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Right for the Wrong Reasons 
Common Bad Arguments for the Correct Answer to the Monty Hall Problem 

 
Don Fallis (Northeastern University), Peter J. Lewis (Dartmouth College) 

 
Abstract: The answer to the Monty Hall Problem that many people—including some well-
trained mathematicians—initially give is incorrect.  Nonetheless, there is little controversy 
among mathematicians and philosophers about what the correct answer is.  However, many 
different arguments have been given for this answer.  Although Bayes’s Theorem is the gold 
standard for carrying out probabilistic inferences, many mathematicians and philosophers try to 
give shorter and more intuitive arguments for the correct answer to the Monty Hall Problem.  
Unfortunately, as we argue in this paper, an unconscionably large number of these shortcut 
arguments involve bad reasoning.  Thus, many people end up believing “the right answer for a 
wrong reason.”  Moreover, since these arguments only yield the correct answer in a very 
restricted range of cases, people learn techniques that lead to false conclusions when they are 
applied to many other probabilistic inference problems.  In this paper, we identify three distinct 
bad arguments for switching in the Monty Hall Problem that are commonly given by quite 
reputable sources.  We show that these arguments yield incorrect answers when applied to slight 
variations of the Monty Hall Problem.  And we identify exactly where each argument goes 
wrong.  We argue that it would be much better to simply teach people to ask how likely the 
evidence is given each of the hypotheses. 
 
Keywords: Bad Arguments, Bayes’s Theorem, Counterexamples, Monty Hall Problem, 
Probabilistic Inferences. 
 

If you want to think like a mathematician here, you don’t 
just care about finding the answer.  You care about 
developing general problem solving tools and techniques. 

— 3Blue1Brown 
 

Rigorous teachers complain that the incomplete 
demonstration is an intellectual fraud. 

— Roy Sorensen 
1. Introduction 

There are many questions about the world that we are uncertain about, such as what the 

weather will be like tomorrow or who will win the next election.  And it is rare that we can find 

evidence that definitively settles the matter.  But we can often at least reduce our uncertainty on 

the basis of evidence.  Unfortunately, humans are notoriously bad at such reasoning (see, e.g., 

Casscells 1978, Titelbaum 2022, 170).  One example that has received a lot of attention in the 
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popular imagination is the Monty Hall Problem.1  The intuitive answer that most people initially 

give to this puzzle is incorrect.  Even many well-trained mathematicians have vehemently 

defended this wrong answer (see Rosenhouse 2009, 24-25).2   

Given the controversy that it has generated, numerous mathematicians and philosophers 

have undertaken to explain the reasoning that yields the correct answer to the Monty Hall 

Problem.  The gold standard for carrying out probabilistic inferences is, of course, Bayes’s 

Theorem (see, e.g., Weisberg 2019, ch. 8, Titelbaum 2022, ch. 4).  However, many quite 

reputable sources have tried to give shorter and more intuitive arguments for the correct answer 

to the Monty Hall Problem.  Unfortunately, as we argue below, an unconscionably large number 

of these shortcut arguments (e.g., Bruce 2001, Gardner 2001, Clark 2002, Devlin 2003, Sorensen 

2003, Winkler 2004, Nihous 2009, Rosenthal 2009, Martin 2011, Kahn Academy 2012, 

Champkin 2013, Li 2013, Pynes 2013, Talwalkar 2013, Goldberg 2014, Gessell 2015, Hájek and 

Hitchcock 2016, Brilliant 2018, Huemer 2018, Stewart 2019, Cook 2020, Adams 2022, Bollobás 

2022, Titelbaum 2022, University of Illinois 2023, Bellos 2024) involve bad reasoning.3  To use 

Terrence Horgan’s (1995, 219) nice phrase, many well-trained mathematicians and philosophers 

continue to defend “the right answer for a wrong reason.”  Thus, to use Roy Sorensen’s (2016b, 

133) nice phrase, they lure us into “following the wrong path to the right conclusion.” 

The problem with these shortcut arguments is that they fail to take into account all of the 

relevant evidence in the Monty Hall Problem.  In order to carry out probabilistic inferences 

correctly, it is critical to ask how likely our total evidence is given each of the various 

 
1 See Rosenhouse 2009, ch. 1 for a history of the Monty Hall Problem.  It has even been featured 
in films, such as 21, and on television series, such as Brooklyn Nine-Nine, Numb3rs, and 
Survivor. 
2 Even Paul Erdös reportedly got it wrong (see Rosenhouse 2009, 54-55, Bollobás 2022, 182).   
3 Admittedly, the shortcut arguments given in film and on television tend to be even worse. 
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hypotheses.  This question is asked implicitly in Bayes’s Theorem.  And some mathematicians 

and philosophers (e.g., Bradley and Fitelson 2003, Rosenthal 2008, Rosenhouse 2009, Pawitan 

and Lee 2024) make it very explicit in their discussions of the Monty Hall Problem.  However, 

the shortcut arguments do not ask this question.  As a result, even though they give the correct 

answer in the Monty Hall Problem, they give the wrong answer in many other probabilistic 

inference problems.  So, people can easily end up with false beliefs if they apply such reasoning 

more broadly. 

In sections 2 and 3, we describe the Monty Hall Problem and offer good (and fairly 

intuitive) reasoning that leads to the correct answer (the Favoring Procedure).  In sections 4 and 

5, we give a common argument for the correct answer (the Wi-Phi Probability Concentration 

argument) and a counterexample to it (the Random Monty variation) that a few critics have 

proposed.  We also identify exactly where the argument goes wrong.  In section 6, we give two 

other common arguments for the correct answer (the Strengthened Probability Concentration 

argument and the Wi-Phi Probability Swap argument) which avoid the Random Monty 

counterexample.  However, in section 7, we show that there are other counterexamples to all 

three arguments (the Lazy Monty and Unequal Monty variations) and we identify exactly 

where the arguments go wrong.  Finally, in section 8, we show that the bad reasoning embodied 

in these arguments can lead to errors in a wide variety of probabilistic inference problems.  

 

2. The Monty Hall Problem 
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The Monty Hall Problem was first posed by Steve Selvin (1975) in a mathematics 

journal.4  But its most famous incarnation was when it appeared in Marylin vos Savant’s (1990) 

widely-read magazine column (distributed in many weekend newspapers): 

 

The Monty Hall Problem: 

“Suppose you’re on a game show, and you’re given the choice of three doors. Behind one 

door is a car, behind the others, goats. You pick a door, say #1, and the host, who knows 

what’s behind the doors, opens another door, say #3, which has a goat. He says to you, 

“Do you want to pick door #2?” Is it to your advantage to switch your choice of doors?” 

 

As it stands, this statement of the puzzle (from vos Savant’s column as posed by Craig F. 

Whitaker) is a bit ambiguous.  First, while it specifies that there are three possible locations for 

the car, it does not say anything about how likely each of those locations is to conceal the car.  

Second, while it specifies that the host Monty opens a door—different from the door that you 

initially chose—and reveals a goat, it does not say that Monty was guaranteed to do so.  Third, 

even if we assume that Monty must open a door, must not open the door that you initially chose, 

and must not reveal the car, this statement does not specify how Monty chooses when he still has 

a choice about which door to open.5  Finally, while it specifies that, after he opens a door and 

 
4 The Monty Hall Problem is structurally equivalent to the older Three Prisoners Problem (see 
Morgan et al. 1991, 284, Gardner 2001, 283, Rosenhouse 2009, 14). 
5 Even if he is not allowed to open the door that you initially chose, Monty can always open a 
door to reveal a goat.  Since there are two goats, there is guaranteed to be a goat behind at least 
one of the two remaining doors.  And if you initially chose the door with the car behind it, Monty 
has a choice about which door to open. 
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reveals a goat, Monty gives you the opportunity to switch to the last remaining door, it does not 

say that Monty was guaranteed to do so.6   

Moreover, we get different answers to the question of whether you should stick or switch 

depending on how these ambiguities are resolved (see Bar-Hillel 1989, Nickerson 1996). 

However, the ambiguity of this statement of the Monty Hall Problem is not a serious 

difficulty.  Logic and probability puzzles are supposed to be fun.  It would be tedious to always 

have to state them in a formal language (such as first-order predicate logic).  Thus, puzzles are 

often presented in ways that fail to eliminate absolutely all ambiguity.  Even so, it is usually clear 

how we are intended to resolve these ambiguities (see, e.g., Devlin 2010).  For example, it is 

reasonable to assume that the events described in the puzzle occur every time that the game is 

played.  Namely, we can assume that Monty always opens a door, that it is never the door that 

you initially chose, that there is always a goat behind it, and that Monty always gives you the 

opportunity to switch.7  In addition, whenever we are not told that different possibilities have 

different probabilities, the default is to assume that they are equally likely.  Thus, we can assume 

that the car is initially equally likely to be behind each of the three doors.  Also, we can assume 

that, when he has a choice about which door to open, Monty chooses at random (i.e., each door is 

equally likely to be chosen).8 

 
6 Maybe Monty only gives you this opportunity when the car is behind the door that you initially 
chose (see Rosenhouse 2009, 113). 
7 After all, since we are explicitly told that Monty knows where the car is, it is reasonable to 
assume that he uses this knowledge.  Of course, we shouldn’t assume that you initially choose 
the very same door each time or that Monty opens the very same door to reveal a goat.  The 
doors are clearly just numbered in the statement of the puzzle for the sake of convenience. 
8 For example, if he has a choice between two doors, Monty might flip a coin.  Of course, he 
would need to conceal from the contestant that he is flipping a coin.  Learning whether or not 
Monty has a choice might reveal information about the location of the car. 
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Once we make these assumptions, there is a unique answer to the Monty Hall Problem.  

And this is the puzzle that most people are trying to solve.9 

 

3. The Correct Answer to the Monty Hall Problem 

The intuitive answer to the Monty Hall Problem is that it doesn’t matter whether you 

stick or switch.  Once Monty opens a door and reveals a goat, two possible locations for the car 

remain.  Those two locations started out equally likely.  And it seems that they are still equally 

likely after Monty opens a door and reveals a goat.  While you learn that the car is not behind the 

door that Monty opens, it doesn’t seem that you learn anything that distinguishes between the 

two remaining doors.  After all, Monty was guaranteed to be able to reveal a goat no matter 

where the car is. 

Moreover, there is a pretty sensible sounding procedure that yields the result that the car 

is equally likely to be in each of the two remaining locations.  This procedure can be found in the 

episode of TED Ed—a collection of fun, informative, and largely reliable educational videos—

on the “Frog Riddle” (Abbott 2016).  This procedure can be applied to almost any probabilistic 

inference problem, including the Monty Hall Problem. 

 

The TED Ed Procedure: 

Step 1:  Assign initial probabilities to each hypothesis in a set of mutually exclusive and 

jointly exhaustive hypotheses. 

 

 
9 As vos Savant (1991, 347) notes, “nearly all of my critics understood the intended scenario, and 
few raised questions of ambiguity” (see also Bar-Hillel 1989, 354). 
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In the Monty Hall Problem, at the outset, there are three possible locations for the car (door #1, 

door #2, and door #3) and they are equally likely.  Thus, since the probabilities have to add up to 

1, each of these hypotheses has an initial probability of 1/3. 

 

Step 2:  Eliminate any hypothesis that is inconsistent with the evidence. 

 

In the Monty Hall Problem, the evidence (viz., Monty opening door #3 and revealing a goat) 

rules out the hypothesis that the car is behind door #3. 

 

Step 3:  Normalize the probabilities of the remaining hypotheses (so that they stay in the 

same ratios but add up to 1). 

 

In the Monty Hall Problem, each of the remaining hypotheses has a probability of 1/3.  So, they 

both get adjusted up to 1/2.  Thus, it doesn’t matter whether you stick or switch. 

However, the intuitive answer to the Monty Hall Problem is incorrect.  And the TED Ed 

Procedure involves bad reasoning.10  Namely, it is not guaranteed to take into account 

everything that the evidence tells us.  Basically, using this procedure, we run the risk of violating 

Rudolf Carnap’s (1947, 138) “Principle of Total Evidence.”  In the Monty Hall Problem, the 

evidence doesn’t just eliminate one of the hypotheses.  The evidence also favors one of the two 

remaining hypotheses over the other.  We can see this by asking ourselves how likely the 

 
10 The TED Ed Procedure yields the wrong answer in the Frog Riddle as well (see, e.g., 
Jongerius 2017, Volpi 2019). 
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evidence is given each of the hypotheses (see, e.g., Bradley and Fitelson 2003, Rosenthal 2008, 

6, Rosenhouse 2009, 82-84, Pawitan and Lee 2024, 243-44). 

If the car were behind door #1 (the door that you initially chose), there is a 50% chance 

that Monty would open door #3 and reveal a goat.  This is because Monty has a choice about 

whether to open door #2 or door #3 and he chooses at random.  If the car were behind door #2, 

there is a 100% chance that Monty would open door #3 and reveal a goat.  This is because Monty 

has no choice about which door to open (since he is not allowed to open the door that you 

initially chose).  If the car were behind door #3, there is, of course, a 0% chance that Monty 

would open door #3 and reveal a goat. 

Since door #1 and door #2 started out equally likely, and since the evidence favors door 

#2 over door #1, once Monty opens door #3 and reveals a goat, the car is more likely to be 

behind door #2 than door #1.  So, you should definitely switch to door #2. 

We will call this the Favoring Procedure.  In general, if the hypothesis that the evidence 

favors was at least as likely as any other hypothesis to start with, then that hypothesis is more 

likely than the other hypotheses given the evidence.11  (And of course, if the evidence does not 

favor one hypothesis over another and those hypotheses were equally likely to start with, then 

those hypotheses are equally likely given the evidence.)  Admittedly, this procedure does not tell 

us how much more likely that hypothesis is.  But statements of the Monty Hall Problem 

(including vos Savant 1990) typically only ask whether the car is more likely to be behind the 

door that you initially chose or the last remaining door.   

 
11 For example, suppose that we start off thinking that it is equally likely that the urn in front of 
us is predominantly filled with red balls or that it is predominantly filled with green balls.  If we 
pick out a ball at random and it is red, it is now clearly more likely that the urn is predominantly 
red than that it is predominantly green. 
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Unlike Bayes’s Theorem, the Favoring Procedure provides a very intuitive argument for 

switching.  In addition, the Favoring Procedure explains where people go wrong when they 

arrive at the intuitive answer that it doesn’t matter whether you stick or switch.12  People tend to 

assume that the evidence (viz., Monty opening door #3 and revealing a goat) does not distinguish 

between the two remaining doors.  The Favoring Procedure shows that this assumption is 

false.13  

Now, there are some similar puzzles where we do get the correct answer by using the 

TED Ed Procedure.  For example, consider a case (the Random Monty variation) that is 

exactly like the original puzzle except that Monty always chooses at random which door—of the 

two that you did not initially choose—to open.14  Thus, while Monty actually opens a door and 

reveals a goat, he might have opened a door and revealed the car.  As in the original puzzle, the 

TED Ed Procedure yields the result that, after Monty opens door #3 and reveals a goat, each of 

the remaining hypotheses has a probability of 1/2.  Thus, it doesn’t matter whether you stick or 

switch.  

We can see that this is the correct answer in the Random Monty variation by using the 

Favoring Procedure.  In Random Monty, the evidence does not favor any of the remaining 

hypotheses.  Since he always chooses at random which door to open, Monty is just as likely to 

 
12 Thus, even though the Favoring Procedure is not significantly more formal than the 
reasoning that leads to the intuitive answer, it is clear that we should trust the former over the 
latter. 
13 Basically, people are mistakenly applying the principle of indifference.  See Weisberg 2019, 
sec. 18.2, Titelbaum 2022, 145-49 for discussions of the principle of indifference.   
14 As noted above, in the original puzzle, when you initially chose the door with the car behind it, 
Monty chooses at random which of the other two doors to open.  But in Random Monty, Monty 
chooses at random which of the other two doors to open regardless of whether or not you 
initially chose the door with the car behind it.  See Rosenhouse 2009, 57-75 for an analysis of 
this sort of variation. 
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open door #3 and reveal a goat if the car is behind door #1 as he is to open door #3 and reveal a 

goat if the car is behind door #2 (a 50% chance in each case).  So, since door #1 and door #2 

started out equally likely, if Monty opens door #3 and reveals a goat, the car is still just as likely 

to be behind door #1 (the door that you initially chose) as it is to be behind door #2.  

However,  even though the TED Ed Procedure yields the correct answer in Random 

Monty, we end up with “the right answer for a wrong reason.”  The TED Ed Procedure still 

involves bad reasoning.  In particular, even though it yields the correct probabilities for the three 

possible locations for the car in this case, we never verified that the evidence does not favor any 

of the remaining hypotheses.  And as Merrilee Salmon (1995, 70) notes, “the conclusion of a 

fallacious argument might be true, but the premisses of the argument are not good reasons to 

believe that this is so.” 

The Favoring Procedure establishes that you should switch in the Monty Hall Problem. 

But if we do want to determine exactly how much more likely the car is to be behind door #2 

than door #1, we just need to revise the TED Ed Procedure slightly.  In particular, in the 

Revised TED Ed Procedure, we simply replace Step 2 with: 

 

Step 2*:  Multiply the probability of each hypothesis by the likelihood of observing the 

evidence if that hypothesis is true. 

 

In the Monty Hall Problem, the new probability that the car is behind door #1 is 1/6 = 

1/3×1/2.  The new probability that the car is behind door #2 is 1/3 = 1/3×1.  And the new 

probability that the car is behind door #3 is 0 = 1/3×0.  (Thus, the hypothesis that the car is 

behind door #3 gets eliminated).  And once we normalize these probabilities in Step 3, we find 
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that the probability that the car is behind door #1 is 1/3 and the probability that the car is behind 

door #2 is 2/3.15 

Thus, the correct answer to the Monty Hall Problem is that the car is twice as likely to be 

behind the door that Monty did not open rather than the door that you initially chose.  So, you 

should definitely switch to the last remaining door. 

The Revised TED Ed Procedure is equivalent to using Bayes’s Theorem.16  Of course, 

Bayes’s Theorem is not very intuitive to many people.  Hopefully, the Revised TED Ed 

Procedure is somewhat more intuitive. 

 

4. The Wi-Phi Probability Concentration Argument for Switching 

Although there have been exceptions in the past, the vast majority of mathematicians and 

philosophers now agree that switching is better than sticking in the Monty Hall Problem.  But 

 
15 The Revised TED Ed Procedure is a generalization of what Rosenthal (2008, 6) calls the 
“proportionality principle.”  It gives the correct answer for Random Monty as well.  But we 
leave that as an exercise for the reader. 
16 See Cross 2000, 322, Devlin 2005, Rosenhouse 2009, ch. 3, Hájek and Hitchcock 2016, 15-16, 
Brilliant 2018, Huemer 2018, 3 for direct applications of Bayes’s Theorem to the Monty Hall 
Problem.  To see that the Revised TED Ed Procedure is equivalent to applying Bayes’s 
Theorem, let 𝐶! for 1 ≤ 𝑖 ≤ 3 denote the event that the car is behind door 𝑖.  According to Bayes’s 
Theorem, P(𝐶!|𝐸) = 	

"($|&!)×"(&!)
"($|&")×"(&"))"($|&#)×"(&#))"($|&$)×"(&$)

 .  Step 2* of the Revised TED Ed 
Procedure is the same as calculating the numerator of this formula (for each of the three doors). 
And Step 3 is the same as dividing by the denominator.  There are other procedures that are also 
equivalent to applying Bayes’s Theorem.  For example, we can take into account our total 
evidence by constructing a tree diagram of the Monty Hall Problem (see Weisberg 2019, ch. 1).  
Alternatively, we can take into account our total evidence simply by eliminating hypotheses that 
are inconsistent with the evidence as long as we are careful to use a rich enough partition of 
hypotheses.  For example, for each possible location and for each possible piece of evidence, we 
might include their conjunction (e.g., “The car is behind door #1 and Monty opens door #3 to 
reveal a goat”) as a hypothesis (see Horgan 1995, 214-15, Titelbaum 2022, 177-82).  But all of 
these procedures involve weighting the prior probabilities of the hypotheses regarding the 
location of the car by the likelihood of the evidence given these hypotheses (since P(𝐶!&𝐸) =
	P(𝐶!) × P(𝐸|𝐶!)) just like in Step 2* of the Revised TED Ed Procedure. 
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instead of resorting to Bayes’s Theorem, mathematicians and philosophers often try to give a 

more intuitive explanation of this answer.  Their shortcut arguments for switching tend to pay 

more attention to the evidence than the TED Ed Procedure.  But as we argue below, they often 

still don’t pay enough attention to the evidence.  In particular, they don’t ask the critical question 

of how likely the evidence is given each of the hypotheses.  Thus, they end up with “the right 

answer for a wrong reason.”  A notable example is an episode of Wi-Phi—another collection of 

fun, informative, and largely reliable educational videos—on “The Monty Hall Problem” 

(Gessell 2015). 

Since the probabilities of the hypotheses always have to add up to 1, the 1/3 probability 

that was initially assigned to the door that Monty opens has to go somewhere.  In the TED Ed 

Procedure, it gets split evenly between the two remaining hypotheses.  But there are clear 

differences between those two hypotheses.  Most notably, one hypothesis is about a door that 

Monty could have opened and the other is about a door that Monty could not have opened (viz., 

the door that you initially chose).  So, maybe the 1/3 probability should not get split evenly 

between them? 

Wi-Phi takes this difference between the two hypotheses into account.  According to Wi-

Phi, since Monty could not have opened it, you learn nothing about the door that you initially 

chose.17  So, none of the 1/3 probability should go to the hypothesis that the car is behind that 

door.  And the only other place that it can go is to the hypothesis that the car is behind the last 

remaining door. 

 

 
17 You clearly learn something when Monty opens a door and reveals a goat.  For example, you 
learn that the car is not behind that particular door.  But you do not seem to learn anything that is 
relevant to whether the car is behind the door that you initially chose. 
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The Wi-Phi Probability Concentration argument: 

There is a 1/3 chance that the car is behind the door that you initially chose.  So, there is a 

2/3 chance that the car is behind one of the two remaining doors.  Monty is not allowed to 

open the door that you initially chose.  So, you learn nothing about that door when Monty 

opens one of the other doors and reveals a goat.  So, there is still a 1/3 chance that the car 

is behind that door.  Thus, the remaining 2/3 chance gets concentrated on the last 

remaining door.  So, you should switch to the last remaining door when Monty opens a 

door and reveals a goat. 

 

Several other mathematicians and philosophers (e.g., Martin 2011, 122, Kahn Academy 

2012, Goldberg 2014, Adams 2022, 20, Bellos 2024, 127) also give this sort of argument.18  (See 

Appendix 1 for quotes.)  This argument yields the correct answer to the Monty Hall Problem.  

But as we discuss in the following section, it is a bad argument. 

 

5. A Counterexample to the Wi-Phi Probability Concentration Argument 

One complaint that could be raised about the Wi-Phi Probability Concentration 

argument is that it is not sufficiently formal.  Because it is aimed at an audience that may not 

have experience or facility with formal methods, the reasoning in the Wi-Phi Probability 

Concentration argument is somewhat informal.  However, informal proofs are typically thought 

by mathematicians and philosophers to be less reliable than formal proofs (see Tanswell 2024, 

6).  So, we shouldn’t be surprised if errors are sometimes made when we reason informally.  

 
18 Snyder (2018, 24) uses the same sort of reasoning to analyze an extension of the Monty Hall 
Problem in which there are four doors, Monty opens two doors to reveal two goats, and after 
opening each of these doors, he gives you the opportunity to switch. 
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Indeed, people might not have mistakenly concluded that it doesn’t matter whether you stick or 

switch if they had endeavored to reason more formally (e.g., by using Bayes’s Theorem) 

But informality by itself is not why the Wi-Phi Probability Concentration argument is 

a bad argument.  Informal arguments can be—and often are—good arguments.  The Favoring 

Procedure is just one example.  Indeed, this level of informality is quite common in 

mathematics.  As Fenner Tanswell (2024, 11) notes, “most proofs produced by mathematicians 

are not formal” (see also Fallis 2003, 49-50, Andersen 2020, 233).  While many philosophers do 

claim that arguments in mathematics are only good if they are formalizable, arguments in 

mathematics don’t have to actually be formalized in order to be good arguments (see Fallis 2003, 

62, Tanswell 2024, ch. 3).19 

The Wi-Phi Probability Concentration argument is a bad argument because it is 

invalid.  In fact, a few mathematicians and philosophers (e.g., Horgan 1995, 213, Cross 2000, 

321, Devlin 2005, Rosenthal 2008, 5) have already pointed out (in some cases, decades before 

the video even appeared) that there is a counterexample to it.20  Even though it yields the correct 

 
19 Someone might also worry that, unlike the Favoring Procedure (see section 3 above), the 
Wi-Phi Probability Concentration argument fails to explain where people go wrong when they 
conclude that it doesn’t matter whether you stick or switch.  In other words, it arguably leaves us 
with a dialectical standoff between the intuitive answer and the correct answer.  However, this 
argument does purport to give positive reasons for why the two remaining doors are not equally 
likely (i.e., for why the principle of indifference is not applicable).  In any event, even if it were 
the case that the Wi-Phi Probability Concentration argument fails to explain where the 
reasoning that leads to the intuitive answer goes wrong, it is not clear that this would make it a 
bad argument.  A good argument does not have to be what John Pollock (1986, 38-39) calls an 
“undermining defeater” for any argument that reaches a conflicting conclusion.  It just has to be 
a “rebutting defeater.”  Whenever two arguments reach conflicting conclusions, we can usually 
find a flaw in one argument or the other simply by examining them more carefully.  (Of course, 
there may be exceptional cases where we are not able to resolve the issue in this way (see De 
Millo et al. 1979, 272).) 
20 Moser and Mulder (1994, 119) also criticize this sort of argument, but without offering a 
counterexample.  They point out that, initially, there is also a 2/3 chance that the car is behind the 
door that you initially chose or behind the door that Monty will end up opening.  So, when 
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answer in the original puzzle, this argument yields the wrong answer when it is applied to a 

slight variation of the Monty Hall Problem.21  While the premises of the argument (i.e., the 

assumptions to which the argument appeals) are true in the variation, the conclusion is false.  As 

Horgan (1995, 213) puts it, “the argument-form is clearly fallacious, because in some decision 

situations it generates blatantly mistaken conclusions.” 

Note that the Wi-Phi Probability Concentration argument makes use of the fact that 

Monty is not allowed to open the door that you initially chose.  And it makes use of the fact that 

Monty actually opens a door and reveals a goat.  But note that it does not make use of the fact 

that Monty is not allowed to open a door and reveal the car. 

Since this argument does not appeal to the fact that Monty is required to open a door to 

reveal a goat, it is also applicable to cases where Monty might open a door and reveal the car.  

However, in such variations of the original puzzle, it is not necessarily the case that you should 

switch doors after Monty opens a door and reveals a goat.  For example, in Random Monty, 

there is a 1/3 chance that the car is behind the door that you initially chose, Monty is not allowed 

to open the door that you initially chose, and Monty opens one of the other doors and reveals a 

goat.  Thus, the Wi-Phi Probability Concentration argument yields the answer that it is better 

to switch in this case as well as in the original puzzle.  But as discussed above, in Random 

 
Monty actually opens that door and reveals a goat, why doesn’t this 2/3 chance get concentrated 
on the door that you initially chose?  But of course, proponents of the Wi-Phi Probability 
Concentration argument have a plausible response to this objection.  Namely, you can’t learn 
anything about the door that you initially chose because Monty could not have opened it. 
21 Such variations are generated by resolving the ambiguities in the statement of the puzzle in 
different ways. 
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Monty, the car is just as likely to be behind the door that you initially chose as it is to be behind 

the last remaining door.  So, it is not better to switch.22 

Furthermore, we can identify exactly where the argument goes wrong.  The Wi-Phi 

Probability Concentration argument concludes that the probability that the car is behind the 

door that you initially chose does not change when Monty opens another door and reveals a goat 

on the grounds that Monty cannot open that door.  Now, as can be verified using Bayes’s 

Theorem or the Revised TED Ed Procedure, it is true in the original puzzle that the probability 

that the car is behind the door that you initially chose does not change.  But it is not simply 

because Monty cannot open that door.  Even when Monty cannot open the door that you initially 

chose, the probability that the car is behind that door might change, as it does in the Random 

Monty variation.  Thus, the argument has what Don Fallis (2003, 51) calls an “inferential gap.”  

The claim that the probability that the car is behind the door that you initially chose does not 

change when Monty opens another door and reveals a goat is what Sorensen (2016a, 250) calls 

“a paralemma” which is “an invalid intermediate step.”23   

 
22 The Random Monty variation shows that you can learn about the door that you initially chose 
even if Monty is not allowed to open it.  For example, if Monty opens a door and reveals a car, 
you know for sure that the car is not behind the door that you initially chose.  Now, if Monty 
opens a door and reveals a goat, you don’t know for sure what is behind the door that you 
initially chose.  But if one possible result lowers the probability that it is a car, the other possible 
result raises the probability that it is a car. 
23 As Sorensen (2016a, 250) notes, “a paralemma can be true. It might entail a conclusion that is 
entailed by the premises.”  Indeed, the truth of this particular paralemma might help to explain 
why so many mathematicians and philosophers have mistakenly endorsed the Wi-Phi 
Probability Concentration argument.  According to Sorensen (2016b, 133), “paralemmic 
reasoning within sound arguments tends to pass unnoticed. The truth of the conclusion and the 
validity of the argument conceal the invalidity of the reasoner's derivation … The presumption is 
that if the conclusion is correct, then the sub-conclusions were correct.”  Interestingly, we argue 
below that, although he does not endorse the Wi-Phi Probability Concentration argument, 
Sorensen (2003) himself has engaged in paralemmic reasoning with respect to the Monty Hall 
Problem. 
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5.1 A Possible Defense of the Wi-Phi Probability Concentration Argument  

Nevertheless, it might be suggested that the Wi-Phi Probability Concentration 

argument is not a bad argument.  It is merely incomplete as it stands.  Just as it would be tedious 

to have to make all of the constraints explicit when stating a puzzle, it would be tedious to have 

to make all of the details explicit when giving an argument for the answer. Indeed, 

mathematicians and philosophers often leave out some of the details of their arguments (see 

Andersen 2020).  In other words, they often leave what Fallis (2003, 53) calls an “enthymematic 

gap.”  And unlike inferential gaps, enthymematic gaps are perfectly acceptable as long as it is 

clear to the intended audience how they are to be filled in.  

In particular, proponents of the Wi-Phi Probability Concentration argument might 

claim that it is understood that this argument is not intended to apply to the Random Monty 

variation.  It is only intended to apply to the original puzzle.  As discussed in section 2 above, we 

are entitled to assume that various constraints are in place in the Monty Hall Problem even 

though they are not stated explicitly.  The idea here is that we are entitled to assume that these 

same constraints are in place in the Wi-Phi Probability Concentration argument even though 

they are not stated explicitly.  And it does follow from these constraints that the probability that 

the car is behind the door that you initially chose does not change when Monty opens another 

door and reveals a goat. 

So, the Wi-Phi Probability Concentration argument could simply be incomplete rather 

than invalid.  We cannot definitively eliminate this possibility.  However, there are several 
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reasons to think that this is not a plausible interpretation of what’s really going on.24  Basically, it 

is overly charitable to the proponents of the Wi-Phi Probability Concentration argument.   

First, the gap in the argument is extremely large.  In addition to failing to state the 

constraints of the original puzzle to which it allegedly appeals, the argument does not give any 

indication how to get from those constraints to the desired conclusion.  Even when a conclusion 

follows from the premises, simply stating the premises followed by the conclusion is not much of 

an argument when a lot of intermediate steps are left out (see Fallis 2003, 48-49, Boghossian 

2014, 6).  Moreover, in this case, it is not clear how to fill the gap without simply using Bayes’s 

Theorem or something equivalent.  And if we have to go to that trouble, the shortcut argument is 

not much of a shortcut. 

Second, on its face, the Wi-Phi Probability Concentration argument certainly appears 

to be fallacious.  It suggests falsely that something is sufficient grounds for believing something 

else when it is not.  In particular, as discussed above, it suggests that we can infer directly from 

(a) the fact that Monty cannot open the door that you initially chose that (b) the probability that 

the car is behind that door does not change.  In order for the argument to be incomplete rather 

than invalid, the “So” in “So, you learn nothing about that door when Monty opens one of the 

other doors and reveals a goat” has to be understood in an extremely expansive way.  It cannot 

just mean that the claim follows from the previous step in the argument (viz., that Monty cannot 

open that door).  It has to mean that the claim follows from the previous step plus a whole suite 

of unstated assumptions and argumentative moves that are not alluded to at all.   

 
24 In fact, the previous critics of the Wi-Phi Probability Concentration argument (such as 
Horgan 1995) do not even consider this possible interpretation.  They simply dismiss the 
argument as invalid on the basis of a counterexample. 
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Finally, even if the mathematicians and philosophers who give the Wi-Phi Probability 

Concentration argument do understand the “So” in this expansive way and have worked 

through these unstated argumentative moves to verify that this probability does not change, it is 

unlikely that their audience has.  (Recall that the intended audience for this argument is not 

necessarily mathematically sophisticated.)  Thus, their audience is almost certainly unjustified in 

their belief that this probability does not change and, thus, in their belief that switching is better. 

For knowledge and (doxastic) justification, what matters is the path that you actually take to a 

conclusion, not merely whether there is a good path (see Turri 2010, 313). 

 

6. Two Additional Arguments for Switching 

There are two other shortcut arguments for switching that avoid the Random Monty 

counterexample.  First, several mathematicians and philosophers (e.g., Gardner 2001, 283, Clark 

2002, 114-15, Devlin 2003, Sorensen 2003, 225, Rosenthal 2009, 36, Champkin 2013, 33, Pynes 

2013, 36-37) have given a strengthened version of the Wi-Phi Probability Concentration 

argument.  (See Appendix 2 for quotes.)  These mathematicians and philosophers still contend 

that, in the Monty Hall Problem, you get no information about the door that you initially chose.  

But it is not just because Monty could not open it.  It is because you know ahead of time that he 

is going to open another door and reveal a goat.  Basically, if that information were going to 

affect the probability that the car is behind the door that you initially chose, it would have 

affected it before he opened this other door. 

 

The Strengthened Probability Concentration argument: 
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There is a 1/3 chance that the car is behind the door that you initially chose.  So, there is a 

2/3 chance that the car is behind one of the two remaining doors.  You know that Monty 

will open one of those doors to reveal a goat.  (You just do not know which one it will 

be.)  So, you learn nothing about the door that you initially chose when Monty opens one 

of the other doors and reveals a goat.  So, there is still a 1/3 chance that the car is behind 

that door.  Thus, the remaining 2/3 chance gets concentrated on the last remaining door.  

So, you should switch to the last remaining door when Monty opens a door and reveals a 

goat. 

 

In addition, although Wi-Phi does not give the Strengthened Probability 

Concentration argument, it does give a second argument for switching that also avoids the 

Random Monty counterexample. 

 

The Wi-Phi Probability Swap argument: 

There is a 1/3 chance that the car is behind the door that you initially chose.  So, 1/3 of 

the times that you play the game, you will win by sticking with that door.  And 2/3 of the 

times that you play, you will lose by sticking.  However, if you switch to the door that 

Monty did not open, you will lose all of the times that you would have won by sticking.  

And you will win all of the times that you would have lost by sticking.  (In those cases, 

there is a car behind one of the two remaining doors and a goat behind the other.  So, 

when Monty opens one of those doors and reveals a goat, you will win by switching to 

the other door.)  So, you should switch to the last remaining door when Monty opens a 

door and reveals a goat. 
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In addition to Wi-Phi, several other mathematicians and philosophers (e.g., Bruce 2001, 

112, Winkler 2004, 34, Nihous 2009, 94, Kahn Academy 2012, Li 2013, Pynes 2013, 42, 

Talwalkar 2013, 56, Hájek and Hitchcock 2016, 16, Brilliant 2018, Huemer 2018, 4-5, Stewart 

2019, 67, Cook 2020, 84, Bollobás 2022, 181, Titelbaum 2022, 181, University of Illinois 2023) 

also give this sort of argument.  (See Appendix 3 for quotes.) 

Random Monty is not a counterexample to the Strengthened Probability 

Concentration argument or to the Wi-Phi Probability Swap argument.  The Strengthened 

Probability Concentration argument clearly does not apply to Random Monty.  With respect 

to the Wi-Phi Probability Swap argument, note that, as in the original puzzle, 1/3 of the times 

that you play the game in Random Monty, you will win by sticking with the door that you 

initially chose.  But it is not true that, if you switch to the door that Monty did not open, you will 

win all of the times that you would have lost by sticking.  In half of those cases, Monty will have 

opened a door to reveal a car (since Monty always chooses at random which door, of the two that 

you did not initially choose, to open).  And if Monty opens a door and reveals a car, you lose 

whether you stick or switch.  Thus, if you switch to the door that Monty did not open, you will 

still win only 1/3 of the times that you play the game. 

But even though they avoid the Random Monty counterexample, the Strengthened 

Probability Concentration argument and the Wi-Phi Probability Swap argument are bad 

arguments.  Indeed, as we argue in the following section, even if we assume that Monty is 

required to reveal a goat, there are at least two types of counterexamples to these two arguments.  

And it is worth noting that they are counterexamples to the Wi-Phi Probability Concentration 

argument as well. 
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7. Two Counterexamples to All Three Arguments for Switching 

There are many variations of the Monty Hall Problem where it is not better to switch.  

Not all such variations are counterexamples because these three arguments tacitly put some 

constraints on Monty’s procedure.  For example, consider a case (the Mean Monty variation) 

that is exactly like the original puzzle except that Monty opens a door to reveal a goat only if the 

car is behind the door that you initially chose.25  It is clear that these three arguments don’t apply 

to Mean Monty (i.e., that they appeal to some assumptions that are not true in this variation).  

The Wi-Phi Probability Concentration argument does not apply because you clearly do learn 

something about the door that you initially chose when Monty opens one of the other doors to 

reveal a goat.  The Strengthened Probability Concentration argument does not apply because 

you do not know that Monty will open one of the other doors to reveal a goat.  Finally, the Wi-

Phi Probability Swap argument does not apply because you clearly never win by switching 

when Monty opens a door to reveal a goat.  However, there are variations that are 

counterexamples to these arguments. 

Note that these arguments do not make use of the fact that Monty chooses at random 

when he has a choice about which door to open to reveal a goat.  This is clear in the case of both 

versions of the Probability Concentration argument.  And with respect to the Wi-Phi 

Probability Swap argument, note that, even if Monty has a bias toward one of the two 

remaining doors (say, the higher-numbered door), it is still true that, if you switch to the door 

 
25 If the car is not behind the door that you initially chose, you have to decide whether to switch 
without any door having been opened for you.  Rosenhouse (2009, 113) discusses a similar 
variation where “Malevolent Monty” only gives you an opportunity to switch when your initial 
choice was correct. 
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that Monty did not open, you will win all of the times that you would have lost by sticking (i.e., 

two-thirds of the time).26 

Since these arguments do not appeal to the fact that Monty chooses at random when he 

has a choice, they are also applicable to cases where Monty has a bias toward one of the two 

remaining doors.  However, in such variations of the original puzzle, it is not necessarily the case 

that you should switch doors after Monty opens a door and reveals a goat.  For example, consider 

a case (the Lazy Monty variation) that is exactly like the original puzzle except that Monty is 

very lazy and the latch on door #2 is difficult to open.  Thus, Monty doesn’t open door #2 unless 

he absolutely has to (viz., when it is the only door he can open to reveal a goat).27  Also, suppose 

that you initially choose door #1.  In this case, Monty is just as likely to open door #3 to reveal a 

goat if the car is behind door #1 as he is to open door #3 to reveal a goat if the car is behind door 

#2.  So, since door #1 and door #2 started out equally likely, if Monty opens door #3 to reveal a 

goat, the car is still just as likely to be behind door #1 (the door that you initially chose) as it is to 

be behind door #2.28 

In addition, note that these arguments appeal to the fact that the probability that the car is 

behind the door that you initially chose is 1/3.  And it follows from this that the probability that 

 
26 As in the original puzzle, these wins will be equally distributed between the two doors.  But 
unlike in the original puzzle, the losses from switching will not be equally distributed between 
the two doors.  Most of these losses will come when Monty opens the door toward which he is 
biased. 
27 See Rosenhouse 2009, 83-84 for an analysis of this sort of variation.  Cross (2000, 321) and 
Rosenthal (2008, 5) do mention that it is a counterexample to what we are calling the 
Strengthened Probability Concentration argument.  But ironically, although Rosenthal (2008, 
5) calls this argument a “shaky solution” to the Monty Hall Problem, Rosenthal (2009, 36) later 
endorses it without any reservation. 
28 Note that the best strategy depends on which door Monty opens.  If Monty opens door #2 and 
reveals a goat, you do better by switching.  In fact, you are guaranteed to win the car.  But if he 
opens door #3 and reveals a goat, it makes no difference whether you stick or switch. 
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the car is behind one of the two remaining doors is 2/3.  And these arguments do make use of 

this fact.  But these arguments do not make use of the fact that this 2/3 probability is split evenly 

between the two remaining doors.29  This is clear in the case of both versions of the Probability 

Concentration argument.  And with respect to the Wi-Phi Probability Swap argument, note 

that, even if the 2/3 probability is not split evenly, it is still true that, if you switch to the door 

that Monty did not open, you will win all of the times that you would have lost by sticking (i.e., 

two-thirds of the time).30 

Since these arguments do not appeal to the fact that the 2/3 probability is split evenly, 

they are also applicable to cases where the 2/3 probability is not split evenly.  However, in such 

variations of the original puzzle, it is not necessarily the case that you should switch doors after 

Monty opens a door and reveals a goat.  For example, consider a case (the Unequal Monty 

variation) that is exactly like the original puzzle except that the probabilities that the car is 

behind each of the three doors are 1/3, 2/15, 8/15, respectively.31  Also, suppose that you initially 

choose door #1.32  As in the original puzzle, Monty is twice as likely to open door #3 to reveal a 

goat if the car is behind door #2 than he is to open door #3 to reveal a goat if the car is behind 

door #1.  But in this case, the car is initially two-and-a-half times more likely to be behind door 

#1 than to be behind door #2.  So, all things considered, if Monty opens door #3 and reveals a 

 
29 Some of the people who offer these arguments do mention that the three hypotheses are 
equiprobable.  But they only use this fact to establish that the probability that the car is behind 
the door that you initially chose is 1/3. 
30 Unlike in the original puzzle, these wins will not be equally distributed between the two doors.  
Most of these wins will come when Monty opens the door that the car is less likely to be behind. 
31 See Rosenhouse 2009, 78-80 for an analysis of this sort of variation. 
32 Note that these three arguments are only applicable to those instances of the Unequal Monty 
variation in which the contestant picks the door that has a 1/3 probability of concealing the car.  
But it is also worth noting that, if the contestant picks a door at random, it is still the case that the 
contestant will win two-thirds of the time by switching. 
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goat, the car is still more likely to be behind door #1 (the door that you initially chose) than it is 

to be behind door #2.33,34,35 

Moreover, in addition to finding counterexamples to them, we can identify exactly where 

the two arguments go wrong.  First, the Strengthened Probability Concentration argument 

concludes that the probability that the car is behind the door that you initially chose does not 

change when Monty opens another door and reveals a goat on the grounds that you already knew 

that Monty would open another door to reveal a goat.  Now, it is true in the original puzzle that 

the probability that the car is behind the door that you initially chose does not change.  But it is 

not simply because you already knew that Monty would open another door to reveal a goat.  

 
33 Again, the best strategy depends on which door Monty opens.  If Monty opens door #2 and 
reveals a goat, you do better by switching.  But if he opens door #3 and reveals a goat, you do 
better by sticking.  Basically, switching in that case would be to ignore the base rate.  See 
Weisberg 2019, sec. 8.5, Titelbaum 2022, 169-73 for discussions of the base-rate fallacy.  It 
should be noted that Bradley and Fitelson (2003) analyze the Monty Hall Problem without 
making any assumptions about the prior probabilities.  But they only show that, as long as there 
is some chance that Monty will open either door when he has a choice, the evidence favors the 
hypothesis that the car is behind the last remaining door over the hypothesis that the car is behind 
the door that you initially chose.  They do not claim that it is better to switch to the last 
remaining door.  Yudi Pawitan and Youngjo Lee (2024, 244) also analyze the Monty Hall 
Problem without making any assumptions about the prior probabilities.  However, they do claim 
incorrectly that it still follows that switching is better. 
34 We used the Favoring Procedure to confirm that the car is just as likely to be behind the door 
that you initially chose in Lazy Monty.  In order to confirm that the car is more likely to be 
behind the door that you initially chose in Unequal Monty, we have to balance the influence of 
the initial probabilities against the degree to which the evidence favors the remaining door.  This 
requires using Bayes’s Theorem and not just the Favoring Procedure. 
35 Another common explanation for why switching is the best strategy in the Monty Hall 
Problem involves increasing the number of doors (e.g., to 100).  Once you have chosen a door, 
Monty opens all of the other doors, except one (say, door #37), to reveal goats (see vos Savant 
1991, Clark 2002, 115, Devlin 2003, Goldberg 2014, Brilliant 2018).  In this case, it seems very 
clear that you should switch.  However, the argument given for switching in the 100-door case is 
typically a version of one or the other of the Probability Concentration arguments.  So, it is 
subject to the same sort of counterexamples.  (Of course, the car does have to be extremely 
unlikely to be behind door #37 at the outset—with a chance of less than 1 in 10,000—in the 
Unequal Monty counterexample for the 100-door case.) 
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Even if you already knew that Monty would open another door to reveal a goat, the probability 

that the car is behind the door that you initially chose might change, as it does in the Lazy 

Monty and Unequal Monty variations. 

Second, the Wi-Phi Probability Swap argument concludes that switching is better in this 

particular instance on the grounds that you will win more often in the long run by switching 

whenever you play the game.  Now, it is true in the original puzzle that switching is better.  But 

it is not simply because you will win more often in the long run by switching.  Even when you 

will win more often in the long run by switching whenever you play the game, switching might 

not be better in this particular instance, as it is not in the Lazy Monty and Unequal Monty 

variations.36  In these variations, even though the chance of winning if you always switch is still 

2/3, the chance of winning if you switch when Monty opens door #3 and reveals a goat is less 

than 2/3. 

Finally, just like with the Wi-Phi Probability Concentration argument, it might be 

suggested that these two arguments are simply incomplete rather than invalid.  However, there 

are reasons—the very same reasons discussed in section 5.1 above—to think that this is not a 

plausible interpretation of what’s really going on.  Admittedly, as we discuss in sections 7.2 and 

7.3 below, there are ways to fill the gap in the Wi-Phi Probability Swap argument that do not 

require simply using Bayes’s Theorem or something equivalent.  But the gap in both arguments 

is still large.  And most importantly, on their face, both arguments appear to have “invalid 

intermediate steps.” 

 
36 As discussed in section 7.3 below, there is a restricted set of plays of the game (viz., those 
plays in which Monty opens door #3 after the contestant initially chooses door #1) such that, if 
you will win more often on these plays of the game by switching, it does follow that switching is 
better in this instance.  But the long run that the Wi-Phi Probability Swap argument literally 
refers to is simply playing the game multiple times. 
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7.1 Rosenhouse on Cases Where the Initial Probabilities are Unequal 

Interestingly, the mathematician Jason Rosenhouse (2009, 79) claims to prove that, even 

if the car is not equally likely to be behind each of the three doors, Monty opening a door to 

reveal a goat does not change the probability that the car is behind the door that you initially 

chose.37  He says that “our calculation shows that the probability of our initial choice does not 

change when Monty reveals an empty door.”  However, the Unequal Monty variation shows 

that this claim is false.  You can learn something about the door that you initially chose even if 

you know ahead of time that Monty is going to open another door and reveal a goat. 

Rosenhouse makes this false claim along the way to arguing that, when the car is not 

equally likely to be behind each of the three doors, the best strategy is to initially choose the door 

that the car is least likely to be behind and then switch when Monty opens a door and reveals a 

goat.  Even though his argument for it is unsound (as it relies on a false lemma), this claim is 

true.  (See Appendix 4 for a proof.)  Thus, when you initially choose the door with probability 

1/3 in Unequal Monty, you are not adopting the best possible strategy.  You should have chosen 

the door with probability 2/15 (and then switched when Monty opens a door and reveals a goat).  

But even if you have made a mistake, we should still be able to ask what you should do now.  

And the Strengthened Probability Concentration argument and the Wi-Phi Probability Swap 

argument incorrectly suggest that you should switch to the last remaining door. 

 

7.2 Bolstering the Wi-Phi Probability Swap Argument 

 
37 It is true that, if we take the average of the various new probabilities that could result when 
Monty opens a door to reveal a goat, it is the same as the prior probability that the car is behind 
the door that you initially chose.  But that is a different matter. 
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Despite the counterexamples, there is something to be said for the Wi-Phi Probability 

Swap argument.  As Morgan et al. (1991, 285) point out, it is a good argument for switching if 

you have to make your decision about what to do before Monty opens a door and reveals a goat.  

None of the variations of the Monty Hall Problem are counterexamples to this claim.  But the 

puzzle clearly asks what you should do after Monty opens a door and reveals a goat.  And the 

Lazy Monty and Unequal Monty variations show that it may not be better to switch at that 

point.38 

However, given the fact that the Wi-Phi Probability Swap argument is a good argument 

for switching if you have to decide what to do before Monty opens a door, we can turn it into a 

good argument for switching even if you get to decide what to do after Monty opens a door.  In 

the original puzzle, but not in the Lazy Monty and Unequal Monty variations, the two doors 

that Monty could open are antecedently indistinguishable.  That is, the car is initially equally 

likely to be behind each of them and Monty chooses at random whenever he has a choice about 

which of them to open.  If the doors are antecedently indistinguishable, you will get essentially 

the same information regardless of which one of them is opened—just with door #2 and door #3 

transposed.  Thus, if switching is best if they open door #2, it will also be best if they open door 

#3, and vice versa.  So, you might as well decide ahead of time what to do.  And we already 

know from the Wi-Phi Probability Swap argument that, if you have to decide ahead of time, 

you should switch. 

 
38 In other words, Wi-Phi Probability Swap argument is a perfectly good argument for a weaker 
conclusion.  But the desired conclusion does not follow from this weaker conclusion.  In a 
similar vein, Sorensen (2016b, 136) discusses an argument that purports to show that the area of 
a parallelogram is always base times height, but it only shows that this holds for some 
parallelograms. 
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With this bolstering, we rule out the Lazy Monty and Unequal Monty counterexamples.  

Thus, the Bolstered Probability Swap argument is a good argument for switching in the Monty 

Hall Problem.  We do not end up with “the right answer for a wrong reason.”39 

Even so, it is worth noting that the Bolstered Probability Swap argument has fairly 

limited applicability.  Explicitly paying attention to the evidence yields a much more general 

procedure for carrying out probabilistic inferences.  Even if we do not want to go as far as using 

Bayes’s Theorem or the Revised TED Ed Procedure, we can handle a much broader range of 

cases just by asking ourselves how likely the evidence is given each of the hypotheses (i.e., by 

using the Favoring Procedure).  Note that we can ask this question regardless of what bias 

Monty might have when he has a choice about which door to open.  Also, we do not have to 

assume that the car was initially equally likely to be in each of the three locations.  As long as the 

car was initially at least as likely to be behind the door that the evidence favors, it is clear 

whether you should stick or switch.40  Indeed, the broader applicability of simply asking about 

the likelihood of the evidence given the hypotheses is part of what makes it such a good 

explanation for why switching is the right thing to do in the original puzzle. 

 
39 It could be suggested that proponents of the Wi-Phi Probability Swap argument really have 
in mind the Bolstered Probability Swap argument.  In that case, their argument only leaves an 
enthymematic gap rather than an inferential gap.  But as noted above, this interpretation of their 
argument is not very plausible.  For example, their argument leaves a large gap.  Indeed, it 
doesn’t make any reference at all to the symmetry of the two unpicked doors. (In fact, we don’t 
know of anyone other than ourselves who has explicitly put forward the Bolstered Probability 
Swap argument.) 
40 There are cases, such as the Unequal Monty variation, where the evidence favors one door, 
but the car was initially more likely to be behind the other door.  But as Bradley and Fitelson 
(2003) show, as long as there is some chance that Monty will open either door when he has a 
choice, the evidence favors the hypothesis that the car is behind the last remaining door over the 
hypothesis that the car is behind the door that you initially chose.  So, the only time that we will 
need to resort to Bayes’s Theorem or the Revised TED Ed Procedure is when the door that you 
initially chose was initially more likely to conceal the car than the last remaining door. 
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7.3 Running Simulations 

Finally, it should be noted that there is another common case for switching that is closely 

related to the Wi-Phi Probability Swap argument.  Namely, it has often been suggested (e.g., by 

vos Savant 1990, Martin 2011, 123, Clark 2002, 116, Titelbaum 2022, 181) that, if we are not 

convinced that we should switch after Monty opens a door and reveals a goat, we should run a 

simulation.  That is, we should play the game described in the Monty Hall Problem a few 

hundred times, keeping track of how often we win if we stick with our initial choice, and keeping 

track of how often we win if we switch.  And such simulations almost always result in sticking 

winning about a third of the time and switching winning about two-thirds of the time.  Basically, 

this is a real-life implementation of the Wi-Phi Probability Swap argument. 

Simulations can be a very good way to establish scientific and mathematical truths (see 

Winsberg 2019).  But before trusting the results of a simulation, we do have to be careful that we 

are doing the right simulation to solve the problem at hand.41  In particular, in order for the 

results of a simulation to be a convincing case for switching in the Monty Hall Problem, the case 

needs to be made that the winning percentages in the long-run bear on what you should do in a 

single play of the game.42  Now, contra Paul Moser and Hudson Mulder (1994), single-case 

probabilities do not diverge from long-run frequencies (see Horgan 1995).  But we still have to 

be sure that we are talking about the right long-run frequencies.  As the Lazy Monty and 

Unequal Monty counterexamples show, even though the long-run frequency of winning if you 

always switch is 2/3, the long-run frequency of winning if you switch when Monty opens door 

 
41 See Winsberg 2019, sec. 4.3 for a survey of the literature on the verification and validation of 
simulations. 
42 See Rosenhouse 2009, ch. 7 for a survey of the philosophical literature on this point. 
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#3 and reveals a goat might differ from 2/3.  One way that we can insure that we are talking 

about the right long-run frequencies is by only simulating plays of the game where you initially 

choose the same door and Monty then opens the same door (see Morgan et al. 1991, 285).43  But 

people don’t tend to do this.44  Alternatively, much as we had to do to bolster the Wi-Phi 

Probability Swap argument itself, we could confirm that the two doors that you do not initially 

choose are always antecedently indistinguishable and explain why that matters (see Horgan 

1995, 219).  But people don’t tend to do this either. 

 

8. The Wi-Phi Arguments Mislead 

Both versions of the Probability Concentration argument and the Wi-Phi Probability 

Swap argument are bad arguments.  As a result, people can end up with an unjustified belief that 

they should switch in the Monty Hall Problem.  And that is a problem.  Also, as a result, much 

like TED Ed, Wi-Phi wastes an opportunity to teach people the right way to carry out 

probabilistic inferences.45  And that is also a problem.  But despite these problems, people still 

end up with a true belief that they should switch in the Monty Hall Problem.   

Philosophers work to identify fallacious argument forms, such as affirming the 

consequent, because they commonly arise and trip people up (see Salmon 1995, 87-89).  Like 

 
43 See Appendix 5 for a Python simulation of the Unequal Monty variation.  (The code is 
inspired by Snyder 2018, 24-25.)  As in the original puzzle, sticking wins about a third of the 
time and switching wins about two-thirds of the time.  But if we just focus on trials where you 
initially choose door #1 and Monty then opens door #3, sticking wins more often than switching. 
44 It could be suggested that proponents of the Wi-Phi Probability Swap argument really have 
in mind a restricted set of plays of the game.  But again, this interpretation of their argument is 
not very plausible.  For example, their argument still leaves a very large gap.  Indeed, it doesn’t 
make any reference at all to a restricted set of plays (or say anything about why the long-run 
frequency of winning in this restricted set of plays might be 2/3). 
45 Even though the Bolstered Probability Swap argument is a good argument, given its limited 
applicability, it arguably would still have been a wasted opportunity if Wi-Phi had presented it. 
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many other fallacious argument forms, the TED Ed Procedure is epistemically dangerous 

because it is applicable to all sorts of scenarios where it yields wrong answers.  But it might be 

suggested that the Wi-Phi arguments, in contrast, do not create much of a risk of people actually 

being misled.   

The Wi-Phi arguments are only directly applicable to Monty Hall Problem-like scenarios.  

Moreover, as long as the hypotheses are indistinguishable prior to the evidence, the Wi-Phi 

arguments give the correct answer.  And how often do we face Monty Hall Problem-like 

scenarios where the hypotheses are not antecedently indistinguishable?  However, the same sort 

of bad reasoning that we find in the Wi-Phi arguments can actually lead to false conclusions in 

many scenarios involving probabilistic inference.   

If it seems intuitive that we don’t get any information about a hypothesis, the Probability 

Concentration arguments advise us to keep the probability of that hypothesis fixed.46  But here 

is a mundane scenario where this sort of reasoning results in a mistake:  Suppose that you don’t 

know whether your keys are in your pockets, in your backpack, or out in your car.  But you are 

too tired to go out to search the car.  If you don’t find your keys in your pockets, that doesn’t 

mean that only the probability that the keys are in your backpack goes up.  The probability that 

the keys are out in your car also goes up even though you could not have searched that 

location.47 

 
46 People don’t seem to be particular good at intuiting when evidence does or does not change 
the probability of a hypothesis.  It is true that you do not get any new information about the door 
that you initially chose in the Monty Hall Problem.  But contrary to the Wi-Phi Probability 
Concentration argument, it is not simply because Monty could not open that door.  And 
contrary to the Strengthened Probability Concentration argument, it is not simply because you 
knew that he would open another door to reveal a goat. 
47 It is harder to find examples where reasoning along exactly the same lines as the Strengthened 
Probability Concentration argument gives the wrong result.  David Lewis’s (2001, 174) halfer 
argument in the Sleeping Beauty Problem might be an example.  He assumes that, since Sleeping 
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If a strategy always leads to more wins than losses, the Wi-Phi Probability Swap 

argument advises us to follow that strategy regardless of the specific information that we get.  

But here is a mundane scenario where this sort of reasoning results in a mistake: Suppose that the 

champion wins the vast majority of his boxing matches.  So, you will win much more often if 

you bet on the champion than if you bet against him.  However, the champion almost always 

loses if he is under the weather.  Now, since he usually feeling fine, you should definitely bet on 

the champion if you have to make your decision before getting the results of the pre-fight 

physical examination.  But that doesn’t mean that you should bet on the champion if you learn 

that he did not get a clean bill of health.  You would be ignoring relevant evidence if you still bet 

on him in that case. 

 

9. Conclusion 

There are at least three distinct bad arguments for switching in the Monty Hall Problem 

that are still circulating widely and that come from reputable sources.48  Thus, many people end 

up believing “the right answer for a wrong reason.”  Moreover, since these arguments only yield 

the correct answer in a very restricted range of cases, people learn techniques that lead to false 

conclusions when they are applied to many other probabilistic inference problems.  So, instead 

of, for example, promulgating the questionable shortcut of holding fixed the probability of 

 
Beauty knew that she was going to be awakened, she gets no information that changes the 
probability of the coin having come up heads. 
48 There are, of course, other bad arguments for switching in the Monty Hall Problem (see 
Morgan et al. 1991, 284-85).  But they are not nearly as common. 
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hypotheses that we seem to learn nothing about, it would be much better to simply teach people 

to ask how likely the evidence is given each of the hypotheses.49 
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Adams (2022, 20) … 
“You should switch … The probability that you picked right initially is one third …  So the 
probability that door 1 is right is one third.  But then Hall purposely had them open a door that 
was a wrong choice, that had a concrete wall behind it.  Whatever door you pick, there is always 
another door with a concrete wall behind it that he can have opened.  But that doesn’t change the 
probability you picked right.  So if you stay with your current door, there’s only a one third 
chance you’re right.  But now there is only one other remaining unopened door, door number 2.  
If you switch to it, the only other remaining possibility, there is a two third chance that it’s 
right.” 
 
Bellos (2024, 127) … 
“At the beginning of the game … there is a combined two-in-three chance that the car is not 
behind door 1. Once Monty reveals the goat behind door 2, the chance that the car is not behind 
door 1 is still two in three, so the chance that the car is behind door 3 rises to two in three.” 
 
Gessell (2015) … 
“Let’s divide the three doors into two different groups  …  The only door in group YOURS is the 
one you choose originally.  And the other two doors are in OTHERS.  Before any doors are 
opened, it’s easy to see that group YOURS has a 1 in 3 chance of winning, while group 
OTHERS has a 2 in 3 chance, divided equally between the two doors in that group.  But when 
the host opens the second door, you’ve learned something.  And what you’ve learned is that the 
prize isn’t behind one of the two doors in OTHERS.  But what happens to the 1 in 3 chance that 
belonged to the open door?  … [It] can’t go to the door in the YOURS group because you 
haven’t learned anything about the door in YOURS.  You’ve only learned something about the 
doors in the OTHERS group.  So, the entire 1 in 3 chance from the open door gets reassigned to 
the remaining closed door in OTHERS.  The chance of winning with the door in the YOURS 
group is still only 1 in 3.”   
 
Goldberg (2014) … 
“There is a one-third chance that the car is behind the door you picked initially.  That means 
there must be a two-thirds chance—much greater, twice as big—that the car is somewhere else.  
And since we know that somewhere else cannot be door number two—because Monty showed 
us that—it’s gotta be over here.  So, this is what you should choose.  You should switch.  Twice 
as likely to have the car behind the door that you didn’t pick as the door that you did … the 
initial two-thirds chance that the car was behind door number 2 and door number 3 got 
concentrated behind the door that Monty did not open.” 
 
Khan Academy (2012) … 
“Are you better off switching to whatever curtain is left? … When you first make your initial 
pick, there’s a 1/3 chance that it’s there, and there’s a 2/3 chance that it’s in one of the other two 
doors. And they’re going to empty out one of them. So, when you switch, you essentially are 
capturing that 2/3 probability.” 
 
Martin (2011, 122) … 
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“Switching is a far better strategy. Here’s why. It’s 1/3 likely that door 3, the one you picked, 
had the car, and you’d lose it if you switched. But it’s 2/3 likely that door 3, which you picked, 
had a goat, and the car was behind 1 or 2—but Monty opened 2 to show the goat there, so it’s 2/3 
likely to be behind 1. So that means switching is 2/3 likely to get you that car.” 
 
2. Versions of the Strengthened Probability Concentration Argument: 
 
Champkin (2013, 33) … 
“The key insight is that no matter which door you select, Monty can always show you a goat 
behind one of the remaining doors. His action provides no new information about your selection 
but does provide information about the other two doors.”  
 
Clark (2002, 114-15) … 
“When the contestant first picks a door the chance that it has the prize is 1/3. She knows that the 
host will be able to open a door concealing no prize, since at least one of the other doors must be 
a loser. Hence she learns nothing new which is relevant to the probability that she has already 
chosen the winning door: that remains at 1/3. Since if she swaps she will not choose the door the 
host has just revealed to be a loser, the opportunity to swap is equivalent to the opportunity of 
opening both the other doors instead of the one she has picked, which clearly doubles her 
chances of winning.” 
 
Devlin (2003) … 
“By opening his door, Monty is saying to the contestant “There are two doors you did not 
choose, and the probability that the prize is behind one of them is 2/3. I'll help you by using my 
knowledge of where the prize is to open one of those two doors to show you that it does not hide 
the prize. You can now take advantage of this additional information. Your choice of door A has 
a chance of 1 in 3 of being the winner. I have not changed that. But by eliminating door C, I have 
shown you that the probability that door B hides the prize is 2 in 3” … when Monty opens door 
C, the attractive 2/3 odds that the prize is behind door B or C are shifted to door B alone.” 
 
Gardner (2001, 283) … 
“Now suppose, that after the guest’s selection is voiced, Monty Hall, who knows what is behind 
each door, opens one door to disclose a goat … the probability the guest had chosen the correct 
door … remains 1/3.  Because Monty can always open a door with a goat, his opening such a 
door conveys no new information that alters the 1/3 probability.” 
 
Pynes (2013, 36-37) … 
“No matter what door the contestant initially picks, Monty will always tease reveal, a non-
selected door that doesn’t have a prize behind it. … Imagine instead of Monty revealing a door, 
he offers you both of the doors you didn’t pick. You know a priori one of those doors cannot 
have the prize behind it. So, when Monty reveals one of the unpicked doors that doesn’t have a 
prize behind it, you haven’t learned any new information about the set of doors you didn’t pick. 
If you wanted the two doors you didn’t choose before Monty tease reveals (and you do), then 
you should want to switch after the reveal—it’s the same deal. The odds of winning are 2/3 if 
you switch because you only had a 1/3 chance of being right in your initial door choice.” 
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Rosenthal (2009, 36) … 
“Note that the strategy of sticking will only succeed if your original guess happened to be 
correct, which had probability 1/3. And since we knew the Host was going to open some door 
not containing the car, observing this doesn’t change the probability 1/3 that we were right in the 
first place.” 
 
Sorensen (2003, 225) … 
“Monty’s revelation that door 2 has a goat cannot raise the probability that door 1 has the prize 
because you already knew that Monty was going to either reveal 2 as a loser or reveal 3 as a 
loser. … [Thus] … the probability that the prize is behind door 3 rises to 2/3 because the 
probability of door 1 winning is not affected.”  
 
3. Versions of the Wi-Phi Probability Swap Argument: 
 
Bollobás (2022, 181) … 
“The contestant … should definitely switch.  To see this, let us call the door chosen by the 
contestant door A.  First, suppose that the contestant guesses correctly, and door A hides the car.  
The probability of this is 1/3.  Hence, by staying with his choice, his probability of winning the 
car is 1/3.  Second suppose that the contestant guesses incorrectly, and a goat is behind door A.  
The probability of this is 2/3.  By swapping, the contestant wins the car with probability 2/3.” 
 
Brilliant (2018) … 
“In two out of three cases, you win the car by changing your selection after one of the doors is 
revealed. This is because there is a greater probability that you choose a door with a goat behind 
it in the first go, and then Monty is guaranteed to reveal that one of the other doors has a goat 
behind it. Hence, by changing your option, you double your probability of winning.” 
 
Bruce (2001, 112) … 
“If your policy is to stick with your original choice, you win only one time in three.  But two 
times out of three you will pick an empty box.  In that case, I have no choice.  I am constrained 
to open the only empty one of the other two.  Then changing your choice guarantees you a win 
two-thirds of the time.” 
 
Cook (2020, 84) … 
“If Door One hides the car, you lose by switching.  If Door One does not hide the car, then by 
switching, you guarantee yourself a win because the remaining door that hides a goat is 
necessarily eliminated by the host.  So really, the probability that you will land on the car by 
switching is equal to the probability that Door One does not have the car behind it.  That 
probability is 2/3.” 
 
Gessell (2015) … 
“If you adopt the switching strategy, the only way you can lose the game is if you choose the 
door with the prize behind it on the first try.  But the odds of choosing the door with the prize 
behind it on the first try are just 1 out of 3.  This means that the odds of winning the game by 
switching are 2 out of 3.” 
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Hájek and Hitchcock (2016, 16) … 
“Here’s the simplest way to see that switching is advantageous. Suppose that you commit to a 
strategy of ‘sticking’ or ‘switching’ before you choose a door. It is easy to see that if you pursue 
a strategy of sticking, you will win the prize just in case your first guess is correct. For instance, 
if you initially choose door , and then stick with door 1 when offered a chance to switch, then 
you will win just in case the prize is behind door 1. Thus a strategy of sticking has a one in three 
probability of success. By contrast, switching will win you the prize just in case your initial 
choice was incorrect. For example, suppose you choose door 1, and the prize is behind door 2. 
Monty Hall will now show you what’s behind door 3, and switching to door 2 will win you the 
prize. Parallel reasoning applies if the prize is behind door 3. So a strategy of switching will win 
the prize in two cases out of three.” 
 
Huemer (2018, 4-5) … 
“Why does the prize have a 2/3 probability of being behind door B? … Suppose Monty runs the 
game 300 times. Each time, the location of the good prize is randomly selected from among the 
three doors. We would expect that in about 100 of these games, the contestant’s initial guess is 
correct, that is, the first door they pick has the prize behind it. The other 200 times, the initial 
guess is wrong. Therefore, if the contestants always stick with their initial guess, then 100 of the 
300 will win the real prize, and 200 will receive goats … Now, on the other hand, suppose that 
the contestants always switch doors. Then the 100 contestants who initially picked the correct 
door will lose, as they give up that door. But the other 200, the ones who initially picked wrong, 
will all switch doors. And they will all switch to the correct door, since the correct door will be 
the only remaining door, after rejecting the door they initially picked and the goat door that 
Monty just opened. So the “switch doors” strategy wins 2/3 of the time, whereas the “stick with 
your door” strategy wins only 1/3 of the time.” 
 
Khan Academy (2012) … 
“Are you better off switching to whatever curtain is left? … There’s three doors. The prize is 
equally likely to be behind any one of them. … One has the outcome that you desire. The 
probability of winning will be 1/3 if you don’t switch. … [But] if you picked one of the wrong 
doors, they’re going to have to show the other wrong door.  And so if you switch, you’re going 
to end up on the right answer.  So, what is the probability of winning if you always switch? Well, 
it’s going to be the probability that you initially picked wrong. … There’s two out of the three 
ways to initially pick wrong.  So you actually have a 2/3 chance of winning.” 
 
Li (2013) … 
“If you stay with your first choice, you win only if your first choice happened to be the right one.  
And that is the case with probability one-third.  So … the probability of winning given the 
strategy of staying with your first choice is one-third … If your first choice happened to be the 
right door, then switching away from that choice will always lose … that happens with 
probability one-third.  But the rest of the time, with probability two-thirds, your first choice will 
be wrong … if your initial pick was wrong, then the prize is behind one of the two other doors.  
Your friend has to open one of the doors.  But he can’t open the door that has the prize behind it.  
So, he has to open the other bad door, leaving the good door with the prize behind it as the one 
that you can switch to.  And so, by switching, you will win in this scenario … so … the 
probability of winning if you switch is two-thirds.” 
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Nihous (2009, 94) … 
“While switching would be a systematic loss if the initial pick was the winning site (probability 
1/3), it would guarantee a win if the initial pick was one of the two losing sites (probability 2/3). 
Hence, the chance of winning by switching is 2/3, i.e., twice as great as the initial probability!” 
 
Pynes (2013, 42) … 
“In 1/3 of the cases she initially picks the prize door and wins when she stays. In the other 2/3 of 
the cases where she didn’t initially pick the prize door, she wins when she switches. So the best 
strategy to win the prize is to pick a door and then switch to the non-tease reveal door when 
given the opportunity to switch.” 
 
Stewart (2019, 67) … 
“Since another door has been eliminated, the conditional probability that the car is behind a door, 
given that this is not the one you chose, is 1 – 1/3 = 2/3, because there’s only one such door, and 
we’ve just seen that two times out of three your door is the wrong one. Therefore, two times out 
of three, changing to the other door wins the car.” 
 
Talwalkar (2013, 56) … 
“Note that if you stay, you only win if the initial door you picked had the grand prize. This is a 
1/3 chance. On the other hand, if you switch, you would win if the grand prize were in either of 
the doors you did not pick. That's a 2/3 chance.” 
 
Titelbaum (2022, 181) … 
“When the contestant originally selected her door, she was 1/3 confident that the prize was 
behind it and 2/3 confident that the prize was somewhere else. If her initial pick was correct, she 
claims the prize just in case she sticks with that pick. But if her initial selection was wrong, she 
wins by switching to the other remaining closed door, because it must contain the prize. So 
there’s a 1/3 chance that sticking is the winning strategy, and a 2/3 chance that switching will 
earn her the prize. Clearly switching is a better idea!” 
 
University of Illinois (2023) … 
“When you first pick your door, the probability of picking the winning door is 1/3 … if you pick 
Door 1 and don't change your door when Door 1 is winning -- you win!  If you pick Door 1 and 
don't change your door and Door 2 is winning -- you lose!  You can see all possibilities in this 
table.  So overall, you will win 3/9 or 1/3 times in this scenario … if you pick Door 1 originally 
and change your door when Door 1 is winning -- you lose!  If you pick Door 1 and change your 
door and Door 2 is winning -- you win!  You can see all possibilities in this table.  So overall, 
you will win 6/9 or 2/3 times in this scenario.” 
 
Winkler (2004, 34) … 
“Of course, she should switch.  If the game is played 300 times, the right door will be chosen 
initially about 100 of those times; the other 200 games will be won by the contestant who 
switches!” 
 
4. The Best Strategy in Cases Where the Initial Probabilities are Unequal: 
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Theorem: Let 𝐶! and 𝑀* for 1 ≤ 𝑖, 𝑗 ≤ 3 and 𝑖 ≠ 𝑗 denote the events that the car is behind door 𝑖 
and that Monty opens door 𝑗, respectively.  And let P(𝐶!) = 𝑝!.  When the probabilities are 𝑝+ > 
𝑝, > 𝑝-, the best strategy is to pick door #3 and switch. 
 
Proof: 
 
Suppose that you pick door #3.  P(𝐶-| 𝑀+) = 𝑝-/(𝑝- + 2𝑝,).  This is less than +

,
 because 𝑝- is less 

than 2𝑝, by assumption.  P(𝐶-| 𝑀,) = 𝑝-/(𝑝- + 2𝑝+).  This is also less than +
,
 because 𝑝- is less 

than 2𝑝+ by assumption.  So, if you pick door #3, it is better to switch rather than stay regardless 
of which door Monty opens (and regardless of what the precise values of 𝑝+, 𝑝,, and 𝑝- 
are).  And if you pick door #3 and switch, you clearly win the car with an overall probability of 1 
- 𝑝-.   
 
But what if you pick another door initially, say, door #1?  There are three possibilities.  First, it 
might be better to stay no matter what door Monty opens.  Second, it might be better to switch no 
matter what door Monty opens.  Third, it might be better to stay if Monty opens one door and 
better to switch if he opens the other door. 
 
In the first case, you win with an overall probability of 𝑝+.  But this is less than 1 - 𝑝-, which is 
equal to 𝑝+ + 𝑝,.  In the second case, you win with an overall probability of 1 - 𝑝+.  But this is 
less than 1 - 𝑝-, since 𝑝- is less than 𝑝+ by assumption.  In the third case, you win with an overall 
probability that is a weighted average of 𝑝+ and 1 - 𝑝+.  In other words, you win with an overall 
probability that is between 𝑝+ and 1 - 𝑝+, which is guaranteed to be less than 1 - 𝑝- by the 
arguments in the preceding cases. 
 
So, if you pick door #1, you are guaranteed to do worse than picking door #3 and switching.  The 
argument for door #2 is exactly the same (except that the first case is not possible since it is 
never better to stay if Monty opens door #3). 
 
5. Python Simulation of the Unequal Monty variation: 
 
import numpy as np 

 

NUM_TRIALS = 100000 

 

wins_stick = 0 

wins_switch = 0 

 

rel_trials = 0 

rel_wins_stick = 0 

rel_wins_switch = 0 

 

for t in range(NUM_TRIALS): 
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    #Initialize array of closed doors 

    closed_doors = np.array([1, 2, 3]) 

 

    #Determine winning door 

    winning_door = np.random.choice(closed_doors, p=[1/3, 2/15, 8/15]) 

 

    #Make initial choice of door 

    initial_door = np.random.choice(closed_doors) 

 

    #Monty chooses a door to open 

    door_to_open = np.random.choice(np.setdiff1d(closed_doors, [winning_door, initial_door])) 

 

    #Update the array of closed doors 

    closed_doors = np.setdiff1d(closed_doors, door_to_open) 

 

    #Check whether this is a relevant trial 

    #That is, check that you pick door #1 and Monty opens door #3 and reveals a goat) 

    if initial_door == 1 and door_to_open == 3: 

        rel_trials += 1 

 

    #Stick strategy 

    final_door = initial_door 

    if final_door == winning_door: 

        wins_stick += 1 

        if initial_door == 1 and door_to_open == 3: 

            rel_wins_stick += 1 

 

    #Switch strategy 

    final_door = np.random.choice(np.setdiff1d(closed_doors, initial_door)) 

    if final_door == winning_door: 

        wins_switch += 1 

        if initial_door == 1 and door_to_open == 3: 

            rel_wins_switch += 1 

 

#Print results 

print('{:15s}: {:7d} /{:7d} ({:.4f})'.format('stick', wins_stick, NUM_TRIALS, 

1.0*wins_stick/NUM_TRIALS)) 

print('{:15s}: {:7d} /{:7d} ({:.4f})'.format('switch', wins_switch, NUM_TRIALS, 

1.0*wins_switch/NUM_TRIALS)) 

print('{:15s}: {:7d} /{:7d} ({:.4f})'.format('relevant stick', rel_wins_stick, rel_trials, 

1.0*rel_wins_stick/rel_trials)) 

print('{:15s}: {:7d} /{:7d} ({:.4f})'.format('relevant switch', rel_wins_switch, rel_trials, 

1.0*rel_wins_switch/rel_trials)) 

 
Sample Output: 
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stick          :   33228 / 100000 (0.3323) 
switch         :   66772 / 100000 (0.6677) 
relevant stick :    5494 /   9875 (0.5564) 
relevant switch:    4381 /   9875 (0.4436) 

 


