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Abstract

Recent years have seen an increasing amount of attention devoted to the sub-
ject of structural representation. Is there one type of structural representation
or many? How do they differ from other types of representation? Are they
really a genuine type of representation in the first place? All good questions
which I will not address directly. Instead, I argue that structural representa-
tions are nothing more than analog representations, and as such, some much
needed clarity can be gained by understanding them as such. Typical analog
representations (e.g., liquid thermometers or analog clocks) are often “one-
dimensional;” extending how they are analyzed into multiple dimensions elu-
cidates the structure of more complex analog representations, such as pho-
tographs, maps, or three-dimensional models. However, this analysis applies
to structural representations without remainder. The upshot is that we can di-
rectly apply what we have learned about analog representation to our under-
standing of structural representation, which, if not directly answering these
recent questions, greatly adds to our theoretical resources for doing so. The
analog wheel has already been invented; characterizing structural representa-
tion does not need to reinvent that wheel.

1 Introduction

We know that representations come in many types, but finding the right theoretical
taxonomy is an ongoing project. This project is complicated by many factors: theo-
rists from different disciplines come to the table with different backgrounds, train-
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ing, and auxiliary theoretical commitments. For example, some neuroscientists and
other cognitive scientists may couch their understanding of representation in terms
ofMarr’s three levels, while otherswho explicitly reject the utility of that framework
understand representation differently. Cognitive scientists who endorse computa-
tionalism of some form or another may understand representation one way, while
those committed to varieties of enactive, embodied, or embedded cognitive science
mayunderstand representation differently (or reject the necessity of representations
in cognitive science altogether).

Having a clear taxonomy of representational types is of obvious importance.
Similarly to taxonomic hierarchies in biology, seeing how particular types of repre-
sentation are divided and subdivided would allow us to see how they are similar
and different and what follows from these similarities and differences.

Howmightwe best taxonomize representational types?As a first pass, wemight
start by considering divisions between already-established dichotomous groups:
perhaps the analog/digital distinction, or the distinction between structural and
non-structural representations. Onemight focus on semantic features of representa-
tions, like the distinction between those with original versus derived intentionality;
or perhaps one might focus on artificial versus natural representations. Or maybe
we should begin with more than two divisions: perhaps there are three primary
types of representation that can be further subdivided. In any case, the first step
in developing any taxonomy is to become clear about what kinds of representation
there are in the first place. In biology, we had to discover that there are frogs, sala-
manders, snakes, and caecilians before we could conclude that all three are similar
enough to one another that they should fall into the clade “amphibian,” and that
frogs and salamanders are more alike to one another than either are to caecilians,
but snakes (which look superficially like caecilians) do not belong to the amphibians
at all.

Structural representation has received much attention in the last decade and
may be a contender for a unique and important representational type Shagrir (2012);
Shea (2014); Gładziejewski and Miłkowski (2017). Recent work has challenged this
contention. Facchin (2024), for example, has argued that there are at least four dis-
tinct types of representation that have been labeled as “structural,” and as such
very little can be said about structural representation in general: one needs to spec-
ify which species of structural representation is in question. Moreover, Artiga (2023)
argues that no plausible characterization of structural representation can support
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claims about the supposedly unique utility of appealing to this type of representa-
tion in representation-using systems.1

The thesis for which I argue here is that structural representation and analog
representation are the same type of representation, and that structural/analog rep-
resentation is, in fact, its own unique and robust representational type. Although
I find this interesting in its own right, this identification provides some clarity to
the nature of this type of representation. Analog representation has been largely
(but not exclusively) developed in the context of artificial analog computational and
representational systems, while structural representation has been largely (but not
exclusively) developed in the context of neuroscience and cognitive science. If it
is true that they are the same thing (the contention of this very essay), then what
we know about analog representation applies to structural representation, and vice
versa. This is particularly useful when it comes to applying principles of analog rep-
resentation to structural representation: despite some minor disagreement about
the proper way to characterize analog representation, there is more unity in con-
temporary theorizing about analog representation than there is about structural
representation. Moreover, noting this identification provides some evidence that
we have identified a robust type of representation: one that spans natural and arti-
ficial systems.

The first part of what follows aims to show how analog representations and
structural representations are the same. Many prototypical examples of analog rep-
resentations are one-dimensional (e.g., liquid thermometers and hourglasses); how-
ever, a careful characterization of this type of analog representation can be extended
to multiple dimensions to account for things like photographs, maps, and three-di-
mensional models (Maley, 2023a). This multi-dimensional account can then be ap-
plied seamlessly—without remainder—to structural representations. In the second
part, I argue that this identification can be useful for addressing some questions
about structural representation that have been noted in the literature, simply by ap-
pealing to what we know about analog representation. This is simply because, in
many cases, analog representation is understood more clearly.

Let me make two preliminary notes before we get started. First: All too often in
contemporary analytic philosophy, one can find symbolization and jargon where

1A different take on a similar point is made in Facchin (2021), although in later work (((Facchin,
2024)) states that he had conflated different types of structural representation and disavows these
earlier claims.
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they are completely unnecessary, where prose alone would do the best job of con-
veying the ideas being discussed. Unfortunately, we are not in that situation here.
In order to correct some of the mistakes and clarify some of the concepts at issue,
we have to use some mathematical terminology and notation.

Second: Some accounts of structural representation (or other types of represen-
tation) try to accomplish two goals: characterizing both the “structural” aspect of
structural representation on one hand and the “representational” aspect on the
other. In other words, it is sometimes implicit that an account of representation
must explain both how and why that type of representation works, as well as what
makes it representation in the first place. Lofty goals, to be sure, and goals that I
would ultimately like to accomplish myself. However, in what follows, I set aside
the latter concern about what makes a representation a representation, and focus
instead only on what makes a given type of representation the type that it is. In a
slogan: you give me a representation, and I will tell you whether it is structural/
analog and why, but I am not addressing the question of what makes something a
representation in the first place.

2 The Structure of Analog (and Structural) Representation

It might seem obvious that structural and analog representations cannot be the
same, because paradigmatic examples of each typically differ. According to Shea
(2014), for example, maps are a clear example of structural representations, while
analog representations like liquid thermometers are not. This chapter will spell out
why they are, in fact, the same type of representation, for principled reasons. We be-
gin with a characterization of cases such as liquid thermometers, hourglasses, and
analog watches. From there, this characterization can be extended (in a principled
manner) to cases like maps, photographs, 3-D models, and all other examples of
both analog and structural representations.

2.1 Mirroring & Structure

The essential feature of structural representation is the presence of some kind of
structure-preserving relation between representations andwhat is represented. Sev-
eral authors have offered characterizations along these lines, such as

• Structural representation: the pattern of relations among the constituents of

4



the represented phenomenon is mirrored by the pattern of relations among
the constituents of the representation itself. (Swoyer, 1991, p.452).

• Structural Representation: A collection of representations in which a relation
between representational vehicles represents a relation between the entities
they represent. (Shea, 2014, p.123).

• Structural Representation:Amechanism inwhich a structural correspondence
between a set of vehicles and a target domain is used to accomplish [a] certain
task. As a first approximation, structural correspondence refers to some kind
of structural similarity between a set of entities and a target domain. (Artiga,
2023, p.1).

• In the case of structural representations, a vehicle (or a system of vehicles)
must be structurally similar to the target (or target system)… Simplifying to
the extreme by “structural similarity” I have in mind a relation of one-to-one
correspondence between (at least) some of the elements of two distinct do-
mains, such that a same abstract pattern of relations holds between the ele-
ments of the two domains involved in the correspondence. In the case at hand,
the two domains are representational vehicles on the one hand and targets on
the other. (Facchin, 2024, p.3–4).

These (and other) characterizations all gesture in the same direction, but we can be
more precise and clarify a few points. But let us do this by switching our attention to
analog representation first; as we develop a detailed account of analog representa-
tion, we will see that, along the way, the account is also just an account of structural
representation. To begin, it will be helpful to consider a few familiar, concrete ex-
amples of analog representation just to get a feel for what is unique and interesting
about it in the first place.

Consider analog thermometers, which indicate temperature via the height of a
column of liquid, such as mercury or colored alcohol. The higher the height of the
liquid, the higher the temperature; the lower the height, the lower the temperature.
Or consider hourglasses (also known as sand timers). These devices indicate the
time elapsed after they have been turned over. The greater the amount of sand in
the bottom, the greater the elapsed time; the lower the amount, the lower the time.

An example of a simple analog representation in neural systems is rate coding,
where a neuron’s firing rate represents, for example, the intensity of a stimulus, a
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“preferred” stimulus orientation, or the angle of an organism’s joint Maley (2018).
In some cases, the representation is straightforward: the higher the intensity of the
stimulus, the faster the neuron fires. In other cases, it is slightly more complicated.
Consider orientation-specific cells, which fire fastest when a visual stimulus is pre-
sented at a particular angle. When the stimulus deviates from that angle—when
the stimulus is rotated—the neuron’s firing rate decreases. Plotting these responses
results in a well-known U-shaped curve, with the preferred orientation at the apex.
Thus, changing the angle by, say, 10°, in either direction, results in a decrease in the
neuron’s firing rate.

It is common to think of analog representations as involving continuous quan-
tities, and they often do. However, that is not necessary (Lewis, 1971; Maley, 2011,
2023a). The simplest example of a non-continuous (i.e., discrete) analog represen-
tation is the second hand of an analog watch that ticks in discrete steps, perhaps
once every second. More interesting discrete analog representations were used in
twentieth-century analog computers, where discontinuous mathematical functions
were represented by discontinuous circuit elements (Maley, 2023a).

What makes these examples analog (andwhat makes structural representations
analog, as we will see below) is that they represent what they do via some physi-
cal magnitude that varies monotonically2 with what they represent. Analog ther-
mometers represent temperature via the height of a column of liquid, such that the
height of the liquid and the temperature vary monotonically—an increase in tem-
perature results in a literal increase in the height of the liquid, where that height is
what is doing the representing. Similarly for hourglasses and the hands of an ana-
log clock: as elapsed time increases, the amount of sand or the angle of the hand
literally increases. In the literature on analog representation, this is called the “mir-
roring” conception of analog representation: the representation “mirrors” what it
represents (Beck, 2018).3

The mirroring relation—and also the structural similarity mentioned in discus-
sions of structural representation—can be made precise by characterizing this rela-
tion in terms of a homomorphism. Briefly, a homomorphism is a structure-preserv-

2Often this variation is linear, as in all of these examples. But there are exceptions. What is im-
portant is that, more generally, increases/decreases in the representation correspond to increases/
decreases in what is represented—although the converse need not be true. More details will be dis-
cussed below.

3Note that I am not here making any claims about how this representation is accomplished. All
that matters is that the relevant relationship is in place.
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ing map between two sets of elements, where “structure-preserving” can be given
a precise definition. This is also a characterization of analog representation: we will
use an adapted form of the one given in (Maley, 2023b). Given a representation 𝑅

of 𝑄, 𝑅 is an analog representation of 𝑄 (with resolution 𝑟) if the following hold:

- There is some property 𝑃 of 𝑅 such that the amount/quantity/magnitude of
𝑃 specifies the amount/quantity/magnitude of 𝑄.

- The amount/quantity/magnitude of𝑃 is amonotonic function 𝑓 of the amount/
quantity/magnitude of 𝑄, and 𝑓 is a homomorphism from 𝑄 to 𝑃.

- An increase/decrease in 𝑃 reflects an increase/decrease in𝑄, but an increase/
decrease of𝑄 is only reflected by an increase/decrease in𝑃 if𝑄 has increased/
decreased by more than 𝑟.

Let’s unpack this, but in English. Consider the analog thermometer. At any given
time, the height of the column of liquid represents a particular temperature. A ther-
mometer only capable of representing a single temperature— say, 23 °C—would
be rather useless: instead, the thermometer represents a range of temperatures. For
specificity, let us say that the thermometer can represent temperatures between 0 °C
and 100 °C using a column of liquid that can vary between 0 cm and 100 cm.We can
naturally think of these as two sets: a set 𝑇 of temperatures (which would be 𝑄 in
the above formulation) and a set 𝐻 of heights (which would be 𝑃 in the above for-
mulation). Wewill suppose that temperature varies continuously, but (for whatever
reason) the thermometer can only increase its height in unit steps (i.e., 𝑟 is 1 °C).

The second two clauses ensure that the property doing the representing and
whatever it represents co-vary in the right way. The requirement of a homomor-
phism means that there is an ordering among the elements of 𝑃 and the elements
of 𝑄, and the ordering of 𝑄 is preserved by the mapping from 𝑄 to 𝑃. In the ther-
mometer, some heights are taller/shorter than others (more generally, they differ
in magnitude); similarly, some temperatures are higher/lower than others. Higher
temperatures are mapped to taller heights, and lower temperatures are mapped to
lower heights. Specifying amonotonic function ensures that, as what is represented
increases, the representing property does not decrease; it either stays the same, or in-
creases. In many cases of analog representation, this function is linear. But for some
cases, particularly when we have a discrete analog representation, an increase in
what is represented may not reflect an increase in the representing property. Time
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may pass continuously, but a clock that ticks only every second does not change
continuously.

Two points are worth highlighting here. The thermometer example we have
been using,where every temperaturemaps to a unique height and vice versa,would
constitute an isomorphism: a special case of homomorphismwhere the mapping is
bĳective (i.e., one-to-one and onto). Some accounts of analog representation rely on
isomorphisms (e.g., (Lee et al., 2022)), which seems natural in some cases. However,
as others have noted (such as O’Brien and Opie (2004) and Shagrir (2012)), isomor-
phism is too strong. The reason is that isomorphisms require that the set of repre-
sentations and the set of things represented have the same number of elements. In
our thermometer example, because the height only varies in unit steps from 0 cm
and 100 cm, there are 101 elements in 𝐻, but (uncountably) infinitely many in 𝑇.4

Thus there cannot be an isomorphism between the two. Moreover, it would be a
mistake to take the temperatures that are being represented as themselves varying
in unit steps. Whether they vary continuously or in minute increments is a ques-
tion for physicists to answer; in either case, there are many more temperatures than
there are heights to represent them, and so an isomorphism cannot exist. Now, we
might map subsets of 𝑇 to single elements of 𝐻, or a particular subset of 𝑇 to single
elements of 𝐻; or, as O’Brien and Opie (2004) note, some cases might be remedied
by resorting to only partial isomorphisms. However, the simplest solution is to al-
low a homomorphism: a many-to-onemapping from 𝑇 to𝐻, rather than the stricter
one-to-one mapping (this is explored in more detail in (Maley, 2023b)).

The second highlight-worthy point is this. Characterizing analog representation
in terms of homomorphisms (rather than isomorphisms) allows for considerations
of resolution. Sometimes there are increases (or decreases) in what is represented
that are not reflected in the representation. Temperature may increase (or decrease)
by a fraction of a degree without any change in the height of the liquid. However,
the converse is not true: an increase (or decrease) in the height of the liquid nec-
essarily reflects an increase (or decrease) in the temperature being represented. Or
consider an analog clock: a small amount of time (the representatum) might pass
without the second hand of the clock moving at all, but when the hand does move,
then some amount of time has necessarily passed. The usual term for the smallest
representable difference is resolution. Thus, homomorphisms provide a simple way
to account for the resolution of different analog representations.

4Or, at the very least, many more than 101.
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Let us examine this point more closely. Suppose that time is continuous or very
nearly so; we can use stopwatches of different resolutions to represent intervals of
time at different levels of precision, i.e., different resolutions. But if we limit our-
selves to isomorphisms, we cannot make sense of this, because every point in time
would have to map to one, and only one, point in the stopwatch’s divisions. This is
just strange: the fact that time is continuous (or nearly so) yet we measure it with
discrete intervals is what allows us to make sense of the fact that we can represent
time with different levels of resolution. When we use stopwatches of different res-
olutions, we are measuring the same thing with different resolutions, not different
things (different time structures?) with different resolutions. Perhaps in a truly con-
tinuous representation, theremight be an isomorphism between the representatum
and the representation; that’s fine: after all, isomorphisms are special cases of ho-
momorphisms. But for many other cases, we need to avail ourselves of homomor-
phisms, and not just isomorphisms.

2.2 Relations and Magnitudes

Perhaps the most useful feature of analog—and structural—representations is the
fact that they take advantage of particular features shared between representations
and what they represent. But we have to be precise about what this means.

Tomotivate the issue, notice that there are a huge number of mappings between
the sets of temperatures and heights: any particular temperature could be mapped
to any particular height (Gładziejewski andMiłkowski (2017) make this point using
a slightly different example). Thus, one might map 0 °C to 12 cm, 1 °C to 44 cm, 2 °C
to 5 cm, etc. Perhaps this would be a representation, but not an interesting one, and
certainly not an analog one. Further, as it stands, this is not a morphism either: we
haven’t specified a structure among the temperatures that is preserved when they
are mapped to heights. But this is an easy fix. All that is required for a structure-
preserving5 homomorphism is that there is a relation between elements of one set
that is preserved in the other. And relations, as it turns out, are easy to come by:
we can just create one! So let us define a relation, ⋞, between temperatures such
that 0 °C ⋞ 1 °C, 1 °C ⋞ 2 °C, etc. Next, define a different relation, ≼, between heights
such that 12 cm ≼ 44 cm, 44 cm ≼ 5 cm, etc. Now we have the ingredients for a ho-
momorphism. The structure induced by ⋞ among temperatures is preserved in the

5More precisely, this should be called a relation-preserving homomorphism, but I will stick with
the commonly-used phrase “structure preserving.”
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structure induced by ≼ among heights using the mapping (call it 𝑓 ) illustrated in
Figure 1. Given 𝑡1 , 𝑡2 ∈ 𝑇 and ℎ1 , ℎ2 ∈ 𝐻, where 𝑓 (𝑡1) = ℎ1 and 𝑓 (𝑡2) = ℎ2, if 𝑡1 ⋞ 𝑡2
then 𝑓 (𝑡1) ≼ (𝑡2). As a concrete example, 0 °C ≼ 1 °C, which is preserved when 𝑓 is
applied: 𝑓 (0 °C) ⋞ 𝑓 (1 °C). Figure 1 illustrates the homomorphism.

<latexit sha1_base64="Jv9CCEYO0zq/Okg375hKJdqqbmo=">AAACVnicbVBNT9tAFFy7UIJL21COXFakKD20kV0hyqGqonLhwCFIBJDiKFpvnsOK/TC76yLL8t/otfys9s9UrBMfSMKTdjWat/Pe7CQZZ8aG4T/Pf7Wx+XqrtR282Xn77n1798OVUbmmMKSKK32TEAOcSRhaZjncZBqISDhcJ3endf/6F2jDlLy0RQZjQWaSpYwS66g4prnmBdw7DZ20O2EvnBdeB1EDOqipwWTXO4qniuYCpKWcGDOKwsx+Tjncy3FJtGWUQxXEuYGM0Dsyg5GDkggw43JuvcKHjpniVGl3pMVz9rmiJMKYQiTupSD21qz2avKl3ii36cm4ZDLLLUi6WJTmHFuF6xzwlLkvW144QKhmziumt0QTal1ay1u0JkUVBLGEB+cvF7IeUJ5X5Y/yY8W/u8uNx7WFL0JNATd5Y5Xibpd3u3ihmu8NgsDlHK2mug6uvvai497xxVGn/7NJvIX20QH6hCL0DfXRGRqgIaIoQ7/RH/To/fX++5v+1uKp7zWaPbRUfvsJRmezYg==</latexit>↭<latexit sha1_base64="TASsNvmQ/Mh4WVGRBQtDoGGpG6U="></latexit>

0 →C
<latexit sha1_base64="OIJqh0d4ZgqVdK1506TQo+5TeU8="></latexit>

1 →C
<latexit sha1_base64="lEMor6yft7dO025MzBnNJ8pnszk="></latexit>

2 →C
<latexit sha1_base64="Jv9CCEYO0zq/Okg375hKJdqqbmo="></latexit>↭ <latexit sha1_base64="Jv9CCEYO0zq/Okg375hKJdqqbmo="></latexit>↭ …

…<latexit sha1_base64="rdcJIUYOK0AsGjc76GlDCyXlRdQ="></latexit>

12 cm
<latexit sha1_base64="B5rrCpd+vQVGvUv8mM/mLG0nGPU=">AAACbHicbVHLbtQwFPWEVwmvlnZXIVkMMCzKKEGj0gWqKtiAxKJITFupiSrHc9Na9SNj3wCRle9gC5/FT/ANODNZ0ClXsnV07uNcHxeVFA6T5PcgunHz1u07a3fje/cfPHy0vvH4yJnacphyI409KZgDKTRMUaCEk8oCU4WE4+LyfZc//grWCaO/YFNBrti5FqXgDAOVZ3Ns/GTS+oyr9mx9mIyTRdDrIO3BkPRxeLYx+JjNDK8VaOSSOXeaJhXulBLmOvfMouAS2jirHVSMX7JzOA1QMwUu94vdW/o8MDNaGhuORrpg/+3wTDnXqCJUKoYXbjXXkf/NOVFrgd9X5LHcy73QVY2g+VK9rCVFQzt36ExY4CibABi3IjyA8gtmGcfg4VVpa1nTxnGm4VtYula6G+A/tX7fP2vl23CF8bTb65UyM6D9L1BT0tFIjkZ02bXQjeM4mJ+uWn0dHL0ep7vj3c+T4cG7/hvWyDZ5Sl6SlLwhB+QDOSRTwsmc/CA/ya/Bn2gr2o6eLEujQd+zSa5E9OIvXFS7qQ==</latexit>

44 cm
<latexit sha1_base64="h8behwHFry3DGK+PSBZUlcUE8DM="></latexit>

5 cm
<latexit sha1_base64="9EvVsYFckaqyIIf9n6+Aw4jwMRg=">AAACa3icbVHLbhMxFHWmhabDK212pQuLEIUFRDMVKiyqKiobKrEIEkkrZaLK49xprPgxsT3AaDS/wRZ+i4/oP+BJZtGkXMnW0bmPc30cp5wZGwR/G97O7qPHe819/8nTZ89ftA4Ox0ZlmsKIKq70dUwMcCZhZJnlcJ1qICLmcBUvPlX5q++gDVPym81TmApyK1nCKLGOiiJXTGmmeQ7Lm1Yn6AerwA9BWIMOqmN4c9C4jGaKZgKkpZwYMwmD1L5NOCzltCDaMsqh9KPMQErogtzCxEFJBJhpsVq9xF3HzHCitDvS4hV7v6MgwphcxK5SEDs327mK/G/OsEwy+3NL3iYfpwWTaWZB0rV6knFsFa7MwTPm7LA8d4BQzdwDMJ0TTah1Fm5Ka03y0vcjCT/c0pmQ1YDiS1mcF69LfuYuNx5Xe70Taga4/gSsEtzr8V4Pr7tWur7vO/PDbasfgvFJPzztn3593xlc1N/QRC/RK/QGhegDGqDPaIhGiKIU/UK/0Z/Gndf2jrzjdanXqHvaaCO87j/NvLts</latexit>↭ <latexit sha1_base64="9EvVsYFckaqyIIf9n6+Aw4jwMRg=">AAACa3icbVHLbhMxFHWmhabDK212pQuLEIUFRDMVKiyqKiobKrEIEkkrZaLK49xprPgxsT3AaDS/wRZ+i4/oP+BJZtGkXMnW0bmPc30cp5wZGwR/G97O7qPHe819/8nTZ89ftA4Ox0ZlmsKIKq70dUwMcCZhZJnlcJ1qICLmcBUvPlX5q++gDVPym81TmApyK1nCKLGOiiJXTGmmeQ7Lm1Yn6AerwA9BWIMOqmN4c9C4jGaKZgKkpZwYMwmD1L5NOCzltCDaMsqh9KPMQErogtzCxEFJBJhpsVq9xF3HzHCitDvS4hV7v6MgwphcxK5SEDs327mK/G/OsEwy+3NL3iYfpwWTaWZB0rV6knFsFa7MwTPm7LA8d4BQzdwDMJ0TTah1Fm5Ka03y0vcjCT/c0pmQ1YDiS1mcF69LfuYuNx5Xe70Taga4/gSsEtzr8V4Pr7tWur7vO/PDbasfgvFJPzztn3593xlc1N/QRC/RK/QGhegDGqDPaIhGiKIU/UK/0Z/Gndf2jrzjdanXqHvaaCO87j/NvLts</latexit>↭ <latexit sha1_base64="9EvVsYFckaqyIIf9n6+Aw4jwMRg=">AAACa3icbVHLbhMxFHWmhabDK212pQuLEIUFRDMVKiyqKiobKrEIEkkrZaLK49xprPgxsT3AaDS/wRZ+i4/oP+BJZtGkXMnW0bmPc30cp5wZGwR/G97O7qPHe819/8nTZ89ftA4Ox0ZlmsKIKq70dUwMcCZhZJnlcJ1qICLmcBUvPlX5q++gDVPym81TmApyK1nCKLGOiiJXTGmmeQ7Lm1Yn6AerwA9BWIMOqmN4c9C4jGaKZgKkpZwYMwmD1L5NOCzltCDaMsqh9KPMQErogtzCxEFJBJhpsVq9xF3HzHCitDvS4hV7v6MgwphcxK5SEDs327mK/G/OsEwy+3NL3iYfpwWTaWZB0rV6knFsFa7MwTPm7LA8d4BQzdwDMJ0TTah1Fm5Ka03y0vcjCT/c0pmQ1YDiS1mcF69LfuYuNx5Xe70Taga4/gSsEtzr8V4Pr7tWur7vO/PDbasfgvFJPzztn3593xlc1N/QRC/RK/QGhegDGqDPaIhGiKIU/UK/0Z/Gndf2jrzjdanXqHvaaCO87j/NvLts</latexit>↭
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Figure 1: A structure preserving morphism, but not a structural (or analog) repre-
sentation.

We thus have a structure-preserving map between temperatures and heights:
each height corresponds to a particular temperature, and the relation among tem-
peratures is preserved by the relation among heights. However, adding these struc-
tures and this structure-preserving map does not make this an analog (nor a struc-
tural) representation. What is required to make this an analog representation is
rather obvious: instead of using some arbitrary relation among the elements of each
set (the ≼ and ⋞), we need to use a natural relation.

Now, “natural” is a rather vexed term, but what I mean here is straightforward.
I simply mean a relation that preserves the ordering structure among magnitudes.
Both temperatures and heights are magnitudes—they admit of greater-than and
less-than relations that form a total order. The mapping between them that is re-
quired is one that preserves this order structure via a homomorphism. The less-than
relation among temperatures maps to the less-than relation among heights. This is
in contrast to the arbitrary mapping shown in Figure 1, where temperatures and
heights are related by stipulated relations (≼ and ⋞) that do not track the inherent
magnitude structure of either domain. Although such a mapping technically forms
a homomorphism, it fails to constitute an analog or structural representation, pre-
cisely because it does not preserve the structure of the magnitudes.
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Instead of the arbitrary relation in Figure 1, we can use the less-than relation
among the magnitudes in each domain; using a mapping that preseres that struc-
ture gives us an analog—and a structural— representation. Notably, whether the
magnitudes are real numbers, rational numbers, or integers, they form an ordered
field with a strict total order: a mathematical structure where, for any two elements
𝑎 and 𝑏, either 𝑎 < 𝑏, 𝑏 < 𝑎, or 𝑎 = 𝑏, and that structure inherent in the magnitudes
can be preserved by a mapping.

More explicitly, using the less-than relation among magnitudes, we obtain the
homomorphism that makes an analog thermometer analog (as well as a structural
representation). Call the function that maps temperatures to heights 𝑚; thus, 𝑚 :
𝑇 → 𝐻. The elements of𝑇 have a structure: the elements are ordered via <; similarly
for the elements of 𝐻. The mapping 𝑚 preserves that structure: if 𝑎, 𝑏 ∈ 𝑇 where
𝑎 < 𝑏, then 𝑚(𝑎) < 𝑚(𝑏). As an example, suppose 2 cm represents 12 °C, and 4 cm
represents 14 °C. The magnitude of 12 °C is less than the magnitude of 14 °C (i.e.,
12 < 14), and the magnitude 2 cm that represents 12 °C is less than the magnitude
4 cm that represents 14 °C (again, 2 < 4). This completely captures the nature of an
analog representation.6

Notice that this characterization of analog representation is also an account of
structural representation, albeit a rather simple type of structural representation.
There is a structure inherent in what we want to represent (a relation among the
elements to be represented), there is a structure among the elements of the repre-
sentational scheme, and the mapping from the first to the second guarantees that
the structure of the representations reflects the structure of what they represent. In
the next section, we will extend this account to more complicated examples of ana-
log representation, such as maps and photographs. Let us briefly look at a couple
examples to foreshadow why understanding structural representations as analog
representations is on the right track.

Consider topographic maps in neuroscience Kaas (1997). Here, the spatial re-
lationships among neurons preserve the spatial relationships in the visual field or
other receptor surfaces. These spatial relations are magnitudes: namely, distances
and directions. Similarly, elevation maps7 preserve the same type of spatial rela-

6As a reminder, this is not a sufficient condition for analog representation: homomorphisms of this
type are still relatively cheap. I am not attempting here to give an account of analog representation,
full stop. I am only characterizing what makes a proposed representation analog.

7Confusingly, these are also called topographic maps, but unlike the notion in neuroscience, they
represent the elevations of an area above sea level.
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tions: the map itself preserves the relations in the area represented by the map,
and heights at different points (magnitudes) are represented by, say, color of an
increasing intensity—again, the magnitude structures are preserved. Photographs
are another example: light intensity values at points in the photograph preserve the
values of corresponding points in the image being represented.

Even cases that may seem to lack a magnitude structure do, in fact, have such a
structure upon closer examination. Consider simple maps that only indicate the
presence or absence of certain landmarks, such as the “you are here” diagrams,
sometimes found in shopping malls, hospitals, or other complex buildings. The
presence or absence of a marker at a particular location on the map represents the
presence or absence of the corresponding landmark; each point is, by itself, a binary,
present/absent representation. But crucially, the spatial relations among the mark-
ers—which constitute the structure that makes this a structural representation—
preserve the spatial relations in the area being represented.

Now, these examples of structural representation are more complex than the
analog thermometerwewere considering above (andwewill look at these examples
inmore detail below). The analog thermometer has a rather simple one-dimensional
structure, whereas the structural representation examples just mentioned havemul-
tiple dimensions. However, a complete account of analog representation should
also be able to characterize analog representations with multiple dimesions. In the
next section, we will see how to extend the account of analog representation just
articulated to multiple dimensions, which then allows the account to apply equally
well to prototypical structural representations.

2.3 Dimensions & Variation

The analog thermometer is analog because, as temperature (what is represented)
increases/decreases, the liquid height (what is doing the representing) increases/
decreases, where in both cases, the increase or decrease is of a magnitude: tempera-
ture in the first case, liquid height in the second. In contrast, a digital thermometer
also represents temperature, but not by an increase/decrease in the height of a col-
umn of liquid (or any other increase in magnitude), but by a change in displayed
digits.8 A temperature of 14 °C would be represented by some pattern of the digits

8Of course, the thermometer might measure temperature by some mechanism that increases/de-
creases as temperature increases/decreases, but here we are concerned with how the temperature is
represented.
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“1” and “4” concatenated, where those digits are displayed via a pattern of pixels, a
seven-segment display, or something like this. Increasing the temperature to 15 °C
simply results in the display of a different pattern: “1” and “5”. This is simply a dif-
ferent pattern, no “greater” or “less” than any other pattern (Maley, 2011). So far,
so good.

But what is meant when we say that the temperature varies, that it increases/
decreases? Varies with respect to what? Closely attending to the answer reveals a sub-
tle but useful way to extend the above account of analog representation to more
complex examples. Here, I will draw on the work of (Maley, 2023b).

In the usual case, when we say that some temperature varies, we mean that it
varies with respect to time. In the usual case, a thermometer remains fixed in space,
and it represents the temperature at that particular point in space at a particular
time; as time goes on, the change in the height of the liquid reflects a change in
temperature at that point with respect to time. We have the representation— in
this case, the height of the liquid. Let us call the thing represented— in this case,
temperature— the representatum.9 Additionally, we have an independent variable,
the quantity with respect to which the representatum, and thus the representation,
varies. In this case, the independent variable is time. Figure 2 shows a plot of the
representation and representatum changing with respect to time.

Other common examples of analog representations work similarly: the voltage
in an electronic analog computer (the representation) varies with the quantity be-
ing represented (the representatum)with respect to time (the independent variable).
One minor technicality is that sometimes the representatum and the independent
variable can be the same thing. Consider an hourglass: we are representing the
elapsed time by the amount of sand in the bottom of the glass. But with respect
to what is time varying? Maybe this is an incoherent question, but if anything, it
varies with respect to, well, time. If we create a plot as in Figure 2, we would have a
straight line indicating the amount of sand that increases and another straight line
indicating the amount of time that has elapsed (which would be the line 𝑦 = 𝑥).
What would be the independent variable of the plot? Time, of course. Thus, our
representatum and independent variable turn out to be the same quantities.

We can take these examples to be one-dimensional representations: there is a sin-
gle dimension along which the representatum varies. In other words, the represen-

9Other authors use terms like “target,” or “content.” These strike some people as loaded in a way
that I would like to avoid, hence the use of representatum.
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Figure 2: Temperature change and liquid height change as a function of time.

tatum (and thus the representation) is a function of a single independent variable.
Things get more interesting when we look at higher dimensions. Consider a pho-
tograph (grayscale, for simplicity). In this case, we have a two-dimensional grid of
points, where each point represents the gray value of the image being represented.
Importantly (and obviously, once made explicit), the structure of the points of the
representatum—the image represented—is preserved by the grid of points in the
representation. That is: take any point of the image and where it is represented in
the photograph.Move to another point left of that point on the image, and the point
on the photograph representing that point is also to the left of the first. Similarly for
other directions.

In a normal grayscale photograph, the gray value of a point in the photograph
represents the gray value (i.e., the amount of light) at the corresponding point in
the photographed image. We can zoom in on a single point in the image and, limit-
ing ourselves to just the left-right dimension of the independent variable, see how
variation as we move to the left or right corresponds to a variation in the amount of
light to the left or right in the represented image. Figure 3 illustrates this point.

A different type of two-dimensional analog representation could represent the
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Figure 3: Grayscale photograph depicting Margaret Hamilton. Zooming in shows
how variation in the gray level of the photograph corresponds to variation in the
amount of light in the image.

same information by a different means. Instead of representing the amount of light
in the image by a gray value, we could represent the amount of light by the height
of a point. Physical artifacts such as this are not common, but we can illustrate the
idea, as shown in Figure 4.

In both of these two-dimensional cases of analog representation, we have a struc-
ture in the representatum that is preserved in the representation. This is just like the
thermometer case, except that this time the structure is two-dimensional: there are
two dimensions of variation. But the structure is preserved all the same. Again, take
two points in the image, 𝑝1 and 𝑝2, represented by 𝑞1 and 𝑞2, respectively. If 𝑝1 is
above (or to the left of, or below, or above and to the right of) 𝑝2, then 𝑞1 is above
(or to the left of, or below, or above and to the right of) 𝑞2. That is one aspect of the
structure. There is another: as the value to be represented at each point increases (or
decreases) in light level, the corresponding value in the representation increases (or
decreases) in gray value (or height, in the example of Figure 4). The structure of the
ordering of light values in the image is preserved by the structure of the gray levels
of points in the photograph (or the structure of the heights in the graph shown in
Figure 4. These two morphisms are illustrated in Figure 5.

In the case of the thermometer, we noted that the height of the liquid increases/
decreases as the temperature increases/decreases; the further question we consid-
eredwas: with respect to what are these increases and decreases? The answer in that
case was time. In the case of the photograph, the gray value of individual points in-
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Figure 4: Light values of the image of Margaret Hamilton in Figure 3, but this time
represented by height.

creases/decreases as the light at the corresponding image increases/decreases. Yet
photographs are static, so it sounds strange to ask “with respect to what do these
light values vary such that a gray value of a pixel can vary?” Point conceded: pho-
tographs are static. However, this is where the introduction of dimensions of vari-
ation—the independent variables—becomes useful. This variation occurs with re-
spect to the change in the location of the point in the horizontal and vertical direc-
tions. Pick a point in the photograph: it has a gray value that represents the light
intensity at the corresponding point in the image that the photograph represents.
Looking at other points, the gray level varies with respect to changes in the inde-
pendent variables.

We can characterize other analog representations with even higher dimensions.
A grayscale animation—a series of static images—has three independent variables:
the gray level at a given pixel can vary with respect to a change in our two spatial
dimensions, but also with respect to time. A three-dimensional model varies with
respect to three spatial dimensions; an animation of a three-dimensional model (e.g.,
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Figure 5: Two structure-preserving morphisms in the photograph. Left: the struc-
ture of the locations of light points relative to one another in the image is preserved
in the locations of the pixels in the photograph. Right: at each individual point, the
magnitude scale of light values is reflected in themagnitude scale of the gray values
of the pixel representing that point (or the height of the graph in Figure 4.

a computational model of the heat of the surface on an airplane flying at a partic-
ular speed, where temperature is represented by the color at different points on
the surface of the model) will have four dimensions of variations: three spatial plus
time.

Now, this is actually a little too fast. There is an important subtlety in different
types of analog representations that we should take into account. Consider again a
simplemap as opposed to a photograph; like the earlier example, let us take themap
to be a line drawing of the interior of a building, showing only the relative locations
of particular points of interest. Like the photograph, the structure between (two-di-
mensional) points of the representatum and the representation are preserved. But
unlike the photograph, at each point, there is no preservation of structure: points
on a line drawing do not indicate the light values at that point in the building. In
fact, it is arguable that, at each point, there is no structure to be preserved in the
first place. Rather, the presence of a particular point, or marker, on the map, rel-
ative to the structure of the map, corresponds to a point in the represented space
relative to the structure of that space,where the two structures are preserved accord-
ing to an order-preserving homomorphism. “You are here” on the map is simply a
point: unlike a given point on a photograph, or heat map, it does not representa-
tion some further variable by a change in its value (e.g., gray value, or height on a
three-dimensional graph).

Similarly, a simple, monochrome, three-dimensional model of an object repre-
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sents only the presence or absence of points in space corresponding to the points
in space of the represented object. The individual points are either there or not. In
a different representation, the points could themselves be one-dimensional analog
representations: the color of each point could represent the heat of the represented
object, or perhaps a particular force acting on each object at a given time.

Using this characterization of analog representation, we could concoct rather
exotic analog representations which may or may not be of any use. While it would
be interesting to do so, the point of the examples mentioned here is to illustrate two
ways in which analog representations can preserve structure. First, the structure of
the independent variable(s) can be preserved; second, the structure of the variation in
magnitude of the representatum can be preserved in the representation.

At this point, it is worth revisiting the ways that different authors character-
ize structural representation, mentioned at the beginning of this chapter. Here are
just two: ”Structural representation: the pattern of relations among the constituents
of the represented phenomenon is mirrored by the pattern of relations among the
constituents of the representation itself,” (Swoyer, 1991, p. 452). ”Structural Rep-
resentation: A collection of representations in which a relation between represen-
tational vehicles represents a relation between the entities they represent,” (Shea,
2014, p.123).

The characterization ofmulti-dimensional analog representations just presented
gives us—for free—an account of structural representation.Multi-dimensional ana-
log representations preserve structure in exactly the way that theorists claim struc-
tural representations must. Making this explicit, we have the following:

The Analog/Structural Representation Thesis: Analog representation and struc-
tural representation are precisely the same type of representation.

Once again, let us examine some cases of structural representation to see just
why this thesis is true. Consider retinotopic maps in area V1 in the primary visual
cortex. This area of the cortex exhibits retinotopic organization: adjacent neurons re-
spond to adjacent locations in the visual field. This is a standard example of a struc-
tural representation (Shea, 2014). Does it fit the analog framework? Yes: we have
two spatial dimensions (the independent variables) along which receptive field lo-
cations vary. At each location in V1, neural activity (the representation) varies with
light intensity at the corresponding location in the visual field (the representatum).
This is precisely analogous to the example of the photograph mentioned above.
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Place cells in the hippocampus are another example. A place cell fires when
an organism is at some particular location in an environment, with nearby place
cells representing nearby locations (O’Keefe and Nadel, 1978). The spatial structure
of place cells preserves the spatial structure of the environment the cells represent.
Again, this fits the analog framework above: we have spatial dimensions as indepen-
dent variables, and place cell activity at each location in the neural space represents
a location in physical space.

There are other examples, such as the body map (the famous, exaggerated “ho-
munculus”) in the somatosensory cortex, and the representation of sound frequency
and intensity in the cochlea.What these examples reveal is that themulti-dimensional
analog framework developed above captures not just examples of analog represen-
tation more complex than thermometers and hourglasses, such as maps and scale
models; it is also precisely the framework that captures what researchers mean
when they identify neural representations as “structural.” The preserved structures
are magnitude structures along one or more dimensions of variation.

Put another way, the key point is that structural representations invariably in-
volve using magnitudes and their inherent structure to preserve the magnitude
structures inherent in what is being represented; and this is precisely what ana-
log representation does as well. Or, as Peacocke (2019, p. 52) nicely puts it, “Analog
representation is representation of magnitudes, by magnitudes.” Moreover, a sup-
posed structural representation that failed to preserve magnitude relations would
either not be a genuine representation at all (perhaps like the arbitrary relation “pre-
served” by the mapping in Figure 1), or if it is a representation, would be character-
ized as some other type of representation (perhaps a symbolic representation).

The importance of this kind of magnitude structure preservation is connected
to the notion of exploitability Shea (2014, 2018) discusses as central to structural rep-
resentation. Relation-sensitive mechanisms can exploit structural correspondences
precisely because the preserved magnitude structures allow valid inferences. Sup-
pose representations 𝑎1 and 𝑎2 that represent 𝑏1 and 𝑏2, respectively. If some mech-
anism can determine (or detect, or “read off”) that 𝑎1 stands in relation 𝑅 to 𝑎2, and
𝑅 preserves somemagnitude relation 𝑆 between 𝑏1 and 𝑏2, then the mechanism can
infer that 𝑏1 and 𝑏2 stand in relation 𝑆. Exploitability here depends on the preserva-
tion of magnitude structures— i.e., on the representation being analog in precisely
the sense characterized here.

Two minor points are worth noting before we move on. First, I mentioned ear-
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lier that analog representation need not be continuous; we can see that this holds
for all of the analyses and all of the examples given in this section. Photographs
can be continuous or pixelated; time can move continuously or in steps; three-di-
mensional models can be smooth or composed of discrete voxels. In any case, the
characterization is the same. Second, the terminology is ultimately not the point: it
does notmattermuchwhetherwe refer to the type of representation I have been dis-
cussing as “analog” or “structural,” or something else entirely. What is important
is realizing that all of the examples of analog and structural representation form
a coherent, theorizable class of representational types. While examples of analog
representations typically come from artifacts and examples of structural represen-
tations typically come from neuroscience, understanding that they are one and the
same type clarifies how all of them work.

3 Analog Resources for Structural Representation Questions

The fact that structural representations can be understood as analog representations
without remainder is interesting in its own right. But this realization also helps an-
swer—or at least shed light on—some recent questions about structural represen-
tations. So, let us examine some of these.

3.1 Dispensing with Sufficiency Concerns

The first issue was mentioned at the beginning: we should separate an account of
analog/structural representation (ASR) from an account of representation more
generally. As mentioned earlier, everything discussed here is meant to be a char-
acterization of a particular type of representation, but it is not meant to be an ac-
count of representation simpliciter. We can first understand precisely what makes
a type of representation the type it is, given that it is a representation. In making
the same point, Facchin (2024) notes that we ultimately do need an account of what
makes any proposed representation a representation in the first place: that is, we
need an account of representation in general that applies to analog/structural repre-
sentations as a particular case. However, we can provide an account of a particular
type of representation without insisting that that account must also explain why it
is a representation at all. Again: the characterizations above are what I take to be
necessary features of analog/structural representation; but there may well be map-
pings between two types of things that fit this characterization perfectly well, yet do
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not involve representation at all (e.g., the temperature of the Nikola Tesla statue in
my office likely covaries with the ambient temperature of the surrounding air, yet
that statue is not an analog representation of temperature). Of course, identifying
such homomorphisms would indicate candidates for analog/structural representa-
tions, but they are not sufficient to identify whether anything is a representation in
the first place.

Nirshberg and Shapiro (2020) note that some proponents of structural represen-
tation have argued that the homomorphisms present in this type of representation
offer a distinct advantage over so-called “indicator” representations in determining
what it is that is being represented. They then argue that this supposed advantage
is not an advantage after all: structural representations have the same problem of
content determination as the indicator representations. Given a proposed structural
representation, it will often turn out that there is a homomorphism between many
different representations; the mere fact that there is some homomorphism does not
fix what the proposed representation does, in fact, represent. As far as it goes, this
is completely correct and illustrates the very point at issue here. In practice, we are
quite likely to have to resort to independent criteria to establish that some homomor-
phism is, in fact, analog/structural representation. In many cases, these criteria are
obvious: photographs represent what they do because of our knowledge about how
photographs work, our practices of what we use them for, etc. Liquid thermometers
represent temperature, and not something else, because of how we have designed
them and how we use them. Nevertheless, there is value in identifying homomor-
phisms that are candidates for analog/structural representation, which can then be
further investigated to determine whether they are representations after all.

Similar concerns are presented in Artiga (2023), where increasingly strong char-
acterizations of structural representation are shown to fail to identify whether some
proposed homomorphism between two domains is, in fact, a representation. For ex-
ample, there may be a map (i.e., a two-dimensional homomorphism) between area
V1 in the visual cortex and points in the organism’s visual field. But the existence of
such a homomorphismmaynot play any role in downstreamneural processing: that
particular organization may be an accidental result of, say, energy minimization in
the development of the visual cortex (Artiga, 2023). Increasing the stringency of the
proposed characterizations of structural representation makes it more difficult to
provide examples of proposed structural representations that are not representa-
tional; however, these involve invoking mechanisms, processes or operations that
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manipulate these representations.
Now, to be sure, many investigations of the representational capacities of a sys-

tem proceed by identifying candidate representations along with the operations on
those representations. In practice, these activities often go hand-in-hand. In neural
systems (and in artificial systems that we do not completely understand, such as
contemporary large language models and other deep neural networks) we need to
see how the candidate representation changes in response to candidate represen-
tata, what mechanisms are responsible for those changes, and what downstream
effects those changes have. In other words, we need independent reasons to deter-
mine that what is under consideration is a representation in the first place. In this
respect, Nirshberg and Shapiro (2020) and Artiga (2023) are both correct: the propo-
nent of structuralism should not advocate the idea that an account of structural rep-
resentations alone is sufficient to establish that a purported representation is really
a representation in the first place. At the same time, carefully identifying candidate
representations and representata, including whether both have an ordered struc-
ture among their elements and whether there is a homomorphism that preserves
that structure, goes a long way in determining potential representations.

3.2 Clarifying Types of Structural Representation

Recently, Facchin (2024) has provided a fourfold distinction between different types
of structural representation based on different conceptions identified in the litera-
ture. Although the distinction offered there is insightful, there are some problems
that can be clarified or addressed using the analog/structural account here. Most
importantly, Facchin claims that the types of structural representations he articu-
lates are different enough to qualify as genuinely distinct notions of structural rep-
resentation; that claim is significantly undermined when viewed through the lens
of the analog/structural thesis advocated here. Let us look at Facchin’s distinctions
and see what we can make of them in light of this thesis.

According to Facchin (2024), there are four different conceptions of structural
representations that can be identified in the literature: STRUCTURAL MAPS, STRUC-
TURAL SIMULATIONS, STRUCTURAL SPACES, and STRUCTURAL DYNAMICS; I will leave off
“structural” when referring to these hereafter. The MAP conception takes structural
representations to be individual vehicles that represent their target by being struc-
turally similar to their target (i.e., having the right homomorphism) and that can
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be decoupled from that target, exploitable by the relevant system, and capable of
misrepresenting that target. Ordinary maps would be of this type. The SIMULATION
conception takes any computational process that maps computational states to the
states of a target process as a structural simulation. Facchin uses the example of a
simple sales program: it maintains an internal state corresponding to current inven-
tory, then takes as input a state corresponding to sales, and outputs a state that is the
updated inventory after subtracting sales. Because these computational states and
operations on these states (i.e., subtraction) map onto their target states and the op-
erations on these states (i.e., sales), this is a structural simulation. Next we have the
SPACE conception. These representations include liquid thermometers, where there
is a graded range of “indicators” that correspond to what they represent, preserv-
ing a total ordering from targets to the indicators. Finally, there is the DYNAMICS con-
ception, according to which structural similarity between indicators and targets is
preserved in the dynamics between the two. In other words, as target states change,
so do indicator states.

Facchin rightly notes that the extension of these different conceptions is differ-
ent: the SIMULATION conception is limited to computational states, whereas ther-
mometers usually are not a part of a computational system at all. The MAP concep-
tion applies to a single vehicle, whereas others apply to a number of vehicles. The
SPACE conception need not involve temporal dynamics, whereas on the DYNAMICS
conception accounting for temporal dynamics is necessary. However, this differ-
ence in the extensions of the different types of representation is not evidence that
the types are fundamentally different; this is clear when we appeal to the richer
characterization of analog/structural representation offered earlier. Thermometers,
photographs, and maps differ in their extension, too, but all are analog representa-
tions.

Facchin’s SIMULATION conception of structural representation adopts a notion of
structure that is too weak. Virtually any computer program represents something:
GPAs, tax deductions, emails, prime numbers, architectural layouts, etc. And virtu-
ally all of these things have some structure or another. It is unclear what it would
take for a computer program to fail to be a structural simulation in this very weak
sense of “structural.” Moreover, any neural process that represents something that
changes— in any way—would also be a structural simulation on this conception.
Suppose that you represent the word “apple” by a pattern of neural firing in your
right hemisphere, and it is made plural by activating a completely different neural
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pattern in your left hemisphere. There is a mapping between a word and its plural
form, and whatever process gets us from the pattern in the left hemisphere to the
pattern in the right hemisphere will map to the pluralization process. This will be
true for any neural representations and any operations involving those representa-
tions. However, I assume that structural representations are supposed to contrast
with at least some kind of non-structural representation, so this conception covers
too much. This is simply too weak a conception of “structural,” because it does not
rule out any computational processes or neural processes that represent anything
at all.

The difference between the MAP conception on one hand and the SPACE and DY-
NAMICS conceptions on the other is the use of a single vehicle in the former butmany
vehicles in the latter two. A photograph (structural map) is a single vehicle repre-
senting a single target, whereas in a thermometer (structural space), there are many
vehicles (heights of liquid) representing many targets (temperatures). That seems
reasonable, but it is also too fast. One way to respond would be to argue that in a
photograph, there are actually many vehicles: the points that constitute the photo-
graph (or pixels in the case of a digital photograph). Or, we could agree that there
is a single vehicle, but it is composed of many parts, where each part of the repre-
sentation represents the corresponding part of the target. In fact, this is precisely
what the “parts principle” states regarding iconic (i.e., multidimensional-analog)
representation: roughly, if R is a representation of T, then parts of R are representa-
tions of parts of T (Kulvicki (2015), Burge (2018), and Maley (2023b) offer different
perspectives on this principle).

According to the characterization of analog representation given in Section 2,
the difference between photographs and thermometers is simply the difference be-
tween what dimensions form the independent variables of the representation. We
typically use thermometers to represent temperature variation with respect to a
change in time; nevertheless, we could also use an array of thermometers to repre-
sent temperature variation over a two-dimensional space at a single point in time—
this would just be a heat map, like the kind meteorologists use to display tempera-
tures across different regions at the same instances. Additionally, we typically think
of a photograph as representing an image at a single point in time; nevertheless, we
can use an array of photographs to represent how an image changes over time—
this would just be a video. It is not clear how we would classify these types of rep-
resentation under Facchin’s characterizations: if a photograph is a single vehicle, it
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seems that a heatmap would be, too. However, it is a strange result that a single
thermometer counts as multiple vehicles, whereas a heat map representing temper-
atures from many thermometers would count as a single vehicle. A video would fall
under both the structural map and the structural space conception. Perhaps that is
acceptable, perhaps not. In any case, understanding these different types is simpler
using the scheme presented here. Moreover, we can capture what makes these dif-
ferent analog/structural representations species of the same family, and we can do
so in a non-ad hoc manner.

Regarding the DYNAMICS conception, Facchin mentions that theorists often com-
bine this conception with others, even though they may be separable in principle.
Note that, on the view offered here, the DYNAMICS conception is not a separate type
of structural representation at all, but just an explicit recognition that time itself can
serve as a dimension of variation. A thermometer tracking temperature change over
time, a video tracking visual scenes, a neural population tracking a moving stimu-
lus—all of these preserve temporal structure in addition to the other structures they
preserve.

Artiga (2023) also identifies a number ofways inwhich structural representation
may be understood, positing increasingly stringent conceptions of the notion to rule
out potential counterexamples. In the end, Artiga notes that it is incumbent on the-
orists to be clear about what conception they have in mind, given that there are a
variety of possibilities. I take the Analog/Structural Representation Thesis argued
for here as a way of answering Artiga’s challenge on this front.

3.3 Representation Versus Computation

Making clear that analog and structural representation are the same allows for some
much-needed theoretical clarity. It is also useful to distinguish between the repre-
sentations used by a system and the computations that act on those representations.
Clearly distinguishing representations from computations acting on those repre-
sentations is much easier in artifacts; i.e., analog computers. In neural systems—
including artificial neural systems which we do not fully understand—discovering
which aspects of the systems are representations and which aspects are the mecha-
nisms that operate on those representations (i.e., computations) will often proceed
in parallel, with a clear delineation available only after the relevant system is better
understood. Nevertheless, beginning with lessons from systems where a clear de-
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lineation is already available simplifies how we can productively think about what
is involved in representation-using systems. We canmake things explicit as follows:

The Analog/Structural Computation Thesis: Analog/structural representation
can (and, for clarity, should) be distinguished from the computations (if any)
that operate on those representations.

To illustrate where this thesis can be usefully deployed, consider again the concep-
tion of structural representation offered by Artiga (2023): a “mechanism in which a
structural correspondence between a set of vehicles and a target domain is used to
accomplish [a] certain task.” Including a mechanism in this characterization imme-
diately discounts representations such as photographs, which are clearly not mech-
anisms. Now, to be fair, Artiga’s concern is with the notion of structural represen-
tation as it is found in the cognitive science literature: we should not attribute to
Artiga any confusion between representations and the mechanisms that operate on
them; more charitably, Artiga is responding to a confusion found in much of the
literature. But it is a confusion nevertheless, and although Artiga does not identify
it as such, he does implicitly articulate the ways that others may have proliferated
the confusion.

The larger point, illustrated by Artiga (and others), is that it is conceptually use-
ful to separate representations from operations on those representations (i.e., com-
putations). A genuine ASRmay appear only in trivial operations: consider a simple
anemometer Figure (6). This device represents wind speed by the number of rota-
tions of its head per second (or other unit of time), and records the total number
of rotations to keep a running average. This is a very simple analog representation,
with a very simple operation on that representation. An organism may represent a
stimulus in a similarway,where that representation does not enter into any complex
downstream operations, but is a representation nonetheless. We would, of course,
need grounds to establish why this particular homomorphism counts as a represen-
tation, but that is distinct from the complexity of the kinds of further computations
that operate on that representation. There is also an analog representation of wind
speed in theNorden bombsight, wherewind speed is represented as the angle of an
input dial. However, the resulting computation is very complicated: several thou-
sandmoving parts contribute to the computation of the correct heading and release
point for a bomber to unload its payload.

Making clear the distinction between ASRs and the computations operating on
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Figure 6: Left: simple anemometer. Right: Norden bombsight.

those representations helps to address a concern that Artiga articulates: that charac-
terizations of ASRs that are too complicated may fail to identify this kind of repre-
sentation as a legitimate natural kind. I do not know how concerned one should be
about this, but assuming that it is a concern, the problem reduces to that of decid-
ing whether, first, ASRs are natural kinds, and second, whether computations are
natural kinds. I do not have a pony on that carousel, but these may well be simpler
questions to answer than taking ASR to have mechanisms and operations built-in,
alongside whatever is doing the actual representation.

3.4 Analog/Structural Representation Versus Indication

The final issue I will address is whether we can make a principled distinction be-
tween ASRs and indicators. Indicators are generally thought to be simpler than ana-
log/structural representations: for example, an analog/structural gas gauge might
represent the amount of gas by the angle of a “hand,” much like a clock, whereas
an indicator would simply turn on a light when the gas is below some level (thus in-
dicating that the gas is low). Although there seems to be a clear difference between
the binary nature of an indicator as opposed to the graded nature of an analog/
structural representation, Nirshberg and Shapiro (2020) challenge this claim with
an insightful argument that indicators are simply limit cases of analog/structural
representations, and therefore the two are not different in principle. This is true for
some indicators, but not all, which can be seen using the characterization of ASR
developed here.

Nirshberg and Shapiro (2020) consider the example of a spring scale that varies
continuously, representing the mass of an object placed on the scale in grams. Next,

27



we can consider a modification to the scale such that it only represents single-gram
increments in discrete steps, perhaps by using a different spring. We can then fur-
thermodify the scale using two-gram increments. This process can continuewith ar-
bitrarily large increments, each time resulting in an increasingly low-resolution (i.e.,
coarse-grained) representation of an object’s mass. As they say (using “springN”
to stand for the spring that makes the scale “maximally insensitive”): “Suppose
that the crucial weight that marks the boundary point at which springN ‘jumps’ in
length is 100 kg. The scale that makes use of springN is now, in a sense, maximally
insensitive. It will ‘detect’ something hanging from its endwhen and onlywhen the
object’s weight is 100 kg or greater,” (Nirshberg and Shapiro, 2020, p. 7659). The au-
thors argue as follows: in the first (i.e., continuous) case, we clearly have a structural
representation; discretizing the representation in increments of whole numbers of
grams does not alter the structural preservation needed to maintain its status as a
structural representation; thus, the final case of 100 kg increments is a structural rep-
resentation, too. They conclude that indicators are simply limit cases of structural
representations, but structural representations nonetheless.

The authors do notmention this, but for the example towork, we have to assume
that the scale in question has an upper limit, or capacity, that is below 200 kg (i.e.,
below the capacity that is another multiple of the 100 kg jump). Without that limit,
we would still simply have a very low resolution scale: it would move in another
discrete step for every additional 100 kg. To consider it nothing more than a detec-
tor for objects above 100 kg, we have to stipulate that it cannot go beyond a single
increment and thus has an upper limit below 200 kg. Alternatively, if the scale does
not have an upper limit, but simply moves one step at 100 kg but does nothing for
further 100 kg increments, then, by their own lights, we would not have a structural
representation to begin with. So, let us assume that for such a detector, there is an
upper limit that is less than twice the increment needed for the example (e.g., for a
100 kg increment, we need a capacity less than 200 kg; change the increment to 10 g,
we need a capacity less than 20 g).

Nirshberg and Shapiro (2020) are clearly on to something: it is undeniable that
one can discretize a continuous structural representationwithout compromising its
status as structural; the same point holds for analog representations, as mentioned
earlier. Plus, with the right restrictions in place (just mentioned), decreasing the res-
olution of a structural representation effectively turns it into an indicator. However,
not all indicators are limit cases of structural representations.
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To see why, let us think about groceries.10 Grocery stores often have automated
conveyor belts that move continuously until an object is detected at the end of the
belt. The motor connected to the belt is thus in one of two states: on or off. An object
detector that is in one of two states is all that is needed to make the system work.
Now, consider two ways in which this object detector might work. First, we could
have a light beam projected orthogonally across the conveyor belt that hits a detec-
tor; when an object breaks the beam, it is detected (this is depicted with the green
line between the boxes in 7). Second, an object could be detected by measuring the
distance from a projected light source at the end of the conveyor belt, then turning
off the belt when the distance is below some threshold (this is depicted with the red
waves coming from the box at the end of the conveyor belt in 7).

Figure 7: Conveyor belt with milk and two detectors.

To make things simpler, let us imagine that instead of being connected to a motor,
these different detectors simply turn illuminate a light when an object is detected.
As described, both count as indicators in the technical sense. However, they differ
in the following respect: the second, but not the first, is a limiting case of a structural
representation. In the second case, we could, as it were, increase the resolution of
the representation (i.e., the light): instead of being only on or off, the light could
be on at full brightness, medium brightness, or off completely, where the two lev-
els of light “on” correspond to two different distances: full brightness for closest
to the detector, medium brightness for further away, and off when furthest away.
Or, the light could be at 10 different brightness levels, corresponding to 10 differ-
ent distances. Or continuously many. The structure being preserved by the mag-
nitude of the light is the magnitude structure of distance: closer objects produce

10As Donald Trump explains: “Likewise, an old fashioned term that we use—groceries. I used it
on the campaign. It’s such an old fashioned term, but a beautiful term. Groceries. It sort of says ’a bag
with different things in it,’ ” 2 April, 2025.
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a brighter light, farther objects produce a dimmer light, where “brighter” and “far-
ther” are obviously ordering relations among the respectivemagnitudes. As long as
themonotonic relationship between light intensity and distances is maintained (i.e.,
the brighter the light, the farther the object), we have a structural representation, as
well as an analog representation.

However, for the first case (i.e., the object either breaks the light beam or does
not), there is no way we can increase the resolution to recover a structural represen-
tation, because there is no underlying magnitude structure to preserve. The light
beam is either broken by the presence of an object or it is not: there is no gradation
that we can introduce into this mechanism, and no sense to be made of an object
being more or less “present.”

Now, one might argue that there is, in fact, a structure-preserving homomor-
phism, albeit a very simple one. Namely, one binary state (object present versus not
present) is represented by another binary state (light on or off). It is true that, in a
weak sense, there is a structure being preserved. However, this is not the notion of
structure on offer in the literature on structural representations. As argued above,
structural representations rely on magnitude structures being preserved: this is what
allows structural representation to be exploitable. Representations that are close to-
gether in magnitude, and in a particular order, will have representata that are close
together in their magnitude, in that same order. However, with only truly binary
variation in cases like this one—where the binary variation is not just a very low
resolution variation in a magnitude structure— there is no ordering, and no way
for the system to “exploit” anything.

As before, note that everything said in these examples applies equally well to
analog representations. Both analog and structural representations; i.e., ASRs, pre-
serve magnitude structures along dimensions of variation. Simple binary detectors
of binary conditions do not involve magnitude structures and thus do not count
as ASRs, although they may be limit cases where magnitude structure has been re-
duced to the point of disappearance. Nirshberg and Shapiro (2020) are correct that
many cases initially described as “binary detectors” are actually low-resolution ana-
log representations. Their spring scale example demonstrates this perfectly. When
we take an analog representation and decrease its resolution to the point where it
makes only binary discriminations, it remains an analog representation in principle,
even if its informational value is minimal. The difference between these cases can
be stated precisely: a binary detector is a limit case of ASR if and only if there exists
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an underlying magnitude structure that could be represented at higher resolution.
The distance detector qualifies; the light-beam detector does not.

This distinctionmatters for cognitive science.When investigatingwhether a neu-
ral system employs structural representations, we can ask whether the system pre-
serves magnitude structure, or merely detects binary conditions. A neural popula-
tion that responds gradually to increasing stimulus intensity is plausibly an ASR
(even if, in a particular experiment, we only measure whether it exceeds a thresh-
old). A neuron that simply fires or not in response to the presence/absence of a
specific stimulus might not be, unless there is evidence that firing rate, temporal
pattern, or population activity preserves underlying magnitude structure.

Therefore, while some indicators may be limit cases of ASRs (supporting Nirsh-
berg and Shapiro’s insight), not all indicators are ASRs (contradicting their general
conclusion). The deciding factor is whethermagnitude structure is being preserved,
even at very low resolution.

4 Conclusion

By understanding “analog” and “structural” as two labels for the same type of rep-
resentation, we can clarify our general understanding of this unique type of rep-
resentation. This is particularly important in neuroscience, cognitive science, and
artificial intelligence, where ideas about representation come from diverse sources
and play different roles in different areas of investigation. Conceptual resources
from computation, such as the notion of “representation,” play a crucial role in un-
derstanding brains, minds, and AI systems. The fact that we can avail ourselves of a
richer notion of analog representation bymore carefully understanding analog com-
putation has gone largely unnoticed, as has the strong connection between analog
representation and structural representation.

The theoretical unification achieved by recognizing structural representations as
analog representations is not merely terminological. It allows us to apply the rich
framework developed for understanding analog representation— including analy-
ses of resolution, noise, continuous vs. discrete implementation, representational
capacity, and computational operations—directly to structural representations in
cognitive science.

Important questions remain about how to count something as a representation
in the first place; that is a difficult problem that this paper does not answer. How-
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ever, when we have a clearer idea of what kinds of representation there are, we can
better assesswhether particular systems have elements that are candidates for given
types of representation. When investigating systems that we suspect are capable of
representing—and then performing computations on these representations— it is
critical that we have a clear idea of what a representation could be. My hope is that
the characterization of analog/structural representation given here can contribute
to this effort.
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