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Abstract

Weatherall and Manchak (2014) show that, under reasonable assumptions, Reichenbachean universal effects,

constrained to a rank-2 tensor field representation in the geodesic equation, always exist in non-relativistic

gravity but not so for relativistic spacetimes. Thus general relativity is less susceptible to underdetermination

than its Newtonian predecessor. Diirr and Ben-Menahem (2022) argue these assumptions are exploitable as

loopholes, effectively establishing a (rich) no-go theorem. I disambiguate between two targets of the proof,

which have previously been conflated: the existence claim of at least one alternative geometry to a given one

and Reichenbach’s (in)famous “theorem theta”, which amounts to a universality claim that any geometry can

function as an alternative to any other. I show there is no (rich) no-go theorem to save theorem theta. I illustrate

this by explicitly breaking one of the assumptions and generalising the proof to torsionful spacetimes. Finally,

I suggest a programmatic attitude: rather than undermining the proof one can use it to systematically and

rigorously articulate stronger propositions to be proved, thereby systematically exploring the space of alternative

spacetime theories.
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1. Introduction

Conventionality about space, or spacetime, is the view in the epistemology of geometry —
loosely associated with ideas by Poincaré, Schlick, Carnap, Reichenbach, and others — that as-
certaining the geometry of the world requires, in some way or another, a conventional aspect.
Historically, this debate emerged against the backdrop of a nineteenth-century separation
between mathematical and physical geometry: beginning with Riemann and culminating in
Hilbert’s axiomatization, mathematical geometry became an abstract formal discipline, while
physical geometry remained tied to empirically measurable magnitudes in an Helmholtzian
sense. In this empiricist tradition, there is indeed an empirical question to be asked about
the true geometry of the world, as opposed to the purely formal (hence analytically true
in Hilbert’s sense) structures of Euclidean and non-Euclidean geometry: physical practice is
taken to reveal synthetic facts about the physical geometry of the world.!

At the same time, geometric conventionalists hold that such an empiricist search
for factual statements about physical geometry is beyond empirical reach: such statements
can only be given empirical content by means of an anchoring point, a conventional choice
that cannot itself be justified on empirical grounds. Canonically, geometric conventionalism
finds traction through the idea that different spacetime theories can be made empirically
indistinguishable, despite being based on prima facie distinct geometric structures. This
can be achieved by introducing universal forces (or universal effects) that correct for the
geometric differences of models with different geometries — models within the same spacetime
theory or between distinct spacetime theories — in such a way that the empirically accessible
trajectories of bodies remain unaffected.

Ostensibly, this is the position that J.O. Weatherall and J.B. Manchak (2014, hence-
forth: W&M), set out to question rigorously in their “The Geometry of Conventionality”:

If one understands “force” in the standard way in the context of our best classical
(i.e., non-quantum) theories of space and time, can one accommodate different
choices of geometry by postulating some sort of “universal force field”? (W&M
2014, p. 234).

They present two proofs, one non-relativistic and one for general relativity (GR), restricting
the universal force field to be represented by a rank-2 tensor field in the geodesic equation.
The non-relativistic proof confirms that the conventionalist’s claim that there are empirically
adequate alternatives if one allows universal forces; the relativistic proof falsifies the claim
that this can always be done for general relativistic spacetimes. This paper will focus on the
relativistic proof, which shows that GR does not admit the same leeway for conventionalism
as Newtonian gravity because there does not exist a reasonable ‘force’ tensor that relates the
geodesics of two conformally related metrics. That is, under reasonable assumptions.
Certainly, W&M showcase conventionalism in a novel way, mentioning much previous
scholarship on the topic, but not obviously connecting to the questions posed in those works.
An upshot is that they reformulate the problem in the full glory of modern spacetime theory,

!The literature is too vast to review, but a (non-exhaustive) list from which I draw is (Glymour 1972;
Sklar 1974; Glymour 1977; Torretti 1978; Dieks 1987; Ben-Menahem 2006; Pesic 2007; Acufia 2013; Ivanova
2015; Ivanova and Farr 2015; Padovani 2017; Eisenthal and Patton 2020; Ivanova 2021; Dewar 2022; Dewar,
Linnemann, and Read 2022; Diirr and Read 2024; Eisenthal 2025).



introducing much-needed rigour into a debate that has often relied on proofs of concept,
thereby kicking off a fresh way to handle these questions. A downside is that at first sight
their claims are remarkable, even shocking, given the numerous debates on this topic: has
more than a century of scholarship missed a trick, perhaps because of the lack of a sufficiently
rigorous analysis? In particular, a roadmap about whether we can now safely adopt an anti-
conventionalist or realist conception of general relativistic spacetimes, or what kind of future
work would be required to establish such commitment, is left to the reader.

Given this unconventional anti-conventionality, controversy is to be expected. In fact,
Patrick Diirr and Yemima Ben-Menahem (2022, henceforth: D&BM) write a response that
makes no secret of their belief that the assumptions of the proof are overly restrictive, not
sufficiently justified, open to counterexamples, and not in accordance with historical and
philosophical scholarship on the topic. They present W&M’s relativistic proof as an incon-
sistency proof, lining up its assumptions together with an existence claim of alternative
geometries and pointing out how each of these assumptions can be rejected. As such, each
rejection opens up possibilities for constructing empirically equivalent models.

One can feel at a loss about the overall gain of this debate, if any. Have W&M proven
nothing of importance? In this paper, I clarify two different kinds of underdetermination
that serve to underpin two very different positions, each of a conventionalist but nonetheless
distinct flavour. Some conventionalists have in mind an existence claim: for any one given
metric there exists at least one other metric which can do the same empirically adequate
job, given the universal forces (what I will call (UDT-VYg3g) in §3). Other conventionalists
have in mind a universality claim (UDT-V¢V§): any metric can replace any other, if suitably
adjusted for. The most prominent universality claim was promulgated by Reichenbach (1928,
p. 33, emphasis added), enshrined in his (in)famous theorem 6:

Theorem 0: “Given a geometry G’ to which the measuring instruments conform,
we can imagine a universal force F' which affects the instruments in such a way
that the actual geometry is an arbitrary geometry G, while the observed deviation
from G is due to a universal deformation of the measuring instruments.”

This paper contextualises W&M'’s relativistic result by distinguishing between (restricted)
existence and (restricted) universality claims. Expanding on a list of assumptions of the
proof identified by D&BM, I discuss their loophole-based critique (§2). Then, §3 clarifies the
structure of the proof by distinguishing between universality and existence claims. I argue
the proof (a) severely restricts but does not rule out underdetermination altogether, leaving
an ever tightening space of potential alternative models, and (b) theorem 6 is nevertheless
successfully dispelled if universal effects are taken to behave as force fields in the standard way,
without any (other) loopholes—an observation none of the authors addressed clearly. I then
generalise the proof to torsionful spacetimes (§4), showing that (i) violating an assumption
does not serve as a loophole to save theorem 6 in GR, and more generally that (ii) for a given
torsionful connection there exists no conformally equivalent torsionful connection which can
be so related. Finally, §5 proposes reframing W&M’s assumptions as part of a research
programme to develop stronger theorems, eventually culminating in a systematic grip on the
formal landscape of the space of (conceived and unconceived) relativistic spacetime theories.
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2. Weatherall and Manchak’s relativistic proof as a no-go theorem

To mathematically cash out the question whether in GR one can accommodate different
geometries via the postulation of a universal force field, W&M pose it in terms of the affine-
connection uniquely associated (given torsion-freeness and metric-compatibility) with the
metric: for a relativistic spacetime on manifold M with metric g4, with its associated Levi-
Civita connection V, and a distinct metric g4, (on the same M) with its associated connection
%, and £ the velocity vector (the unit-norm, timelike vector tangent to a particle’s curve
(1), i.e., £&* = 7). The question then reads: “Is there some rank-2 tensor field F, such
that, given a curve v, 7 is a geodesic (up to reparametrisation) relative to V just in case its
acceleration relative to V is given by F “nf " where é ®is the tangent field to v with unit length
relative to gq,?”, providing the ingredients sufficient to write the following proposition”

Proposition 2 [The relativistic case/—Let (M, gay) be a relativistic spacetime, let ga, =
O2%g, be a metric conformally equivalent to gq,, and let V and V be the Levi-Civita derivative
operators compatible with gu, and Ga, respectively. Suppose € is non-constant. Then there is
no tensor field Fy, such that an arbitrary curve 7y is a geodesic relative to V if and only if
its acceleration relative to 'V is given by F“nén, where £ is the tangent field to v with unit
length relative to §ap. (Weatherall and Manchak 2014, p. 242)

That is, given any geometry, we cannot always write down a new geometry such that a rank-
2 tensor relates their geodesics. Proposition 2 is then proven to be correct (in Appendix A
one can follow the steps of this proof and the use of assumptions, in the context of the
logically stronger proposition given in §4). Thus it is in general not possible to construct
empirically-equivalent models by postulating such an Fj,.

All proofs make assumptions. Evaluating the importance of the W&M proof must
involve an investigation of what exactly is assumed, and how weak or strong these assumptions
are. Diirr & Ben-Menahem (2022) have listed some of the assumptions used in the proof, on
which I will largely rely. Yet, I add to this list some topological assumptions and give a finer
rendition of the assumption of Riemannian geometry. Also, since W&M explicitly restrict
themselves to models of GR, I distinguish between assumptions within GR and assumptions
that bring us beyond it. The list is:

e (CONF) The alternative metric is conformally related to the standard metric g, =
02 (x)gap, for d2 # 0 (D&BM, p. 156, non-constancy clause added).

e (NORM) &% is a unit-norm (with respect to the new geometry’s metric) tangent vector
to the particle’s curve: §,,&%6% = 1 (ibid.).

e (FORCE) The [geometrical] alternative to standard acceleration must take the ‘stan-
dard’ force-law form £°V,€¢ = £PV,€% — Fo.£° (ibid., sign of F%, adjusted).

And here are assumptions that would take one beyond GR:

2Proposition 1 is the non-relativistic case, which shows that a suitable force tensor does exist. Also, where
W&M use G, for the force, I use G for geometry and F' for universal effects, with F;, as its tensorial form.



e (RIEM) Geometric alternatives must employ Riemannian geometry: being solely ex-
pressible in terms of a metric § and associated Levi-Civita connection V. (ibid.)

Here I would add two assumptions constitutive of (RIEM):

— (RIEM-SYMM) the affine-connection is torsion-free.

— (RIEM-COMP) the affine-connection is fully metric compatible, so that the
disformation vanishes identically.

e (TOPO) Geometric alternatives are constructed on the same manifold. In particular’:

— (DIM4) the manifold in question is restricted to four dimensions.

— (HAUS) points can be kept apart by open sets (for every pair of distinct points
P, q € M there exist neighbourhoods disjoint open sets U,V € M such that p € U,
g€V and UNV =0). (Hausdorff condition)

These are all required—see W&M'’s original (2014) and Appendix A for where exactly.

Generally, (Diirr and Ben-Menahem 2022) is a tour de force of the history of geometric
conventionalism, but D&BM begin their paper by scrutinizing W&M’s proof by questioning
its assumptions — without disputing its formal validity — by presenting the proof as a no-go
theorem. The above list constitutes a set of mutually inconsistent premises when a particular
conventionalist thesis is added:

e (ALT-ACC) Geometric alternatives for general-relativistic acceleration of a test-particle,
EPVp€%, must exist [...]. (D&BM, p. 155)

As per usual with inconsistency, the proper response is to reject at least one premise, thereby
restoring consistency. That is, the conjunction —((ALT-ACC) A (CONF) A (NORM) A
(RIEM) A (FORCE) A (TOPO)) is equivalent to the disjunction of the negations of each
conjunct: 7-(ALT-ACC)V—-(CONF)V—-(NORM)V—(RIEM)V—(FORCE)V—(TOPO).
In this way, framing a debate in terms of a set of mutually inconsistent premises is a natural
way of clarifying and classifying different views in a complex debate, by identifying each view
with the rejection of one of the premises. (I will articulate such classification in §5).

D&BM attribute to W&M the position -(ALT-ACC), that a trade-off between ge-
ometries and universal forces is never possible, while themselves rejecting one or all of the
premises while retaining (ALT-ACC) and their conventionalism.

Of course, W&M are aware of the fact that the strength of their theorems on
which their reasoning rests depends on their assumptions. But the reader is led
to believe that those assumptions are quite natural; to deny them would appear
to exact a rebarbatively high price. It is the naturalness of those assumptions (not
the validity of W&M’s theorems) that we subsequently seek to question. (Diirr
and Ben-Menahem 2022, p. 155)

3 As always in philosophy, some assumptions remain suppressed, e.g., smoothness (SMOOTH), paracom-
pactness (PARA) and those that go deeper down. I assume the internal consistency of GR—call it (GR-
CONS), and its empirical adequacy—call it (GR-EMP). D&BM may very well have regarded (TOPO) as
deeper down, so this is meant as supplementation, not correction. For reasons why see §5.
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They (2022, pp. 156-157) continue to interpret (NORM) as “unwarranted”, (CONF) as
overly restrictive and “defeating its purpose”, and of “by-passing” and “short-circuiting” the
proof itself by rejecting such assumptions. Denying (CONF') opens up space for underdeter-
mination of models, because — interpreting conformal rescalings as passive rather than active
transformations — two models may differ by running units, where the choice of numerical
units trades off against different conformal scalings (ibid., p. 157); one can do the same with
volume elements (ibid., p. 158). By denying (NORM), we can use reparametrisations of
curves to create empirically equivalent models that differ with respect to lengths of vectors
(ibid., p. 156). By denying (RIEM), possibilities open up to modify the affine-connection so
as to include non-Riemannian spacetimes (ibid., pp. 159-160). Finally, by denying (FORCE),
interpreting F' more loosely as an interaction or “effect” rather than a strict “force” such as
the electromagnetic force represented by the Faraday tensor. I will multiply examples in §5.

3. Universality, not existence: most assumptions are not loopholes to theorem 6

Surely, W&M'’s paper is written in an anti-conventionalist tone. Reading the title of the paper
and some of their commentary, they can easily be misread as implying that their result shows
that GR does not allow for conventionalism at all. That is, as if trade-offs between metrics and
universal forces/effects can never be made, or perhaps only in very exotic cases. Furthermore,
some assumptions of §2 are not explicitly discussed, or only mentioned in passing. The one
assumption that receives extensive attention is (FORCE). Take, for example, (CONF), the
restriction to conformally equivalent spacetimes. In a footnote, they say:

Note, though, that requiring conformal equivalence only strengthens our results.
If the conventionalist cannot accommodate conformally equivalent metrics, then
a fortiori one cannot accommodate arbitrary metrics; conversely, if Reichenbach’s
proposal fails even in the special case of conformally equivalent metrics, then it
fails in the case of (arguably) greatest interest.” (W&M 2014, fn. 13, p. 237)

A few pages later, the same is said about (CONF) in a footnote to Proposition 2 directly:

Again, this restriction strengthens the result. If the proposal does not work even in
this special case, it cannot work in general; moreover, the special case is arguably
the most interesting. (W&M 2014, fn. 22, p. 242)

This may strike one as quaint, even plainly wrong: aiming to debunk conventionalism, dis-
carding a whole class of spacetimes — in casu the conformally inequivalent spacetimes — does
not strengthen but weaken the result. Right? If you take a subset of the full set of spacetimes,
one excludes by fiat a whole range of candidate empirically indistinguishable spacetimes: why
is one not allowed to look for empirically equivalent models outside of that subset?

Both D&BM and W&M do not clearly distinguish between two conceivable positions
that Proposition 2 can be taken to dispel, namely whether — with the help of universal forces
— at least one model is equally capable of making the same predictions as a given model, or
whether all of them are. The first is an existence claim, like (ALT-ACC). The second is a
universality claim, like theorem 6. The crux of the matter is that there are different kinds of
model underdetermination that give rise to different kinds of conventionalism:



- Existence (UDT-V¢3g): For each metric of an adequate model of some spacetime
theory there exists at least one distinct metric of a model of that theory that is equally
capable of predicting the same observable consequences, given suitable universal effects.

- Universality (UDT-V¢Vg): For each metric of an adequate model of some spacetime
theory any other distinct metric of a model of that theory is equally capable of predict-
ing the same observable consequences, given suitable universal effects.

The suitability can be fleshed out broadly or narrowly—W&M flesh it out narrowly as
(FORCE), while Reichenbach does so under a broad understanding of universal effects
fleshed out under an operationalist semantics a la Helmholtz. Note that (UDT-V¢V§g) im-
plies (UDT-Vg¢3g), and also note that, in the context of GR, (UDT-V¢3g) takes the form
of (ALT-ACC). Finally, (UDT-Vg¢3g) is a rendering of theorem 6 in terms of formal model
underdetermination (ignoring bona fide conventionalist worries about non-factual choices
that enable measurements, cf. (Padovani 2017)).

From D&BM'’s formulation of (ALT-ACC), which states that geometric alternatives
must exist, it is clear they take W&M'’s target to be the existence claim, not Reichenbach’s
universality claim. Instead, what they disprove is that (roughly) the geodesics of any given
spacetime (M, g) and those of an alternative but conformally equivalent spacetime (M, g)
can be related by a force field satisfying (FORCE). Hence, we should also consider claims
with restricted quantifiers ranging over conformally equivalent metrics (to g):

- Restricted Existence (UDT-Vg3.,,G): For each metric of an adequate model of
some spacetime theory there exists at least one distinct conformally equivalent metric
of a model of that theory that is equally capable of predicting the same observable
consequences, given suitable universal effects.

- Restricted Universality (UDT-VgV.,.g): For each metric of an adequate model of
some spacetime theory any other distinct conformally equivalent metric of a model of
that theory is equally capable of predicting the same observable consequences, given
suitable universal effects.

Again, (UDT-Y¢V ong) implies (UDT-Yg3contg)-

As I read it, W&M slide between two targets, i.e., (UDT-Y¢3.0neg) and (UDT-VgVg).
On the one hand, “If the conventionalist cannot accommodate conformally equivalent met-
rics, then a fortiori one cannot accommodate arbitrary metrics”, targets (UDT-Vg¥g). On
the other hand, “[...] conversely, if Reichenbach’s proposal fails even in the special case of
conformally equivalent metrics, then it fails in the case of (arguably) greatest interest”, has
in mind (UDT-Vg3g), plus a defense of (CONF) so that (UDT-Vg3.,n¢g) implies the unre-
stricted existence claim. Let us consider both readings.

D&BM (2022, p. 156) say that W&M “believe this restriction [i.e., (CONF)] doesn’t
diminish the argument’s generality, since for Reichenbach any arbitrary geometry can be up-
held [...].” They attribute to W&M for this belief is their remark about the non-conventionality
of causal structure, a point first made by Malament (1985): since Reichenbach famously took
causal statements as non-conventional, he would presumably hold that conformal structure
is factual because it derives directly from causal facts. Thus, on his own terms, he should
be committed to the conformal part of the metric as non-conventional. On this reading,



one would indeed hold that (-UDT-Vg3.ong) implies (-UDT-Vg3g), since both classes
exhaust the physically viable (or rather: factual) differences. Yet, few of us are committed
to Reichenbach’s causal theory of time—and besides, W&M themselves say they are not
primarily concerned with Reichenbach’s project. One could of course read this as a moti-
vating remark why conformally equivalent spacetimes are interesting.” The argument why
(UDT-Vg3contg — UDT-Vg3g) remains unjustified, or at least implicit. This means that
(UDT-Vg3g) remains a viable option.”

The generalization to torsionful spacetimes in Section 4 is one example of the myriad
of possible generalization described in Section 6, and so is meant to lead up to it

Yet, despite D&BM'’s objections, denying (CONF) — or any of the assumptions for
that matter, except (FORCE) — will not save theorem 6. For let us consider (UDT-VgVg)
as an implicit target of the proof. First, Proposition 2 denies (UDT-Vg3.on¢g) in the con-
text of GR. Then, the restricted universality claim implies the restricted existence claim
(UDT-Y¢Veontg — UDT-Vg3ontg), so we have (by modus tollens) that =(UDT-YgVconq).
In turn, it is clear that (UDT-V¢Vg) implies (UDT-VgV,ong), so we have =(UDT-VgVg).
In this way we can interpret Proposition 2, roughly, as disproving the statement “for any
pair of (conformally equivalent) spacetimes (M, g) and (M, g), there is a force field satisfying
(FORCE) that relates their geodesics”, with the parentheses around “conformally equiva-
lent” highlighting the redundancy of this qualification.

Another way to see this is to consider the region of GR spacetimes, assuming (TOPO),
that are conformally equivalent (CONF), Riemannian (RIEM), and renormalisable (NORM),
as illustrated by the solid green region in Figure 1. W&M refute that any two spacetimes
in this region can be related by a “standard” force tensor field F,;, satisfying (FORCE).
Suppose we deny (CONF); this expands the space to include Riemannian, renormalisable
spacetimes regardless of conformal equivalence. But this merely enlarges the region to that
marked ‘GR’ in Figure 1b, with the original subset (Figure la) still contained within it.
The same proof that rules out a force field in the narrower region applies to the wider one.
Strictly analogous reasoning applies to the denial of (RIEM), (NORM) and (if one goes
beyond GR) (TOPO): the nature of Proposition 2 as an argument against theorem 6 is that
it remains true under generalisation.

4. Generalising to torsionful connections

One way of generalising W&M’'s relativistic result in a controlled way is by explicitly rejecting
(RIEM) — more specifically its constitutive premise (RIEM-SYMM) — by allowing for

4A worthwhile investigation, contra (Malament 1985), is to see whether the terms ‘conformal structure’,
‘light-cone structure’ and ‘causal structure’, which are synonymous in a modern context, might come apart
on different readings of factual and conventional content, and to compare these concepts historically.

°I thank an anonymous reviewer for pointing me to a recent preprint (Roberts 202?) claiming a strength-
ening of W&M’s result without (CONF) and (NORM). Yet the result does not straightforwardly imply
Proposition 2: it fails to satisfy (FORCE) as written by D&BM because vectors are not renormalised to the
new geometry. But this highlights that (FORCE) and (NORM) are not really independent assumptions.
One may instead relax (FORCE) by dropping that €% ought to be unit relative to qp, keeping the tangent
unnormalized. (FORCE’) then says that the vector field tangent to « chosen (whatever it is) must satisfy the
algebraic force law Ebﬁbfa = F%¢% and Roberts’ Theorem 1 would indeed count as a strict generalisation.
In what follows I take the stronger reading, presupposing that éa is unit relative to gup.



torsionful connections, i.e. connections that are not necessarily symmetric:

Proposition 3 The relativistic torsionful case—Let (M, g.) be a relativistic space-
time, let §a, = %ga be a metric conformally equivalent to gu, and let V and vV be not-
necessarily-symmetric derivative operators compatible with g., and §ap, respectively. Suppose
Q) is non-constant. Then there is no tensor field Fyy such that an arbitrary curve v is a
geodesic relative to V if and only if its acceleration relative to V is given by F“nf”, where "
1s the tangent field to ~v with unit length relative to Gap.

In light of the existence of empirically equivalent torsionful models, i.e., the so-called telepar-
allel equivalent of GR (cf. Hayashi and Shirafuji 1979), the truth or falsity of this proposition
promises to be insightful. In Appendix A I show Proposition 3 to be true, starting from a more
general difference tensor as given in (Jensen 2005). Because the additional torsionful terms
do not depend on the metric, they are not affected by a conformal transformation, and so
the proof goes through largely analogously to the proof of Proposition 2. This generalization
to torsionful spacetimes is one of the myriad possible generalisations in §5.

Again it is important to distinguish targets. If the target is the universality claim
(UDT-VgV§), then expanding the scope of a universal quantifier does not affect its falsity: if
the universality claim fails in the original, narrow case, it trivially fails in the broader one too.
The key point is that for a given torsionful connection, some others cannot be related by a
force field Fp, thus violating (RIEM-SYMM) but still refuting theorem 6 under (FORCE).
That does not mean this result tells us nothing new: Proposition 3 is a genuine generalisation
in the sense that it proves that for any torsionful connection, there exists some (non-trivially
conformally equivalent) torsionful connection that cannot be related by a force field F.

If the target is (UDT-Yg Viosionful; 39 %torsionful) is taken, this existence claim fails
within the class of conformally equivalent spacetimes, see Figure (1c). That is, it is a gener-
alisation of Proposition 2 in the sense that for a given torsionful connection there exists no
conformally equivalent torsionful connection that can be related by a force field F,;.°

To pre-empt misreading: Proposition 3 does not rule out the existence of a teleparallel
equivalent to GR. Logically speaking, a force field could still relate torsion-free and torsionful
spacetimes, and this should motivate more stringent existence claims (cf. §5). However, the
above framework does allow for a more direct assessment of whether torsion (in teleparallel
gravity) counts as a force. The torsionful deviation from geodesic motion, governed by the
Weitzenbock connection, does not appear to satisfy (FORCE): it enters the geodesic equation
via the contorsion tensor contracted with two velocity vectors and cannot generally be cast
as a conservative force represented by a rank-2 tensor. It would be more naturally interpreted
as a geometric effect, albeit not solely through the metric alone: geometric facts would be
represented by the metric in tandem with the connection and its associated contorsion. In
this relativistic context, then, torsion is not a force.

6T thank an anonymous reviewer for asking me to compare Proposition 3 to Theorem 1 in (Roberts 2027),
which considers conformally inequivalent spacetimes: one might be able to extend Roberts’” Theorem 1 to
not-necessarily-symmetric connections. Roberts’ conclusion that F'*, = 0, however, relies on the symmetry of
the connecting field C'*, .. This fails in the torsionful case. From Theorem 1’s proof (2027, Eq. (6)), one sees
the torsion must cancel the symmetric part of the connecting field identically: C¢,, = K “(b ¢ This condition
is highly non-generic: a generalisation of Theorem 1 along the lines of Proposition 3 is not straightforward.



Non-differential
geometry

STEGR (Vg=0)

(CONF)

(a) For GR, W&M disprove the existence claim
(UDT-Vg3g) that there is a force tensor field
satisfying (FORCE) that can make two con-
formally equivalent spacetimes (highlighted re-
gion) empirically equivalent.

Non-differential
geometry

STEGR (Ve=0)

(CONF)

(c) Proposition 3 generalises the result in
(a) by allowing torsionful connections (cf. §4
and Appendix A) by rejecting the assumption
(RIEM-SYMM). This does not serve as a
loophole to save theorem 6 in GR; more gener-
ally, there exists no pair of conformally equiv-
alent torsionful spacetimes related by a tensor
field satisfying (FORCE).

Non-differential
geometry

STEGR (Ve=0)

(CONF)

(b) Denying (CONF), one may still believe
(UDT-VYg3g) could be true in GR. Yet this
does not undermine the disproof of the uni-
versality claim (UDT-VgV§), but generalises it:
theorem 6 remains false under (FORCE).

""""""""""""""" Non-differential
geometry

STEGR (ve=0)

(d) To-be-proven existence claims: the yellow
line indicating (UDT-Vg¢3g), the purple lines
the existence claims toward the other two nodes
of the geometric trinity of gravity, and the blue
line searching for the existence of models equiv-
alent to GR that go beyond differential geome-
try (e.g. Einstein algebra formulations), all un-
der (FORCE).

Figure 1: The space of relativistic spacetimes and some inhabitants.



5. A programme: systematically exploring the space of spacetime theories

Purely formally, the debate over geometric conventionalism partly stems from the observation
that prima facie one can trade geometric structure for universal effects, at least mathemati-
cally. We saw that Reichenbach claimed any pair of metrics can be so related and that W&M
show that in GR this is not so under (FORCE). Still, (UDT-VY¢3g) remains neither proven
nor refuted, leaving open that some metrics might be so related. Were (UDT-Vg3g) proven
correct for GR, there would definitively be no grounds for the conventionalist view. Unfortu-
nately, it is hard to get mathematical traction on such a general statement as (UDT-Vg3g),
even under (FORCE). Yet, the formal machinery of Proposition 2 provides intermediate
positions, opening up possibilities for articulating — even generating — empirically equivalent
models, bringing into focus those inhabitants of the formal space of alternative spacetime
theories that are known to us. This section explores some options.

5.1. Logical structure of the “go theorem” and its targets. Rather than attempting
to undermine the proof, I suggest a programmatic attitude: use the list of assumptions in
§2 not just as inspiration but as formal tools to write down further propositions, quantified
either universally or existentially. Tasdan and Thébault (2024) adopt a consonant constructive
spirit. Citing D&BM, who deny Proposition 2 any merit, Tasdan and Thébault instead give
the no-go theorem a more exploratory twist:

Since the theorem contained in their Proposition 2 is both valid and non-trivial,
we take there to be good cause to explore its implications as a “go theorem” in
the context of the negation of the various physical, mathematical and framework
assumptions. (Tasdan and Thébault 2024, p. 492)

They then explore five rearticulations of spacetime conventionalism, “Spacetime Conven-
tionalism 1-5”." Introducing these, Tasdan and Thébault appeal to (Dardashti 2021), which
focusses on the heuristic value of no-go theorems for theory development in physics and
highlights the fact that no-go results do not dictate what must be abandoned, only that
something in the setup must give.” I wholeheartedly agree with Tasdan and Thébault’s con-
structive attitude. However, Tasdan and Thébault do not find their five conventionalist theses
via the negations of premises.” Rather, they affirmatively conceive their own alternative con-
ventionalist positions without reference to the logical structure of the theorem. In part, this

"The first three focus on affine structure, inertial structure, and tidal effects, respectively, but are ul-
timately rejected as either mathematically inconsistent, physically unmotivated, or ruled out by invariant
geometric identities. (For further undermining of Conventionalism 3, see Theorem 2 in (Roberts 2027)). Po-
tentially viable theses are Spacetime Conventionalism 4, which concerns the underdetermination of nomic
structure, and Spacetime Conventionalism 5, which states that the Bach tensor (i.e., the conformally invariant
part of the Einstein tensor) is not the unique conformally invariant rank-2 tensor in four dimensions.

8Note that this method of identifying the structure of thesis rejection is a common formal method in
philosophy, both heuristically and for the purposes of classifying positions of an extant debate by matching
positions with denials of premises (see (Haggqvist 2009; Mulder and Muller 2023) for modal-logical no-go
theorems that undermine destructive thought experiments).

9That said, for Spacetime Conventionalism 5 Tasdan and Thébault appeal to W&M’s no-go theorem to
claim that the universal effect tensor A% i.e., the non-conformally invariant part of the Einstein tensor, is not
a standard force apparently because it is not conformally invariant: “Clearly, by the theorem of Weatherall and
Manchak (2014), A% will not be expressible as a Newtonian force” (ibid., p. 503). The conclusion is correct
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is because they distinguish — following (Dardashti 2021) — between formal possibilities and
physical interpretations, to be rejected independently. As such, they characterise (RIEM)
as a formal assumption and (CONF) as a physical assumption.

Below I will proceed differently, staying on a formal level as well as staying closer to
the no-go logic of the set of mutually inconsistent premises, actively using the assumptions
in §2. This is reminiscent of D&BM'’s approach but gives their systematic approach a new
direction along the lines of the constructive spirit of Tasdan and Thébault. It will also cover
much additional territory, while keeping an eye on D&BM’s requirement that alternatives
should at least have a “modicum of initial plausibility” (2022, p. 170), thereby exploring the
formal space of spacetime theories that can be generated given GR as a starting point.

5.2. =(TOPO). Assumption (TOPO) is relevant for W&M’s proof in that it keeps the

topological structure constant: the choice of different connections V and V is considered to
take place on the same manifold, i.e., between (M, V) and (M, V), not between (M, V) and
(N, 6) (for N' #£ M). This is a reasonable assumption, in line with the historical trend of
the debate about conventionalism by focussing on local rather than global features. However,
it is an open question whether some kind of topological conventionality relevantly interacts
with traditional geometric conventionality.

Consider =(DIM4). In some theories, the effect of what is considered a force in GR can
be modelled by a geometric structure in higher dimensions, such as the identification of elec-
tromagnetic charge with the value of momentum of particles in the fourth spatial dimension
of Kaluza-Klein theory (Kaluza 2018, 1921). Roberts (2027) discusses how simply embedding
GR in higher-dimensional spaces from which the four-dimensional spacetime curvature can
be recovered generally reflects not a freedom of conventional choice, but creates incomplete-
ness: such frameworks introduce fine-tuning problems and require unexplained features unless
completed by additional physical laws. Kaluza-Klein theory succeeds miraculously, precisely
because it posits such laws in five dimensions, eliminating arbitrariness.

Next, consider -(HAUS). That is, the denial that any two distinct points in the man-
ifold can be separated by neighbourhoods. This means that there may be distinct spacetime
events that may nevertheless be indistinguishable topologically: points of the manifold become
glued together.'” Luc (2020) suggests that (HAUS) is not mandatory for GR but usually
imposed as a deterministic demand: to rule out future evolutions otherwise compatible with
the same initial data. J.B. Manchak (2013, pp. 47-48) argues that (non-Hausdorff) Misner
spacetime — where causal regions and CTC regions are neatly separated — may be physically
viable, too. This breakdown of standard GR topology also suggests an algebraic reformula-

but the argument is not, because Inot(CONF) is not shown to imply -(FORCE). Whether A%’ is a force can
be evaluated by direct comparison with (FORCE): whether it enters the geodesic equation as a conservative
rank-2 force tensor. Because of the contracted Bianchi identity, V,G®» = 0, we have V,A% = V,B%, and,
because B is interpreted to “characterise facts about geometric spacetime structure” (ibid., p. 503), the
divergence V,A% is generally not a rank-2 tensor field in the geodesic equation, hence failing (FORCE).
Alternatively, if A% is interpreted as a tidal effect it fails to meet (FORCE) because it does not act on a
particle—it represents not the acceleration of curves but between curves.

0Because showing paracompactness in GR often relies on Hausdorffness, dropping (HAUS) can make
(PARA) harder to establish for some equivalent model of GR. Yet there do exist non-Hausdorff paracompact
spaces empirically equivalent to GR (cf. Wu and Weatherall forthcoming, Appendix, Lemma 1).
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tion of spacetime in terms of Einstein algebras (Geroch 1972; cf. Miiller 2013; Rosenstock,
Barrett, and Weatherall 2015; Shi 2027), which avoids the situation that spacetime is defined
by points and encodes motion algebraically: (FORCE) may not even be meaningful."’

Finally, one can also consider upending causal properties by introducing divergent
global structures. Reichenbach (1928, §12) already discusses underdetermination G + F + A
by postulating particular causal anomalies A, such as singularities, closed timelike curves,
or topological gluing—for an overview of suggestions toward concrete empirically equivalent
models G'+ F'+ A’, see for example (Manchak 2013, Ch. 5) or (Arntzenius and Maudlin 2002;
Mulder and Dieks 2017) for underdetermination of models in GR with closed timelike curves
and models without them. More generally, Grimmer (2027) introduces a broad method — the
ISE Method — to systematically generate topologically distinct but physically equivalent for-
mulations of spacetime theories. The Mobius-Euclid duality developed there illustrates how
two theories with very different topologies (e.g., a point particle on a Mobius strip versus a
line on the Euclidean plane) can nonetheless encode identical dynamics, thus demonstrating
that topological structure can be redescribed without loss of empirical content. ISE poten-
tially provides ample leeway to construct initially plausible topologically distinct alternatives
to relativistic models.

5.3. =(RIEM). It is certainly plausible to deny (RIEM). W&M pose the underdeter-
mination question within the class of Levi-Civita connections. Yet, there is a plausible reason
to consider a broader range of affine-connections to inform further propositions, namely
the existence of metric-affine alternative theories to GR that do not centrally employ Levi-
Civita connections. The main examples are the theories of the so-called geometric trinity
of gravity. In GR, gravitational effects are a manifestation of spacetime curvature, but it is
by now well-known there is a theory prima facie distinct from GR, empirically equivalent
to it, and in which gravitational effects are a manifestation of spacetime torsion (cf. Lyre
and Eynck 2003; Knox 2011; Wolf and Read 2023; Mulder and Read 2024; Weatherall and
Meskhidze 2024). This latter theory is known as the teleparallel equivalent of general rela-
tivity (TEGR). Increasingly well-known amongst philosophers (Chen and Read 2023; Wolf,
Sanchioni, and Read 2024; Mulder 2027; Weatherall 2027) is a third theory (cf. Bahamonde
et al. 2023; Heisenberg 2024), called the symmetric teleparallel equivalent of general relativity
(STEGR), in which gravitational effects are a manifestation of spacetime non-metricity, i.e.,
the non-compatibility of the connection with the metric.'?

Reichenbach had no scruples using an anti-symmetric affine-connection, as becomes
clear in his geometrisation of electromagnetism. Giovanelli (Section 4, 2021) shows in what
way Reichenbach was not naive about these matters, attempting (arguably successfully) to

HT thank an anonymous reviewer for pointing out that, strictly speaking, (FORCE) only risks losing
its meaning in non-Hausdorff Einstein-algebra settings where the duality with smooth Lorentzian manifolds
breaks down. Within the Hausdorff sector, by contrast, the standard duality guarantees that the notion of
“geodesic” (and hence of a force law) can still be recovered on the algebraic side. Thus, it is the combination of
dropping (HAUS) and adopting the Einstein-algebraic framework that threatens the meaning of (FORCE),
not the algebraic formulation per se.

12Note that these theories generically require a rank-3 “force” tensor, namely the contorsion or the distor-
tion tensor, breaking (FORCE-b) (see §5.4) on top of (RIEM). Thus the geometric trinity is classified in
the current taxonomy in the -(RIEM) A =(FORCE-b) sector. This is why I concluded in §4 that torsion
is not a force in teleparallel gravity. The same will hold for the distortion tensor in non-metric theories.
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geometrise the electromagnetic field by decomposing the affine-connection into the Christoffel
symbols as the product of a mixed anti-symmetrical tensor and a covariant vector.

Furthermore, the Appendix to Raum und Zeit makes clear that Reichenbach saw the
geometrisation of gravity as one way of casting the physical content (that is, gravity) in a
mathematical mould of geometry, which he regarded as a mere visual “shiny cloak”—see
the recently translated (and long out of print) Appendix to Reichenbach’s book analysed in
(Giovanelli 2021). This inspires a search for what such a shiny cloak could be hiding, which
(less metaphorically) means a “force theory” or other causal theory in which the curvature
is constant, and in particular flat:

- UDT-Ygdn: for each metric featuring in an empirically adequate model of some space-
time theory, the Minkowski metric (or Euclidean, for non-relativistic theories) is capable
of reproducing the same observable consequences, given suitable universal effects.

For GR and under (FORCE), this is proven false by Proposition 2, for W&M prove that
there are models for which this cannot be done, namely for conformally flat models, and
hence there is no equivalent flat space standard force version of the theory of GR as a whole.

5.4. =(FORCE). In fact W&M (2014, pp. 235-237) are a bit more detailed than D&BM'’s
formulation of (FORCE). I find three minimal specifications of their standard force: (FORCE-
a) a force is some physical quantity acting on a massive body or point particle; (FORCE-b)
forces are represented by rank-2 tensors at a point; (FORCE-c) the total force acting on a
particle at a point must be proportional to the acceleration of the particle at that point, and
vanishes just in case the acceleration vanishes.

One may deny (FORCE-a) by rejecting that universal effects must enter as force-like
terms in the geodesic equation—after all, not all physical influences act by locally deflecting
particles from geodesic motion. Tasdan and Thébault (2024) consider one such route via the
geodesic deviation equation, which captures relative acceleration rather than particle-level
forces. They find it promising but lacking concrete proposals.

One may deny (FORCE-b) by allowing universal effects to be encoded in higher-
rank tensor fields. As a result, one may have to accept that universal effects fail to be
conservative. While forces are typically derived from a potential, nothing a priori rules out
universal effects of a “drag” type: velocity- or history-dependent interactions familiar from,
for example, radiation theory. These violate integrability and energy conservation—serious
drawbacks if deemed fundamental, but not obviously ruled out just by empirical adequacy.

To deny (FORCE-c), one rejects the idea that universal effects must be proportional
to acceleration. In other words, it necessarily manifests as a deviation from inertial motion.
In GR, famously, gravity causes no proper acceleration: free-falling particles follow geodesics.
Likewise, one might imagine a universal effect that alters relative motion (e.g. via curvature
or background fields) without pushing particles off their geodesics, and so without acting as
a local force in the Newtonian sense.'’

13Finding yourself in a Reichenbachean mood, hypothesise a non-constant scalar field ¢)(x) which alters the
behaviour of rods and clocks without exerting any force on particles, e.g., shifting atomic frequencies. Test
particles would still follow geodesics, but observers using 1¥-dependent measurement devices observe relative
drifts or redshifts. Thus ¢ produces observable structure without deflecting motion, evading (FORCE-c).
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5.5. =(CONF). One may ask whether it is possible to drop the conformal restriction
(CONF). Although today “conformal structure”, “light-cone structure”, and “causal struc-
ture” are used interchangeably, one could investigate where such concepts come apart through
interpretations that identify their factual or conventional underpinnings differently. For Re-
ichenbach, the factual content of the theory of gravity is given by causal relations, established
operationally by means of sending and receiving light signals. Before specifying one’s method
to establish them, lengths and durations are not distinguished.

More to the formal point, under the coordinative definitions W&M adopt, take two
arbitrarily related Lorentzian, non-degenerate metrics g, and g, on M, and see whether
(FORCE) can be met, assuming also the other assumptions except (CONF)). Is there is a
tensor field F,;, such that an arbitrary curve v is a geodesic relative to V iff its acceleration
relative to V is given by F¢ £".

Then introduce the connecting field (Eq. (A.2)) and write the g-acceleration of a
g-geodesic, i.e., E'V,£7 = EPV,€% — 09, £5¢°, where € is unit with respect to g. Can the
right-hand side reduce to a linear map on the velocity vector field?

Without imposing additional relations, there is no straightforward route to relate £*
and £%. And because covariant differentiation requires knowledge of how a field varies off the
curve, there is then no straightforward way to compute V&2, In particular, there is no unique,
linear cone-preserving map from g-timelike vectors to g-timelike vectors. This highlights the
traction W&M obtained through (CONF): if the metrics are conformally equivalent, their
light-cones coincide, so that there is a one-to-one correspondence of the sets of time-like
vectors. One may attempt to find traction in another way, using a suitable map between the
old and new geometries. Without that, one is mixing timelike vectors of one geometry with
spacelike vectors of the other, turning lengths into durations.

5.6. «(NORM). Denying (NORM), i.e. both go,6%" # 1 and §o,E°€? # 1, the geodesic
equation obtains an additional reparametrisation term (cf. Carroll 2003, p. 109; Malament
2012, pp. 58-59): N N

EVE" = —0 L€ + €'V, In(|gun€ €' /)€, (5.1)
because f“ is no longer unit relative to g, so one should correct for the failure of affinity. To
see this, note that when you reparameterize a geodesic y(\) with tangent £ = da® /d\ with a
new parameter ), that new parameter generally does not increase at a constant rate relative
to the original affine parameter A (unless d?\/d\?> = 0). As a result, the “squared speed”
of the curve with respect to §, namely §.,¢%€?, no longer remains constant along the curve
itself, i.e. its derivative with respect to A (or, equivalently, its covariant derivative along 3 )
is nonzero. Using metric compatibility and the symmetry of g,;, we have

EV3(ac€"E) = 2G0c (EPV,€7)E° (5.2)

Also, since the reparametrised curve must trace the same path as the original affine
geodesic, the new acceleration & ng,& % can only point along 5 @ itself, so we write the non-affine
geodesic equation

V" = ke, (5.3)
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for some scalar function x(\). Comparing this with Eq. (5.2), we have
E'V(§ack"€%) = 26§acl €, (5.4)

so that s s
o~ LEVH(GucL"E)
2 gdegdge
where the logarithmic term makes explicit the measure of the failure of unit normalization
or affine parametrisation in the new geometry. The parameter A “runs too fast or too slow”
compared to an affine parameter. This fact is used in D&BM’s particular case (2022, p. 156),
while the above is the general case.

Within GR, (NORM) goes hand in hand with (FORCE-c), for a non-affine parametri-
sation leads to a force term that is not proportional to acceleration—without normalised
tangent vectors, one may still satisfy the algebraic form of (FORCE), but in so doing accel-
eration is no longer a geometric invariant of the curve, becoming parameter dependent. Note
that (NORM) also goes hand in hand with (CONF): when two spacetimes share light-cone
structure, one can simply rescale vectors since they are already pointing in the same direc-
tion. That is, having the conformal relation gq, = Q%ga gives a simple conformal rescaling
for normalised time-like vectors: £* = Q¢

= €'V, In [§a 76712, (5.5)

6. Discussion: Conjecture ¢ and conceiving of alternatives rigorously

Proposition 2 severely restricts the possibilities for model underdetermination in GR. Yet,
it does not remove all: D&BM’s (ALT-ACC) may still be conjectured to hold, unless each
assumption is independently justified. Future work may well show this to be possible. Yet,
there is no rich no-go theorem to save (UDT-VgVg) in GR, for only two premises are suf-
ficient for a contradiction: theorem 6 and (FORCE). Even without a justification for the
other assumptions, the only loophole to save theorem 6 is the restriction that the universal
effect should be like a standard force field. The benefit of this constraint is that it affords
mathematical tractability, but conventionalists may reject it by denying either that universal
effects must enter the geodesic equation, or that they must be represented by rank-2 tensors.
Reichenbach likely would have rejected the latter.

Note how all-encompassing theorem 6 is: it states that for any arbitrary given metric,
any other arbitrary metric is equally good, at least as far as observable facts go. What counts
as a duration in one geometry may be a length in another; what is a continuous path in one
may appear as a particle popping in and out of existence in another. That’s why theorem 6
is a version of the universality claim (UDT-VgVg).

Reichenbach (1928, §8, p. 31-33) states theorem 6 without proof. Extrapolating from
Poincaré’s (1891) intertranslatability of the three constant-curvature geometries — flat Eu-
clidean, positively-curved Riemannian, and negatively-curved Bolyai-Lobachevsky geometries
— he concludes that “No epistemological objection can be made against the correctness of
theorem 0” (1928, p. 33). Would we see clearer when we think of it as Conjecture 6, in need
of proof, as W&M do? The answer lies in some subtle interplay between the semantic and
epistemic components of realism.

Starting from a conventionalist position that assumes that for a (physical) geometric
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fact to be meaningful, thereby fleshing out the semantic component of realism, we first need
to stipulate a baseline to calibrate our measuring apparatuses (cf. Padovani 2017). Hence
Reichenbach’s mention of “universal deformation of measuring instruments”. With this stip-
ulation itself not epistemically determinable, surely no further proof is required: Poincaré’s
one-to-one equivalence results trivially back it up. This amounts to a selective semantic anti-
realism: there are no non-conventional geometric facts independent to begin with. In such a
case, however, the designation “theorem” may be seen as an exaggeration.

Another kind of “conventionalist” (better: empiricist) emphasises the epistemic over
the semantic by putting their hopes on the existence claim (UDT-V¢3g): anti-realism needing
only one instance of underdetermination. This is the kind of geometric anti-realism W&M
take as their foil, and D&BM are also committed to it when they formulated (ALT-ACC)
as an existence claim. Thus, both W&M’s and D&BM’s projects are completely distinct from
Reichenbach’s.

The above explains why W&M — and this is heavily criticised by D&BM (2022, pp. 161-
162) — cite many conventionalists but do not engage with their key concepts: coordinative
definitions, congruences, truth. Of course, a good deal more is to be said about the nature
of conventions and associated conventionalisms, about a century-worth of literature more.
However, little subtlety is needed to evaluate Proposition 2. For W&M only address the
formal problem of the existence of model underdetermination. This clarifies (but does not
justify) the sliding between (UDT-V¢Vg) and (UDT-Vg3g) discussed in §3.

Ultimately, then, W&M’s project is best viewed as distinct from (anti-)conventionalism
proper. Rather, it considers the leeway between our leading theory of gravity and our leading
concept of force, while keeping the usual coordinative definitions of GR intact. This is much
in the spirit of David Malament:

Philosophers of science have written at great length about the geometric structure
of physical space. But they have devoted their attention primarily to the question
of the epistemic status of our attributions of geometric structure. They have
debated whether our attributions are a prior: truths, empirical discoveries, or, in
a special sense, matters of stipulation or convention. It is the goal of this chapter
to explore a quite different issue — the role played by assumptions of spatial
geometry within physical theory [...]. (Malament 1986, p. 405, original emphasis)

Seen in this light, I suggest continuing W&M’s work by interpreting the relativistic proof
of Prop. (2) as the starting point of a research programme, for example through extensions
such as Prop. 3 (§4) and systematically exploring the space that I have begun to classify
(85). This is only a handful of examples, but these can be multiplied by casting our net wider
and wider over a space of alternatives, including those that move away from differential
geometry, approaching the unconceived. Indeed, Stanford’s (2010) so-called New Induction
reminds us that our current theory space is unlikely to be exhausted. Quite distinct from
one’s realist commitments, systematic rejections of the assumptions to W&M'’s proof provide
constraints that make possible a controlled exploration of the formal landscape underlying
the titular “Theory of Spacetime Theories” of (Lehmkuhl, Schiemann, and Scholz 2016): with
newly formulated propositions one can trace routes between charted regions of the space of
spacetimes, forming a growing atlas of alternative relativistic formulations.
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A. Appendix: proof of Proposition 3

Proposition 3 in §4 is a genuine generalisation in the sense that it says that for any torsionful
connection, there exists some (non-trivially conformally equivalent) torsionful connection
which cannot be related by a force field F,. To prove it, we take as a starting point Steuard
Jensen’s (2005) Eq. (3.1.28), which is the generalisation of the difference tensor 2C%,, =
9" (Vugbe — Vogne — Vegon), to torsionful connections

1 ~an ~ ~ ~
Cabc = 59 (vngbc - vbgnc - chbn + ATvbcn + Aircbn - Airnbc) ) (Al)
for the torsion tensor 7., which measures the anti-symmetric part of the associated connec-

tion (in coordinate-language it is given by 7%, := QFP[W]), and AT, the difference between

the torsion tensors associated with V and V.'* There is an overall minus sign and g’s com-
pared to Jensen’s Eq. (3.1.28) because we are expressing this in the original geometry rather
than the new geometry. Let us group the torsion terms together as a generalised contorsion
tensor: 2K gpe := AType + ATpee — AT, 4, which reduces to the usual contorsion tensor if only
one connection is torsionful and the other not.

Taking (CONF), the metric go, = Q%(x)gay of a new geometry relates to the old one
via a non-constant conformal factor d€2 # 0. Then compute Eq. (A.1) using Malament’s (2012,
p. 82) Proposition 1.9.5 (for upper indices we have §°¢ = Q2§°?G%g,, = Q2Q g = Q~2g%d):

1
Cabc - Kabc = Wg‘m [vn <929b0> - Vb (ngnc) - VC (QQ.gbn”
1
= 530" (000 + g = 0oV — Vg — V.0 - 0 Fegi )
- 2—;22 (Gheg™ V22 — 5,2V,02 — §,0V,02) | (A.3)

where the vanishing terms vanish due to metric compatibility (RIEM-COMP).

As in W&M'’s proof, given any smooth timelike curve ~, if £ is the tangent field to
with unit length relative to (the old) gu, then the tangent field to (the same curve) v with
unit length relative to (the new) metric g, is given by

g -0l (A4)

which holds due to (NORM): if g,,6%¢? = 1 and §,,6°€? = 1 then §up*E" = g, Q2600 = 1.
Then, from Eq. (A.2), we see that the difference tensor acts on a vector as V,,a® =
Vpa® —a"C*, . Now take any geodesic curve of the old connection V,, and compute the

14The difference tensor relates two connections to each other as they act on a smooth tensor a of arbitrary
rank (Malament 2012, Proposition 1.7.3, p. 51) as:

(e’m - v’rn) Oéalmarbl...bs = aalmaTn...bs Cnmbl +o+ aalmarbl...ncn (AQ)

mbg
bl...bg Calmn e T aalmnbl..‘bs Carmn'
Note that the standard difference tensor (cf. Malament 2012, p. 78, Eq. 1.9.6) requires (RIEM-COMP) and
(RIEM-SYMM), which are thus assumed for Proposition 2; here (RIEM-SYMM) is broken explicitly.
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acceleration relative to (the new) V,, which is

= g g gnvnga - Canmgngm - g_nv g % Sn Sm

Q"0 mmO Q
:g—v §_+(

SV (6, Vo 4+ 6,°ViQ? = gung™ V, Q%) — K “nm) ¢

QQ’
where Eq. (A.4) is used to replace &’s and Eq. (A.3) invoked in the last line. Performing the
derivatives and bringing terms together,

grgmgn e gnem

~n~n ca K@ _ S S G nQQ 5@ mQ2 — G G™" T‘Q2
EVnl" + K2gi = g Vg + 508 (0n" Ve +0,°V Gumd" V) 5
1 n 0 1 nea 29 a a ar nem

= R EVA+ (wv Q- €€V 2~ GuE™ GV, 9)
1

= o (8 + 265 — ") Va2
1

= 57 (€€ = ") Vi, (A-5)

where the vanishing term in the second line is due to being on a geodesic of the old geometry,
(NORM) is invoked in the third line, and indices are relabelled in the fourth.

Suppose for contradiction that a tensor field Fy, satisfying (FORCE) exists. This
should then balance the old geometry (in which 7 is a geodesic) in the new geometry:
Fe, " =g"V,8" (A.6)
The left-hand side can be rewritten as

= 1 1
F(I m — _F(Z m "’(Z'I’L o m, A.7
while the right-hand side of Eq. (A.6) is known, for it is given by Eq. (A.5):

1 1

§" Fun€™ = o (€°€" = ¢ Vall = G K, €76", (A.8)

for any smooth unit timelike tangent vector £* at any point p (for F;, is a tensor).

Now pick any point p where V) # 0 and choose at that point two arbitrary distinct
unit timelike vectors u® and n® and their superposed vector % = a (u* + n*), renormalised by
the scalar « to be unit relative to gq. Then, Eq. (A.8) applies to both pu* and 7 individually
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as well as to (* directly, after which the results are set equal to each other. That is,

~ ~ ~an

(6% (6% (6%
- a,n _ _an 0 (@ an QO— = (™ nym) @
gz W =g )Vt o5 (0" = g™") Vil = o ("™ + ") K,y
a a, n a, . n an a n, m n, m a
=z W " = 29") VS = o (™ ™) K (A.9)

and applying Eq. (A.8) to ¢ directly and then using its definition, we have

~an m_l a - n an 1 n, m a
2
« a, n a,.n a, n a..n — an
=g W+ i 0t = a7 ) V)
2

a n, m n._.m n, m n._m a
—ﬁ(uu +ut ™ g™ ™) K, (A.10)

After equating Eqgs. (A.9) and (A.10), and rearranging, we finally obtain

200 — 1
( - ) 9"V = [(a = 1) (uu™ + 0" ") + 2aptV] V.0

—Q (= 1) (" u™ +0"n") + 2au"y™] K9, (A11)

In the case that the torsional terms on the right-hand side somehow cancel the conformal
terms, then resulting equation would state the homothetic case that €2 is constant, which
contradicts the assumption that it is non-trivial. If they do not cancel, then Eq. (A.11) cannot
simultaneously hold for all choices of u* and n®: the left-hand side is always proportional to
V.£2, and so has a fixed orientation, independent of u® or n*. By contrast, the right-hand
side contains explicit bilinear combinations of ©* and n°, including the K-dependent terms,
whose orientations vary freely as pu® and n® vary; thus no “miraculous” cancellations can
occur that would collapse the right-hand side into the fixed direction of V2. Contradiction.
Thus, also in the torsionful case, there is no tensor field Fy;, that can everywhere relate the
geodesics of V and V: Proposition 3 is true.
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