a common pattern of reasoning. In this sense, both causal 

explanations and topological explanations can be unificatory. Topological explanations unify 

disparate systems insofar as the same structural property constrains outcomes across otherwise 

different causal realizations. Likewise, causal explanations can unify by identifying a common 

cause or common causal organization across heterogeneous realizers (as Humphreys [2001] 

stressed). The unificatory dimension therefore concerns scope and schema-reuse, not a distinct 

kind of dependence relation “over and above” causal or structural dependence. 

We should further note here that the whole CET research enterprise as such, already pro-

vides a high level of unificatory potential, since it aims to reveal deep structural similarities 

between biological and cultural transmission/proliferation. For a more detailed investigation, 

see Baraghith & Feldbacher-Escamilla (2021). As a consequence of this, one should expect that 

all models used in the CET domain (whether they are network-like or not) bear a certain degree 

of unificatory explanatory power. A model has high unificatory potential if it successfully in-

tegrates diverse cultural phenomena under a coherent theoretical framework.  

1. I think that Phylogenetic Trees perform best in this category, since they impose a struc-

tured evolutionary history onto cultural traits, providing a broad, systematic account of 

how different traditions/languages/technologies (or biological genes!) have evolved. 

Their unificatory strength makes them a popular framework in historical linguistics and 
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comparative anthropology, for a representative overview, see Evans et al. (2021). They 

yield a clear “one schema” account of macro-level cultural history – once stablished, it 

is even hard to see how else evolutionary history in any cultural domain should be for-

mally depicted. 

2. Death-Birth Graphs provide moderate unification, they partially unify cultural trans-

mission with population (replacement) dynamics, offering a generalizable statistical 

framework that can be applied across different domains.  

3. Trait Networks unify cultural evolution through internal trait compatibility structures, 

making them useful for explaining why some cultural elements persist while others are 

filtered out. However, because they focus on internal interactions rather than external 

transmission, their unificatory scope is more constrained than that of Trees. 

4. Likewise, Interaction Graphs warrant a moderate unificatory potential. While they are 

to a large extend data-driven and context sensitive, and do not capture large-scale his-

torical lineages like phylogenetic trees, they offer a super-flexible modelling framework 

applicable across diverse cultural domains. Whether tracking the diffusion of musical 

styles, opinions, or norms, they employ a shared structure - agents interacting through 

edges - and common transmission rules, such as conformist or payoff-biased learning. 

This reuse of formal patterns aligns with Kitcher’s notion of explanatory unification. 

Marjieh et al. (2025) exemplify this by applying Interaction Graphs to musical evolu-

tion, demonstrating that selection and reproduction processes can be generalized across 

cultural forms. Further, Baraghith (2023) shows that even evolutionary game theory can 

be integrated into Interaction Graphs, extending their theoretical reach. Although they 

are limited in macrohistorical scope, their adaptability and structural coherence justify 

their classification as having moderate unificatory potential. 

 

3.2. Topological Explanations 

Last but not least, we must consider a mode of explanations, that appeared only quite recently 

in the literature: Topological Explanations. They directly address our general topic and have 

been shown to be a distinct mode of explanation that is not reducible to mechanistic explana-

tions.13  

Already Huneman (2018) offered an account of what he called “structural explanations”: 

an explanation is structural when it leverages mathematical propositions about entire 

 
13 Kostić & Khalifa (2022) show that topological explanation can (in certain cases) be autonomous from mech-

anism. They reject the “Mechanistic Interpretation of Topological Explanation” (MITE), which says a network 

explains only if its nodes and edges denote the parts and interactions of an underlying mechanism that is counter-

factually responsible for the effect at a higher level. Their counter‑example (the correlation between motif fre-

quency (MF3) in the macaque cortex and long‑range functional connectivity) meets MITE’s node‑and‑edge re-

quirements but fails the responsibility and inter‑level tests, yet still explains: varying MF3 would vary the func-

tional links. Hence network shape alone can carry explanatory force, reinforcing the case for a topological mode 

distinct from, though sometimes overlapping with, mechanistic explanation.  
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model-classes to directly entail empirical phenomena, rather than merely representing or simu-

lating underlying mechanisms. Not all structural explanations are “pure.” Some (like e.g. Berg-

mann’s rule) remain partly embedded in specific mechanisms, giving rise to a continuum from 

mechanism-dominant to purely structural explanations. Within the structural family, one can 

further distinguish sub-families (topological, algebraic, statistical), though these often overlap 

(e.g. graph matrices unify topology and algebra). This clarifies and systematizes a wide array 

of non-mechanistic explanations across the sciences. Furthermore, Hunemans idea of an “ex-

planatory continuum” is in deep alignment with our idea of the scoring measure of explanatory 

strength, which we develop in the next section. This measure relies on Woodward (2025), who 

also worked on topological explanations. His two-folded approach will be considered in detail 

in section 4. 

Kostić (2020) then formulated a “general theory of Topological Explanation” that states 

exactly how a property of a graph (the explanans A) genuinely explains a physical or dynamical 

phenomenon (the explanandum B). Three conditions must hold:  

a. Facticity: both A and B are true of the target system.  

b. Counterfactual dependence: had A not obtained, B would not have obtained; this can be 

vertical/global (e.g. small‑worldness) or horizontal/local (e.g. high communicability be-

tween two nodes).  

c. Explanatory perspectivism: the choice of global versus local counterfactual must match 

the scientist’s “why‑question.”   

Because A is structural and B behavioural, the dependency is asymmetric; reversing ex-

planans and explanandum would fail these criteria, so no causal machinery is needed to block 

symmetry. Topological explanations thus differ from mechanistic ones: they prove that a phe-

nomenon is mathematically necessary given network shape rather than tracing how parts and 

activities produce it. The same three‑part template applies to any network domain, including 

(some) CET graphs. Kostić (2020) provides a crisp, criterion‑based alternative to mechanistic, 

or unificatory accounts, made for network models. His facticity, counterfactual, and perspec-

tival requirements tell us when “the shape of the graph alone” explains, and why that explana-

tion remains one‑directional. 

Can we conclude that all of the network models have high explanatory strength in the top-

ological mode, simply because they are all networks? In what follows, we will show that this 

is not the case, because the models differ in this respect, as well:  

1. Death-Birth Graphs score high, since in a death–birth model the network is specified 

by an adjacency matrix W whose entries 𝑤𝑖𝑗 give the probability that individual i copies 

individual j. Global topological properties, such as isothermality (all nodes have equal 

“temperature”, i.e. incoming weight), are therefore concrete, verifiable facts of W. Em-

pirically, one can measure interaction frequencies in a real community and instantiate 

the matrix directly. Thus, the topological property has the potential to be factive in the 

sense Kostić requires. Concerning “counterfactual dependence”, things get a little com-

plicated: Remember that Kostic (2020) makes a distinction between “vertical-” and 
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“horizontal dependence”. The Isothermal Theorem (Nowak 2006) states that on any iso-

thermal graph, that realizes a Death-Birth Process, the fixation probability of a neutral 

mutant equals 1/N. If the same population becomes non-isothermal (by adding a star 

hub or varying degrees), the fixation probability shifts to 𝜋’ ≠ 1/𝑁 and may be ampli-

fied or suppressed depending on heterogeneity. So, the Counterfactual here would be: 

“Had the network not been isothermal (e.g. had we introduced a high-degree hub) the 

global fixation probability would have changed.” Concerning the horizontal mode, we 

must understand that for a specific node i, fixation probability 𝜋𝑖 is a function of its 

temperature or degree. Proven results (Allen & Nowak 2014) show that reducing i’s de-

gree lowers 𝜋𝑖. Counterfactual: “Had node i possessed fewer outgoing links, its mutant 

would have had a lower chance of taking over.” Because these dependencies are purely 

derived from graph-theoretic theorems - not empirical correlations - I think they satisfy 

Kostić’s necessitating requirement to a high extent. Death–birth graphs ground their 

explanans in verifiable network facts and link those facts to fixation phenomena via 

proven counterfactual theorems. 

2. Phylogenetic trees are not easy to evaluate in the topological mode. On the one hand, 

they provide a very concrete structure: branching topology, branch lengths, and standard 

summary indices such as consistency and retention indices (see footnote 5). It is also 

important, however, that a phylogeny is typically inferred rather than given: the evolu-

tionary process generates a branching structure as lineages split, and CET studies nor-

mally report posterior support for clades. In that sense, “facticity” is satisfied only con-

ditionally: the explanans is factual given acceptance of the best-supported tree (and the 

uncertainty attached to it). On Kostić’s vertical/global reading, phylogenies can support 

topological explanations. For example, coalescent theory connects global tree-shape 

properties such as imbalance (A) to statistical properties of divergence-time patterns (B) 

under neutral evolution; in idealized settings, the counterfactual “Had the tree been 

more balanced, divergence times would have been less clustered” is mathematically 

tractable (cf. Pybus & Harvey 2000), though the strength of the result depends on sub-

stantive assumptions. On the horizontal/local reading, the relevant counterfactuals con-

cern parts of a single tree (nodes, branches, subtrees). A change in local branch shape 

or length does not by itself entail a change in a particular trait event. It becomes differ-

ence-making only given additional modelling, i.e., an explicit character/transmission 

model that links trait histories to the tree (and, where appropriate, an explicit borrow-

ing/reticulation model). Ordinary cultural “horizontal transmission” (borrowing across 

lineages) is therefore not an instance of Kostić’s “horizontal” dependence within a fixed 

tree. Rather, it motivates moving beyond strict trees to reticulated structures (“phyloge-

netic networks”). For these reasons (conditional facticity, moderate vertical/global 

counterfactual support under idealizations, and only limited horizontal/local depend-

ence without added character models), I think that Phylogenetic trees yield moderate 

explanatory strength in the topological mode. 
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3. In an Interaction Graph, the adjacency matrix records observed social contacts - who 

talks, trades, collaborates - during a fixed time-window or over repeated observations. 

Topological descriptors such as global small-world coefficient σ (ratio of clustering to 

path length), modularity (strength of community structure) or local communicability 

(weighted sum of all walks between two nodes) are therefore true properties of the ac-

tual network once the data are collected. Thus, interaction graphs totally satisfy Kostić’s 

facticity requirement: the explanans A is an empirically grounded feature of the very 

system whose behaviour we seek to explain. Interaction Graphs also support necessitat-

ing counterfactuals. At the global level, diffusion theory (e.g. Newman 2018) proves 

that networks with high σ exhibit mean adoption times 𝑇𝑑𝑖𝑓𝑓 ∝ 𝑙𝑜𝑔𝑁 remove the long-

range shortcuts and 𝑇𝑑𝑖𝑓𝑓  inflates to linear growth, so “Had σ been low, the norm would 

have spread far more slowly.” At the local level,  network-control results (see Gu et al. 

2015) show the energy 𝐸𝑖𝑗 required to steer a signal from node i to j is inversely propor-

tional to communicability 𝐶𝑖𝑗; hence “Had communicability between “sender” node A 

and “receiver” node B been lower (e.g. if several intermediary ties were absent) the 

energy (or time) needed to transmit the cultural variant would have been higher, making 

evolutionary adoption unlikely.” Because one and the same graph can answer a global 

“Why did trait X spread so fast in the population?” or a local “Why exactly those two 

nodes?” question simply by shifting focus, interaction graphs satisfy the perspectival 

requirement in a strong sense. No extensive recalibration is needed; the explanatory 

leverage flows from structural properties already contained in the data. For that reason, 

Interaction Graphs align exceptionally well with Kostić’s facticity, dependence, and 

perspectivism requirements and justifiably receive a high rating on the topological axis.  

4. Finally, Trait Networks consist of nodes that are themselves cultural variants and edges 

weighted by whether any two traits are judged to be compatible or incompatible. Alt-

hough the resulting adjacency matrix is a perfectly legitimate network, it seldom meets 

Kostić’s three conditions for a robust topological explanation. Facticity: many compat-

ibility scores are researcher-assigned or inferred from sparse co-occurrence data, so the 

topological property A (e.g. a dense compatibility clique or a high average edge weight) 

is at best conjecturally true of the target system. Jansson et al.’s  (2021) simulations 

reveal strong empirical dependencies regarding counter factuality. Global: Lowering 

mean compatibility c reliably shrinks culture size and raises internal consistency. Local: 

Flipping a single edge from +1 to –1 can block a trait’s entry into an agent’s repertoire. 

These links are demonstrated by simulation, not proved to be mathematically necessary, 

no general theorem shows that lowering a specific compatibility weight (or re-wiring 

trait links) necessarily changes the probability that those traits co-occur in repertoires. 

Finally, while Kostić’s perspectival requirement could in principle be met - one might 

ask a local question (“Why do traits X and Y cluster?”) or a global question (“Why is 

the cultural system fragmented?”) - the answer would still hinge on unproven empirical 
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regularities rather than structural necessity. Because all three criteria are therefore sat-

isfied only weakly, if at all, trait networks earn a poor score on the topological axis. 

 

 

4 Can Explanatory Power be Quantified? 

So far, I spoke of “high”, “moderate” or “poor” explanatory strength without really providing 

a rationale for such a measure. It is time to address this issue. In the philosophical literature, 

various attempts have been made to quantify explanatory power, most of which rely on proba-

bilistic approaches. Some of the key contributions include McGrew (2003), Schupbach & 

Sprenger (2011), and Crupi & Tentori (2012), who propose measures of how much an expla-

nation increases the probability of observed data. Other accounts, such as those developed by 

Myrvold (2003) or Lange (2004), link explanatory power to unification by analysing how well 

explanations “link up” or  “screen off” unnecessary complexity.  

However, due to significant challenges in developing a universal quantitative measure ap-

plicable to all three explanatory approaches, see e.g. Gebharter & Feldbacher-Escamilla (2023), 

I shall introduce a comparative ranking system here, which is based on “explanatory strength 

in a particular context” rather than absolute explanatory power. Instead of a numerical measure, 

I categorize the explanatory strength of each network model as (1) high, (2) moderate, (3) poor, 

or (4) none, depending on how well it aligns with the respective explanatory mode. This ranking 

system allows for a somewhat meaningful comparative analysis while avoiding the assumption 

that a single quantitative measure can be uniformly applied across all types of explanation, for 

I do not see how to construct such a universal measure at this point.  

My four-level scale is not a popularity poll or a record of how researchers usually deploy 

a model. Instead, it rates how naturally the representation, as specified, satisfies each explana-

tory mode’s own normative standards from a philosophy of science perspective. I want to in-

troduce two concepts, which govern these scoring:   

(a) Intrinsic Affordance and  

(b) Supplement Load.  

 

What do I mean with that? Intrinsic Affordance refers to the explanatory resources a mod-

elling framework provides by virtue of its built‑in structure alone. It is what one can read 

straight off the representation - its variables, formal relations, and theorems that follow without 

further assumptions. If a model, as specified, already meets the normative criteria of a given 

explanatory mode, it does so by intrinsic affordance. Supplement Load is the additional empir-

ical, conceptual, or mathematical work required to bring the same model up to those criteria 

when the intrinsic affordance is insufficient. This load may take the form of new data for cali-

bration, auxiliary hypotheses, parameter fitting, intervention studies, or bespoke proofs that 

connect the model’s formalism to the explanandum. For example, a network model has high 

mechanistic affordance if its nodes and edges already pick out manipulable entities and inter-

actions (e.g., an interaction graph whose edges are observed). It has high unificatory affordance 
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if its formalism can be applied across a vast number of different (evolutionary) domains. 

For example, consider interaction networks for Q3 (diffusion routes/speeds). Their intrin-

sic affordance is a direct representation of exposure structure (who interacts with whom). The 

main supplement load is (i) specifying/estimating a transmission rule (copying, payoff, pres-

tige) and (ii) adding time-resolution or exposure controls to separate influence from homophily. 

By contrast, population-update graphs for Q2 (fixation under structure) intrinsically supply both 

a population structure and an explicit update rule. Their supplement load is typically parameter 

calibration (mutation and bias) rather than additional structural machinery. Finally, phyloge-

netic trees for Q1 (branching vs. reticulation) intrinsically provide lineage structure, but require 

a non-trivial supplement load to become explanatory: an explicit character/transmission model 

and (when relevant) tests for borrowing/reticulation. 

Recently, also Woodward (2025) defined an interventionist counterfactual approach on 

network explanations: a network truly explains if outcome E depends on the pair 〈𝑁, 𝐷〉,where 

N is structure and D is dynamics under ideal interventions (Schema W). He distinguishes IDE 

(Independent-Dynamics Explanation that needs both N & D) from rare DTE (Distinctively-

Topological Explanations, where N alone suffices). Woodward’s W highlights that any network 

explanation hinges on two ingredients: the connectivity structure N and a dynamics D. In my 

rubric, the structural features supplied by the model itself -its N- correspond to an intrinsic 

affordance, while the additional dynamical assumptions required to make the explanation run 

(D) constitute the typical supplement load. Thus, Woodward’s framework can be seen as a 

further conceptual rationale for separating what a representation gives “for free” from the extra 

work needed to reach full explanatory force. 

In judging explanatory strength, the higher the intrinsic affordance and the lighter the sup-

plement load, the stronger the score. I define a scoring rule:  

• High: 〈N,D〉 is intrinsically specified enough to test W with minimal supplement load 

(IDE satisfied; or DTE for the “topological mode” when N alone constrains E). 

• Moderate: One of N or D is intrinsic; the other needs light–moderate supplements (data, 

parameters, identification) to test W. 

• Poor: Only a proxy for N or D is intrinsic; testing W needs heavy supplementation or 

yields only indirect probes. 

• None: The mode is inapplicable (no route to W even with substantial supplementation). 

In short, Woodward’s W turns my ‘intrinsic affordances’ into the 〈N,D〉 a model already 

gives you, and ‘supplement load’ into what must be added to complete 〈N,D〉 so that depend-

ence of E on the right ingredients can be probed via ideal interventions.  

The following Table 1 makes clear what I mean by the particular ranking categories for the 

respective modes of scientific explanation.  

 

 

 Causal  

Mechanical 

Unificatory Topological 
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High The model depicts step-by-

step processes by which 

traits are transmitted or 

transformed (e.g., imitation 

biases, social interactions, 

feedback loops). 

The model integrates multi-

ple sub-phenomena (e.g., 

different cultural domains, 

multiple timescales) under a 

single theoretical scheme 

that reduces complexity. 

The model pinpoints a factive 

network property A (global or 

local) and demonstrates that 

explanandum P counterfactu-

ally depends on A: “Had A not 

obtained, P would not have 

obtained.” Both verti-

cal/global modes are matched 

to the explanatory question; 

asymmetry is secured. 

 

Moderate  Some mechanistic details are 

present (e.g., rules for who 

copies whom), but larger 

causal structures remain 

black-boxed or simplified. 

It captures some aspects of 

cultural phenomena (e.g. 

language) under a unified 

approach, but other phenom-

ena (e.g. social norms) re-

main outside its scope.  

It quantifies a relevant topo-

logical metric (degree distri-

bution, betweenness, modular-

ity, etc.) and links it to P, but 

the link is only empirical or 

heuristic; the counterfactual 

necessity is not rigorously 

shown, or the perspectival fit 

(global vs. local) is left im-

plicit.  

 

Poor The model is mostly descrip-

tive or correlational, lacking 

real insight into why or how 

the mechanism unfolds. The 

causal pathways described 

are very limited.  

 

It is narrowly applicable, ad-

dressing just one phenome-

non or scenario. 

Topology is present only as 

descriptive ornament: metrics 

are reported or visualised, yet 

no attempt is made to argue 

that P follows necessarily 

from A, nor is any counterfac-

tual tested. 

 

None The model is not at all about 

mechanism. It may track 

cultural frequencies or his-

torical lineage without any 

attempt to specify the causal 

steps behind adoption or 

transmission. 

 

No attempt is made to unify 

anything beyond the single 

scenario in question; the 

model is purely domain-spe-

cific or historically particu-

lar and cannot be general-

ized. 

The model is non‑topological: 

it either lacks a network repre-

sentation or treats the graph 

purely as a timeline or intui-

tive taxonomy. 

 

 

 

5 Explanatory Pluralism and a Roadmap for Hybrid CET Models  

Section 2 and 3 showed that Phylogenetic trees, Death-Birth Graphs, Interaction Graphs and 

Trait Networks each emphasize different aspects of cultural evolution: lineage-based inher-

itance, network-driven diffusion, individual interactions/group formation or trait compatibility 

relations. By systematically mapping them onto different modes of explanation, we highlighted 

their respective contributions and limitations, providing a roadmap for researchers to select the 

most appropriate model for their specific analytical goal.  

Table 1: A comparative ranking system (high; moderate; poor; none) for each of the three explanatory modes. 

Note that “unificatory power” is non-exclusive: it can be exhibited by causal-mechanical and/or topological ex-

planations, and measures schema portability and integrative scope, not a separate kind of explanatory relation.  
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As already mentioned in section 1 of this paper, there are several canonical questions that 

CET researchers ask, e.g.: 

Q1. Why do historical lineages branch as they do, and when is apparent similarity due to 

reticulation (horizontal transfer/borrowing across lineages) rather than descent (vertical 

transmission along lineages)? 

Q2. Why does a trait fix (or fail to fix) with a particular probability and timescale under a 

given population structure?  

Q3. Why do diffusion paths take the routes and speeds we observe, e.g. who influences 

whom, when, and how strongly?  

Q4. Why do similar macro-patterns recur across domains, and could a common modelling 

schema account for different families of phenomena?  

Q5. Why do specific structural invariants, i.e. network features (e.g., degree heterogeneity, 

modularity) robustly shape evolutionary outcomes?  

In this sense, choosing a particular explanatory mode over another is choosing a type of 

answer, given the specific type of question. The ranking (high, moderate, …) indicates the qual-

ity of a possible answer that the explanatory mode is able to deliver. A single explanatory mode 

does not cover the full problem space. Causal-mechanical analysis is the right tool when we 

need difference-making components, activities, and organization (notably Q2–Q3). Unificatory 

virtues matter when we aim for schematic economy across domains (Q4): the same model ap-

plies to many different domains. Topological virtues become decisive where structural invari-

ants constrain what outcomes are reachable (Q5) or when we must distinguish convergence 

from real descent (Q1). The pluralist rubric makes explicit when a model’s explanatory force 

depends on minimal vs. heavy add-ons (e.g., transmission models for trees; dynamic rules for 

interaction graphs).14 

Having these questions and our ranking of (question-relative) explanatory strengths in 

mind, we can finally put all pieces together. What follows is a profiled characterisation of each 

model’s explanatory contributions by question and mode; the framework is pluralist by design 

and eschews any aggregation into a single “best” model. Table 2 summarizes how the network 

models in CET align with the modes of scientific explanation, given the metric we introduced 

in section 4. Ratings are question-relative and mode-specific; they are not additive or compara-

ble across modes, and no overall ranking (“total explanatory strength”) is implied. 

 

 Phylogenetic 

Trees  

Death-Birth 

Graphs 

Interaction 

Graphs 

Trait Net-

works 

 
14 Our question-relative, multi-mode rubric treats CET models as inferential blueprints in Massimi’s (2022) 

sense—tools for exploring possibility space and for fixing reliable, cross-perspectival claims about modally robust 

phenomena—so pluralism here is principled rather than eclectic. 
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Causal - 

Mechanical 

 

Q2; Q3 

Poor 

Focuses on large-

scale descent and his-

torical branching / 

classification. Offers 

only minimal causal 

pathways.  

No recurrent differ-

ence-making motifs. 

Moderate 

Includes local re-

placement rules 

(birth/death), provid-

ing an idealized 

mechanism. 

Coping edges become 

causal routes once 

calibrated, replace-

ment loops serve as 

motifs, but the link to 

empirical mecha-

nisms requires sup-

plements. 

 

High  

Model shows de-

tailed social interac-

tions (who imitates 

whom, at what 

rate), edges trace 

real causal interac-

tions; recurring tri-

ads/bridges act as 

mechanism motifs 

about how cultural 

traits spread or sta-

bilize.  

Moderate 

Spells out how 

traits interact 

(compatibility, 

synergy), but 

omits who carries 

them; partial view 

of the underlying 

causal processes, 

when dynamical 

cultural systems 

are constructed 

based on their 

compatibility. 

Unificatory  

 

Q4 

 

 

High 

Unifies broad histori-

cal and linguistic data 

under a single genea-

logical framework, 

giving a clear “one 

schema” account of 

macro-level cultural 

history. 

Moderate  

Unifies local birth–

death processes 

across multiple con-

texts, but less capable 

of unifying all cul-

tural phenomena un-

der a single large-

scale framework. 

Moderate 

Can unify various 

short-term or small-

scale social pro-

cesses in a single 

interaction model, 

but doesn’t neces-

sarily tie into deep 

historical or macro 

patterns. 

 

Moderate 

Unifies diverse 

intra-cultural trait 

relationships 

within one con-

ceptual map (syn-

ergy, conflict), 

clarifying large 

sets of co-evolv-

ing traits. 

Topological 

 

Q1; Q5 

 

Moderate 

Indices (Con-

sistency/Retention) 

and tree diameter are 

topological properties 

of the inferred tree. 

More imbalanced 

trees necessarily raise 

variance in trait di-

vergence times; how-

ever, proofs assume 

neutral models and 

ignore reticulation, so 

dependence is partial 

and global only. 

 

High 

Facticity: the model’s 

adjacency matrix is 

explicit; graph prop-

erties are well-de-

fined.  

Isothermal Theorem 

shows that altering 

degree heterogeneity 

necessarily raises or 

lowers fixation prob-

ability; both vertical 

and horizontal coun-

terfactuals are mathe-

matically proved. 

Both perspectives are 

possible. 

High 

Highly supply 

global metrics 

(clustering, 

small-world coeffi-

cient ) and local 

metrics (communi-

cability).  

Researcher can 

pose either a global 

or a local question 

and obtain a coun-

terfactual answer 

from the same, un-

modified interaction 

graph. 

Poor 

Compatibility ma-

trices yield com-

plete graphs with 

weighted edges, 

but many weights 

are hypothetical 

or researcher-as-

signed. 

No general theo-

rem shows that al-

tering a compati-

bility weight ne-

cessitates a 

change in co-oc-

currence; results 

are simula-

tion-based. 

 

 

 

 

What can we learn from this overall comparison? Table 2 makes one point with stark clarity: 

no CET network model scores “High” across all three explanatory axes. Mechanistic power 

clusters in interaction graphs; unificatory power in phylogenetic trees; topological necessity in 

death-birth- and interaction graphs. These asymmetries are not accidents of current practice but 

Table 2: Summary of the comparison between the four types of network models and the three prominent modes 

of scientific explanations.  
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reflections of intrinsic affordances: what a representation gives us for free and what must be 

supplemented.  

The literature on network explanation often frames a contrast between mechanistic and 

topological explanation. My paper adds a further point: unificatory scope cuts across that con-

trast. Mechanistic models can unify when they identify common causal organization across 

heterogeneous realizers, and topological models can unify when the same structural constraint 

explains outcomes across systems with different causal details. Making this orthogonality ex-

plicit helps explain why “pluralism” in CET is not just a patchwork of models, but a structured 

division of explanatory labor. Philosophically, that pattern underwrites explanatory pluralism 

in two ways:  

First, it shows that explanation is question relative. The researcher who asks “Which edges 

must we rewire to prevent misinformation?” needs the high mechanistic affordance of interac-

tion graphs; the historical linguist, who asks “Can one bifurcation schema cover language, tool, 

and ritual evolution?” exploits the unificatory breadth of trees; the theorist who asks “Why is 

rapid diffusion inevitable in this topology?” turns to topological necessity. Different research 

questions (Q1-Q5) activate different columns of Table 2. 

Second, the table reveals complementarity, not competition. A model that scores “Moder-

ate” mechanistically but “High” unificatory can be paired with one that shows the opposite 

profile, yielding a composite explanation that is both manipulable and predictive.  

This motivates a research agenda for hybrid network models: e.g. multiplex frameworks 

that, for example, embed empirically grounded interaction layers inside lineage trees, such as 

Youngblood et al.’s (2021) approach, which combines an Interaction-Graph model (micro), 

with a Phylogenetic Tree model (macro). Ideally, building and evaluating such hybrids will 

benefit from collaboration between CET modellers, who supply the empirical structure, and 

philosophers of science, who clarify which explanatory virtues are being added and at what 

supplement load.15 

By showing that explanatory modes are complementary rather than competing, this paper 

clarifies why methodological diversity in CET is not a weakness but a resource, and how that 

diversity can be marshalled strategically. My framework is designed for two audiences: CET 

practitioners, who might need guidance matching scientific why-questions to model families 

and the minimal add-ons needed for defensible explanatory claims, and philosophers of science, 

who gain a do-main-grounded testbed for comparing explanatory virtues without collapsing 

them into a single metric. My tool functions like a diagnostic matrix: it does not rank models 

 
15 This roadmap is intentionally schematic: the aim is to mark promising integration points and the kinds of 

supplementary assumptions they would require, not to propose a fully worked modelling programme within the 

present word limit of this paper. 
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overall; it helps researchers (a) choose a model that fits their question, and (b) report limits and 

supplement load explicitly.  

In short: I do not claim to locate a single, best theory of explanation for networks. Instead, 

I provide a principled way to measure which explanatory virtues each CET network model 

delivers and to decide, case by case, which virtues matter for a given scientific question. 
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