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Abstract?

In this paper, I assess the explanatory power of four graph- and network-based
models recently used in the domain of Cultural Evolutionary Theory (CET):
(a) Phylogenetic Trees, (b) Death—Birth Graphs, (¢) Interaction Graphs, and
(d) Trait Networks. First, I show that Interaction Graphs, Trait Networks and
(empirically-calibrated) Death—Birth Graphs can function as genuine mecha-
nistic explanations, while Phylogenies remain largely at the level of correla-
tional evidence. I then broaden the analysis to two non-mechanistic accounts:
Kitcher’s unificatory perspective and Kosti¢’s counterfactual theory of topo-
logical explanation. Interaction graphs excel mechanistically and topologi-
cally, death-birth graphs yield strong topological explanations, phylogenetic
trees lead in unification, and trait networks offer mixed, moderate strengths.
Because no single model or mode dominates, explanatory strength in CET is
to a large extent question relative. I argue for a pluralistic approach in CET:
rather than competing, these three explanatory axes (“modes of explanation”)
complement one another and suggest a roadmap for future hybrid network
models that could combine these complementary virtues and invite closer col-
laboration between CET modellers and philosophers of science.

Keywords: cultural evolution, network, explanation, topological, causal, uni-
fication

1 Network Models in Cultural Evolution: a pluralist introduction

Cultural Evolutionary Theory (CET) attempts to understand the dynamics and diversity of cul-
ture from an evolutionary perspective. Small-scale transmission of cultural variants results in
complex population structures, represented by trees and dynamic networks of cultural infor-
mation. Cultural change can be regarded as a process resembling genetic change. This analogy
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gave rise to a wide range of conceptual and methodological tools, often adapted from evolu-
tionary biology. Pioneers in the field were authors like Boyd & Richerson (1988) and Cavalli-
Sforza & Feldman (1981), but ever since they laid the foundations of CET, much work has been
added to the framework — last but not least from philosophy of science, see e.g. Mesoudi (2011),
Lewens (2015; 2020), Sterelny (2017), Boon et al. (2021), and others.

Recent years saw an increase in the use of graph- and network models within the interdis-
ciplinary research programme of CET. Cultural traits rarely travel in single, well-defined line-
ages, instead they branch, fuse, hitch-hike, and recombine across social communities. However,
the CET-network approaches available on the market make the impression of one big patch-
work, rather than a unified framework. In the study of biological evolution, evolutionary graph
theory rose in popularity since the works of Nowak (2006) or Doolittle (2009), but it is not clear
which of its models can fully or partly be applied to CET. I think that four families of models
now dominate the CET literature:

1. Phylogenetic Trees (e.g. Evans et al. [2021]), which reconstruct historical descent

among languages, tool traditions, or ritual practices.

2. Death—Birth Graphs (e.g. Smolla & Akgay [2019]), which simulate coping and turnover

in structured populations.

3. Interaction Graphs (e.g. Marjieh et al. [2025]), which record who interacts with whom

in real time and with what frequency.

4. Trait Networks (e.g. Janson et al. [2021]), which map compatibility or incompatibility

relations among the cultural variants themselves.

Each type of model carries an (often implicit) promise of explanation, yet the promises
differ. A tree aims to explain a given distribution of traits by revealing common ancestry. A
dynamical Death—Birth simulation explains by showing how local coping-relations between
agents aggregate into long-run population level outcomes. An Interaction-Graph explains by
pinpointing the detailed causal pathways along which information flows in network and where
communities can be distinguished from each other in such a network. Finally, a trait network
explains by exposing the internal logic of cultural systems that makes some variants co-occur.
Across CET, recurring explanatory patterns can be grouped into several canonical® research
questions (see Mesoudi 2011), for example:

Q1.Why do historical lineages branch as they do, and when is apparent similarity due to

reticulation (horizontal transfer/borrowing across lineages) rather than descent (vertical

transmission along lineages)?

3 1 call these questions “canonical” in a modest sense: they recur (often implicitly) across the whole CET
network literature and are broad enough to cover the dominant explanatory uses of the four model families dis-
cussed here



Q2.Why does a trait fix (or fail to fix) with a particular probability and timescale under a
given population structure?

Q3.Why do diffusion paths take the routes and speeds we observe, e.g. who influences
whom, when, and how strongly?

Q4.Why do similar macro-patterns recur across domains, and could a common modelling
schema account for different families of phenomena?

Q5.Why do specific structural invariants, i.e. network features (e.g., degree heterogeneity,
modularity) robustly shape evolutionary outcomes?

I think that these questions do not invite a single style of answer. Some (Q2, Q3) target
causal-mechanical understanding: identifying components, activities, and organizational rela-
tions that are difference-making for adoption, fixation, and flow of cultural traits. Others (Q4)
call for unificatory payoffs: showing how a common modelling schema, with reusable variables
and update rules, subsumes diverse cases. Still others (Q1, Q5) hinge on topological consider-
ations, where structural properties—branching vs. reticulation, constraint networks among
traits, or invariants like modularity—constrain what outcomes are reachable at all.

What aspects and features of cultural evolution do which particular network models explain,
and how well do they do that? Philosophers of science have long debated what counts as a
“scientific explanation”. Relevant for us are:*

a. Causal-mechanical accounts (Craver 2016) demand an organised set of parts and activ-

ities that produce the phenomenon.

b. Unification accounts (Kitcher 1989) emphasize theoretical economy: one formal pattern
explaining many cases.

c. Topological or structural accounts (Huneman 2018; Kosti¢ 2020) contend that a phe-
nomenon can be explained by the structural properties® of a network’s shape, independ-
ent of mechanism.

The approach I suggest in this paper is deliberately pluralist: I map question types to model

families and assess their explanatory contributions in three complementary explanatory modes,

4 I center on causal-mechanical, unificatory, and topological explanations because each comes with clear, op-
erational criteria that can be applied directly to CET network models: (i) organized components/activities/relations
that are difference-making and testable via admissible interventions (causal-mechanical), (ii) schema reuse that
confers explanatory economy across cases (unificatory), and (iii) structural invariants of networks that constrain
reachable outcomes (topological). Other accounts of explanation are either folded into this triad or unsuitable for
uniform scoring here. In particular, interventionism is treated as the diagnostic within causal-mechanical explana-
tion rather than as a separate mode; dynamical and computational approaches specify how systems evolve or are
computed, but presently lack domain-general, necessary-and-sufficient evaluative conditions comparable to the
three modes above; and mathematical/optimality/universality explanations were developed for different targets
and do not map cleanly onto the heterogeneous network cases I evaluate. The focus on these three therefore reflects
operational tractability and fit to CET’s network repertoire, not a denial of the value of the other approaches.

5 I use “structural” in a neutral, practice-oriented sense; nothing in what follows presupposes a strong meta-
physical thesis about the ontological status of mathematical entities.



without presuming a single “best” model across all questions — or a single “best” theory of
(scientific) explanation. No single explanatory mode captures all the virtues of all network
models, yet each mode has clear normative standards that a model either meets, partly meets,
or fails to meet. My core aim is to provide a transparent yard-stick for judging how well each
of four CET network models explains what, having a certain Why-question in mind, and show
that no single philosophical account captures all their strengths.

To achieve this, Section 2 anchors each network type in the causal-mechanical (“mechanis-
tic”) sense of Craver (2016) and Bechtel (2020). I ask: Does the model provide a structural-con-
nectivity map of real causal interactions? Does it contain causal motifs, i.e. recurrent subgraphs
that act as “mechanism sketches” (sensu Piccini & Craver [2011])? Does it support Bechtelian
hierarchical decomposition, linking lower-level coping or interaction events to higher-level cul-
tural phenomena?

Note that a model with, for example, a modest mechanistic profile may still deliver strong
unificatory or topological payoffs, since all profiles are question-relative. Thus, section 3 intro-
duces two non-mechanistic modes of explanation. I argue that “unificatory” explanations also
matter because CET borrows tree and population-genetic formalisms wholesale from biology,
promising cross-domain (as well as CET in-domain) economy. Likewise, “topological expla-
nations” matter because the very promise of network science is that topology constrains behav-
iour, and Kosti¢’s (2020) counterfactual criterion makes that promise testable. Both, unificatory
and topological explanations are not reducible to causal-mechanical explanations.

Section 4 presents the operational rubric. For each of the three modes and four network
types I define and justify High/Moderate/Poor/None scores, flagging the intrinsic affordances
and supplement load for each explanatory mode. A model scores “High” in a specific mode
when its basic structure already fulfils that mode’s criteria; “Moderate” when some auxiliary
assumptions suffice; “Poor” when extensive supplementation would be needed; and “None”
when the mode is simply irrelevant. I connect my rubric to the rationale of Woodward (2025).

Section 5 synthesises the results into a pluralist thesis: explanatory power of the four CET
network models is question-relative. If a researcher wants manipulable levers to change cultural
outcomes, mechanistic strength is decisive. If she seeks theoretical economy across domains,
unificatory strength dominates. Finally, if she aims to show why certain outcomes are inevitable
given network structure, topological strength comes in. I outline a research agenda for possible
hybrid network models that could integrate these virtues, inviting collaboration between CET
modellers and philosophers of science.



2 Four Prominent Network Approaches in Cultural Evolutionary Research: a
causal-mechanical analysis

In general, “culture” has a social structure (sensu Blau [1989]), i.e. traits bear structured rela-
tionships that dynamically influence transmission and selection, shaped by individual interac-
tions and higher-level “agents” like institutions or firms. Graphs and networks (where nodes
typically represent agents or traits and edges their interactions or relations) offer a natural way
to capture this evolving structure. Different network types yield distinct long-run patterns of
innovation diffusion, convention formation, and population change, raising the question: Which
of these network models truly explain cultural phenomena, and which merely describe them?
To answer this question, however, we must clarify what “truly explain” means, and the answer
is pluralistic.

For now, we ground our analysis of the four network types (Phylogenetic Trees, Death—
Birth Graphs, Interaction Graphs, and Trait Networks) in Carl Craver’s (2016) theory of how
network models explain phenomena and in Bechtel’s (2020) notion of “higher and lower”
mechanisms. Both authors can be situated in the “mechanist” (or causal-mechanical) tradition
in philosophy of science, i.e. a mode of explanation, which treats explanations as accounts of
how organized parts and activities produce a phenomenon.

We begin with the causal-mechanical account because it provides a widely used, network-
friendly baseline—components, activities, and organization as difference-making structures—
against which unificatory and topological virtues can be assessed without implying a single
“best” model. Although I begin with causal-mechanical explanation, this reflects its role as a
familiar entry point in discussions on scientific explanations—not any priority claim; the three
explanatory modes are complementary and non-ordered, and the assessment is ques-tion-rela-
tive throughout. It functions as the baseline vocabulary and diagnostic, and is the most widely
used explanatory framework in adjacent sciences (cognitive neuroscience, systems biology).
Craver’s (2016) articulation specifically targets network models (components, activities, and
organization as difference-making structures) making it a natural entry point for CET network
analyses. The causal-mechanical provides a “lower bound” on explanatory standing (can the
model identify components/activities/organization that are difference-making?). The later sec-
tions then evaluate complementary virtues, i.e. unification (schema reuse across domains) and
topology (structural invariants constraining outcomes), that are not reducible to the mechanistic
checklist.

Craver (2016) argues that whether, and how, network models explain depends not on fea-
tures of graph theory or network analysis per se but on the explanandum under consideration,
1.e. how the model is applied to a concrete system, and which kinds of relations (causal, math-
ematical, correlational) are treated as explanatory. He then distinguishes three distinct explan-
atory roles that any graph representation can play:



1. Structural Connectivity: When a network’s nodes and edges accurately map the real
causal pathways of a system, the model locates which components and interactions are
difference-makers for the observed outcome.

2. Causal-Motif Connectivity: Certain subgraph patterns (or motifs) act as mechanism pro-
totypes, illustrating how repeated configurations of parts and relations systematically
generate the explanandum.

3. Functional Connectivity: Graphs that capture statistical or correlational patterns among
elements serve as evidence for causal hypotheses but, without further causal interpreta-
tion, do not by themselves reveal how or why an effect occurs.

According to Craver, only those models fulfilling 1. and/or 2. can genuinely explain; models
confined to 3. remain at the level of description or merely support mechanistic claims. It is not
surprising that Craver (being a strong proponent of the causal-mechanical theory of scientific
explanation) concludes that network analysis in general advances scientific investigation (by
uncovering modules, hubs, correlational patterns), but:

“[...] does not seem to fundamentally alter the norms of explanation. The problem
of directionality and the puzzle of correlational networks signal that, at least in
many cases, the explanatory power of network models derives from their ability to
represent how phenomena are situated, |...], in the causal and constitutive struc-
tures of our complex world.” cf. Craver 2016: 707.

For him, explanatory power of networks arises when network representations are embed-
ded within causal-mechanical frameworks or constrained by ontic commitments that distin-
guish mere description from genuine explanation.®

Additionally, Bechtel (2020) articulates how mechanisms consist of parts (at a “lower”
level) whose operations together yield a phenomenon (a “higher” level mechanism). Im-
portantly, these parts can themselves be decomposed into sub-mechanisms, yielding a hierarchy
of levels, each defined only relative to the mechanism in question.

2.1. Phylogenetic Trees

A phylogenetic tree represents each cultural lineage as a node and each directed edge as a hy-
pothesised descent relation, and its specific target feature is the historical branching order and
timing of divergence events among those lineages. Just like biological organisms or species,
cultural artifacts, languages and techniques stand in genealogical relationships. To trace such

¢ In contrast to Craver (2016), who demands constitutive part—whole mapping for explanatory status, Wood-
ward (2025) requires only interventionist dependence, tolerating macro-level or abstract variables so long as they
are difference-makers. Both reject purely correlational “functional connectivity” graphs as explanatory per se and
insist on specifying what relations count as difference-making for the explanandum.



historical pathways of cultural transmission, CET researchers frequently apply so called phylo-
genetic methods, which originate in the life sciences (palacontology or paleogenetics). They
aim to reconstruct the possible evolutionary history of recent forms, traits and cultural patterns,
as Figure 1 depicts. For a recent overview, see Evans et al. (2021).

Phylogenetic trees adapt methods from biological systematics to reconstruct how cultural
traits branch over time, depicting a uni-directional flow of information through vertical descent.
In CET, researchers often employ Bayesian inference with Markov Chain Monte Carlo to sam-
ple from the vast space of possible trees, using metrics such as the Consistency Index (CI) and
Retention Index (RI) to assess homoplasy and the fit between data and topology.’” They further
incorporate models like Pagel’s DISCRETE to estimate trait-gain and loss as a Markov process,

calibrating divergence dates by combining linguistic evidence with archaeological data (see e.g.

" The consistency index (CI) quantifies the level of homoplasies (analogies, i.e. convergent evolution or diffu-
sion) in a tree. It is given by CI = % , where m denotes the minimum number of changes required to get from the

pool of ancestral traits to the explanandum, which consists in the recent distribution and o is the observed number
of changes. A CI close to 1 indicates minimal homoplasy. It is to be preferred against a tree with a lower CI as an
explanation according to the principle of parsimony. The retention index (RI) on the other hand measures how well

the tree retains the structure of the data while accounting for reversals and parallel changes, given by RI =

5-0S . . oo
% , Wwhere maxsS stands for the maximum possible steps to get from the ancestral to the recent trait distri-
bution, oS is the number of observed steps and minS the number of minimal steps required. Higher R/ values

suggest that the tree preserves much of the original data structure, making it a useful measure despite homoplasy.



Mace & Holden 2005). There are extensions to the classical “Tree framework”, deepening and
introducing tools for statistical analysis, see e.g. Bortolussi et. al. (20006).

Despite concerns, see e.g. Maynard Smith (1986), that cultural borrowing (i.e. horizontal
transmission) violates the strictly branching structure, many scholars have shown that phyloge-
netic methods remain robust in their application to sociocultural systems. Biological systems
themselves exhibit reticulation (e.g. bacterial gene transfer), and advances like “partially retic-

ulated” tree models accommodate both splits and occasional cross-links (Gray et al. 2007; Ev-

)

Figure 1: Two hypothetical phylogenetic trees illustrate two competing theories
about the ancestral relationships among three recent individuals, each characterized

by two traits (y) Solid lines indicate vertical transmission, while dashed lines rep-

resent horizontal transmission. Mutation events occur at each branching point (solid
dots), where one trait transforms into another. The tree on the right requires fewer
mutation events compared to the tree on the left, suggesting a more parsimonious
evolutionary path.

ans et al. 2021). In practice, CET phylogenies successfully model long-term vertical dynamics
- such as the spread of pastoralism among Bantu languages (Mace & Holden 2005) - while
quantifying the impact of horizontal exchange on tree accuracy and inferred adaptive trajecto-
ries.

Within the mechanistic framework however, phylogenetic trees occupy no strong explan-
atory role. On Craver’s (2016) taxonomy, I think they are not structural-connectivity maps -
because their branches depict hypothesised historical ancestry rather than contemporary causal
interactions. They could be seen as causal-motif schemas, but in a very weak sense, as they
contain no recurrent, difference-making subgraphs beyond generic bifurcations. Mechanistic
accounts explain a phenomenon by showing how currently organised parts and activities pro-



duce it. They therefore function chiefly as functional connectivity devices: they organise cor-
relational evidence for common descent that must be supplemented by an explicit transmission
model before a full causal explanation emerges.®

Bechtel’s (2020) notion of hierarchical mechanisms reinforces this verdict. The ancestor—
descendant links in a tree are temporal successions, not part—whole compositions; a lineage is
not made of its branches in the mechanistic sense but merely follows them in time. Conse-

quently, phylogenies remain, from a mechanistic standpoint, poor causal representations.

2.2. Death-Birth Graphs

A death—birth graph represents each agent as a node and each directed edge as a potential coping
route, and its specific target feature is the population-level fixation or loss of traits as shaped
by local replacement dynamics (see Nowak 2006 or Smolla & Akgay 2019). It models (cultural)
microevolution by treating individuals as nodes on a network and transmission as a “death—
birth” update: at each timestep, one node is removed and replaced by an offspring of a randomly
selected neighbour, with edge weights wj; giving the probability that node i copies node j, see
Figure 2. Smolla & Ak¢ay (2019) extend earlier work (Cantor & Whitehead 2013; Al-
len & Nowak 2014) by allowing networks to rewire dynamically (offspring either inherit or ran-
domly form social ties) and by comparing generalist ecosystems (high fitness = large repertoire
size) to specialist ones (high fitness = peak proficiency). Their simulations show that dense
networks foster high proficiency at the cost of diversity, whereas sparse networks produce the
opposite, illustrating how individual learning dynamics aggregate into population-level cultural

8 Interestingly, the so-called “Causal Bayes Nets” approach, see e.g. Pearl (2000), bears some structural resem-
blance to “Tree like” approaches, but a key difference between the two lies in explanatory focus. Both frameworks
impose directed, acyclic graph structures, ensuring that information flows only in one direction: from parent to
descendant in trees, and from cause to effect in Bayesian networks (where even the terms of causal “parent” or
“descendant” are being used). Phylogenetic models estimate likelihoods of descent relationships, while Bayesian
networks quantify conditional probabilities of causal effects. This distinction clarifies why phylogenetic trees are
not causal models, even though they superficially resemble Bayesian networks. Causal Bayes Nets have explicitly
suggested in the literature to represent mechanisms, see Gebharter (2014). Phylogenetic trees operate at a macro-
level, explaining historical lineage relationships rather than causal mechanisms and describe which traits descend
from which ancestors but do not specify how traits are transmitted or why they succeed. The focus is on historical
reconstruction rather than actual process.



structures. The population dynamics are defined by the likelihood proportional to the edge
weight, which determines whether an offspring node copies an adjacent node.’

When mapped onto Craver’s (2016) taxonomy, I think that Death—Birth graphs serve as
structural connectivity models, since their edges represent actual difference-making transmis-
sion routes (specific agents either coping or not coping other agents), and they can also play a
causal-motif role by isolating simple replacement loops or fixation pathways as mechanism
schemas that explain trait persistence or loss. They go beyond mere functional connectivity by
pinpointing the “causal skeleton” of cultural change through coping.

Death—Birth graphs are dynamical networks. They start with individual agents and coping edges
(lower-level parts). Aggregating update dynamics over time yields fixation or diversity patterns
at the population level: a genuine higher-level phenomenon produced by organized lower-level

operations. Because the same update rule applies recursively inside any sub-population, these

Figure 2: Two stages (ti/t2) of a dynamic Death-Birth graph, consisting of six indi-
viduals. At t; the nodes randomly copy each other (c). At t», one node (dashed-
white) is chosen to “die” and is replaced by a new one (“birth”). The interesting
question is then, how the newcomer connects to (copies) which other nodes, and
this depends on its trait repertoire in comparison to that of its neighbours.

® Smolla & Akgay (2019) assume that cultural traits are acquired through: (1) asocial learning (innovation),
where traits are learned independently, with success probability g , or through (2) social learning (coping), where
traits are copied based on their frequency in the individual's neighbourhood. The probability is quadratic to em-
phasize "complex contagion", given as: P;(t) = s X p? , where p, is the proportion of neighbours exhibiting the
trait, and s is the coping success rate.
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graphs naturally support a “Bechtelian hierarchy”: agent-level replacement loops nest within
neighbourhoods, which nest within the whole population.

However, since the edges only depict coping relations and each round only one node “dies”
and is replaced by a new one (“birth), any causal analysis (of what actually happens in the real
world) is quite limited, especially when compared to the next network model.

2.3. Interaction Graphs & Community Discovery

In contrast to Death-Birth graphs, where the edges always depict coping, another type of net-
work is much more flexible when it comes to the interpretation of the evolving edges. Interac-
tion graphs represent agents as nodes and their social interactions - collaboration, imitation,

competition, signalling, etc. - as edges, often with dynamic rewiring to reflect evolving ties. Its

T

Figure 3: Two stages (ti/t) of an Interaction Graph’s evolution. Nodes
represent agents, edges (a,...,e) represent any kind of repeatable interac-
tion. At t; the population can clearly be divided into two distinct group-
ings via “community discovery” (dashed circles), based on the (triangle)
edge distribution; at t; however, this pattern changes, since one edge dis-
appears, and a new one is added.

specific target feature is the real-time diffusion pathways and emergent community structure:
how patterns of interaction generate, sustain, or reorganise cohesive cultural subpopulations,
see Figure 3. Community-discovery algorithms like TILES (Rossettietal. 2017) identify
“nearly decomposable” clusters in those networks (high internal vs. low external interaction
rates, see Simon 2002) that correspond to cohesive cultural subpopulations, which can then be
grouped hierarchically via modularity optimization. For example, Youngblood et al. (2021)
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used hundreds of artist-collaborations from the DISCOGS database to trace electronic music
styles. Extensions that integrate network-based game theory (Baraghith 2023) or experimental
melody diffusion (Marjieh et al. 2025) further show how local reproduction and selection bi-
ases, mediated by topology, drive cultural complexity (and even aesthetic outcomes).

Seen through Craver’s (2016) framework, interaction graphs unambiguously satisfy the
structural-connectivity criterion: every edge records a real, non-idealized, difference-making
social interaction. Because common subgraphs (triangles, dense cores, bridging ties) recur
across the network and reliably shape processes like diffusion, cohesion, or innovation, the
model also realises the causal-motif role, providing mechanism schemas rather than mere cor-
relations. Thus, interaction graphs offer the granular causal structure required for a fully mech-
anistic explanation of a social network of specific agents, not just functional description.

Bechtel’s (2020) hierarchy requirement deepens this assessment. Concrete interactions
form the lowest level; community-detection algorithms compress them into cohesive groups on
the “meso-level”, and those groups can themselves organise into higher-order institutions or
conventions. Each layer is defined only relative to the mechanism beneath it, “core” versus
“peripheral” members within a community, for instance, precisely the context-dependent,
multi-level decomposition Bechtel identifies as the hallmark of hierarchical mechanisms. Ac-
cordingly, Interaction Graphs deliver the richest mechanistic hierarchy among the four CET
network types.

2.4. Trait Networks or “Cultural Systems”

A trait network maps individual cultural variants as nodes and their compatibility or incompat-
ibility as weighted edges, and its specific target feature is the self-organisation of trait reper-
toires: how internal compatibility patterns drive the formation, stability, and diversity of coher-
ent cultural packages. Trait networks abstract away from agents to focus on how traits co-evolve
within a “cultural system” (Buskell et al. 2019; Janson et al. 2021). Often, these relationships
represent compatibility, incompatibility or mutual synergy. Therefore, Trait-Networks are
mostly complete graphs, where every node is connected to all other nodes, because every trait
has a specific relationship to any other one, see Figure 4.!° Pars pro toto, let us take a closer
look at a recent Trait-Network model by Janson et al. (2021). In their model, cultural agents are
more likely to adopt traits that are consistent with their existing beliefs and values (i.e., their
trait repertoire). The authors evaluate network effects on cultural evolution based on three cri-
teria: diversity, consistency and stability. After drawing a compatibility matrix (see footnote 3),

19 In principle, such a complete %raplll cotildlalso be depicted as a compatibility matrix (w). It would look as
10 -1 1
-1 -1 0 -1°
11 -1 0

follows in the case of Figure 4: w = where 0 indicates, that the trait is neutral towards itself.

12



a logistic function is established to determine the coping probability.!! A filtering mechanism
makes sure that only traits are copied, which fit in an agent’s existing repertoire. Population
size (N) and number of traits (7) are fixed, which already provide two strong idealisations of
the model. The outcome of the simulation measures every agent’s repertoire size as well as
internal consistency (i.e. the average compatibility within a repertoire)'2. Trait filtering deter-
mines which traits are adopted based on their compatibility. Janson et al. (2021) transform a
static compatibility matrix into a dynamical cultural-system mechanism: each edge weight w;

(compatible = +1, incompatible =—1) modulates the probability that an agent will copy, display,

-1

Figure 4: A Trait network, where the nodes stand for
traits and the edges represent compatibility (1) or incom-
patibility (-1). Since two traits are always either compat-
ible or incompatible, such a graph is often complete.

or even invent trait j given its current repertoire. Those probabilities, fed into repeated social
interactions and population turnover, generate higher-level outcomes such as repertoire size,
internal consistency, cultural diversity, and system stability.

From Cravers (2016) perspective, this means the graph furnishes genuine structural con-
nectivity: each edge is a difference-maker for the process of adoption. Self-reinforcing triads,
cycles of mutual (in)compatibility serve as causal-motif schemas that explain why certain clus-
ters of traits flourish while others are blocked. Bechtel’s (2020) hierarchy requirement is like-
wise satisfied: trait-level compatibilities (lower level) feed into individual learning filters; re-
peated filtering operations aggregate into meso-level cultural niches; and those niches yield
macro-level outcomes such as repertoire size, internal consistency, and long-term diversity.
Thus, although trait networks lack agent-to-agent pathways, they still instantiate a multi-level
mechanism in which organised part-relations (trait compatibilities) generate higher-level cul-
tural structure, warranting a moderate mechanistic score in our evaluation.

where s is the average compatibility score of a new trait with

! Their function takes the form: p(s) = ﬁ ,

an agent’s repertoire and £ is the strength of preference for compatibility. Population size (V) and number of traits
(T) are fixed.

12 Internal consistency (/) is given by: I = éZi jerWij , where R is the set of traits already in an agent’s rep-

ertoire and 7/ and j are two traits.
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Remember that Craver’s taxonomy tells us that any network type will only truly explain if it
identifies the relevant parts and activities (structural connectivity) and/or isolates the core dif-
ference-makers or motifs (causal-motif). Among the four network types, Interaction Graphs
score highest in this category, because they explicitly model very specific agent-to-agent inter-
actions, allowing for a detailed causal reconstruction of how cultural traits spread within struc-
tured populations. Unlike other models, they can incorporate complex dyadic interactions, mak-
ing them well-suited for mechanistic explanations of cultural transmission on the level of cul-
tural microevolution. By contrast, Phylogenetic Trees rank very bad in this category, since they
are only to a very limited extend about mechanisms, but about a reconstruction of macro-level
long term patterns of evolutionary descent. This is so, not because they are “macro-level de-
scriptions”, but because their branches represent historical succession rather than manipulable
interactions. However, Phylogenetic trees have other explanatory strengths, as I will show in
the next section.

3 Alternative Modes to measure Explanatory Power of CET Network Models

These four network approaches in CET do play complementary roles. Each model highlights
different aspects of cultural evolution rather than competing for a single "true" explanation. I
think that this requires engaging with different notions of “explanation” found in the philosophy
of science literature, see e.g. Sprenger & Hartmann (2019). There is more than one mode of
scientific explanation and that explanatory power very likely is not a singular concept but varies
depending on the kind of explanation under consideration.

Section 2 assessed each CET network through a mechanistic lens, asking whether its struc-
ture maps real causal interactions (Craver 2016) and nests into multi-level mechanisms (Bechtel
2020). Yet mechanistic insight is only one way to “explain” a phenomenon. In this third section,
I broaden the yard-stick by introducing three further, non-exclusive modes of scientific expla-
nation: Unificatory explanations show how a single argument pattern compresses diverse cases
and fopological explanations derive the phenomenon as a mathematically necessary conse-
quence of the network’s shape. Re-examining the four network models under these lenses will
reveal explanatory virtues that remain invisible when we focus solely on mechanism, and will
set the stage for the pluralist synthesis in Section 5.

3.1. Unification as a Mode of Explanation

Another explanatory approach I want to look at is unificatory explanation, based on Kitcher
(1989), where an explanation is considered strong if it integrates diverse phenomena under a
small set of theoretical principles. Kitcher's main thesis is that explanation is the process of
describing a wide variety of phenomena using as few argumentative patterns as possible repeat-
edly. Kitcher’s unificatory account regards an explanation as strong to the extent that it sub-
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sumes diverse phenomena under a minimal set of argument patterns or “explanatory argu-
ments”. The key measure is unificatory strength, which has two dimensions:

a. Breadth: How many distinct explananda are covered by the same schema?

b. Depth: How many layers of theory (surface patterns versus deeper principles) are linked
by that schema?

Network models that perform well in this category should provide broad formal frameworks
that systematize multiple aspects of cultural evolution under a single, coherent modelling ap-
proach. They would not only explain specific cases of cultural transmission but also provide a
generalizable structure that applies across different domains, such as language evolution, tech-
nological diffusion, or the spread of social or political norms. The degree of unification
achieved by a model depends on how well it reduces the number of independent assumptions
needed to explain diverse cultural processes. In this sense, unificatory explanations favour mod-
els that reveal deep structural similarities across different cultural domains.

Following Humphreys’ (2001) distinction between analytic and synthetic understanding,
note that I treat “unification” not as a strict alternative to causal-mechanical or topological ex-
planation but as a synthetic virtue that can accompany either. Analytic understanding targets
difference-making causal organization; synthetic understanding integrates results by showing
how diverse cases fall under a reusable modelling schema. A network model may be causally
informative and unificatory at once (and likewise topologically informative and unificatory),
because unification concerns scope and schema-reuse, not a distinct “kind” of causal or struc-
tural relation. In other words, “unificatory power” tracks a cross-cutting explanatory virtue: the
extent to which an explanatory schema is portable across cases and supports understanding by
integrating diverse phenomena under a common pattern of reasoning. In this sense, both causal
explanations and topological explanations can be unificatory. Topological explanations unify
disparate systems insofar as the same structural property constrains outcomes across otherwise
different causal realizations. Likewise, causal explanations can unify by identifying a common
cause or common causal organization across heterogeneous realizers (as Humphreys [2001]
stressed). The unificatory dimension therefore concerns scope and schema-reuse, not a distinct
kind of dependence relation “over and above” causal or structural dependence.

We should further note here that the whole CET research enterprise as such, already pro-
vides a high level of unificatory potential, since it aims to reveal deep structural similarities
between biological and cultural transmission/proliferation. For a more detailed investigation,
see Baraghith & Feldbacher-Escamilla (2021). As a consequence of this, one should expect that
all models used in the CET domain (whether they are network-like or not) bear a certain degree
of unificatory explanatory power. A model has high unificatory potential if it successfully in-
tegrates diverse cultural phenomena under a coherent theoretical framework.

1. 1think that Phylogenetic Trees perform best in this category, since they impose a struc-
tured evolutionary history onto cultural traits, providing a broad, systematic account of
how different traditions/languages/technologies (or biological genes!) have evolved.
Their unificatory strength makes them a popular framework in historical linguistics and
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comparative anthropology, for a representative overview, see Evans et al. (2021). They
yield a clear “one schema” account of macro-level cultural history — once stablished, it
is even hard to see how else evolutionary history in any cultural domain should be for-
mally depicted.

2. Death-Birth Graphs provide moderate unification, they partially unify cultural trans-
mission with population (replacement) dynamics, offering a generalizable statistical
framework that can be applied across different domains.

3. Trait Networks unify cultural evolution through internal trait compatibility structures,
making them useful for explaining why some cultural elements persist while others are
filtered out. However, because they focus on internal interactions rather than external
transmission, their unificatory scope is more constrained than that of Trees.

4. Likewise, Interaction Graphs warrant a moderate unificatory potential. While they are
to a large extend data-driven and context sensitive, and do not capture large-scale his-
torical lineages like phylogenetic trees, they offer a super-flexible modelling framework
applicable across diverse cultural domains. Whether tracking the diffusion of musical
styles, opinions, or norms, they employ a shared structure - agents interacting through
edges - and common transmission rules, such as conformist or payoft-biased learning.
This reuse of formal patterns aligns with Kitcher’s notion of explanatory unification.
Marjieh et al. (2025) exemplify this by applying Interaction Graphs to musical evolu-
tion, demonstrating that selection and reproduction processes can be generalized across
cultural forms. Further, Baraghith (2023) shows that even evolutionary game theory can
be integrated into Interaction Graphs, extending their theoretical reach. Although they
are limited in macrohistorical scope, their adaptability and structural coherence justify
their classification as having moderate unificatory potential.

3.2. Topological Explanations
Last but not least, we must consider a mode of explanations, that appeared only quite recently
in the literature: Topological Explanations. They directly address our general topic and have
been shown to be a distinct mode of explanation that is not reducible to mechanistic explana-
tions.'?

Already Huneman (2018) offered an account of what he called “structural explanations”:
an explanation is structural when it leverages mathematical propositions about entire

13 Kosti¢ & Khalifa (2022) show that topological explanation can (in certain cases) be autonomous from mech-
anism. They reject the “Mechanistic Interpretation of Topological Explanation” (MITE), which says a network
explains only if its nodes and edges denote the parts and interactions of an underlying mechanism that is counter-
factually responsible for the effect at a higher level. Their counter-example (the correlation between motif fre-
quency (MF3) in the macaque cortex and long-range functional connectivity) meets MITE’s node-and-edge re-
quirements but fails the responsibility and inter-level tests, yet still explains: varying MF3 would vary the func-
tional links. Hence network shape alone can carry explanatory force, reinforcing the case for a topological mode
distinct from, though sometimes overlapping with, mechanistic explanation.
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model-classes to directly entail empirical phenomena, rather than merely representing or simu-
lating underlying mechanisms. Not all structural explanations are “pure.” Some (like e.g. Berg-
mann’s rule) remain partly embedded in specific mechanisms, giving rise to a continuum from
mechanism-dominant to purely structural explanations. Within the structural family, one can
further distinguish sub-families (topological, algebraic, statistical), though these often overlap
(e.g. graph matrices unify topology and algebra). This clarifies and systematizes a wide array
of non-mechanistic explanations across the sciences. Furthermore, Hunemans idea of an “ex-
planatory continuum” is in deep alignment with our idea of the scoring measure of explanatory
strength, which we develop in the next section. This measure relies on Woodward (2025), who
also worked on topological explanations. His two-folded approach will be considered in detail
in section 4.

Kosti¢ (2020) then formulated a “general theory of Topological Explanation” that states
exactly how a property of a graph (the explanans A) genuinely explains a physical or dynamical
phenomenon (the explanandum B). Three conditions must hold:

a. Facticity: both A and B are true of the target system.

b. Counterfactual dependence: had A not obtained, B would not have obtained; this can be
vertical/global (e.g. small-worldness) or horizontal/local (e.g. high communicability be-
tween two nodes).

c. Explanatory perspectivism: the choice of global versus local counterfactual must match
the scientist’s “why-question.”

Because A is structural and B behavioural, the dependency is asymmetric; reversing ex-
planans and explanandum would fail these criteria, so no causal machinery is needed to block
symmetry. Topological explanations thus differ from mechanistic ones: they prove that a phe-
nomenon is mathematically necessary given network shape rather than tracing how parts and
activities produce it. The same three-part template applies to any network domain, including
(some) CET graphs. Kosti¢ (2020) provides a crisp, criterion-based alternative to mechanistic,
or unificatory accounts, made for network models. His facticity, counterfactual, and perspec-
tival requirements tell us when “the shape of the graph alone” explains, and why that explana-
tion remains one-directional.

Can we conclude that all of the network models have high explanatory strength in the top-
ological mode, simply because they are all networks? In what follows, we will show that this
is not the case, because the models differ in this respect, as well:

1. Death-Birth Graphs score high, since in a death—birth model the network is specified
by an adjacency matrix /¥ whose entries w;; give the probability that individual i copies
individual j. Global topological properties, such as isothermality (all nodes have equal
“temperature”, i.e. incoming weight), are therefore concrete, verifiable facts of W. Em-
pirically, one can measure interaction frequencies in a real community and instantiate
the matrix directly. Thus, the topological property has the potential to be factive in the
sense Kosti¢ requires. Concerning “counterfactual dependence”, things get a little com-
plicated: Remember that Kostic (2020) makes a distinction between “vertical-” and
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“horizontal dependence”. The Isothermal Theorem (Nowak 2006) states that on any iso-
thermal graph, that realizes a Death-Birth Process, the fixation probability of a neutral
mutant equals //N. If the same population becomes non-isothermal (by adding a star
hub or varying degrees), the fixation probability shifts to 7’ # 1/N and may be ampli-
fied or suppressed depending on heterogeneity. So, the Counterfactual here would be:
“Had the network not been isothermal (e.g. had we introduced a high-degree hub) the
global fixation probability would have changed.” Concerning the horizontal mode, we
must understand that for a specific node i, fixation probability m; is a function of its
temperature or degree. Proven results (Allen & Nowak 2014) show that reducing i’s de-
gree lowers ;. Counterfactual: “Had node i possessed fewer outgoing links, its mutant
would have had a lower chance of taking over.” Because these dependencies are purely
derived from graph-theoretic theorems - not empirical correlations - I think they satisfy
Kosti¢’s necessitating requirement to a high extent. Death—birth graphs ground their
explanans in verifiable network facts and link those facts to fixation phenomena via
proven counterfactual theorems.

. Phylogenetic trees are not easy to evaluate in the topological mode. On the one hand,
they provide a very concrete structure: branching topology, branch lengths, and standard
summary indices such as consistency and retention indices (see footnote 5). It is also
important, however, that a phylogeny is typically inferred rather than given: the evolu-
tionary process generates a branching structure as lineages split, and CET studies nor-
mally report posterior support for clades. In that sense, “facticity” is satisfied only con-
ditionally: the explanans is factual given acceptance of the best-supported tree (and the
uncertainty attached to it). On Kosti¢’s vertical/global reading, phylogenies can support
topological explanations. For example, coalescent theory connects global tree-shape
properties such as imbalance (A) to statistical properties of divergence-time patterns (B)
under neutral evolution; in idealized settings, the counterfactual “Had the tree been
more balanced, divergence times would have been less clustered” is mathematically
tractable (cf. Pybus & Harvey 2000), though the strength of the result depends on sub-
stantive assumptions. On the horizontal/local reading, the relevant counterfactuals con-
cern parts of a single tree (nodes, branches, subtrees). A change in local branch shape
or length does not by itself entail a change in a particular trait event. It becomes differ-
ence-making only given additional modelling, i.e., an explicit character/transmission
model that links trait histories to the tree (and, where appropriate, an explicit borrow-
ing/reticulation model). Ordinary cultural “horizontal transmission” (borrowing across
lineages) is therefore not an instance of Kosti¢’s “horizontal” dependence within a fixed
tree. Rather, it motivates moving beyond strict trees to reticulated structures (“phyloge-
netic networks”). For these reasons (conditional facticity, moderate vertical/global
counterfactual support under idealizations, and only limited horizontal/local depend-
ence without added character models), I think that Phylogenetic trees yield moderate
explanatory strength in the topological mode.
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3.

In an Interaction Graph, the adjacency matrix records observed social contacts - who
talks, trades, collaborates - during a fixed time-window or over repeated observations.
Topological descriptors such as global small-world coefficient o (ratio of clustering to
path length), modularity (strength of community structure) or local communicability
(weighted sum of all walks between two nodes) are therefore true properties of the ac-
tual network once the data are collected. Thus, interaction graphs totally satisfy Kosti¢’s
facticity requirement: the explanans A is an empirically grounded feature of the very
system whose behaviour we seek to explain. Interaction Graphs also support necessitat-
ing counterfactuals. At the global level, diffusion theory (e.g. Newman 2018) proves
that networks with high ¢ exhibit mean adoption times Ty;rf « logN remove the long-

range shortcuts and Ty inflates to linear growth, so “Had o been low, the norm would

have spread far more slowly.” At the local level, network-control results (see Gu et al.
2015) show the energy E;; required to steer a signal from node i to j is inversely propor-
tional to communicability C;;; hence “Had communicability between “sender” node A
and “receiver” node B been lower (e.g. if several intermediary ties were absent) the
energy (or time) needed to transmit the cultural variant would have been higher, making
evolutionary adoption unlikely.” Because one and the same graph can answer a global
“Why did trait X spread so fast in the population?” or a local “Why exactly those two
nodes?” question simply by shifting focus, interaction graphs satisfy the perspectival
requirement in a strong sense. No extensive recalibration is needed; the explanatory
leverage flows from structural properties already contained in the data. For that reason,
Interaction Graphs align exceptionally well with Kosti¢’s facticity, dependence, and
perspectivism requirements and justifiably receive a high rating on the topological axis.
Finally, Trait Networks consist of nodes that are themselves cultural variants and edges
weighted by whether any two traits are judged to be compatible or incompatible. Alt-
hough the resulting adjacency matrix is a perfectly legitimate network, it seldom meets
Kosti¢’s three conditions for a robust topological explanation. Facticity: many compat-
ibility scores are researcher-assigned or inferred from sparse co-occurrence data, so the
topological property A (e.g. a dense compatibility clique or a high average edge weight)
is at best conjecturally true of the target system. Jansson et al.’s (2021) simulations
reveal strong empirical dependencies regarding counter factuality. Global: Lowering
mean compatibility c reliably shrinks culture size and raises internal consistency. Local:
Flipping a single edge from +1 to —1 can block a trait’s entry into an agent’s repertoire.
These links are demonstrated by simulation, not proved to be mathematically necessary,
no general theorem shows that lowering a specific compatibility weight (or re-wiring
trait links) necessarily changes the probability that those traits co-occur in repertoires.
Finally, while Kosti¢’s perspectival requirement could in principle be met - one might
ask a local question (“Why do traits X and Y cluster?”) or a global question (“Why is
the cultural system fragmented?”) - the answer would still hinge on unproven empirical
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regularities rather than structural necessity. Because all three criteria are therefore sat-
isfied only weakly, if at all, trait networks earn a poor score on the topological axis.

4 Can Explanatory Power be Quantified?

So far, I spoke of “high”, “moderate” or “poor” explanatory strength without really providing
a rationale for such a measure. It is time to address this issue. In the philosophical literature,
various attempts have been made to quantify explanatory power, most of which rely on proba-
bilistic approaches. Some of the key contributions include McGrew (2003), Schupbach &
Sprenger (2011), and Crupi & Tentori (2012), who propose measures of how much an expla-
nation increases the probability of observed data. Other accounts, such as those developed by
Myrvold (2003) or Lange (2004), link explanatory power to unification by analysing how well
explanations “link up” or “screen off” unnecessary complexity.

However, due to significant challenges in developing a universal quantitative measure ap-
plicable to all three explanatory approaches, see e.g. Gebharter & Feldbacher-Escamilla (2023),
I shall introduce a comparative ranking system here, which is based on “explanatory strength
in a particular context” rather than absolute explanatory power. Instead of a numerical measure,
I categorize the explanatory strength of each network model as (1) high, (2) moderate, (3) poor,
or (4) none, depending on how well it aligns with the respective explanatory mode. This ranking
system allows for a somewhat meaningful comparative analysis while avoiding the assumption
that a single quantitative measure can be uniformly applied across all types of explanation, for
1 do not see how to construct such a universal measure at this point.

My four-level scale is not a popularity poll or a record of how researchers usually deploy
a model. Instead, it rates how naturally the representation, as specified, satisfies each explana-
tory mode’s own normative standards from a philosophy of science perspective. I want to in-
troduce two concepts, which govern these scoring:

(a) Intrinsic Affordance and

(b) Supplement Load.

What do I mean with that? Intrinsic Affordance refers to the explanatory resources a mod-
elling framework provides by virtue of its built-in structure alone. It is what one can read
straight off the representation - its variables, formal relations, and theorems that follow without
further assumptions. If a model, as specified, already meets the normative criteria of a given
explanatory mode, it does so by intrinsic affordance. Supplement Load is the additional empir-
ical, conceptual, or mathematical work required to bring the same model up to those criteria
when the intrinsic affordance is insufficient. This load may take the form of new data for cali-
bration, auxiliary hypotheses, parameter fitting, intervention studies, or bespoke proofs that
connect the model’s formalism to the explanandum. For example, a network model has high
mechanistic affordance if its nodes and edges already pick out manipulable entities and inter-
actions (e.g., an interaction graph whose edges are observed). It has high unificatory affordance
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if its formalism can be applied across a vast number of different (evolutionary) domains.

For example, consider interaction networks for Q3 (diffusion routes/speeds). Their intrin-
sic affordance is a direct representation of exposure structure (who interacts with whom). The
main supplement load is (i) specifying/estimating a transmission rule (copying, payoff, pres-
tige) and (i1) adding time-resolution or exposure controls to separate influence from homophily.
By contrast, population-update graphs for Q2 (fixation under structure) intrinsically supply both
a population structure and an explicit update rule. Their supplement load is typically parameter
calibration (mutation and bias) rather than additional structural machinery. Finally, phyloge-
netic trees for Q1 (branching vs. reticulation) intrinsically provide lineage structure, but require
a non-trivial supplement load to become explanatory: an explicit character/transmission model
and (when relevant) tests for borrowing/reticulation.

Recently, also Woodward (2025) defined an interventionist counterfactual approach on
network explanations: a network truly explains if outcome E depends on the pair (N, D), where
N is structure and D is dynamics under ideal interventions (Schema W). He distinguishes IDE
(Independent-Dynamics Explanation that needs both N & D) from rare DTE (Distinctively-
Topological Explanations, where N alone suffices). Woodward’s W highlights that any network
explanation hinges on two ingredients: the connectivity structure N and a dynamics D. In my
rubric, the structural features supplied by the model itself -its N- correspond to an intrinsic
affordance, while the additional dynamical assumptions required to make the explanation run
(D) constitute the typical supplement load. Thus, Woodward’s framework can be seen as a
further conceptual rationale for separating what a representation gives “for free” from the extra
work needed to reach full explanatory force.

In judging explanatory strength, the higher the intrinsic affordance and the lighter the sup-
plement load, the stronger the score. I define a scoring rule:

e High: (N,D) is intrinsically specified enough to test W with minimal supplement load
(IDE satisfied; or DTE for the “topological mode” when N alone constrains E).
e Moderate: One of N or D is intrinsic; the other needs light-moderate supplements (data,
parameters, identification) to test W.
e Poor: Only a proxy for N or D is intrinsic; testing W needs heavy supplementation or
yields only indirect probes.
e None: The mode is inapplicable (no route to W even with substantial supplementation).
In short, Woodward’s W turns my ‘intrinsic affordances’ into the (N,D) a model already
gives you, and ‘supplement load’ into what must be added to complete (N,D) so that depend-
ence of E on the right ingredients can be probed via ideal interventions.
The following Table 1 makes clear what I mean by the particular ranking categories for the
respective modes of scientific explanation.

Causal Unificatory Topological
Mechanical
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High The model depicts step-by- The model integrates multi- | The model pinpoints a factive
step processes by which ple sub-phenomena (e.g., network property A (global or
traits are transmitted or different cultural domains, local) and demonstrates that
transformed (e.g., imitation multiple timescales) under a | explanandum P counterfactu-
biases, social interactions, single theoretical scheme ally depends on A: “Had A not
feedback loops). that reduces complexity. obtained, P would not have

obtained.” Both verti-
cal/global modes are matched
to the explanatory question;
asymmetry is secured.

Moderate | Some mechanistic details are | It captures some aspects of It quantifies a relevant topo-
present (e.g., rules for who cultural phenomena (e.g. logical metric (degree distri-
copies whom), but larger language) under a unified bution, betweenness, modular-
causal structures remain approach, but other phenom- | ity, etc.) and links it to P, but
black-boxed or simplified. ena (e.g. social norms) re- the link is only empirical or

main outside its scope. heuristic; the counterfactual
necessity is not rigorously
shown, or the perspectival fit
(global vs. local) is left im-
plicit.

Poor The model is mostly descrip- | It is narrowly applicable, ad- | Topology is present only as
tive or correlational, lacking | dressing just one phenome- descriptive ornament: metrics
real insight into why or how | non or scenario. are reported or visualised, yet
the mechanism unfolds. The no attempt is made to argue
causal pathways described that P follows necessarily
are very limited. from A, nor is any counterfac-

tual tested.

None The model is not at all about | No attempt is made to unify | The model is non-topological:
mechanism. It may track anything beyond the single it either lacks a network repre-
cultural frequencies or his- scenario in question; the sentation or treats the graph
torical lineage without any model is purely domain-spe- | purely as a timeline or intui-
attempt to specify the causal | cific or historically particu- | tive taxonomy.
steps behind adoption or lar and cannot be general-
transmission. ized.

Table 1: A comparative ranking system (high; moderate; poor; none) for each of the three explanatory modes.
Note that “unificatory power” is non-exclusive: it can be exhibited by causal-mechanical and/or topological ex-
planations, and measures schema portability and integrative scope, not a separate kind of explanatory relation.

5 Explanatory Pluralism and a Roadmap for Hybrid CET Models

Section 2 and 3 showed that Phylogenetic trees, Death-Birth Graphs, Interaction Graphs and
Trait Networks each emphasize different aspects of cultural evolution: lineage-based inher-
itance, network-driven diffusion, individual interactions/group formation or trait compatibility
relations. By systematically mapping them onto different modes of explanation, we highlighted
their respective contributions and limitations, providing a roadmap for researchers to select the
most appropriate model for their specific analytical goal.
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As already mentioned in section 1 of this paper, there are several canonical questions that
CET researchers ask, e.g.:

Q1.Why do historical lineages branch as they do, and when is apparent similarity due to
reticulation (horizontal transfer/borrowing across lineages) rather than descent (vertical
transmission along lineages)?

Q2.Why does a trait fix (or fail to fix) with a particular probability and timescale under a
given population structure?

Q3.Why do diffusion paths take the routes and speeds we observe, e.g. who influences
whom, when, and how strongly?

Q4.Why do similar macro-patterns recur across domains, and could a common modelling
schema account for different families of phenomena?

Q5.Why do specific structural invariants, i.e. network features (e.g., degree heterogeneity,
modularity) robustly shape evolutionary outcomes?

In this sense, choosing a particular explanatory mode over another is choosing a type of
answer, given the specific type of question. The ranking (high, moderate, ...) indicates the qual-
ity of a possible answer that the explanatory mode is able to deliver. A single explanatory mode
does not cover the full problem space. Causal-mechanical analysis is the right tool when we
need difference-making components, activities, and organization (notably Q2—Q3). Unificatory
virtues matter when we aim for schematic economy across domains (Q4): the same model ap-
plies to many different domains. Topological virtues become decisive where structural invari-
ants constrain what outcomes are reachable (Q5) or when we must distinguish convergence
from real descent (Q1). The pluralist rubric makes explicit when a model’s explanatory force
depends on minimal vs. heavy add-ons (e.g., transmission models for trees; dynamic rules for
interaction graphs).!*

Having these questions and our ranking of (question-relative) explanatory strengths in
mind, we can finally put all pieces together. What follows is a profiled characterisation of each
model’s explanatory contributions by question and mode; the framework is pluralist by design
and eschews any aggregation into a single “best” model. Table 2 summarizes how the network
models in CET align with the modes of scientific explanation, given the metric we introduced
in section 4. Ratings are question-relative and mode-specific; they are not additive or compara-
ble across modes, and no overall ranking (“total explanatory strength”) is implied.

Phylogenetic Death-Birth Interaction Trait Net-
Trees Graphs Graphs works

4 Our question-relative, multi-mode rubric treats CET models as inferential blueprints in Massimi’s (2022)
sense—tools for exploring possibility space and for fixing reliable, cross-perspectival claims about modally robust
phenomena—so pluralism here is principled rather than eclectic.
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Causal -
Mechanical

Q25 Q3

Poor

Focuses on large-
scale descent and his-
torical branching /
classification. Offers
only minimal causal
pathways.

No recurrent differ-
ence-making motifs.

Moderate

Includes local re-
placement rules
(birth/death), provid-
ing an idealized
mechanism.

Coping edges become
causal routes once
calibrated, replace-
ment loops serve as
motifs, but the link to
empirical mecha-
nisms requires sup-
plements.

High

Model shows de-
tailed social interac-
tions (who imitates
whom, at what
rate), edges trace
real causal interac-
tions; recurring tri-
ads/bridges act as
mechanism motifs
about how cultural
traits spread or sta-
bilize.

Moderate

Spells out how
traits interact
(compatibility,
synergy), but
omits who carries
them; partial view
of the underlying
causal processes,
when dynamical
cultural systems
are constructed
based on their
compatibility.

Unificatory

Q4

High

Unifies broad histori-
cal and linguistic data
under a single genea-
logical framework,
giving a clear “one
schema” account of

Moderate

Unifies local birth—
death processes
across multiple con-
texts, but less capable
of unifying all cul-
tural phenomena un-

Moderate

Can unify various
short-term or small-
scale social pro-
cesses in a single
interaction model,
but doesn’t neces-

Moderate
Unifies diverse
intra-cultural trait
relationships
within one con-
ceptual map (syn-
ergy, conflict),

vergence times; how-
ever, proofs assume
neutral models and
ignore reticulation, so
dependence is partial
and global only.

necessarily raises or
lowers fixation prob-
ability; both vertical
and horizontal coun-
terfactuals are mathe-
matically proved.
Both perspectives are
possible.

pose either a global
or a local question
and obtain a coun-
terfactual answer
from the same, un-
modified interaction
graph.

macro-level cultural der a single large- sarily tie into deep clarifying large
history. scale framework. historical or macro | sets of co-evolv-
patterns. ing traits.
Topological Moderate High High Poor
Indices (Con- Facticity: the model’s | Highly supply Compatibility ma-
Q1; Q5 sistency/Retention) adjacency matrix is global metrics trices yield com-
2 and tree diameter are | explicit; graph prop- | (clustering, plete graphs with
topological properties | erties are well-de- small-world coeffi- | weighted edges,
of the inferred tree. fined. cient ) and local but many weights
More imbalanced Isothermal Theorem metrics (communi- | are hypothetical
trees necessarily raise | shows that altering cability). or researcher-as-
variance in trait di- degree heterogeneity | Researcher can signed.

No general theo-
rem shows that al-
tering a compati-
bility weight ne-
cessitates a
change in co-oc-
currence; results
are simula-
tion-based.

Table 2: Summary of the comparison between the four types of network models and the three prominent modes
of scientific explanations.

What can we learn from this overall comparison? Table 2 makes one point with stark clarity:
no CET network model scores “High” across all three explanatory axes. Mechanistic power
clusters in interaction graphs; unificatory power in phylogenetic trees; topological necessity in
death-birth- and interaction graphs. These asymmetries are not accidents of current practice but
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reflections of intrinsic affordances: what a representation gives us for free and what must be
supplemented.

The literature on network explanation often frames a contrast between mechanistic and
topological explanation. My paper adds a further point: unificatory scope cuts across that con-
trast. Mechanistic models can unify when they identify common causal organization across
heterogeneous realizers, and topological models can unify when the same structural constraint
explains outcomes across systems with different causal details. Making this orthogonality ex-
plicit helps explain why “pluralism” in CET is not just a patchwork of models, but a structured
division of explanatory labor. Philosophically, that pattern underwrites explanatory pluralism
in two ways:

First, it shows that explanation is question relative. The researcher who asks “Which edges
must we rewire to prevent misinformation?” needs the high mechanistic affordance of interac-
tion graphs; the historical linguist, who asks “Can one bifurcation schema cover language, tool,
and ritual evolution?” exploits the unificatory breadth of trees; the theorist who asks “Why is
rapid diffusion inevitable in this topology?” turns to topological necessity. Different research
questions (Q1-Q5) activate different columns of Table 2.

Second, the table reveals complementarity, not competition. A model that scores “Moder-
ate” mechanistically but “High” unificatory can be paired with one that shows the opposite
profile, yielding a composite explanation that is both manipulable and predictive.

This motivates a research agenda for hybrid network models: e.g. multiplex frameworks
that, for example, embed empirically grounded interaction layers inside lineage trees, such as
Youngblood et al.’s (2021) approach, which combines an Interaction-Graph model (micro),
with a Phylogenetic Tree model (macro). Ideally, building and evaluating such hybrids will
benefit from collaboration between CET modellers, who supply the empirical structure, and
philosophers of science, who clarify which explanatory virtues are being added and at what
supplement load."

By showing that explanatory modes are complementary rather than competing, this paper
clarifies why methodological diversity in CET is not a weakness but a resource, and how that
diversity can be marshalled strategically. My framework is designed for two audiences: CET
practitioners, who might need guidance matching scientific why-questions to model families
and the minimal add-ons needed for defensible explanatory claims, and philosophers of science,
who gain a do-main-grounded testbed for comparing explanatory virtues without collapsing
them into a single metric. My tool functions like a diagnostic matrix: it does not rank models

15 This roadmap is intentionally schematic: the aim is to mark promising integration points and the kinds of
supplementary assumptions they would require, not to propose a fully worked modelling programme within the
present word limit of this paper.
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overall; it helps researchers (a) choose a model that fits their question, and (b) report limits and
supplement load explicitly.

In short: I do not claim to locate a single, best theory of explanation for networks. Instead,
I provide a principled way to measure which explanatory virtues each CET network model

delivers and to decide, case by case, which virtues matter for a given scientific question.
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