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Recent work showed that, when equivalence classes of states reflecting finite detector resolution
are employed, the Born rule can be derived from linear Schrödinger evolution driven by random
Hamiltonians drawn from the Gaussian Unitary Ensemble. We apply this framework to foundational
paradoxes of quantum mechanics, showing that measurement, state reduction, and the emergence
of classical behavior follow from stochastic but unitary dynamics in projective state space together
with the use of equivalence classes. Traditional quantum paradoxes, including the measurement
problem, Schrödinger’s cat, Wigner’s friend, and the quantum-classical transition, are reinterpreted
as consequences of state-space geometry and stochastic unitary dynamics, rather than as indications
of a breakdown of unitarity. Classical and quantum behavior emerge as distinct dynamical regimes of
a single model, determined by physically motivated parameter choices rather than by fundamentally
different laws.

INTRODUCTION

Despite the extraordinary empirical success of quan-
tum mechanics, its conceptual foundations remain un-
settled. Central difficulties cluster around measurement:
the emergence of definite outcomes from linear, uni-
tary dynamics; the role of observers and environments;
and the appearance of classical trajectories. Many well-
known paradoxes and foundational problems, includ-
ing wave-function collapse, Schrödinger’s cat, Wigner’s
friend, nonlocal correlations, and the quantum-classical
transition, are likewise rooted in the transition of quan-
tum states under measurement.

Existing approaches to these problems typically take
one of several routes: they either deny the physical real-
ity of collapse and represent measurement by a mathe-
matical projection; eliminate collapse in favor of infinite
branching; assume permanently definite positions guided
nonlocally by the wave function; or introduce nonlin-
ear stochastic modifications of the Schrödinger equation
to account for spontaneous collapse in position, energy,
or other observables. The latter approach must recon-
cile linear unitary evolution with nonlinear state reduc-
tion while remaining consistent with observations, which
severely restricts the admissible range of model parame-
ters [1–9].

Here, we propose an alternative approach that treats
measurement as a physical interaction between a quan-
tum system and its environment. The central conjec-
ture is that the highly complex, rapidly fluctuating in-
teractions with a measuring apparatus or environment
can be modeled by a time-dependent random Hamilto-
nian drawn from an appropriate ensemble. The resulting
dynamics is a linear stochastic evolution in state space
governed by the Schrödinger equation. When classical
space and phase space are identified as submanifolds of
state space and states indistinguishable by detectors are
grouped into equivalence classes, this framework avoids
the standard objections to linear collapse models and

provides a unified account of state reduction, classical
behavior, and measurement outcomes [10–15].

The purpose of the present paper is not to rederive the
formalism in detail, but to show how the resulting single
dynamical framework sheds new light on a broad range
of quantum paradoxes. We argue that many apparent
inconsistencies of quantum theory arise from overlooking
the role of the geometry of state space under stochas-
tic unitary evolution, and from conflating exact quantum
states with experimentally accessible information. Under
Schrödinger evolution with a random Hamiltonian, phe-
nomena traditionally labeled as collapse, branching, or
observer dependence arise as dynamical features of state-
space trajectories conditioned on measurement records,
whenever the evolving state intersects the classical sub-
manifold of state space.

We systematically revisit several foundational para-
doxes, including the measurement problem, wave func-
tion collapse, Born rule, outcome uniqueness, Quantum-
to-Classical Transition, Schrödinger’s cat, Wigner’s
friend, and aspects of nonlocality, from this perspective.
In each case, the paradox is substantially clarified with-
out invoking nonunitary dynamics, hidden variables, or
observer-dependent postulates. Instead, the same mech-
anism, unitary evolution in state space driven by ran-
dom Hamiltonians and interpreted through equivalence
classes of states, applies uniformly across microscopic and
macroscopic regimes.

The paper is organized as follows. We begin with a
brief review of the geometry of the projective state space,
its classical configuration-space and phase-space subman-
ifolds, the role of equivalence classes of states, and the
evolution of states under random Hamiltonians. We then
explain how this framework leads to a dynamical descrip-
tion of measurement and the emergence of the Born rule.
Finally, we analyze a range of quantum paradoxes, show-
ing how they are reinterpreted within this framework,
and summarize the overarching implications of the ap-
proach.
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THE FORMALISM

Realistic position-measuring devices cannot distin-
guish states that are sufficiently well localized in space.
Consequently, whenever a state ϕ has spatial support
narrower than the instrumental resolution σ, or is negligi-
ble outside a region of spatial extent σ, the measurement
identifies it as a position eigenstate.

Let ϕ ∈ L2(R3) be an arbitrary quantum state, written
in the polar form

ϕ(x) = r(x) eiΘ(x).

Assume that r is sufficiently smooth and has finite vari-
ance, and define its translated and rescaled versions by

ra,σ(x) = σ−3/2 r

(
x− a

σ

)
. (1)

The parameter σ represents the spatial resolution of the
detector. For sufficiently small σ, any state localized near
a, viewed projectively in CPL2 , takes the approximate
form

ϕ(x) = ra,σ(x) eip·x/~, (2)

since quadratic and higher-order terms in the Taylor ex-
pansion of Θ are negligible over the region where ra,σ is
not negligibly small.

Let Mσ
3,3 ⊂ CPL2 denote the set of wave packets of the

form (2) for a fixed function r. The parameters a and p
represent the approximate position and momentum of the
packet, with the momentum defined via group velocity.
Equipped with the metric induced from the Fubini-Study
metric on CPL2 , this set becomes a Riemannian manifold.
With an appropriate choice of units, the map

Ω : (a,p) 7−→ ra,σ e
ip·x/~

is an isometry between the Euclidean phase space R3×R3

and Mσ
3,3. Via Ω, Mσ

3,3 may also be endowed with a linear
structure inherited from R3 × R3.

Consider now the action functional

S[ϕ] =

∫
ϕ(x, t)

[
i~
∂

∂t
− ĥ
]
ϕ(x, t) d3x dt, (3)

where

ĥ = − ~2

2m
∆ + V̂ (x, t). (4)

Unconstrained variation of S[ϕ] yields the Schrödinger
equation. If, however, ϕ is constrained to lie on Mσ

3,3

with sufficiently small σ, the action reduces to

S =

∫ [
p
da

dt
− h(p,a, t)

]
dt, (5)

with

h(p,a, t) =
p2

2m
+ V (a, t). (6)

Constrained variation yields Newton’s equations, in
agreement with the Ehrenfest theorem for narrow wave
packets. Thus, within this framework, a Newtonian par-
ticle corresponds to a quantum system whose state is
constrained to Mσ

3,3. The manifold Mσ
3,3 may therefore

be identified with the classical phase space of the particle.
This construction extends directly to many-body sys-

tems. For example, a two-particle state constrained to
Mσ

3,3 ⊗Mσ
3,3 and evolving under

ĥ = − ~2

2m1
∆1 −

~2

2m2
∆2 + V̂ (x1,x2, t) (7)

follows classical Newtonian dynamics.
The freedom in choosing r allows Mσ

3,3 to be defined
via equivalence classes of sufficiently localized states. For
concreteness, we adopt Gaussian representatives,

ga,σ(x) =

(
1

2πσ2

)3/4

exp

[
− (x− a)2

4σ2

]
. (8)

For states ϕ = ga,σe
ip·x/~, the Schrödinger velocity

dϕ

dt
= − i

~
ĥϕ

decomposes orthogonally in the Fubini-Study metric into
components corresponding to classical velocity, classical
acceleration, and wave-packet spreading. Their squared
norms sum to∥∥∥∥dϕdt

∥∥∥∥2

FS

=
v2

4σ2
+
m2w2σ2

~2
+

~2

32m2σ4
, (9)

where v = da
dt and w = −∇V/m. Suppressing the

spreading term constrains the motion to Mσ
3,3, reducing

commutators to Poisson brackets and yielding classical
dynamics [10].

The isometry Ω relates Euclidean distances in classical
phase space to Fubini-Study distances in state space. For
ϕ = ga,σe

ip·x/~ and ψ = gb,σe
iq·x/~, one finds

e
− (a−b)2

4σ2
− (p−q)2

~2/σ2 = cos2 ρ(ϕ,ψ), (10)

where (a − b)2 and (p − q)2 denote squared Euclidean
distances in R3. Restricting Ω to position space yields an
isometry ω : a 7→ ga,σ between R3 and the submanifold

Mσ
3 ⊂ CPL2 , characterized by

e−
(a−b)2

4σ2 = cos2 ρ(ga,σ, gb,σ). (11)

This identification can be used to demonstrate that the
normal distribution on R3 corresponds exactly to, and



3

uniquely extends as, the Born rule in state space [10, 13,
14].

Classically, a position measurement can be modeled
as a random walk on R3, approximating Brownian mo-
tion over the time interval of observation. Such a model
is physically well motivated, since measurement errors
arise from the cumulative effect of many small fluctua-
tions produced by interactions between the particle, the
measuring device, and the surrounding environment.

We assume that the situation for position measure-
ments of microscopic particles is analogous. Rapidly fluc-
tuating interactions between the particle, the measuring
device, and the environment make applicable the reason-
ing originally introduced by Wigner [16] and later formal-
ized in the Bohigas-Giannoni-Schmit conjecture [17], now
in a time-dependent measurement setting. Imposing, in
addition, Hermiticity of the Hamiltonian governing the
evolution, we propose the following conjecture:

(RM) During position measurement, the
state evolves via a random walk in state space.
In the absence of drift, each step is generated
by Schrödinger evolution with a Hamiltonian
independently drawn from the Gaussian Uni-
tary Ensemble.

It can be shown that this walk provides a unique exten-
sion of the Gaussian random walk on R3 = Mσ

3 to a
random walk on CPL2 whose step distribution is invari-
ant under unitary transformations [10, 13, 14]. In this
sense, the assumptions underlying conjecture (RM) are
similar to those employed by Einstein in his theory of
Brownian motion [18].

Under (RM), the transition probability depends only
on the Fubini-Study distance between states. When the
walk is restricted to Mσ

3 , this probability is Gaussian.
Consequently, the induced transition probability in the
full state space is given by the Born rule [10, 13, 14].
The apparent concern that a state might never reach
Mσ

3 is resolved once Mσ
3 is defined in terms of equiva-

lence classes of detector-indistinguishable states, as we
now demonstrate.

In one dimension, let

ga,σ(z) =

(
1

2πσ2

)1/4

exp

[
− (z − a)2

4σ2

]
. (12)

The set of all such functions forms a submanifold Mσ
1 of

the state space CPL2 with the induced metric, which is
Euclidean, making Mσ

1 isometric to R.

The equivalence class {gc} consists of all states with
position expectation µz = c and standard deviation δz ≤
σ. Distances between a state and an equivalence class
are defined by

ρ(ϕ, {gc}) = inf
ψ∈{gc}

ρ(ϕ,ψ), (13)

and the distance between two equivalence classes by

ρ({gc}, {gd}) = inf
ϕ∈{gc}

ρ(ϕ, {gd}). (14)

In the latter case, the infimum is realized by the
Gaussian representatives gc and gd, which minimize the
Fubini-Study distance among all states in the correspond-
ing equivalence classes. Thus the space M̃σ

1 of equiv-
alence classes is itself a Riemannian manifold, isomet-
ric to Mσ

1 and hence to R. Each equivalence class is
large, absorbing infinitely many orthogonal directions in
the Hilbert space. Augmenting equivalence classes with
momentum factors yields the manifold M̃σ

1,1, equipped
with the induced Euclidean metric of R2. As before,
Schrödinger evolution constrained to M̃σ

1,1 reduces to
Newtonian dynamics.

In this setting, the position of a particle is specified
by an equivalence class of states characterized by the pa-
rameters µz and δz, with all remaining degrees of free-
dom absorbed into the class. Translating and scaling
any suitable initial state ϕ generates a two-dimensional
submanifold Mϕ ⊂ CPL2 with orthogonal coordinates
(τ, s) = (µz, ln δz). State reduction is then described by
a stochastic process on R2 = Mϕ. The τ -component of
this process yields the Born rule on state space, while
the s-component yields a probability ∼ 1/2 of satisfying
δz ≤ σ, accounting both for the emergence of collapse
and for the persistence of classical behavior [14].

QUANTUM PARADOXES AND
QUANTUM-CLASSICAL TRANSITION

Measurement Problem

Question: How can linear Schrödinger evolution yield
definite outcomes governed by the Born rule?

Answer: For a single particle, the Schrödinger evo-
lution driven by the random Hamiltonian in (RM) in-
duces a random walk on the projective state space CPL2 .
Whether the initial state is a superposition of position
states is immaterial: transition probabilities depend only
on the Fubini-Study distance between states. After suf-
ficiently many steps, the probability that the evolving
state lies on the classical space submanifold M̃σ

1 , i.e.,
satisfies δz ≤ σ, approaches 1/2. Conditioned on the

state being on M̃σ
1 , the probability of reaching a partic-

ular equivalence class {gc}, corresponding to registering
the position z = c, is given by the Born rule [14].

For a two-particle system in an arbitrary initial state,
the Hilbert space is the tensor product

L2(R)⊗ L2(R) ∼= L2(R2),

with the corresponding projective state space CPL2 . The
classical space submanifold is the tensor product

M̃σ1
1 ⊗ M̃

σ2
1 ,
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with possibly different resolution parameters σ1 and σ2

for the two particles. The metric relation (11) generalizes
to

e
− (a−b)2

4σ21
− (c−d)2

4σ22 = cos2 ρ(ga,σ1⊗gc,σ2 , gb,σ1⊗gd,σ2). (15)

To obtain an isometry between the Euclidean space
R2 of position pairs (a, c) and the manifold M̃σ1

1 ⊗ M̃
σ2
1 ,

equipped with the induced Fubini-Study metric, dis-
tances must be measured in units of σ1 and σ2 for the
first and second particles, respectively; in general, the co-
ordinate units along the two axes of R2 therefore differ.
With this identification, the isotropic random walk of the
joint state described by (RM) induces a random walk on
R2 corresponding to two independent Brownian motions
with diffusion coefficients set by σ1 and σ2. In partic-
ular, by an appropriate choice of these parameters, one
can decrease or increase the effect of measurement on the
particles. This flexibility will be important later, when
considering a system consisting of a particle coupled to
a macroscopic measuring device.

The isotropy and homogeneity of the step distribution
in (RM) ensure that transition probabilities depend only
on the Fubini-Study distance between joint states, and
the Born rule follows exactly as in the single-particle
case. Correlations between measurement outcomes for
entangled particles follow directly from the Born rule
within this framework. No additional nonlocal mecha-
nisms beyond those encoded in the Hamiltonian dynam-
ics of (RM) are required. The extension to systems of
more than two particles proceeds analogously.

Wave Function Collapse

Question: What is wave function collapse, and why is
the process stochastic despite deterministic Schrödinger
dynamics? How can it appear effectively instantaneous
and yield a single outcome, despite an initial superposi-
tion of possible outcomes?

Answer: Stochastic outcomes arise from the random
Hamiltonian drawn from the Gaussian Unitary Ensemble
in (RM). What is traditionally called “collapse” corre-
sponds here to the dynamical approach of the state to-
ward the classical space submanifold M̃σ

1 (or, for compos-
ite systems, toward a tensor product of such manifolds).
For clarity we discuss a single particle, but the mecha-
nism applies equally to multi-particle states, as already
noted in the discussion of the measurement problem.

Once the evolving state reaches a particular equiva-
lence class {gc} ∈ M̃σ

1 , the particle’s position is uniquely
defined and can be registered with certainty. By choos-
ing the time step of the stochastic evolution sufficiently
small, the duration of this approach can be made arbi-
trarily short, accounting for the effectively instantaneous
character of collapse observed in practice.

Outcome uniqueness follows directly from this dynam-
ics. At any given time the state approaches a single
equivalence class {gc} rather than branching into mul-
tiple simultaneously realized alternatives. The stochas-
ticity of the evolution determines which equivalence class
is reached, but once reached, the outcome is definite and
unambiguous. In this framework, outcome uniqueness is
therefore a dynamical consequence of the evolution rather
than an additional postulate.

It is important to emphasize that the act of record-
ing the fact that the state lies in {gc} is not part of the
collapse process itself. Recording neither influences the
evolution of the state nor, by itself, contributes to the sta-
bility of the outcome. If a second position measurement
is performed immediately after the first, the same result
will be obtained simply because the state has not yet had
time to move appreciably away from {gc} under the dy-
namics. To understand how recording becomes possible
in physical terms, we now turn to the quantum-classical
transition.

Quantum-Classical Transition

Question: How can Newtonian mechanics emerge if
Schrödinger dynamics is universal? Why do macroscopic
superpositions not persist?

Answer: Macroscopic bodies continuously interact
with particles and radiation in their environment. Scat-
tered environmental particles and radiation carry infor-
mation about a body’s position, making the conjecture
(RM) applicable in this setting. Since Schrödinger evo-

lution of a particle whose state is constrained to M̃σ
1,1 is

Newtonian, the central issue is to explain why the spread-
ing component in (9) is effectively suppressed during en-
vironmental monitoring.

Empirically, wave-function collapse appears nearly in-
stantaneous, so that the contribution of the free Hamil-
tonian during individual random steps is negligible. We
therefore assume that, during measurement kicks, the
random Hamiltonian ĥRM dominates the free Hamilto-
nian ĥ. In this regime, the evolution of state of a macro-
scopic body under environmental measurement consists
of short intervals of free Schrödinger evolution inter-
spersed with rapid, stochastic “kicks” generated by ĥRM,
during which the effect of ĥ can be neglected. The total
Hamiltonian remains ĥtot = ĥ + ĥRM, while the dynam-
ics effectively factorizes into alternating segments of free
evolution and stochastic unitary steps.

Suppose that the initial state of a macroscopic particle
lies on M̃σ

1 . As in ordinary Brownian motion, the prop-
erties of the particle and its environment determine the
time-step dt and step-size dz parameters of the random
walk in (RM). For a macroscopic body in a natural envi-
ronment (air, radiation), we assume that the time step is
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extremely small, while diffusion is strongly suppressed,
so that the diffusion coefficient D = (dz)2/dt remains
small. As a result, many steps of the walk occur within a
short time interval ∆t, and neither the free Schrödinger
evolution nor the stochastic component of the dynamics
drives the state far from a small neighborhood of M̃σ

1 .

Over ∆t, the state undergoes a Newtonian displace-
ment along M̃σ

1 , together with only a small excursion
away from the manifold due to Schrödinger spreading
and the random walk generated by (RM). The large
number of steps further ensures that the state repeatedly
returns to M̃σ

1 , that is, satisfies the condition δz ≤ σ,
with probability arbitrarily close to one. At any given
time, the probability of satisfying this condition is ap-
proximately 1/2. Whenever this occurs, the position of

the state on M̃σ
1 is recorded, and the stochastic evolution

effectively restarts from that point, producing a sequence
of recorded points on M̃σ

1 .

This behavior is particularly transparent when de-
scribed in terms of the orthogonal coordinates (µz, ln δz)
on the plane R2 [14]. The outcome of this process is a se-

quence of recorded positions of the state on R = M̃σ
1 , nor-

mally distributed about the Newtonian trajectory. This
mechanism explains how Newtonian dynamics of a par-
ticle emerges from Schrödinger evolution in state space
and, in particular, accounts for the classical behavior of
macroscopic measuring devices.

For a system consisting of a measured particle and a
macroscopic measuring device, consistent with the dis-
cussion of the measurement problem and with Newto-
nian mechanics, the classical motion of the joint particle-
device state constrained to the manifold M̃

σp
1 ⊗ M̃

σd
1 is

described by two independent Brownian motions. The
diffusion coefficients for these motions are determined by
the spread parameters σp and σd of the particle and the
device, respectively. The macroscopicity of the device im-
plies that σd is extremely small, so that the state Ψ of the
device, defined when the total state lies on M̃

σp
1 ⊗ M̃

σd
1 ,

is effectively fixed on M̃σd
1 .

The isotropy of the distribution of steps of the random
walk in (RM) then implies that the joint state of the
system must be close to a state of the form ϕ ⊗ Ψ, for
some ϕ in L2(R). Because Ψ ∈ M̃σd

1 is well-localized, this
can only occur if the joint state is itself approximately of
product form. In particular, any nontrivial superposition∑
k ckϕk⊗Ψk, for which there exists at least one index k

such that Ψk is localized at a position different from that
of Ψ and the corresponding coefficient ck is not negligibly
small, lies at a large Fubini-Study distance from ϕ ⊗ Ψ
for any choice of the functions ϕk.

It follows that, under (RM), the state of the particle-
device system retains its product form, so that that
the state of the particle remains well defined and can
be treated independently. When, under (RM), the

particle’s state reaches the submanifold M̃
σp
1,1, the joint

particle-device state belongs to M̃
σp
1,1 ⊗ M̃σd

1,1. On this
manifold, the Hamiltonian (7) reduces to the classical
Hamiltonian of a pair of particles, and the measurement
result is recorded as an ordinary Newtonian correlation
between two classical subsystems, without invoking a col-
lapse postulate or observer-dependent rules.

Schrödinger’s cat

Question: How can quantum theory allow a macro-
scopic system, such as a cat, to exist in a superposition
of classically distinct states like alive and dead?

Answer: A macroscopic system such as a cat continu-
ously interacts with its environment. As in the particle-
device system discussed in the previous section, the state
of the atom-cat system at any time has the product form
ϕ ⊗ Ψ, where ϕ is the atom’s state and Ψ ∈ M̃σ

3,3 is
the state of the cat. The initial atom-cat state evolves
into either a classical “alive” trajectory, culminating in
the state ϕundecayed⊗Ψalive, or a classical “dead” trajec-
tory, ending in the state ϕdecayed ⊗Ψdead, depending on
the decay outcome, but never into a superposition of the
two. The putative superposition of “alive” and “dead”
corresponds to a region of state space that is dynamically
inaccessible under measurement-like environmental inter-
actions, because the macroscopic cat state is dynamically
confined to a classical equivalence class by continual en-
vironmental monitoring. The paradox arises only if one
assumes that such macroscopic superpositions are physi-
cally realizable, which they are not within this dynamics.

Wigner’s friend

Question: How can one observer (the friend) record
a definite measurement outcome, for example, the posi-
tion of a particle, while another observer (Wigner) con-
sistently describes the same system as being in a super-
position?

Answer: In this framework, the measuring device, the
friend, and Wigner are all macroscopic systems interact-
ing with the environment and evolving under (RM). The
joint state of the particle-device system (in one spatial di-
mension) has the product form ϕ⊗Ψ, where ϕ ∈ L2(R)

is the particle’s state and Ψ ∈ M̃σd
1,1 is the state of the

device. Under measurement, the stochastic unitary dy-
namics drives the state into a definite equivalence class
{gc,σp} ⊗ {gd,σd} ∈ M̃

σp
1 ⊗ M̃

σd
1 , corresponding to a defi-

nite measurement outcome.
When a friend performs the measurement, the total

system consists of the particle, the device, and the friend,
with joint state ϕ ⊗ Ψ ⊗ Π, where Π ∈ M̃σf

1 represents
the friend’s macroscopic state. The measurement inter-
action between the particle, the device, and the friend
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again drives the joint state into a single equivalence class
{gc,σp} ⊗ {gd,σd} ⊗ {gf,σf } ∈ M̃

σp
1 ⊗ M̃

σd
1 ⊗ M̃

σf
1 , which

is the only physically realized outcome.
When Wigner subsequently interacts with the compos-

ite system, the same stochastic unitary dynamics applies
to the state ϕ ⊗ Ψ ⊗ Π ⊗ Φ, where Φ ∈ M̃σW

1 repre-
sents Wigner’s macroscopic state. The joint state after
this interaction belongs to the equivalence class {gc,σp}⊗
{gd,σd}⊗{gf,σf }⊗{gW,σW } ∈ M̃

σp
1 ⊗M̃

σd
1 ⊗M̃

σf
1 ⊗M̃

σW
1 ,

and Wigner necessarily records the same outcome c
for the particle’s position as the friend. No observer-
dependent collapse, branching, or change of physical de-
scription occurs. State reduction is an objective dynam-
ical process determined by the evolution in state space,
rather than by the perspective of a macroscopic observer.

This framework differs from Everettian and relational
approaches in how outcome definiteness is obtained.
In Everettian accounts, linear Schrödinger evolution is
taken to imply branching into multiple coexisting out-
comes. Here, by contrast, the stochastic unitary dynam-
ics generated by random Hamiltonians leads to a single
realized equivalence class in the classical submanifold,
without invoking branching or parallel outcomes.

Similarly, unlike relational interpretations, outcome
definiteness is not observer-relative. All macroscopic sys-
tems, including measuring devices and observers, evolve
under the same stochastic Schrödinger dynamics, and
once the joint state reaches a classical equivalence class,
all subsequent interactions necessarily record the same
outcome. In this sense, state reduction is an objective
dynamical process in state space rather than a perspec-
tival or observer-dependent phenomenon.

Decoherence

Question: What role does decoherence play in this
framework, and how does it relate to state reduction and
classical behavior?

Answer: In standard accounts, decoherence explains
the suppression of interference between macroscopically
distinct states through entanglement with environmental
degrees of freedom. While this accounts for the practical
disappearance of off-diagonal terms in reduced density
matrices, it does not by itself select a unique outcome,
leaving the measurement problem unresolved.

In the present framework, decoherence emerges as
a consequence of stochastic unitary evolution driven
by random Hamiltonians in (RM), together with
the identification of equivalence classes of detector-
indistinguishable states. Environmental interactions
rapidly drive the state toward the classical submanifold
of state space, but it is the projection onto an equiva-
lence class, rather than tracing over environmental de-
grees of freedom, that suppresses interference. Coher-

ence is lost not merely because phases become inaccessi-
ble, but because states belonging to different equivalence
classes are dynamically separated in the Fubini-Study
geometry, with interference between them exponentially
suppressed.

Environment-induced decoherence yields an effective
mixture over classical alternatives, whereas the present
approach yields an objective approach of the state to
a specific equivalence class, corresponding to a definite
measurement outcome. Decoherence therefore appears
here not as an autonomous mechanism, but as a geo-
metric and dynamical feature of state-space trajectories
under (RM). In this sense, decoherence, state reduction,
and the quantum-classical transition are unified within a
single stochastic unitary dynamics. Equivalence classes
determine what counts as a classical record, while ran-
dom Hamiltonians determine how and when such records
emerge.

Note that when the initial state of a macroscopic body
belongs to an equivalence class representing a point of the
classical space or phase-space submanifold, subsequent
evolution under (RM), together with continual environ-
mental monitoring, assigns a vanishingly small probabil-
ity to the state evolving into a superposition of states
from different equivalence classes. In this sense, decoher-
ence for macroscopic bodies becomes effectively trivial:
the state remains confined to a single classical trajectory
rather than undergoing coherent branching.

Double-Slit Experiment

Question: How can a particle in the double-slit exper-
iment display interference when its position is not mea-
sured at the slits, yet appear as a localized object upon
measurement, thereby destroying interference? In such a
process, does the particle pass through one slit or both
slits?

Answer: At emission, the particle’s state is well lo-
calized and lies on the classical phase-space submanifold
M̃σ

3,3. In this regime, the particle behaves classically: its
position is well defined, and its Schrödinger evolution re-
produces Newtonian motion.

Upon interaction with the slit screen, with both slits
open, the particle’s state becomes a superposition of
states localized near the individual slits. This means that
the state moves away from the submanifold M̃σ

3 , so that
the distance (13) between the state and the submanifold
increases. In this sense, the particle’s path does not pass
through either slit, since that would require the state to
lie on M̃σ

3 . Rather, upon interaction with the screen, the
path of the state leaves the classical space submanifold
and evolves through the full projective state space.

If the particle’s position is measured at the slits, the
stochastic dynamics described by (RM) drives the state
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back to M̃σ
3 . The particle is then detected at one of

the slits, with probabilities determined by the Born rule.
Once localized, the particle again follows a classical tra-
jectory, in which case no interference pattern appears at
the detection screen.

If no position measurement is performed at the slits,
the state continues to evolve at a distance from M̃σ

3 as a
superposition. When the particle reaches the detection
screen, interaction with the screen induces a stochastic
evolution under (RM) that returns the state to M̃σ

3 . In
this case, the Born rule applied to the returning state
yields the familiar interference pattern.

In this framework, the apparent wave-particle duality
reflects motion in state space rather than the propaga-
tion of a physical wave in classical space. What appears
as wave spreading corresponds to the state, that is, a
point in state space, moving away from the classical sub-
manifold, while localization corresponds to its stochastic
return to M̃σ

3 . Whenever the state is close to M̃σ
3 in the

Fubini-Study-based metric (13), it behaves like a parti-

cle. Whenever the state moves away from M̃σ
3 , it exhibits

wave properties.
Collapse is therefore not a sudden spatial contraction,

but a dynamical transition in state space, realized as a
motion of a point-state, governed by (RM), with out-
come probabilities fixed by geometry.

Nonlocality and EPR Correlations

Question: How can quantum mechanics exhibit strong
correlations between spatially separated systems, as in
EPR and Bell-type experiments, without violating rela-
tivistic causality? Does the present framework require
nonlocal dynamics?

Answer: In the present framework, EPR correlations
arise from the geometry of state space and the stochas-
tic unitary dynamics generated by (RM), rather than
from any nonlocal physical influence between particles in
classical space.

An entangled two-particle system is represented by
a single state evolving as a point in the joint pro-
jective state space CPL2 , based on the Hilbert space
L2(R)⊗L2(R) ∼= L2(R×R) (here written for one spatial
dimension). The random walk generated by (RM) acts
on this joint state as a whole. Transition probabilities
depend only on Fubini-Study distances between states
and satisfy the Born rule, thereby encoding correlations
already present in the entangled state.

There is no conflict with Bell’s theorem, since the lat-
ter constrains local hidden-variable models formulated in
spacetime, whereas the relevant variables here are global
geometric properties of the joint quantum state evolving
in state space. Accordingly, there is no motion in classi-
cal space and no signal or causal influence propagates be-

tween spatially separated particles during measurement.

When a position measurement is performed on one par-
ticle in a position-entangled state, so that the position
of one particle determines the position of the other, the
point representing the joint state dynamically approaches
a particular equivalence class {gc,σ1

⊗ gd,σ2
} in the clas-

sical submanifold R2 = M̃σ1
1 ⊗ M̃

σ2
1 , corresponding to a

definite pair of classical position outcomes c and d for
the two particles. Each outcome takes values in the one-
dimensional classical space R. The entanglement present
in the initial state, together with the validity of the Born
rule for the random walk generated by (RM), implies
that a state of this form is the only possible outcome of
the measurement. In particular, if during the measure-
ment process the state of the first particle becomes well
defined and belongs to the class {gc,σ1}, then the state
of the second particle must simultaneously become well
defined and belong to the corresponding class {gd,σ2

}.
The correlated outcome for the distant particle is not

produced by a nonlocal action, but follows from the mo-
tion of the joint state toward a single equivalence class
{gc,σ1

⊗ gd,σ2
} determined by the initial entangled state

and the measurement dynamics. The resulting Born-rule
correlations thus emerge from the initial state of the pair
(i.e., the initial point of the random walk), the geometry
of the joint state space, and the homogeneity and isotropy
of the stochastic dynamics, rather than from any super-
luminal influence.

The framework preserves parameter independence:
measurement settings on one side do not affect the
marginal outcome statistics on the other. At the same
time, it allows for outcome dependence, exactly as re-
quired by quantum mechanics. In this sense, the appar-
ent nonlocality of EPR correlations reflects the insepara-
bility of entangled states in state space, rather than any
nonlocal dynamics in classical space. This inseparability
simply means that the initial entangled state lies outside
the classical configuration space R2 = M̃σ1

1 ⊗ M̃
σ2
1 .

The subsequent evolution toward M̃σ1
1 ⊗ M̃

σ2
1 remains

unitary and local in time, i.e., Markovian, with the evolu-
tion at each instant generated by an independently drawn
Hamiltonian. Moreover, the evolution is local in state
space: infinitesimal time increments produce ininitesimal
displacements in the Fubini-Study metric. Relativistic
causality is preserved: measurement outcomes are cor-
related but cannot be used for superluminal signaling,
since no motion of any kind occurs in classical space.

This perspective differs both from hidden-variable ap-
proaches, which posit additional nonlocal variables, and
from interpretations that treat collapse as observer-
dependent. In the present framework, correlations are
objective properties of state-space trajectories generated
by (RM). Measurement leads to the selection of a definite
equivalence class of the joint system, yielding correlated
outcomes without invoking nonlocal collapse or branch-
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ing. Accordingly, EPR correlations and Bell-inequality
violations are fully compatible with a stochastic yet uni-
tary measurement dynamics: quantum nonlocality is
reinterpreted as a geometric feature of state space, its
classical submanifolds, and the stochastic dynamics gen-
erated by (RM).

CONCEPTUAL IMPLICATIONS AND FURTHER
PARADOXES

The framework developed above provides a unified dy-
namical account of measurement, state reduction, and
the quantumclassical transition, based on stochastic yet
unitary evolution in state space. In this section, we
briefly address several foundational issues and paradoxes
that are often treated as independent problems, and
show how they are naturally reformulated and addressed
within the same underlying mechanism.

What Is Real in a Superposition

In the present framework, a quantum state is repre-
sented by a point in the projective state space CPL2 , and
physical evolution corresponds to a path of this point un-
der Schrödinger dynamics generated by a random Hamil-
tonian, as specified in (RM). A superposition of states
from the equivalence classes under consideration does not
represent the coexistence of multiple classical realities;
rather, it corresponds to a state lying away from the
classical configuration-space or phase-space submanifolds
of CPL2 . Classical properties become well defined only
when the state approaches these submanifolds. In this
sense, what is physically real at any given time is the
path traced by the state in state space itself. The ap-
parent ambiguity of superpositions arises only when one
attempts to ascribe classical attributes to states that do
not lie on classical submanifolds.

This perspective removes the need to interpret super-
positions as describing multiple simultaneously realized
outcomes, while also avoiding hidden variables. Superpo-
sitions in this framework are not merely statistical book-
keeping or information-bearing mathematical constructs.
They represent genuine physical quantum states of sys-
tems, as already evidenced by their ability to encode
physical quantities such as position and momentum in
special cases. However, they do not correspond to def-
inite classical configurations until the dynamics drives
them into the appropriate equivalence classes.

Adopting this ontological reading is not required for
the formalism to operate, but it provides a coherent and
economical picture in which measurement, classicality,
and state reduction all arise from a single dynamical
mechanism and the geometry of state space.

Preferred Basis and Classical Observables

A longstanding difficulty in quantum foundations is
the preferred-basis problem: why measurement out-
comes appear in particular bases (most notably posi-
tion) rather than in arbitrary superpositions. In stan-
dard environment-induced decoherence, this issue is ad-
dressed by invoking environment-selected pointer states,
typically in a model-dependent way.

In the present framework, the step distribution of the
random walk in (RM) is homogeneous and isotropic in
state space. The dynamics generated by (RM) can drive
an initial state toward classical configuration space, clas-
sical phase space, or other physically meaningful (i.e.,
observable-related) submanifolds of state space, with
probabilities determined solely by the Fubini-Study dis-
tance to the corresponding end states. In this sense, the
dynamics itself does not single out a preferred basis.

Position measurement nevertheless plays a distin-
guished role, since realistic measuring devices ultimately
register position, often only indirectly. Other observables
are accessed by correlating them with position through
the design of the measurement apparatus. For exam-
ple, when measuring the momentum of a charged parti-
cle, a magnetic spectrometer maps momentum values to
spatial locations on a detection screen. Measuring posi-
tion therefore imposes equivalence relations determined
by spatial resolution, thereby defining the appropriate
classical submanifolds, in this case, the manifold of ap-
proximate eigenstates of the momentum operator. This
latter manifold may be constructed mathematically by
applying the Fourier transform to Mσ

3 .
No additional assumptions are required to select a ba-

sis. Measurement, together with its possible outcomes, is
determined by the geometry of state space and its clas-
sical submanifolds, the properties of the random walk in
(RM), the design of the measuring device or the prop-
erties of the environment, and the physical constraints of
measurement. An observable is classical precisely when
the state lies on the corresponding classical submanifold.

Quantum Zeno Effect

The quantum Zeno effect is usually described as the in-
hibition of evolution caused by frequent measurements,
resulting in repeated application of the projection pos-
tulate. In the present framework, the Born rule is de-
rived dynamically from the random walk in (RM), which
means that projection is incorporated into the dynamics
of the state itself. It follows that the Zeno effect arises
from the dynamics alone, with no need for an additional
projection postulate.

In particular, consider a position measurement of a
particle. As the time between stochastic kicks of the
random walk in (RM) decreases, the probability that
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the state revisits an equivalence class within a fixed, ar-
bitrarily small time interval approaches unity. Frequent
environmental or device-induced measurement generates
the corresponding stochastic evolution, while recording
confirms that the state satisfies the equivalence-class
condition. Each such confirmation effectively restarts
the stochastic evolution from the corresponding location
within the equivalence class. The process that leads the
state to these locations plays the role traditionally at-
tributed to state projection. As a result, the probability
that the state escapes a small neighborhood of the equiv-
alence class becomes vanishingly small.

The resulting suppression of transitions therefore fol-
lows from the statistical properties of the stochastic dy-
namics, the geometry of state space and its classical sub-
manifolds, together with the recording of the state’s lo-
cations on the classical space submanifold. As discussed
earlier, when a free Hamiltonian is added to the Hamil-
tonian in (RM), the state is confined, under appropriate
conditions, to a small neighborhood of the classical space
submanifold and undergoes Newtonian motion there.

Thus, the quantum Zeno effect is reinterpreted as a dy-
namical stabilization of state-space paths, produced by
repeated measurement-induced unitary evolution under
(RM), which suppresses transitions of the state. Record-
ing the states membership in an equivalence class plays
no dynamical role, but merely confirms that the parti-
cle’s position is well defined and either remains fixed or
evolves in accordance with Newtonian dynamics.

Irreversibility and the Arrow of Time

The stochastic unitary dynamics introduced in (RM)
gives rise to an arrow of time. This arrow does not orig-
inate from a single mechanism, but from the combined
effect of three distinct and logically complementary ingre-
dients: (i) the properties of stochastic evolution on high-
dimensional state space, (ii) the properties of random
Hamiltonians drawn from the Gaussian Unitary Ensem-
ble, and (iii) the use of equivalence classes and recording
in the description of measurement outcomes.

First, stochastic Schrödinger evolution driven by ran-
dom Hamiltonians produces irreversible behavior at the
level of typical state-space trajectories. In infinite-
dimensional (or sufficiently high-dimensional) projective
Hilbert space, random unitary evolution almost surely
carries a state away from any given neighborhood of
its initial position. Exact or approximate recurrences
have vanishing probability. This establishes a minimal,
observer-independent arrow of time: forward evolution
explores an ever-increasing volume of state space, while
backward reconstruction of a trajectory is overwhelm-
ingly unlikely. This irreversibility in state space is a
purely dynamical effect, independent of measurement,
coarse-graining, or recording.

Second, the choice of ensemble in (RM) plays a crucial
role. On the one hand, the Gaussian Unitary Ensemble
is required to ensure the universal validity of the Born
rule for transitions between arbitrary quantum states
under (RM). On the other hand, Hamiltonians drawn
from the GUE explicitly break time-reversal symmetry
through their complex matrix elements, leading to irre-
versible scrambling of relative phases in the state. Since
time reversal corresponds to complex conjugation, the
state does not retrace its original path in state space.
It follows that the GUE induces a strong form of micro-
scopic irreversibility by destroying phase correlations and
enforcing isotropy of the stochastic dynamics in complex
state space.

Third, irreversibility is amplified by the introduction
of equivalence classes of detector-indistinguishable states.
Each equivalence class contains infinitely many mutu-
ally orthogonal states and retains only experimentally
accessible information, such as expectation values within
finite resolution. Identifying a physical state with an
equivalence class therefore constitutes an intrinsic coarse-
graining in state space. Information about relative
phases and microscopic degrees of freedom within a class
is discarded by construction and cannot be recovered.
As a result, evolution described in terms of equivalence
classes is fundamentally irreversible, even though the un-
derlying dynamics remains unitary.

Finally, recording plays an important but purely in-
formational role. Whenever the evolving state enters an
equivalence class of the classical submanifold, this fact
may be recorded by a measuring device or the environ-
ment. Recording does not affect the dynamics of the
state; rather, each recorded outcome becomes the center
of a new probability distribution for subsequent evolu-
tion. Repeated recording therefore suppresses large ex-
cursions away from the classical submanifold and stabi-
lizes classical trajectories. The past is fixed by records,
while the future remains probabilistic. This asymmetry
between past and future completes the emergence of a
physical arrow of time.

SUMMARY

We have presented a unified framework in which
the paradoxes of quantum mechanics are reinterpreted
as geometric and dynamical features of quantum state
space. The approach rests on three central ingre-
dients: (i) the geometry of projective Hilbert space
equipped with the Fubini-Study metric and its classi-
cal submanifolds; (ii) stochastic unitary evolution gener-
ated by time-dependent random Hamiltonians, as postu-
lated in (RM); and (iii) equivalence classes of detector-
indistinguishable states, which encode the finite resolu-
tion of realistic measurements by instruments and envi-
ronments.



10

Within this setting, measurement is not an excep-
tional or nonunitary process. Instead, it corresponds
to a stochastic trajectory of the quantum state in pro-
jective state space, driven by random Hamiltonians and
continually constrained by the operational limitations of
detectors. Classical configuration space and phase space
emerge as distinguished submanifolds of state space, de-
fined by equivalence classes of sufficiently localized states.
When the evolving state approaches such a submanifold,
classical observables acquire definite values and can be
recorded with near certainty. In this regime, measure-
ment in state space reduces to an ordinary classical mea-
surement.

This perspective substantially clarifies the central con-
ceptual problems addressed in the paper. The measure-
ment problem and wave-function collapse are reinter-
preted as the dynamical approach of the state toward
a particular equivalence class, with stochasticity origi-
nating in the random Hamiltonian rather than in ad hoc
projection postulates. Outcome uniqueness follows from
the fact that, at any given time, the state reaches a sin-
gle equivalence class, while the Born rule emerges from
the geometry of state space and the properties of the
stochastic process. Schrödinger’s cat and Wigner’s friend
paradoxes dissolve once macroscopic systems are treated
on the same footing as microscopic ones: both evolve
under the same stochastic unitary dynamics, in different
parameter regimes, and macroscopic superpositions are
dynamically suppressed rather than postulated away.

The quantum-classical transition is explained by the
suppression of the (RM) process due to the interaction
of macroscopic bodies with the environment, combined
with free Schrödinger evolution and continual recording
whenever the state reaches the classical-space subman-
ifold. In this regime, the state remains confined to a
narrow neighborhood of a classical submanifold and un-
dergoes Newtonian motion there. Decoherence appears
not as an independent mechanism, but as a consequence
of the stochastic dynamics and the geometric separation
of equivalence classes in state space, which renders inter-
ference between states belonging to different classes ex-
ponentially suppressed. For macroscopic systems already
confined to a classical equivalence class, decoherence be-
comes effectively trivial.

EPR correlations and Bell-inequality violations are
likewise reinterpreted on this basis. Entangled systems
are described geometrically by a single point evolving in
a joint state space, and correlated outcomes arise from
the (RM)-driven motion of this state toward a single
equivalence class compatible with the measurements per-
formed on each particle. No nonlocal physical influence
in spacetime is involved: the apparent nonlocality reflects
the evolution of the entangled state in state space rather
than any superluminal dynamics in classical space.

A crucial role in this construction is played by the
choice of the Gaussian Unitary Ensemble (GUE) for the

random Hamiltonians. The GUE ensures isotropy of the
stochastic dynamics in the full complex projective state
space, which is essential for the universal validity of the
Born rule for arbitrary transitions. Moreover, the use
of the GUE introduces time asymmetry at the ensemble
level: although each realization of the dynamics remains
unitary, typical trajectories are not invariant under time
reversal. Together with the high dimensionality of state
space and the finite resolution of measuring devices, cap-
tured through the use of equivalence classes, this pro-
vides a natural dynamical origin for irreversibility, out-
come stability, and the effective arrow of time observed
in measurement processes.

In this framework, the (RM) dynamics determines
how the state moves in state space under measurement,
while the diffusion parameters determine how rapidly it
moves. Equivalence classes specify what counts as a clas-
sical fact given the finite resolution of realistic detectors.
Recording the state when it lies in an equivalence class
merely confirms its location and does not alter the dy-
namics; it is not part of the measurement dynamics itself.
Rather, its role is informational: each recorded event be-
comes the center of a new probability distribution for
subsequent evolution, thereby further suppressing excur-
sions away from the relevant classical submanifold and
stabilizing classical trajectories.

Taken together, these results suggest that many long-
standing quantum paradoxes stem not from a failure of
unitary dynamics, but from an incomplete understanding
of measurement and of how measurement, geometry, and
information are intertwined in state space. By treating
measurement as stochastic yet unitary evolution driven
by random Hamiltonians, and by recognizing the role of
equivalence classes imposed by finite detector resolution,
a coherent and unified picture emerges. Quantum and
classical behavior appear as complementary regimes of a
single dynamical framework, distinguished by physically
motivated parameters rather than by fundamentally dif-
ferent laws. In this sense, by adopting the measurement
dynamics formulated in (RM) and fully accounting for
the geometry of state space and its classical submani-
folds, one can resolve the apparent conceptual tensions
of quantum mechanics.
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